
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

2014

REAL-TIME DATA DISTRIBUTION REAL-TIME DATA DISTRIBUTION

Angela Frolov
University of Rhode Island, nglfrolov@yahoo.com

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Frolov, Angela, "REAL-TIME DATA DISTRIBUTION" (2014). Open Access Dissertations. Paper 227.
https://digitalcommons.uri.edu/oa_diss/227

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/227?utm_source=digitalcommons.uri.edu%2Foa_diss%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

REAL-TIME DATA DISTRIBUTION

BY

ANGELA FROLOV

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

APPLIED MATHEMATICAL SCIENCE

UNIVERSITY OF RHODE ISLAND

2014

DOCTOR OF PHILOSOPHY DISSERTATION

OF

ANGELA FROLOV

APPROVED:

Thesis Committee:

Major Professor Lisa DiPippo

Victor Fay-Wolfe

Qing Yang

James Baglama

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2014

ABSTRACT

Many Cyber-Physical Systems (CPS), distributed embedded real-time (DRE)

applications like military command and control, time critical planning collaboration,

and wireless embedded sensor networks, require shared data among various

components of the system to be available within stringent deadlines for processing and

for making critical decisions on time. In order for these decisions to be correct in

accordance with the current situation, the data received and processed must be valid.

These applications need a data distribution mechanism that can deliver valid data in a

specified time. The goal of this work was to develop such a mechanism. We

approached it in the following way. First, since a better understanding of the problems

involved in real-time data distribution leads to a better solution, we, by grouping

characteristics of different systems that require real-time data distribution, defined the

data distribution problem space taxonomy. Then, we targeted specific subspaces (static

and dynamic systems) in the real-time data distribution problem space and worked on

our solutions for them. The solutions we provided include a theoretical base, data

models and algorithms for computation of distribution deadlines to ensure data validity

in both static and dynamic environment, and the actual data delivery mechanism

Timely Data Distribution Service (TDDS).

iii

ACKNOWLEDGMENTS

First, I wish to thank my two academic advisors, who influenced this work the

most. My deepest thank you goes to my major professor Dr. Lisa DiPippo for her

tireless guidance and support from the very beginning of this endeavor through the

very end, and to Dr. Victor Fay-Wolfe, for all his valuable contributions, advices and

comments throughout my research.

Second, I would like to express my gratitude to my former fellow student,

presently Dr. Kevin Bryan for his useful suggestions during numerous research

meetings in the early stages, and for his help and technical support on the final stage of

this project, which made finishing this work possible.

I also wish to thank all former members of RT DOC research group who have

influenced this work in so many different ways, and made my study and research here

a joyful time. A special thank you goes to Mr. Jie Mao, who worked along with me on

his part of this project’s implementation.

I would like to thank all faculty and staff of the Computer Science Department

for making it a wonderful place to study and research, with special thanks to Ms.

Lorraine Berube, always amiable, helping and willing to help.

And the last but not the least, I want to express my everlasting gratitude to all my

family for their love, support, and understanding.

 Angela Frolov

University of Rhode Island

 March 2014

iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1 ... 1

INTRODUCTION ... 1

 1.1 Motivation .. 1

 1.2 Research Goals ... 2

 1.3 Our Approach ... 3

 1.4 Dissertation Outline ... 3

CHAPTER 2 ... 4

BACKGROUND AND RELATED WORK ... 4

 2.1 CORBA .. 4

 2.1.1 RT CORBA .. 7

 2.1.2 The ACE ORB (TAO) ... 8

 2.2 Dynamic Scheduling Service ... 9

 2.3 Event and Real-Time Event Service .. 11

 2.4 Naming Service .. 14

 2.5 Summary of Related Work .. 14

CHAPTER 3 ... 22

REAL-TIME DATA DISTRIBUTION: MODEL AND THEORY 22

v

 3.1 RTDD Problem Space .. 22

 3.2 Existing Approaches to RTDD and Solution Space Addressed by Our Work 30

 3.2.1 Types of RTDD .. 30

 3.2.2 Solution Space Provided by our Work ... 36

 3.3 RTDD Model ... 37

 3.4 RTDD Algorithm ... 39

 3.4.1 JIT Static Data Distribution (JITS) .. 39

 3.4.2 JIT Dynamic Data Distribution .. 42

 3.5 Theorems .. 43

CHAPTER 4 ... 49

STATIC RTDD .. 49

 4.1 System Design and Implementation .. 49

 4.1.1 Off-Line Analysis .. 49

 4.1.2 On-Line Implementation .. 50

 4.2 System Evaluation .. 52

CHAPTER 5 ... 65

DYNAMIC RTDD ... 65

 5.1 System Design .. 65

 5.2 System Implementation .. 69

 5.2.1 Components and Use Cases Implementation ... 69

 5.2.1.1 Set-Up Phase .. 70

 5.2.1.2 Run-Time Phase ... 76

 5.2.2 Major Data Structures ... 78

vi

 5.2.3 Intermediate Deadline Computation ... 81

 5.3 System Evaluation .. 87

 5.3.1 Experimental Platform .. 87

 5.3.2 Experimental Design ... 88

 5.3.3 Results ... 91

CHAPTER 6 ... 101

CONCLUSION .. 101

 6.1 Contributions .. 101

 6.2 Comparition with Related Work .. 103

 6.3 Limitations and Future Work ... 105

BIBLOGRAPHY .. 108

vii

LIST OF TABLES

TABLE PAGE

Table 1. Test Scenario Parameters. ... 55

Table 2. Navy Weapons Alignment Application Simulation Parameters 58

viii

LIST OF FIGURES

FIGURE PAGE

Figure 1. CORBA Architecture. ... 5

Figure 2. RT DSS System Architecture. ... 9

Figure 3. Event Channel Communication Models ... 11

Figure 4. Collaboration in the RT Event Service Architecture 12

Figure 5. RTDD Problem Space ... 22

Figure 6. Real-Time Data Distribution Model .. 38

Figure 7. Deadline Computation ... 40

Figure 8. Lemma 1 (PDist > PSource) ... 44

Figure 9. Lemma 1 (PDist < PSource) .. 44

Figure 10. Lemma 2 .. 45

Figure 11. Off-line Analysis Process .. 49

Figure 12. On-line Implementation ... 51

Figure 13. Test Scenario Set Up ... 53

Figure 14. Navy Weapons Alignment Application ... 56

Figure 15. Navy Weapons Alignment Application Simulation 57

Figure 16. Scenario 1. Distribution Completion Time vs. Deadline 60

Figure 17. Scenario 1. Temporal Consistency of Data Sources 61

Figure 18. Scenario 2. Distribution Completion Time vs. Deadline 61

Figure 19. Scenario 2. Temporal Consistency of Data Sources 62

Figure 20. Navy Weapons Alignment Simulation. Distribution Completion Time

ix

vs. Deadline ... 63

Figure 21. Navy Weapons Alignment Simulation. Temporal Consistency of Data

Source .. 63

Figure 22. Dynamic Data Distribution System Architecture 65

Figure 23. Components Collaboration in TDDS Framework (Set-Up Phase) 67

Figure 24. Components Collaboration in TDDS Framework (Run-Time Phase) 68

Figure 25. Data Source Registration Use Case ... 71

Figure 26. Data Source Unregistration Use Case .. 71

Figure 27. Data Reader Registration Use Case ... 73

Figure 28. Data Reader Registration (Consumer Exists) Use Case 74

Figure 29. Data Reader Unregistration Use Case ... 76

Figure 30. Data Distribution Use Case ... 77

Figure 31. Internal Data Structure ... 78

Figure 32. Real-Time Information Structure .. 79

Figure 33. Subtask Structure ... 80

Figure 34. End-to-End Task Structure .. 81

Figure 35. Intermediate Deadlines Assignment in RT DSS 83

Figure 36. Intermediate Deadlines Assignment for Distribution Task 84

Figure 37. Proportional Intermediate Deadline Assignment....................................... 86

Figure 38. Baseline (Registration/Unregistration) .. 92

Figure 39. Baseline with JIT ... 93

Figure 40. Baseline without JIT .. 93

Figure 41. Single Node. Single Data Source. Multiple Data Readers 94

x

Figure 42. Single Node. Single Data Source. Multiple Data Readers. With JIT 95

Figure 43. Single Node. Single Data Source. Multiple Data Readers. Without JIT ... 95

Figure 44. Single Node. Multiple Data Sources. Multiple Data Readers 96

Figure 45. Single Node. Multiple Data Sources. Multiple Readers. With JIT 96

Figure 46. Single Node. Multiple Data Sources. Multiple Readers. Without JIT 97

Figure 47. Multiple Nodes. Multiple Data Sources. Multiple Data Readers 98

Figure 48. Multiple Nodes. Multiple Data Sources. Multiple Data Readers.

With JIT .. 99

Figure 49. Multiple Nodes. Multiple Data Sources. Multiple Data Readers.

Without JIT ... 99

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Many Cyber–Physical Systems (CPS), distributed embedded real-time (DRE)

applications like military command and control, time critical planning collaboration,

and wireless embedded sensor networks, require shared data among various

components of the system. Further, these systems might require that the data be

available within stringent deadlines for processing and for making critical decisions on

time. In order for these decisions to be in accordance with the current situation and

correct, the data received and processed must be valid, or temporally consistent, that

is, data must be no older than a specified age. There is a need for a mechanism that

will distribute valid data in a specified time.

One simple solution to achieve this would be to provide client-server or point-to-

point communication to deliver the data within the real-time system. However, this

type of communication may become extremely complex and inflexible if there are

multiple components requiring the same data at different rates. A more efficient and

flexible solution would be decoupled, in which the providers of data do not directly

communicate with data consumers. This allows the data providers to produce data at a

rate consistent with data production, and allows the consumers to receive data at a rate

consistent with application needs.

2

The challenge of this solution is to provide a mechanism that will synthesize the

provisions of the provider with the needs of consumers, so that data arrives at each

consumer in time and is temporally valid. The situation becomes even more

challenging when the distributed system that requires data sharing is dynamic in its

nature, that is, data producers and data consumers may come into and leave the

system. In this case the solution mechanism must have the ability to adjust the system

based on new requirements.

Before proceeding any further we would like to provide some basic definitions.

Real-Time Data Distribution is the transfer of data from one source to one or more

destinations within a deterministic timeframe, regardless of the method and the

timescale.

Data temporal consistency is defined by a mean of a certain permissible interval of

time, regardless of a time scale within which the data is considered to be valid.

1.2 Research Goals

The goals of this work are to provide solutions for specific subspaces in the real-

time data distribution problem space (we target static and dynamic systems). These

solutions should include algorithms for computation of distribution deadline to ensure

data consistency, and the actual data delivery mechanism (Timely Data Distribution

Service).

3

1.3 Our Approach

Since a better understanding of the problems involved in real-time data distribution

leads to better solutions, we started our work with the attempt to define the real-time

data distribution problem space. By grouping characteristics of the different systems

that require real-time data distribution, we defined the taxonomy of a data distribution

problem space. Then we worked on a solution to the data distribution problem in static

real-time systems. This solution includes an algorithm that determines data

distribution scheduling parameters, an implementation that uses a real-time event

service to deliver the data, and a real-time scheduling service to ensure that data is

delivered on time. We worked next on a solution to data distribution problems in

dynamic real-time systems. This includes an algorithm for calculation of scheduling

parameters and transition-implementation that supports proper data delivery from data

providers to data recipients.

1.4 Dissertation Outline

The remainder of this thesis is organized as follows. Chapter 2 gives a background

on techniques and tools involved in the project. It also provides a summary of current

work related to the area of data distribution. Chapter 3 presents the Real-Time Data

Distribution (RTDD) problem space, highlights the solution space provided by this

work, and describes the (RTDD) model, algorithms and theorems. Chapter 4 discusses

Static RTDD, including system design, implementation and evaluation. Chapter 5

deals with Dynamic RTDD, its design, implementation and evaluation. Chapter 6

concludes this thesis with summary of contributions, comparisons with related work,

limitations of our work, and possible future directions.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

This section describes our architecture and some components within the

architecture that were used to build our system. It also presents a summary of related

work.

Since our system architecture is build upon TAO ORB, an open source

middleware based on OMG RT CORBA standard, and we use several CORBA

services: RT Event Service, Naming Service and Scheduling service, we start with

providing background on these components.

2.1 CORBA

The Common Object Request Broker Architecture (CORBA), developed by The

Object Management Group (OMG) is a standard of object-oriented middleware for

distributed systems [1]. The goal of this middleware is to facilitate seamless

client/server interactions in a distributed system.

CORBA is designed to allow a programmer to construct object-oriented programs

without regard to traditional object boundaries such as address spaces or location of

the object in a distributed system. This means, that a client program should be able to

invoke a method on a server object whether the object is in the client’s address space

or located on a remote node in a distributed system. The CORBA standard defines a

5

framework to allow communication among applications in a distributed system

regardless of platform or programming language differences.

Figure 1 presents the highest level of CORBA specification, which is referred to as

the object management architecture and consists of four major components:

• Object Request Broker (ORB) is the middleware that routes requests

among all other architectural components. This is the foundation for

building applications from distributed objects in homo-and heterogeneous

environments.

• CORBA Services provide some basic system level services such as

Naming, Persistence, Event Notification, etc.

• CORBA Facilities consist of a set of higher–level functions to cover a wide

range of generically applicable facilities in areas such as information

management and user interface.

CORBA Services

Object Request Broker (ORB)

Application
Objects

CORBA
Domains

CORBA
Facilities

CORBA Services

Object Request Broker (ORB)

Application
Objects

CORBA
Domains

CORBA
Facilities

Figure 1. CORBA Architecture

6

• CORBA Domains consists of objects specific to particular application

domains. They include financial services, healthcare, manufacturing,

telecommunications and business objects.

• Application Objects are the objects (clients and services) created by system

implementers to provide tailored business capabilities.

The CORBA specification also includes the Interface Definition Language (IDL),

which is the key component to integration of application objects. By providing the

standard object interfaces among all applications and data within the CORBA

environment, IDL makes communication between application objects independent of

their physical locations, platform type, networking protocol, and programming

languages.

CORBA’s theoretical background is based on three major concepts: an object-

oriented model, open distributed computer environments, and component integration

and reuse. The latter is achieved through CORBA’s uniform access to services,

uniform discovery of resources and object names, uniform error handling methods and

uniform security policies.

CORBA is one of the major technologies in the field of distributed object

management (DOM), in which components grow and specifications are adopted

according to emerging needs of the applications involved. To address the needs of

broad real-time applications, OMG Real-Time Special Interest Group (RT SIG)

defined the standards for the Real-Time CORBA (RT CORBA) [2]. To provide the

special capabilities to special applications without restricting non real-time

7

development RT CORBA is positioned as a separate extension to CORBA 2.2 and

constitutes an optional, additional compliance point.

2.1.1 Real-Time CORBA

The goal of RT CORBA [2] is to provide a standard for CORBA ORB to deal with

expression and enforcement of real-time constraints on executions to support end-to

end predictability in a system. RT CORBA consists of the following four major

components:

1) The scheduling mechanism in the operating system (OS), which is used to

schedule end-to end application activities (to provide a means for programming such

activity the term distributable thread is used). The RT CORBA specification focuses

on OS’s that allow applications to specify scheduling priorities and policies. For

example, an OS that implements the IEEE POSIX 1003.1-1996 Real-Time Extension

has the necessary features to support end-to-end predictability;

2) The real-time ORB provides standard interfaces for allowing RT applications to

specify their resource requirements to the ORB and based on that manages end-system

and communication resources. It also preserves efficient scalable and predictable end-

to-end behavior of high-level services and application components. For example, a

global scheduling service which can be used for scheduling and managing of

distributed resources;

3) The communication transport, which includes policies and mechanisms to

support resource guarantees;

4) The application(s).

8

To achieve end-to-end predictability, RT CORBA defines standard interfaces and

Quality of Service (QoS) policies to allow applications to configure and control all

kinds of resources in the system. So for example, the processor resources can be

controlled via thread pools, priority mechanisms, intra-process mutexes, and global

scheduling service. The communication resources can be controlled via protocol

properties and explicit bindings, and the memory resources can be controlled via

buffering requests in queues and bounding the size of a thread pool.

Since strict control over scheduling and using of resources is essential for many

RT systems, RT CORBA enables client and server applications to determine at which

priority a CORBA invocation will be processed, allows servers to predefine the pools

of threads and bounds the priority of ORB threads.

While all the above describes the RT CORBA Based Architecture, which ‘covers’

a wide range of fixed priority systems (static systems), the Dynamic Scheduling

specification (RTC1.2) generalizes it to meet the requirements of a much greater

segment of the real-time computing field. The three major generalizations are: any

scheduling discipline may be employed; the scheduling parameter elements associated

with the chosen discipline may be changed at any time during execution; and the

schedulable entity is a distributable thread that may span node boundaries carrying its

scheduling context among instances on these nodes.

2.1.2 The ACE ORB (TAO)

The ACE ORB (TAO) is a high quality, freely available, open-source OMG

standard-based CORBA middleware platform that was developed by the Distributed

9

Object Computing DOC group at Washington University in St.Louis [3] to provide an

effective instrument for a wide community of researchers and developers. Our

RTDOC research group has chosen TAO as the underlying RT CORBA middleware

platform.

2.2 Dynamic Scheduling Service

While RT CORBA 1.2 provides a flexible means for expressing and propagating

scheduling information across node boundaries in a distributed system, all of its

scheduling decisions are assumed to be local. Each endsystem local scheduler uses the

same propagated scheduling information to make local scheduling decisions, and they

do not have a global view of the overall system. The Real-Time Distributed

Scheduling Service (RT DSS) [4] research project in URI RT DOC group attempted to

overcome this issue by providing globally sound end-to-end scheduling and overload

management using the local enforcement capabilities of the local endsystem.

The RT DSS architecture is presented in Figure 2. It consists of six independent

and coordinated components:

DT 1

Local Scheduler

DSS Proxy

A

B

DSS RM

System Repository

D

EC

F

G

DT 1

Local Scheduler

DSS Proxy

A

B

DSS RM

System Repository

D

EC

F

G

Figure 2. RT DSS System Architecture

10

Distributable Thread (DT), Local Scheduler, DSS Proxy, DSS, Resource Manager

(RM), and System Repository.

A Distributable Thread (DT) is a schedulable entity. When it is spawned by the

application, it carries its specified scheduling parameters including the end-to-end

deadline. The Local Scheduler is an extension to that defined in RT CORBA 1.2 for

managing the local portion of a DT. In this architecture, it interacts with both the DT

and the DSS Proxy to obtain and use global information. The DSS Proxy is a running

daemon that works as a proxy to the DSS and is always located on the same node as

the Local Scheduler. The DSS is a centralized scheduling service with the following

responsibilities: online schedulability analysis of an end-to-end task, computation of

globally sound scheduling parameters, and triggering of overload management if

necessary. If the system becomes unschedulable, the Resource Manager (RM) applies

an overload management solution— QoS adjustment, for example. The System

Repository stores the information shared between the DSS and the RM.

The implementation of the DSS is supposed to utilize four out of the seven

scheduling points defined in RT CORBA 1.2. They are the Begin Scheduling Segment

(BSS), at which a DT sends its scheduling parameters to the DSS; the Update

Scheduling Segment (USS), at which the DT requires a change to its parameters; the

End Scheduling Segment (ESS), at which message is sent to the DSS stating that the

DT is no longer in the system; and receive_request, at which a subtask on a new node

captures an incoming request of its predecessor.

11

2.3 Event Service and RT Event Service

A standard CORBA request results in the synchronous execution of an operation

by an object, during which data defined by the operation is communicated between

client and server. Therefore for the request to be successful, both the client and the

server must be available, however there are some scenarios where more decoupled

communication between objects is required.

To address this type of communication, OMG issued a specification for CORBA

Object Service (COS) Event Service [5]. The Event Service decouples communication

between objects by providing for them two roles: the supplier and the consumer. Event

data is communicated between supplier and consumer by a standard CORBA call.

The specification describes two approaches to initiate communication between

supplier and consumer. They are the push model and the pull model (see Figure 3). In

the push model, the supplier is an initiator of communication; it pushes data to the

event channel and then the event channel pushes data to consumer. In the pull model,

the consumer initiates the connection, it requests data from the event channel, and the

event channel in turn pulls data from the supplier. At the heart of Event Service is the

Event Channel which plays the role of intermediary between the objects producing

data or being changed (suppliers) and the objects interested in data or in knowing

about changes (consumers).

Consumer
Event Channel

Supplier

Pull Pull

Push Push

ProxyPush/Pull
Supplier

ProxyPush/Pull
ConsumerConsumer

Event Channel

Supplier

Pull Pull

Push Push

ProxyPush/Pull
Supplier

ProxyPush/Pull
Consumer

Figure 3 - Event Channel Communication Models

12

The Event Channel appears to suppliers as a proxy consumer and appears to

consumers as a proxy supplier. It is the Event Channel that frees suppliers and

consumers from limitations of standard synchronous CORBA calls, and provides

flexible communication among multiple suppliers and consumers.

While the CORBA Event Service provides a flexible model for asynchronous

communication between objects, its specification lacks important features required by

various real-time applications. The work done by Harrison et.al.[6] describes the

design and performance of a RT Event Service that was developed as a part of the

TAO project at Washington University [3]. This extension is based on enhancements

to the push model of CORBA Event Service and supports real-time event scheduling

and dispatching, periodic rate based event processing and efficient event filtering and

correlation. Figure 4 presents TAO’s Real-Time Event Service (RT ES) architecture

and collaborations within it.

Consumer
Proxies

Priority
Timers

Subscription
& Filtering

Event
Correlation

Dispatching
Module

Supplier
Proxies

ConsumerSupplier

Push Push

Publish Types

Object Reference

Subscription Info

Timeout Registration

Correlation Specs

RT_Info

Object Reference

Event Channel

Consumer
Proxies

Priority
Timers

Subscription
& Filtering

Event
Correlation

Dispatching
Module

Supplier
Proxies

ConsumerSupplier

Push Push

Publish Types

Object Reference

Subscription Info

Timeout Registration

Correlation Specs

RT_Info

Object Reference

Event Channel

Figure 4. Collaborations in the RT Event Service Architecture

13

While in this architecture, the Event Channel plays the same role as it does in

CORBA Event Service, it consists of several processing modules, each of which

encapsulates an independent task of the channel. TAO RT ES’s Consumer and

Supplier Proxy interfaces extend the standard COS ProxyPushConsumer and

ProxyPushSupplier so that suppliers can specify the types of events they provide, and

consumers can register with Event Channel their execution dependencies. The

Subscription and Filtering module allows consumers to subscribe for particular subset

of events, then the channel uses this subscription to filter supplier events to forward

them only to interested consumers (In COS Events Service, all events from suppliers

are delivered to all consumers). The RT Event Channel provides three types of

filtering: Supplier-based filtering that looks for consumers that register for and receive

events only from a particular supplier. Type-based filtering that looks for consumers

that register for and receive events only of a particular type, and Combined

supplier/type-based filtering. The Event Correlation module allows consumers to

specify what kind of events are to occur before the Event Channel can proceed. The

Dispatching Module determines when events should be delivered to consumers and

pushes them accordingly. The architecture of RT ES allows the service to be

configured in many ways, since its modules can be added, removed, or modified

without changes to other modules. So, for example, for our purposes we configure the

ES by removing the Dispatching and Correlation modules, because we use a different

mechanism for enforcing real-time event deliveries and we do not assume to have

complex inter-event correlation dependencies.

14

2.4 Naming Service

A name binding is a name-to-object association. It is always defined in a naming

context, which is an object containing a set of name bindings where each name is

unique. Different names can be bound to the object in the same or different context at

the same time. To resolve a name is to find the object associated with the name in a

given context. To bind a name is to create a name binding in a given context.

Naming Service is the CORBA Object Service (COS) [7] that provides a

mechanism through which the ORB clients locate the objects they intend to use.

2.5 Summary of Related Work

Real-time data distribution has become an important area of research. One of the

first areas that contributed to the subject is data dissemination in a network. In

Karakaya and Ulusov’s work[8], for example, the problem of scheduling the broadcast

of the data is considered. It provides an approximate version of the Longest Wait First

heuristic that reduces overhead. Similar work by Xuan et. al [9] describes a Broadcast

on Demand technique that schedules the broadcast using the earliest deadline first,

periodic or hybrid algorithms. The work presented by Bestavros [10] describes a

speculative data dissemination service that uses geographic and temporal locality of

reference to determine which data should be disseminated. These techniques take into

account the deadline timing constraints of clients, but do not consider data temporal

consistency.

A large amount of real-time data dissemination in wireless sensor networks

research is done at the University of Virginia (UVa) [11,12,13,14,15]. While this work

15

addresses the deadline of requests, and the temporal validity is considered in the sense

that data is reported before it expires— by corresponding confidence values, the work

does not provide assurance that the data is still temporally valid when it arrives to the

requestor.

Another application area that has provided various research efforts towards data

distribution is embedded sensor networks [16,17,18,19,20]. While all of the work here

provides valuable insights into solving the problem of data distribution in sensor

networks, none considers real-time characteristics of the data or the applications. That

is, neither deadlines on data delivery nor temporal consistency of data is supported.

Quite extensive research for the data consistency problem can be found in the area

of real-time databases. The first of such algorithms was the Half-Half (HH) algorithm

[21], which suggested that to maintain temporal consistency of data objects, the

periods and deadlines of updating transactions should be less or equal to half of the

data object validity interval (OV). Then, work by Xiong and Ramamritham [22]

presented the More-Less (ML) approach in which periods of updates are assigned to

be more than half of the data validity interval and deadlines to be less than a half of

the interval with deadline monotonic (DM) scheduling. That allowed maximizing the

periods of transactions and hence maximizing the CPU utilization. Then more

algorithms were presented based on the ML approach; Further work by Xiong et. al

[23,24] considers earliest deadline first based ML (ML EDF) and Deferrable

Scheduling (DS-FP). Xiong and Ramamritham later extended their previous work on

ML to distributed systems introducing transmission delays of updating jobs [25].

Further, to address variability in transmission delays, recent work by Wang et. al [26]

16

introduces extensions to ML called Jitter-Based More-Less (JB-ML) and Statistical

Jitter-Based More-Less (SJB-ML). As with the classical ML approach, all this extra

information is used to figure out the deadlines (D) of updates, and then assign the

periods (P) according to D + P ≤ OV, where D ≤ ½ OV and P ≥ ½ OV. All this

work assures that data is temporally consistent at the sink, or initial data base storage.

Our work extends this assurance to the end point receivers.

All ongoing interest and research in various areas of data dissemination lead the

OMG to standardization of data distribution in middleware through a Data

Distribution Service (DDS) [27]. This specification describes two levels of interface:

Data Centric Publish Subscribe (DCPS) is responsible for efficient delivery of the

proper information to the proper recipients, and Data Local Reconstruction Layer

(DLRL) is responsible for local reconstruction of data from updates and allows an

application to access the data as ‘if it were’ local. One of the major functionalities of

the DCPS along with the topics definition and creation of publishers and subscribers,

is attaching various quality of service (QoS) policies to all of the objects it creates.

The policy that is responsible for periodic updates is the Deadline QoS policy. The

deadline on the publishing site is the contract the application must meet, it means that

the publisher is required to send at least one update within the period, the deadline on

the subscriber side is a minimum requirement for the remote publisher supplying the

data. To “match” a DataWriter and a DataReader, the DDS checks the compatibility of

settings (offered deadline ≤ requested deadline). If they don’t match (communication

will not occur), both sides are informed (via the listeners or condition mechanisms) of

incompatibilities. If matching occurs, the DDS monitors the fulfillment of the service

17

agreement and informs the application of any violations by means of the proper

listener or condition. Another policy related to our work is a Lifespan QoS. The

purpose of this policy is to “avoid” delivering stale data to the application. When a set

of data goes beyond its lifespan, it is deleted from all caches. Based on that, there

theoretically can be an interval in a periodic data update when an expired data set is

already gone, and a new update is not yet complete, so the application trying to read

data during this interval might get no data at all.

There are presently several implementations of DDS, both commercial and open

source. Two major commercial products are RTI Data Distribution Service from Real-

Time Innovations, Inc. [28] and Open Splice DDS from PrismTech [29] that was built

upon SPLICE architecture [30], the product of a strategic alliance of THALES [31]

and PrismTech. Open Splice DDS is the most complete realization of OMG standard,

it fully implements both DCPS and LDRL levels. Other commercially available

products are CoreDX DDS from Twin Oaks Computing Inc. [32], InterCOM DDS

from Norwegian Kongsberg Gallium Corp. [33], and MilSOFT DDS from Turkish

company MilSOFT [34].

OpenDDS is an open-source CORBA-based implementation of OMG DDS by

Object Computing Inc. (OCI) [35,36]. It implements all profiles (including optional)

of the DCPS layer and none of the DLRL functionality.

Since all these implementations are based on the above specification, none of them

can guarantee that applications will always access data that is temporally consistent

and that all the specified deadlines will be met.

18

Another relatively new and fast growing field applicable to data distribution is

Cyber-Physical Systems (CPS) [37,38,39]. These systems are integrations of physical

processes with computational devices that monitor and control them. By this

definition, the CPS can be viewed as similar to embedded sensors networks. However,

if the latter are “closed” boxes not exposing their computing capabilities to the

outside, the CPS comes from networking such boxes together. Applications of CPS

include next era avionic systems, defense systems, high confidence medical systems

and devices, assisted living, traffic control and safety, advanced automotive systems,

process control, energy conservation, environmental control, critical infrastructure

control, etc. Many of these systems require effective and reliable data dissemination

from sensors in the physical word to all collaborative entities. Work by Kang et. al

[40] discusses the approach to data dissemination in the systems with data continuity

(e.g temperature sensors). The authors present a publish/subscribe middleware

architecture called Real-time Data Distribution Service (RDDS), with semantic-aware

communication, using predictive sensor models. In their approach, both a publisher

and its corresponding subscribers maintain the same model for each sensor data

stream. A new sensor observation is transmitted from the publisher to the subscribers,

and the respective sensor models at both sides are synchronized only when the

prediction accuracy of the models becomes lower than the required bound. This

architecture implements a broker by which the parties can discover each other, but

then communication between publishers and subscribers is performed through

multicast. In our work, the sensor data can be discrete (e.g presence of the object in an

environment).

19

As we described above, some of the presented work considers receiver’s

deadlines, but not considers data validity, some of the work considers deadlines and

validity, but at sinks or initial data storages, and not at the end point requestors. The

goal of our work is, by taking into account end point requestors’ parameters, guarantee

them, the delivery of valid data within the specified deadlines.

1. OMG. Common Object Request Broker Architecture – Version 3.3, OMG Inc., November 2012,
(formal/2012-11-12, formal/2012-11-14, formal/2012-11-16),
<http://www.omg.org/spec/CORBA/3.3>. Accessed 19 March 2014.

2. OMG RT CORBA - Version1.2, OMG Inc., January 2005, (formal/2005-01-04),
<http://www.omg.org/spec/RT/1.2>. Accessed 19 March 2014.

3. Schmidt, D.C., "Real-time CORBA with TAO (The ACE ORB)," Washington University at St.
Louis, 12 November 2013,< http://www.cs.wustl.edu/~schmidt/TAO.html>. Accessed 19 March 2014.

4. Zhang, J., DiPippo, L., Fay-Wolfe, V., Bryan, K., Murphy, M., “A Real-Time Distributed Scheduling
Service for Middleware Systems,” in Proceedings of the 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2005), February 2005, Sedona, AZ.

5. OMG Event Service –Specification – Version 1.2, OMG Inc., October 2004, (formal/2004-10-02),
<http://www.omg.org/spec/EVNT/1.2>. Accessed 19 March 2014.

6. Harrison, T.H., Levine, D.L., Schmidt, D.C., "The Design and Performance of a Real-time CORBA
Event Service," in Proceedings of the Object-Oriented Programming Systems, Languages &
Applications Conference (OOPSLA’97), October 1997, Atlanta, GA.

7. OMG Naming Service – Specification – Version 1.3, OMG Inc., October 2004, (formal/2004-10-
03), <http://www.omg.org/spec/NAM/1.3>. Accessed 19 March 2014.

8. Karakaya, M., Ulusov, O., “Evaluation of a Broadcast Scheduling Algorithm”, Lecture Notes in
Computer Science, Springer-Verlag, 2151, 2001.

9. Xuan, P., Sen, S., Gonzales O., Fernandez, J., Ramamritham, K., “Broadcast on Demand: Efficient
and Timely Dissemination of Data in Mobile Environments,” in Proceedings of the 3rd IEEE Real-
Time and Embedded Technology and Application Symposium (RTAS’97), June 1997, Montreal,
Canada.

10. Bestavros, A., “Speculative Data Dissemination and Service to Reduce Server Load, Network
Traffic and Service Time in Distributed Information Systems,” in Proceedings of the 1996 International
Conference on Data Engineering, New Orleans, LA.

11. Lu, B.C., Blum, B.M., Abdelzaher, T., Stankovic, J.A., He, T., “RAP: A Real-Time
Communication Architecture for Large Scale Wireless Networks,” in Proceedings of the Eighth IEEE
Real-Time and Embedded Technology and Application Symposium (RTAS’02), September 2002, San
Jose, CA.

20

12. Abdelzaher, T., Stankovic, J., Son, S., Blum, B., He, T., Wood, A., Lu, C., “A Communication
Architecture and Programming Abstractions for Real-Time Embedded Sensor Networks,” in
Proceedings of the First International Workshop on Data Distribution for Real-Time Systems, May
2003, Providence, RI.

13. Kim, S., Son, S., Stankovic, J., Li, S., Choi, Y., “SAFE: A Data Dissemination Protocol for Periodic
Updates in Sensor Networks,” in Proceedings of the First International Workshop on Data Distribution
for Real-Time Systems, May 2003, Providence, RI.

14. Bhattacharya, S., Kim H., Prabh, S., Abdelzaher, T., “Energy Conserving Data Placement and
Asynchronous Multicast in Wireless Sensor Networks,” in Proceedings of the First International
Conference on Mobile Systems, Application and Services, May 2003, San Francisco, CA.

15. Li, S., Son, S., Stankovic, J., “Event Detection Service Middleware in Distributed Sensor
Networks,” in Proceedings of the International Workshop on Information Processing in sensor
Networks (IPSN’03), April 2003, Palo Alto, CA.

16. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., Estrin, D., “Data-Centric Storage in
Sensornets”, in Proceedings of the First ACM SIGCOMM Workshop on Hot Topics in Networks
(HotNets-I), October 2002, Princeton, NJ.

17. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L., “A Two –Tier Data Dissemination Model for Large-
Scale Wireless Sensor Networks,” in Proceedings of the Eighth Annual International Conference on
Mobile Computing and Networking (MOBICOM’02), September 2002, Atlanta, GA.

18. Yao, Y. and Gehrke, J., “Query Processing for Sensor Networks,” in Proceedings of the 2003
Conference on Innovative Data System Research (CIDR2003), January 2003, Asilomar, CA.

19. Bonnet, P., Gehrke, J., Seshadri, P., “Towards Sensor Database Systems,” in Proceedings of the
Sensor Information Conference on Mobile Data Management, January 2001, Hong Kong, China.

20. Heinzelman, W., Chandrakasan, A., Balakrishan, H., “Energy Efficient Communication Protocol for
Wireless Microsensor Networks," in Proceedings of the Hawaii International Conference on System
Sciences(HICSS'00), January 2000.

21. Ho, S., Kuo, T., Mok, A., "Similarity-based load adjustment for real-time data-intensive
applications." in Proceedings of the IEEE real-time system symposium (RTSS'97), December 1997, San
Francisco, CA, pp:144-153.

22. Xiong, M. and Ramamritham, K., “Deriving deadlines and periods for real-time update
transactions,” in Proceedings of the 20th IEEE Real-time Systems Symposium, December 1999,
Phoenix, AZ.

23. Xiong, M., Han, S., Lam, K.Y., Chen, D., “Deferrable scheduling for maintaining real-time data
freshness: algorithms, analysis, and results,” IEEE Transactions on Computers, 57(7), July 2008.

24. Xiong, M., Wang, Q., Ramamritham, K., “On earliest deadline first scheduling for temporal
consistency maintenance,” Real-Time Systems, 40, 2008, pp:208–237.

25. Xiong, M. and Ramamritham, K., “Deriving Deadlines and Periods for Real-Time Update
Transactions”, IEEE Transactions on Computers, 53(5), 2004.

26. Wang, J., Han, S., Lam, K-Y., Mok, A., “Maintaining Data Temporal Consistency in Distributed
Real-Time Systems," Real-Time Systems, 48, 2012, pp:387–429.

21

27. OMG – Data Distribution Service for Real Time Applications Specification, Version 1.2, OMG
Inc., January 2007, (formal/07-01-01), <http://www.omg.org/spec/DDS/1.2>. Accessed 19 March
2014.

28. "RTI Connext DDS Professional," Real-Time Innovations, 2014,
<http://www.rti.com/products/data_distribution/index.html>. Accessed 19 March 2014.

29. "OpenSPLICE|DDS", PrismTech, 2014, <http://www.prismtechnologies.com>. Accessed 19 March
2014.

30. van ‘t Hag, J.H., "Data-centric to the Max, the SPLICE Architecture Experience," in Proceedings of
the First International Workshop on Data Distribution for Real-Time Systems, May 2003, Providence,
RI.

31. "Thales," Thales Group, <http://www.thalesgroup.com>. Accessed 19 March 2014.

32. "CoreDX DDS Data Distribution Service Middleware," Twin Oaks Computing Inc.,
<http://www.twinoakscomputing.com/coredx.php>. Accessed 19 March 2014.

33. "InterCOM DDS," Kongsberg Gallium Corp., 2013,
<http://www.kongsberg.com/en/kds/kongsberggallium/products/intercom%20dds/>. Accessed 19
March 2014.

34. "Technology Center," MilSOFT, <http://www.milsoft.com.tr>. Accessed 19 March 2014.

35. "The ACE ORB (TAO)," Object Computing, Inc., <http://www.ociweb.com/products/tao>.
Accessed 19 March 2014.

36. "OpenDDS," Object Computing Inc., 2013, <http://opendds.sourceforge.net/>. Accessed 19 Mar
2014.

37. Lee, E., "Cyber Physical Systems: Design Challenges." Technical Report No. UCB/EECS-2008-
8,University of California, Berkeley, 23 January 2008.

38. Baheti, R. and Gill, H., "Cyber-Physical Systems," The Impact of Control Technology, T. Samad
and A.M. Annaswamy (eds.), IEEE Control Systems Society, 2011, available at www.ieeecss.org.

39. Rujkumar, R., Lee, I., Sha, L., Stankovic, J., "Cyber-Physical Systems: The Next Computing
Revolution," in Proceedings of the 47th Design Automation Conference, June 2010, Anaheim, CA,
pp:731-736.

40. Kang, W., Kapitanova, K., Son, S., “RDDS: A Real-Time Data Distribution Service for Cyber-
Physical Systems”, IEEE Transactions on Industrial Informatics, 8(2), 2012.

22

CHAPTER 3

REAL-TIME DATA DISTRIBUTION: MODEL AND THEORY

In this section we present our description of the problem space involved in real

time data distribution and existing approaches to data distribution including the

solution space they cover. We also present the solution space provided by our work

and describe our real time data distribution model and the algorithms we use along

with the theorems that verify correctness of our calculations.

3.1 RTDD Problem Space

In systems that require real-time data distribution there are some common

characteristics, such as data must be at the right place at the right time and it must be

temporally consistent. There are also other specific characteristics that vary from one

problem to another. Here we identify these system specific characteristics and group

them into three types:

1) System characteristics;

2) Real-time characteristics; and

3) Data characteristics.

These categories are further broken down into specific characteristics, each of

which can take on one or more values [1]. Figure 5 illustrates this concept in RTDD

Problem Space taxonomy. This section describes each of the characteristics of a

RTDD problem, and discusses the values that it may take.

23

1) System Characteristics

The first layer in the RTDD problem space taxonomy represents system

characteristics. These are the overall characteristics of the system that define the

general problem.

System Dynamics. Some systems that require real-time data distribution are static,

that is, the system requirements are fully known in advance and do not change.

Therefore, the needs for data distribution can be specified and analyzed prior to

system execution to ensure that data that is needed at any particular time and location

is delivered on time. For example, an industrial automated system may be static if all

System Dynamics

RT Constraints

RT Request TimingAll Periodic Periodic/Aperiodic

All Hard Hard/soft All Soft

All Aperiodic

Data Model

Data Usage

Data Precision

Data Sources

Data Granularity

Homogenous

Read-Only

All Coarse

All Single Source

Heterogeneous

All UpdateableRead/Update

Coarse/Fine All Fine

Single/Multi All Multi Source

All Precise Precise/Imprecise All Imprecise

All Static Static/Dynamic All Dynamic

Small Scale

Unconstrained
/Constrained All Constrained

Large ScaleMedium Scale

All Unconstrained

System Size

System Resources

System DynamicsSystem Dynamics

RT Constraints

RT Request TimingAll Periodic Periodic/Aperiodic

All Hard Hard/soft All Soft

All Aperiodic

RT Constraints

RT Request Timing

RT Constraints

RT Request TimingAll Periodic Periodic/Aperiodic

All Hard Hard/soft All Soft

All Aperiodic

Data Model

Data Usage

Data Precision

Data Sources

Data Granularity

Homogenous

Read-Only

All Coarse

All Single Source

Heterogeneous

All UpdateableRead/Update

Coarse/Fine All Fine

Single/Multi All Multi Source

All Precise Precise/Imprecise All Imprecise

Data Model

Data Usage

Data Precision

Data Sources

Data Granularity

Data Model

Data Usage

Data Precision

Data Sources

Data Granularity

Homogenous

Read-Only

All Coarse

All Single Source

Heterogeneous

All UpdateableRead/Update

Coarse/Fine All Fine

Single/Multi All Multi Source

All Precise Precise/Imprecise All Imprecise

All Static Static/Dynamic All Dynamic

Small Scale

Unconstrained
/Constrained All Constrained

Large ScaleMedium Scale

All Unconstrained

System Size

System Resources

All Static Static/Dynamic All Dynamic

Small Scale

Unconstrained
/Constrained All Constrained

Large ScaleMedium Scale

All Unconstrained

System Size

System Resources

Figure 5. RTDD Problem Space

24

of its parts are known at the design stage and do not change during the system’s

lifetime.

A dynamic system is one in which the system specification cannot be predicted

before execution time. Requests for data can be made at any time during execution,

and the system must be able to either estimate the data needs, or react to dynamic

requests in order to meet the timing requirements. An example of this type of system

is an electronic stock trading system, in which a client’s request for a particular stock

price can come at any time during the system’s execution.

There are also some systems with a combination of static and dynamic elements.

That is, there may be some requirements that remain the same throughout the

execution of the system, while others change, or are unpredictable. For instance, in an

air traffic control system the requirements for how often to provide wind-speed

information may remain the same, while the requirement to receive aircraft

information may change based on environmental conditions.

System Size. The size of a system can vary from a single node to thousands of

nodes. The size can also affect how much data is being stored, how many suppliers of

data there are, and how many consumers there are in the system. An example of a

small system that requires RTDD is a patient monitoring system in a hospital. Data

about the vital conditions of a patient can be sent to several doctors or other hospital

systems. A much larger system might involve thousands of cell phone users

requesting stock prices or sports scores from a bank of servers that have the

information.

25

System Resources. The resources of a RTDD system may have various

constraints on their operation. For example, a system of small, battery-operated

wireless sensors that collect and distribute data about certain environmental conditions

has power constraints on each of the nodes, as well as communication constraints

based on the strength of the wireless radios. Other systems, such as an embedded

network of wired computers aboard a submarine, have fewer physical constraints on

the system.

2) Real-Time Characteristics

The next layer in the taxonomy of Figure 5 represents real-time characteristics that

involve the timing of the system (periodic vs. aperiodic), as well as the consequences

of missing a specified constraint (hard vs. soft).

RT Constraints. Real-time constraints define the system behavior in case of

missing specified deadlines. In a hard real-time system, if a deadline is missed, the

system fails. For example, in an industrial automated system, if data is not delivered

on time, the system cannot proceed, leading to further failures down the line. Data

itself can have hard deadlines as well. In a submarine contact tracking system, the

tracks have to be updated from the sensors within a specified time or they will be

considered old, or temporally inconsistent.

A system has soft real-time constraints if missing the deadlines causes a

degradation of value to the system, but not a failure. For example, a high-availability

telecom system may specify that it will deliver data on time a certain percentage of the

26

time. In a soft real-time system, some temporal inconsistency in the data may be

tolerated as long as it is corrected in a timely manner.

There are systems with a combination of soft and hard real-time constraints. For

instance in a submarine the contact tracking will have hard deadlines, while showing

video to the crew will have soft deadlines. The crew could tolerate some frozen video

frames while the tracking system is following a potential enemy ship.

RT Request Timing. Requests for data in a real-time distributed system can be

made periodically or sporadically (aperiodically). When a periodic request is made,

the data is expected to be delivered at the specified frequency, or else the delivery

deadline is considered to be missed. Periodic requests usually occur once, requesting

delivery of the data regularly for many periods. The requests can be halted, or the

period can change, but while a request is intact, the data should be delivered every

period. An example of a system that may require periodic data delivery is a submarine

contact tracking system. In order to ensure that the system is representing the real-

world contact sufficiently, the system requires that the new real-time data be updated

frequently enough to represent a smooth transition from one contact data point to the

next.

Sporadic requests for real-time data distribution occur when a client requires data on a

one-time basis, or based on events rather than time periods. For example, in the stock

trading system described above, a client may specify that they require a stock price

whenever its value changes by 5% or more.

3) Data Characteristics

27

The last layer in the taxonomy represents characteristics that involve the kind of

data being shared in a real-time system, and how it is used within the system.

Data Model. The data model used within a real-time data distribution system can

be homogeneous, where each participant is expected to use the same data model, or

heterogeneous, where such an expectation is not required. A homogeneous data

model makes the sharing of data across the distributed system simpler because no

conversion is necessary. However, it may be too restrictive in a large-scale system to

expect that various applications that share data will use the same data model. A

heterogeneous data model is more flexible, since various applications that are

developed at different times, with different requirements can share data without

restricting the way in which their own data is stored. However, this type of system

may require conversions from one data model to another, or the use of an agreed-upon

intermediary representation. For example, in a system that provides data sharing

among a coalition of forces from various nations, it is unreasonable to expect the data

to be stored in a homogeneous model. For such a system the various data models are

stored in their own formats, and a data transfer language, like XML, is used to

interpret the data that is shared among the various components.

Data usage. Many real-time data distribution systems only require, that data be

disseminated to various clients within timing constraints, but do not expect the data to

be updated and written back to the source. These types of systems, which we call

read-only, do not necessarily require any concurrency control among the distributed

clients because they treat the data as their own copies. As long as each client receives

data that is temporally consistent, and the data is received within specified timing

28

constraints, the distribution of the data is successful. For example, in an electronic

stock trading system, the stock prices are distributed to requesting clients, but the

clients do not update them.

However, there are applications in which distributed consumers of the data also update

the data and write it back to the source, or to other copies of the data. For example, in

a submarine contact tracking system, the track data, synthesized from sensor

information, may be distributed to various locations so that it can be used, and viewed

by other applications and human users. Some of these applications may receive data

from other sources that would allow it to make refinements to the track data. In this

case, the track data may need to be updated, not only at the source, but possibly also at

any other copies of the data. This kind of data usage is much more complicated than

read-only data usage because more than one application may wish to update the

original data, and therefore concurrency control among these updates is required. If

copies of the data also have to be updated, then the system is even more complex. The

fact that all of the data must be kept both logically and temporally consistent with each

other adds to the complexity of the problem.

Data Precision. Some real-time systems require that the data that they receive be

absolutely precise, consistent with the real-world entities that are being modeled. In

such systems, the concurrency control mechanism that maintains the integrity of the

data will not allow multiple updates, even if the locking that might be required will

cause deadlines to be missed. Further, the data must be temporally consistent at all

times – never becoming older than a specified age. For instance, a command and

29

control system that is closely tracking a target will want to be sure that the data it

receives is precise.

On the other hand, some applications allow for the possibility of some imprecision

in the value as well as the age of the data in order to allow for more flexibility in

meeting other constraints. For example, a client of an electronic stock trading system

may be willing to receive data that is slightly old, or slightly imprecise, if it means

paying a lower fee. As long as the amount of imprecision is bounded, the client can

analyze the data with the imprecision in mind.

Data Granularity. The amount or granularity of data that is distributed to clients

can vary from entire tree structures, to single atomic elements. In the case of an

object-oriented system, entire objects can be distributed to various locations for use by

clients. In fact, groupings or hierarchies of objects can be distributed all together;

these are coarse-grained distributions of data. On the other hand, a finer grain of data

can be distributed such as individual attribute values, or return values of object

methods. The granularity of the data being distributed depends largely on the

applications that are using the data, as well as how the data is being used. For

example, in a system in which the distributed data is being updated and written back, it

might make sense to employ the smallest granularity possible so that large portions of

data are not locked due to concurrency control.

On the other hand, when groups of objects are closely related, it may make sense

to distribute them together as a group. This way, the values of the related data are

more likely to be relatively temporally consistent with each other, and therefore more

valuable to the requesting client.

30

Data Source. In many real-time systems, real-time data comes from sensors that

provide the most recent version of the data. In many cases the sensor transaction is the

single source of update for the data. However, it is also possible for the data to be

updated by multiple sources. For example, in a target detection system, various

sensors may be used to update the data depending upon which is the closest, or most

reliable. In this case, it may be possible that both sensors try to update the data

simultaneously, requiring concurrency control to ensure the integrity of the data.

All the characteristics described above form the definition of a problem space for

real-time data distribution.

3.2 Existing Approaches to RTDD and Solution Space Addressed by Our

Work

 In this section we discuss different mechanisms of RTDD and show the areas

within the problem space that they address. Then, we describe the subset of the

problem space that our work addresses, along with the solution provided by our work.

 3.2.1. Types of RTDD

Client-Server. The Client-Server, an example of point-to-point communication

model, can be considered a pioneer method of data distribution. The Client-Server

model is a central idea in network computing. Many business applications existing

today use this model. In this model, a server waits for requests from clients, who

access data via queries. In some of these applications, clients can read and update

information on the server.

31

The client-server approach to RTDD is very broad. Therefore, the area within the

RTDD problem space that can be addressed depends greatly on the application that is

being served. A client-server model can address both static and dynamic systems.

Most applications that use this approach are dynamic, but in a system in which all

requests for data are known a priori, a client-server approach can also work. The

client-server model can work in a system of any size. However, in order to provide

real-time support for data distribution, a larger size can become unwieldy. Further, if

there are a lot of requests for the same data, it becomes difficult for a single server to

respond in a timely fashion. Thus, multiple servers might be necessary, which makes

the system more complex.

In the client-server model, clients can access data both to read it and to update it.

The typical client-server model does not specify any allowance for imprecise data.

However, a specialized implementation can build imprecision into a particular

application. The granularity of the data depends upon the service provided by a

server. Typically, in a client-server model, there is a single source for any data that is

available. If more than one server provides the data, it usually originates at the same

source.

Broadcast and Multicast. The Broadcast and Multicast are examples of point-to-

multipoint communication model. With the broadcast, data or signal is transmitted to

anyone and everyone in a particular service area or network. For instance, in the

wireless network of portable devices (cell phones, PDA, palmtops etc.) information

such as electronic newspapers, weather and traffic information, stock and sports

tickers, and entertainment delivery is broadcast to all devices in the network. The

32

difference between broadcast and multicast is that in a multicast communication

model, data is transmitted to a select list of recipients and not to everyone in the

network. The target systems for broadcast or multicast RTDD are dynamic. Thus, the

real-time constraints that a broadcast or multicast system has are usually soft. In order

for the supplier to efficiently serve all requestors by broadcasting or multicasting data,

the data model must be homogeneous.

This is a read-only approach. Broadcast data can be precise or imprecise

depending upon the requirements of the receivers. As long as the receiver is aware of

the level of imprecision, it can be factored into how the data is used. Broadcast data

can be at any level of granularity. However, due to the widespread use of the network

in a broadcast, smaller, more fine-grained data may be more efficient to send.

Typically, in a broadcast model, there is a single source for any data that is available.

Streaming. Streaming is a technology in which data is transferred from a server

to a client and is processed in a steady and continuous stream, without the need to be

stored in a client’s space. Typical applications that use streaming for RTDD are

video, and continuous backup copying to a storage medium.

Systems that use streaming for RTDD are usually dynamic— clients connect and

disconnect at any time. The size of the system can be quite large. In an HDTV

application, thousands of users view the stream from a source. Since clients do not

need to store data, they can operate with some limited resources. Streaming systems

typically have soft real-time constraints, such as minimum frame rate on a video

stream.

33

Data transfer can be periodic or sporadic. In a video streaming application, the

frames are transferred periodically so that they can be displayed on the receiving node

with a constant frame rate. For an application in which data is streamed for

continuous backup, the rate of the stream is not as important, and can be more

sporadic. The data model of a streaming application is typically homogeneous. This

way, the sender can stream data, such as video frames, and the receiver knows how to

process it.

Similar to broadcast, streaming RTDD is a read-only approach. For best quality,

streaming data should be precise.

The granularity of the data in a stream depends upon the application. The

receiving node has to process the data upon receipt, so it would make sense to use the

smallest granularity possible. Typically, in a streaming model, there is a single data

source.

Real-Time Data Bases. A real-time database (RTDB) is considered as an

extension to a traditional database. It has all traditional database features, but also is

able to express and maintain timing constraints, such as deadlines, earliest and latest

start time on transactions and timing constraints, such as temporal consistency on data

itself. A RTDB consists of RT objects representing real world entities and updated by

sensor transactions. To be coherent with the state of the environment, the RT object

must be refreshed by a transaction before it becomes invalid, that is within its temporal

validity interval, whose length is usually application-dependent. There are many

applications that require real-time data, and with advances in networking they are not

34

necessarily located on the same node as the RTDB and therefore require the real-time

data to be distributed to them.

A RTDB can handle both static and dynamic systems. A central database can serve

small- to medium-scale systems. For larger scale systems, a distributed database is

usually used. Computational resources are usually constrained by the timing

constraints imposed by the applications that use a RTDB and resource constraints exist

in a RTDB that involves mobile, wireless nodes.

Transactions in a RTDB can be hard or soft, and can be periodic or sporadic. The

data model is typically homogeneous. Although, in larger systems that combine

various RTDBs into a single virtual RTDB, it may be possible to have a heterogeneous

data model. In this case, middleware is typically used to synthesize the various

models. Most RTDB applications expect precise data.

TAO’s Real-Time Event Service is an implementation of point-to-multipoint

communication model. Since we gave a thorough description of RT Event Service in

the background section (2.3), here we only highlight the solution space provided by

this approach in the RTDD problem space.

TAO’s RT Event Service can handle static and dynamic systems of various sizes.

The computational resources in the system are bound by the timing constraints

imposed by the application. The service can provide support for both hard and soft

real-time applications. Publish-subscribe nature of the RT Event Service allows

processing of both periodic and a periodic types of requests.

The data model for TAO’s RT Event Service is homogeneous, since the consumers

use the same data model as the suppliers. Only the suppliers can change their data and

35

the consumers are just readers, therefore, the data usage is read-only. Since the

service allows the suppliers to register for the ‘whole’ event, and not a part of it, only

coarse granularity is supported. On the other hand, if we consider an event as a single

piece of information it can be considered fine. Then, if a subscriber wants to impose

some event dependencies and get a combination of several events, that can be

considered coarse. The RT Event Service allows supplier/type based filtering,

therefore it can address multiple sources of data.

OMG Data Distribution Service is an implementation of point-to-multipoint

communication model. Since we described the service and explained the way it differs

from our work in section 2.2.5, here we only will provide a description of the area in

the problem space addressed by the service.

The DDS can be used for both static and dynamic types of systems of various

sizes, and it can address soft real-time systems. However, it does not enforce any

constraints. For this, an underlying real-time scheduling mechanism must be used.

Both periodic and a periodic requests can be specified. The data model assumed by

the DDS is homogeneous. However, implementations of DLRL can provide transition

among application data formats to the DDS data model, making the service suitable

for heterogeneous applications. Since there is a de-coupling between publishers

writing to the data and subscribers accessing data, the data usage can be defined as

read-only.

Both precise data and imprecise data (by means of TIME_BASED_FITERQoS

and HISTORY policies) can be used by DDS. Various levels of granularity can also

36

be supported. By using MultiTopic Class, a subscriber can select and combine data

from multiple topics into a single resulting type.

The OWNERSHIPQoS policy allows multiple DataWriters to update the same

instance of data-object. There are two settings for this policy: SHARED indicates that

the service does not enforce unique ownership, so multiple writers can update the

same data instance simultaneously and subscribers can access modifications from all

DataWriters; EXCLUSIVE indicates that each data instance can be updated by one

DataWriter that “owns” this instance, though the owner of data can be changed. Thus

the service provides both multiple and single data source solutions.

3.2.2 Solution Space Provided by Our Work.

In our work we consider two types of application: static and dynamic. For the

static model we address the following specific problems in the data distribution

problem space.

• System Characteristics:

o Small- to medium-scale systems consisting of tens to hundreds of

nodes;

o Static applications and infrastructure. All system requirements are

known a priori and are invariant;

o Unconstrained resources. We assume high-powered CPUs and high-

speed network with high bandwidth.

• Real-Time Characteristics:

o Hard.

o Periodic request timing.

37

• Data Characteristic:

o Temporally constrained data;

o Homogeneous data model;

o Asynchronous data production;

o Precise data;

o Fine or course grained data;

o Single source for each data item.

Our dynamic model covers the following area in the problem space.

• System Characteristic:

o Small, medium, or large scale;

o Dynamic infrastructure;

o Unconstrained resources.

• Real-Time Characteristics:

o Soft real-time;

o Periodic request timing.

• Data characteristics are the same as for the static system.

3.3 RTDD Model

This subsection describes a real-time data distribution model – the basis of our

work.

38

Figure 6 displays our Real Time Data Distribution Model. The model consists of

five main elements.

The DataObject represents the data that is being distributed. OID is a unique

identifier of the data object within the system. Value is the value of the data object.

This can be a simple atomic value, or a structured value depending upon the

granularity of the data. TS is the time (timestamp) at which the object was last

updated. OV is the object validity, a time interval within which the data object is

considered to be valid after its update. When the OV expires, the data is considered

temporally invalid. The DataSource is the entity that produces the data that is to be

distributed. SID is a unique identifier for the data source. The DataReader is the entity

that requests that data be sent to it. RID is a unique identifier for a data reader. Node is

the computing element on which the source/reader executes. SP is a set of scheduling

parameters. P is the period of the task. Recall that our solution addresses the problem

space of periodic data distribution. D is a deadline within the period. R is the release

time after which the task may start to execute. E is the worst-case execution time of

DataObject = <OID, Value, TS, OV>

DataSource = <SID, Node, OID, SP>

DataReader = <RID, Node, OID, SP>

Dist = <DID, OID, SID, <RID, SP>>

SP = <P, D, R, E>

Figure 6. Real-Time Data Distribution Model

39

the task. Note that the data source and the data reader may have different scheduling

parameters. Dist is a distribution of data from a DataSource to a DataReader. A

distribution has its own unique identifier DID. It also has its own scheduling

parameters that will be determined by the proposed data distribution algorithms. The

algorithms consider the scheduling parameters of the DataSource, the scheduling

parameters of the DataReader, and the data object validity interval to determine the

scheduling parameters of the distribution.

3.4 RTDD Algorithm

In this section we describe the algorithms we use to compute distribution

parameters for the static and dynamic models, and provide a theoretical background

that ensures the correct work of the algorithms in an actual implementation.

3.4.1 JIT Static Data Distribution (JITS)

The algorithm we are using to ensure that all data readers receive the temporally

valid data in time is a modification of the Just-In-Time Real Time Replication

algorithm [2] and is called Just in Time Data Distribution Algorithm (JITDD). This

algorithm, based on data source and data readers’ real-time characteristics, and data

validity time, computes appropriate deadlines for data distributions.

For a static system, the algorithm works as follows:

Let d be the deadline that is computed for a distribution Dist from source S to a set of

m data readers R1,…,Rm for a request of data object OID. The period of S (and

therefore of Dist) is p. Let N be the least common multiple of the periods of all data

readers of OID and the period of the source.

40

We call N the superperiod of the distribution because it represents a complete

cycle of all readers for the data. We define OVi to be the point in time in the i th period

of the distribution that the object (from the most recent update) becomes temporally

invalid. An invalid interval is an interval of time during which the object does not

have a valid value associated with it, that is, the object is temporarily inconsistent.

Figure 7 depicts an invalid interval. OVi is the time within period Pi that the data

that was updated during period Pi-1 becomes invalid. The d in the figure represents the

deadline of the distribution within its period. The invalid interval is the time between

OVi and this deadline because after the deadline, a new value of the data will have

been delivered.

In the algorithm, when computing the deadline of the distribution, initially we set

it to be equal to its period (d=p). The key to computing the deadline of the

distribution is to determine if any of the data readers will be executing in the invalid

interval. If so, it is possible that it could use invalid data. For each reader, there is a

window, called the data access window, within its period when it could access the

Pi-1 Pi Pi+1OVi-1 OVi OVi+1
xi

{{Invalid Interval Invalid Interval

d d d d

Pi-1 Pi Pi+1OVi-1 OVi OVi+1
xi

{{Invalid Interval Invalid Interval

d d d d

Figure 7. Deadline Computation

41

data. The data access window falls between the release time of the reader and its

deadline. There are three cases to consider when calculating the deadline of the

distribution:

1) If no reader’s data access window overlaps with the invalid interval, the deadline

is unchanged because no reader will be using invalid data.

2) If some reader’s data access window begins at time xi, after OVi, i.e.

OVi < xi < Pi+1 and ends before the next invalid interval, then the deadline is

changed to min(d, xi-Pi). That is, the distribution must complete, before this

reader’s data access window begins.

3) If any reader’s data access window has started before, at or after OVi and continues

to execute in the same/next invalid interval, then the deadline is changed to OVi -

Pi. This deadline assignment ensures that there will be no invalid interval within

the period at all, and thus the reader will use valid data.

Note that if the deadline is changed to OVi - Pi at any point, the computation of

deadline is complete, as we have reached the minimum possible deadline. Otherwise

we consider these three cases for each of the n periods in the superperiod.

It can be noted that a simple way to compute this deadline would be to always use

OVi - Pi. This would provide the required temporal validity, but it could be an overly

pessimistic choice, and might cause the system to be nonschedulable. Because in our

current implementation this algorithm is computed off-line, the extra work that is

required to compute the more flexible deadline is acceptable.

42

While this algorithm works for a static model, since all the computation can be done

off-line, the overhead, which will be imposed by the superperiod computation in case

of significant amount of data readers, makes it impractical to use this algorithm for on-

line computation. Therefore, to suit the needs of dynamic application, we changed

the algorithm so that it delivers the same quality of result with significantly less

computation overhead.

3.4.2. JIT Dynamic Data Distribution

First, let us observe that the least common multiple (LCM) of two numbers a and b

can be obtained by finding the prime factorization of each

a = p1
a1
· p2

a2
··· pn

an

b = p1
b1
· p2

b2
··· pn

bn ,

where pis are all prime factors of a and b, and if pi does not occur in one

factorization then correspondent exponent is taken as 0, then

LCM (a,b) = ∏i=1,..n pi
max(ai, bi)

Also LCM (a,b,c) = LCM (LCM(a,b),c)

 = LCM (∏i=1,..n pi
max(ai, bi), c)

 = ∏i=1,..n pi
max(ai, bi,ci)

then LCM (a,b,c) / LCM (a,b) = ∏i=1,..n pi
max(ai, bi,ci) / ∏i=1,..n pi

max(ai, bi)

 = ∏i=1,..n pi
max(ai, bi,ci)-max(ai,bi)

and LCM (a,b,c) / LCM (a,c) = ∏i=1,..n pi
max(ai, bi,ci) / ∏i=1,..n pi

max(ai, ci)

 = ∏i=1,..n pi
max(ai, bi,ci)-max(ai, ci)

43

etc.

Based on that, we can observe that subsuperperiods (SubN) that are LCMs

computed based on the source period and each data reader period may “repeat” in

superperiod (N). Therefore we can take SubN instead of N with the rest of algorithm

remaining the same. Minimum deadline, computed for each data reader in SubN will

be the same throughout N.

Therefore, in a dynamic case, when a new reader comes into system, we do not

need to re-compute the superperiod for all corresponding readers in the system.

Instead we compute subsuperperiod for the new reader and data source, perform our

algorithm and check existing deadline against computed. If existing deadline is less

than computed, nothing changes. If it is bigger, then we change it to the computed

value, because now this is the minimum deadline that satisfies all readers.

3.5 Theorems

This section presents a theoretical background assuring the correct work of our

algorithms.

Lemma 1:

For a set of readers, to preserve the data consistency the Distribution period must be

equal to the Source period.

Proof:

Without loss of generality we can assume that the given set of readers is such that

the readers may access data during or over each of the invalid intervals. Therefore to

preserve the consistency of data, new data must be distributed before or during each of

44

the invalid intervals. This cannot be achieved without the Distribution period being

equal to the Source period. Assume that is not true and that the Distribution period can

be longer or shorter than the Source period. Then, in the first case, depending on the

source deadline the Distribution can disseminate data that becomes invalid at OV1 or

OV2 (see Figure 8), with nothing that can be done to prevent readers from reading old

data. The same may happen with the period of distribution being less than data source

period (see Figure 9). In both cases we cannot guarantee that we can manage each of

the invalid intervals, and hence we cannot guarantee consistency of data. Therefore to

preserve the data consistency, the Distribution period must be equal to the source

period.

P0 P1 P2 OVPh OVOVOV

Source

Pi

Dist

Ph P0 P1 PiPi-1

P0 P1 P2 OVi
Ph OV2OV1OV0

Source

Pi

Dist

Ph P0 P1 PiPi-1

P0 P1 P2 OVPh OVOVOV

Source

Pi

Dist

Ph P0 P1 PiPi-1

P0 P1 P2 OVi
Ph OV2OV1OV0

Source

Pi

Dist

Ph P0 P1 PiPi-1

Figure 8. Lemma 1 (PDist > PSource)

Source

Dist

Ph

...

...

OV0 OV1 OV2 OVi-1P1 P2 P3 Pi-1

Ph P1 P2 P3 Pi

Pi

Pi-1

Source

Dist

Ph

...

...

OV0 OV1 OV2 OVi-1P1 P2 P3 Pi-1

Ph P1 P2 P3 Pi

Pi

Pi-1

Figure 9. Lemma 1 (PDist < PSource)

45

Lemma 2:

For a Distribution to distribute fresh data and hence to preserve data consistency, it

must start at or after SUd (bounded by OV-P-ET).

Proof:

To prove the lemma, consider the ith Distribution period (see Figure 10). To

preserve data consistency in this period, the data must be updated before some

computed deadline with the data that is not going to expire during this period. To

distribute the data that is not going to expire in the current Distribution period,

Distribution cannot start before the supposed finish of the current (ith) data source

update. If it does, it might distribute an old data (e.g. the same unit) expiring at OV, so

that readers will access invalid data even though Distribution finished before the

specified time. Thus to preserve data consistency, the ith Distribution must start at or

after the current sensor update deadline. Consequently, the first Distribution must start

at or after the sensor update deadline (SUd) in its first period.

...

Source

Dist

OV0

OV1
OV2

OVi

d0 d1 di

Dd0
Dd1 Dd2 Ddi

OV0 OV1 OVi-1

...

Source

Dist

OV0

OV1
OV2

OVi

d0 d1 di

Dd0
Dd1 Dd2 Ddi

OV0 OV1 OVi-1

Figure 10. Lemma 2

46

Though it does not make much sense to delay Distribution, since it will reduce the

time assigned for its execution, we need to note that the Distribution start has to be

bounded by OV-P-ET, otherwise Distribution will not be able to finish before its

deadline (in the case when the computed deadline is equal to OV) because it will leave

less time than is necessary for Distribution to execute, and as a result data consistency

will not be preserved.

Theorem One:

For a set of readers, if Dist period is equal to the period of Data Source, Dist deadline

is computed according to the JITDD algorithm and Dist phase is at or after SUd

(bounded by OV-P-ET), (where SUd is the sensor update deadline, OV is data validity

time, P is period of Source, ET is execution time of Dist), then the readers will always

read valid data.

Proof:

Now having lemmas 1 and 2, and assuming that the JITDD algorithm works with

the specified Distribution period and phase, we will show that the deadline computed

by the JITDD algorithm guarantees that readers will read valid data.

Recall from the JITDD algorithm that there are three possible cases considered for

deadline computation. To prove that no reader reads invalid data, let us re-examine

these cases.

Case 1) No readers read in the invalid interval. Conclusion is clear.

47

Case 2) Some readers start at time Xi such that OV<Xi<di and finish before the

next invalid interval. The JITDD algorithm changes Distribution deadline d to Xi,

reducing the size of the invalid interval and making the Distribution update an old data

set with the fresh one before any reader reads it. Thus no reader reads the data within

the invalid interval.

Case 3) Some readers read the data through the invalid interval, that is start

before, at or after OV and finishes at some point in the current/next invalid interval. In

this case the JITDD algorithm computes the deadline to be equal to OV, and by doing

that removes the invalid interval. Therefore no readers can possibly read data within it.

So, we proved that having the distribution’s period equal to the data source’s

period, the distribution’s phase at or after SUd, and having the deadline computed by

the JITDD algorithm, will guarantee the set of readers always receive temporally

consistent data.

Definition:

The optimal deadline is a deadline that cannot be made any longer.

Theorem Two:

The JITDD algorithm assigns the optimal deadline for ensuring the temporal

consistency of data.

Proof:

48

Theorem 1 proves that with the deadline assigned according to the JITDD

algorithm, the data read by all requests is always temporally consistent. To prove that

the assigned deadline (d) is optimal, let us assume that there exist another greater data

distribution deadline (d1) assigned by some other algorithm, which still preserves data

consistency. The JITDD algorithm computes the data distribution deadline and

consequently redefines the invalid interval to [OV, d] based on the knowledge that no

request reads data during this invalid interval, but there are requests that may start to

read data right after d. Now, with another deadline d1 we have the invalid interval

defined as [OV, d1] and consequently we have an interval [d, d1] during which a

request may read an invalid data set. That is, the data consistency is not preserved, and

our assumption about the existence of another greater deadline is wrong. This implies

that the JITDD algorithm’s deadline assignment is optimal.

This concludes our theoretical background on modeling and algorithms. In the

next two chapters we will present our approach to implementation of data distribution

mechanisms for both static and dynamic systems.

1. Uvarova, A. and Fay Wolfe, V., "Towards a Definition of the Real-Time Data Distribution Problem
Space," in Proceedings of the First International Workshop on Data Distribution for Real-Time
Systems, May 2003, Providence, RI.

2. Peddi, P., "A Replication Strategy for Distributed Real-Time Object-Oriented Databases," TR01-282,
University of Rhode Island, May 2001

49

CHAPTER 4

STATIC RTDD

This chapter presents system design, implementation and evaluation of static real

time data distribution.

 4.1 System Design and Implementation

Since in a static system, all system characteristics are known a priori and system

analysis can be done ahead of time, the implementation of data distribution is divided

into two parts: an off-line analysis and on-line event-based data delivery.

 4.1.1 Off-line Analysis

Figure 11 depicts the process that is followed in the off-line analysis of our

implementation. It begins with the specification of the system, in the format of our

model described in Section 3.3. An ASCII file containing descriptions of all of the

data sources, readers, data and nodes is created and stored. The C++ implementation

of the JITDD algorithm reads in the system specification and computes the scheduling

parameters for each of the data distributions required. The output of the JITDD

algorithm is another ASCII file containing the system specification augmented with

the computed distribution scheduling parameters.

System
Specification

Distribution
Analysis

Algorithm

System
Specification with

Scheduling Parameters

Real-Time
Analysis

Configuration
File

System
Specification

Distribution
Analysis

Algorithm

System
Specification with

Scheduling Parameters

Real-Time
Analysis

Configuration
File

Figure 11. Off-line Analysis Process

50

The augmented system specification is fed into a real-time analysis tool to

determine if the system is schedulable. While we were doing this work, the only

available choice was the RapidRMA tool by TriPacific Corporation [1]. The use of

RapidRMA involved manually translating the specification into the visual model

required by the tool. We had to transform all components of our system model, that

are the sources, readers, and distributions into a system of tasks, resources, and task

dependencies that are required by the RapidRMA. RapidRMA performs a

schedulability analysis on the specified model using Deadline Monotonic, end-to-end

analysis [2]. If the system is found to be non-schedulable, the system specification

must be reworked, perhaps adding more nodes or more powerful nodes to the system.

Once the system is deemed schedulable, RapidRMA produces a configuration file that

provides scheduling priorities for each of the tasks in the system. This configuration

file is used in the on-line implementation described next. At present time the

OpenSTARS tool [3] developed by URI RTDOC group is available for the analysis

purpose. This tool eliminates the manual translation work, because it gets all necessary

information directly from the system specification file.

 4.1.2 On-line Implementation

The runtime component of our implementation executes the model specified in the

off-line component described above. The implementation was programmed in C++

and ran on Linux Kernel 2.4.21, with TAO v1.3.5 CORBA software [4] to provide

real-time middleware support. The implementation also used two of TAO’s common

object services: the Real-Time Event Service (RTES) [5], and the Real-Time Static

Scheduling Service (RTSSS) [6]. The RTES was used as a mechanism for distributing

51

data asynchronously, and the RTSSS provided priority-based scheduling to ensure that

deadlines are met. Figure 12 illustrates our implementation using these two services.

Event-based Data Distribution. TAO’s RTES provides asynchronous, decoupled

communication between sources and readers of data. The RTES uses a

supplier/consumer model to deliver events. The supplier sends data from a specific

source to the RTES, and the consumer receives data from the RTES. In our

implementation, we create a supplier to distribute data that is produced at each source,

and we create a consumer to receive data for each reader.

The RTES can be configured in various ways, including a complex configuration

with a priority-based thread dispatcher, and a simple, single-threaded configuration

that maps one Real-Time Event Channel (RTEC) to each supplier [5]. Because our

implementation performs all of the scheduling analysis off-line, we have chosen the

simple configuration of the RTES.

Supplier

Consumer Consumer Consumer

DataReader DataReader DataReader

Configuration
File

Real-Time
Static

Scheduling Service

DataSource

RT Event
Service

Supplier

Consumer Consumer Consumer

DataReader DataReader DataReader

Configuration
File

Real-Time
Static

Scheduling Service

DataSource

RT Event
Service

Figure 12. On-line Implementation.

52

The RTES provides an interface for a supplier to register events (data) that it will

supply. It also provides an interface for a consumer to register for events that it would

like to receive. The RTES matches these requests with the supplied events, and sends

the event data to consumers when they are supplied by the suppliers. Consumers in

their turn make the data available for the readers to use. Based on our formal model of

Section 3.3, a data Distribution is represented by the delivery of event data from the

supplier to each consumer.

Scheduling Real-Time Data Distribution. In previous work, URI RT DOC group

developed the Real Time Static Scheduling Service (RTSSS) that is in the TAO code

base [3]. It is implemented as a set of library code that is compiled into the programs

that use it. The library code creates a mapping of task to priority, using the

information in the configuration file produced by the scheduling tool (RapidRMA, in

this work). When the system starts up, each of the executing entities (sources,

suppliers, consumers, readers, RTES) begins by requesting a priority from the RTSSS.

The RTSSS looks the priorities up in the task/priority mapping table, and sets the

priorities accordingly. Each of these tasks then executes at its specified priority.

4.2 System Evaluation

In order to demonstrate the effectiveness of our implementation, we developed

several test scenarios to make sure that our claim of ensuring temporal validity and

deadline of the distribution holds in our implementation. The main metrics we used

are temporal consistency of delivered data, and deadline of data delivery.

The first two of the test scenarios we used examine the system under “normal”

53

conditions and under workload-constrained conditions. In the third set of tests, we

developed a system model based on the real Navy weapon alignment application.

Below we describe the various test cases, how they were modeled and implemented,

and the results of the tests that we performed.

Test Scenarios. We tested tree scenarios, each of which is described here. In each

scenario, we used two nodes, with executing entities distributed across these nodes.

Recall that in each case, the system is modeled and analyzed up front, so we have

chosen systems that are schedulable, but in some cases, may be close to being non-

schedulable. Figure 13 illustrates the system layout for the first two test scenarios.

EC1 EC2

Node 1

Data Source 1

Supplier 1 Supplier 2

Data Source 2

Consumer 1.3Consumer 1.2Consumer 1.1 Consumer 2.4Consumer 2.3Consumer 2.2Consumer 2.1

Data Reader 1.3Data Reader 1.2Data Reader 1.1 Data Reader 2.4Data Reader 2.3Data Reader 2.2Data Reader 2.1

Node 2

EC1 EC2

Node 1

Data Source 1

Supplier 1 Supplier 2

Data Source 2

EC1 EC2

Node 1

Data Source 1

Supplier 1

Data Source 1

Supplier 1 Supplier 2

Data Source 2

Supplier 2

Data Source 2

Consumer 1.3Consumer 1.2Consumer 1.1 Consumer 2.4Consumer 2.3Consumer 2.2Consumer 2.1

Data Reader 1.3Data Reader 1.2Data Reader 1.1 Data Reader 2.4Data Reader 2.3Data Reader 2.2Data Reader 2.1

Node 2

Consumer 1.3Consumer 1.2Consumer 1.1 Consumer 1.3Consumer 1.2Consumer 1.1 Consumer 2.4Consumer 2.3Consumer 2.2Consumer 2.1 Consumer 2.4Consumer 2.3Consumer 2.2Consumer 2.1

Data Reader 1.3Data Reader 1.2Data Reader 1.1 Data Reader 1.3Data Reader 1.2Data Reader 1.1 Data Reader 2.4Data Reader 2.3Data Reader 2.2Data Reader 2.1 Data Reader 2.4Data Reader 2.3Data Reader 2.2Data Reader 2.1

Node 2

Figure 13. Test Scenario Set Up

54

Below we describe the specific parameters for these scenarios.

Scenario 1 – Normal Conditions: Figure 14 depicts the layout of entities in the system

on the two available nodes. On node 1, there are two data sources, two suppliers and

the event channel. In the implementation, there is an instance of the event channel for

each supplier. Node 2 has the consumers and the readers that will use the data. Table

1 gives the specific parameters for each of these entities. The table has two rows for

the event channel (EC1 and EC2). Each of these represents the distribution from one

of the data sources to the set of readers that have requested the data. Additionally, we

specified a network delay of 150 µsec for each transmission between node 1 and node

2. The object validity for Data Source 1 is 150,000 µsec, and for Data Source 2 is

140,000 µsec. Note that in Table 1, the deadline listed for each consumer represents

the computed deadline for the distribution for the associated data source. These

consumer deadlines were computed using the JITDD algorithm, synthesizing the

deadlines for each reader that requested data from the data source. The entire system

model was analyzed in RapidRMA, and found to be schedulable.

Scenario 2 – Workload Constrained: This scenario is almost identical to Scenario 1,

except that extra workload was inserted onto Node 2. This workload increased the

utilization on that node from 16.53% to 72.15%.. Again, the model was analyzed

using RapidRMA, and while the extra workload on Node 2 caused the system to be

more constrained, it was still schedulable. We chose to perform this test to show that

under tight workload conditions, when the system is found to be schedulable, our

implementation meets all deadlines and temporal consistency constraints.

55

Scenario 3 – Navy Weapons Alignment Application: In order to demonstrate how our

algorithm and implementation work with a real application we have developed a

simulation of the Navy weapon alignment system (see Figure 14). This Figure is the

property of the Raytheon Company [6].

In this system, a set of navigation subsystems produces navigation data. This data

must be distributed along a chain of components so that it can eventually be used by

the weapon subsystems to align the weapons according to the latest location of the

ship. The data is not only distributed along the chain, but it is also processed along the

way. For example, the Nav Data Interchanges component receives the raw data and

processes it so that the Process Nav Data component can use it.

Name Period,
µsec

Release,
µsec

Deadline,
µsec

Exec time,
µsec

DataSource1 100 000 0 10000 1500
DataSource2 80000 0 10000 2000
Data Reader 1.1 100000 80000 30000 1500
Data Reader 1.2 200000 180000 40000 1500
Data Reader 1.3 300000 280000 50000 1500
Data Reader 2.1 100000 80000 40000 2000
Data Reader 2.2 120000 130000 50000 2000
Data Reader 2.3 180000 130000 100000 2000
Data Reader 2.4 200000 160000 80000 2000
Supplier1 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumer1.* 100000 10000 70000 1000
Consumer2.** 80000 10000 60000 1000
* All consumers of DataSource1 (** and of DataSource2) have the same
parameters

Table 1. Test Scenario Parameters

56

In this application, it is critical that data be delivered within specified deadlines so

that the alignment operations can take place in time to get weapons prepared for

deployment. Further, the data that is received by the weapons subsystems must be

temporally valid. Otherwise, the weapons may end up being aligned according to old

navigation data.

This application is static in the sense that all of the components have well-known

and stable parameters, such as execution time, period and deadline. Also, the number

of components in the system remains the same. That is, it is known a priori how

many, and which weapons subsystems will require the navigation data, and when.

Nav
Objects

Shared Data Space

KeyCOTS NDI

Interface Objects

Simulators

Functions

Resource Manager Elements

Interface Clients & Services

KeyCOTS NDI

Interface Objects

Simulators

Functions

Resource Manager Elements

Interface Clients & Services

Navigation
Subsystems
Navigation

Subsystems

Open Service Environment (OSE)

QoS Mgr
XML/DAML
Operational

String
Spec Policy

QoS Agent

Weapon
Objects
Weapon
Objects

Nav Data
Interchanges

Nav Data
Interchanges

Weapons
Data

Conversion

Weapons
Data

Conversion

Weapon
Interchanges

Missiles
Background
Processing

Missiles
Background
Processing

Weapon
Subsystems

Weapon
Subsystems

Process
Nav Data

(Service environment with QoS agents
deployed across multiple computing

resources)

Node 1

DB

Database
Access
Services

Node 2 Node n-2 Node n-1

QoS Agent
QoS Agent QoS Agent

QoS Agent

RT-DDS Middleware-based Data Distribution + diffserv on all nodesRT-DDS Middleware-based Data Distribution + diffserv on all nodes

Node n

Figure 14 - Navy Weapons Alignment Application

57

Presently, this type of application uses point-to-point communication to send the

data along the chain. This is very inflexible since whenever new components are

inserted, new direct communications must be added. For example, if more than one

weapon subsystem requires the navigation data (i.e. missiles and torpedoes), there

would be the need to set point-to-point communication from the Process Nav Data

component to each of the Missiles Background Processing components. Using a

decoupled data distribution mechanism we describe in this work, allows for more

flexibility in terms of where the data is sent. The data distribution mechanism would

allow components to specify the data that they can provide, and the data that they

require, and the delivery of the data would be handled by the data distribution. All

these make this system a very good real life set up to demonstrate applicability of our

algorithm and implementation.

Navigation
Subsystem

NavData
Interchanges

Process
NavData

EC

Missiles Background
Processing1

Missiles Background
Processing2

Weapon Data
Conversion1

Weapon Interchanges1

Weapon Subsystem1
Weapon Data
Conversion2

Weapon Interchanges2

Weapon Subsystem2

Node 1

Node 2

Navigation
Subsystem

NavData
Interchanges

Process
NavData

EC

Missiles Background
Processing1

Missiles Background
Processing2

Weapon Data
Conversion1

Weapon Interchanges1

Weapon Subsystem1
Weapon Data
Conversion2

Weapon Interchanges2

Weapon Subsystem2

Node 1

Node 2

Figure 15 - Navy Weapons Alignment Application Simulation

58

Figure 15 illustrates how we have simulated the system. Again, we use two nodes,

with the shared navigational components and the event channel on Node 1 and the

specific weapons components on Node 2. In this implementation, we have

implemented two different weapons systems, each with its own final deadline. Table

2 shows the parameters that we used to simulate this application. The object validity

of the navigation data being distributed is 800,000 µsec. The values in the table are

representative of the numbers for the real application.

Name Period,
µsec

Release,
µsec

Deadline,
µsec

Exec time,
µsec

NavigationSubsystem 500,000 0 300,000 100,000
NavDataInterchanges 500,000 300,000 350,000 5,000
EC1 500,000 300,000 350,000 400
ProcessNavData 500,000 300,000 350,000 5,000
EC2 500,000 300,000 350,000 400
WeaponBackground
Processing1

500,000 300,000 350,000 5,000

EC3_1 500,000 300,000 350,000 400
WeaponData
Conversion1

500,000 300,000 350,000 5,000

EC4_1 500,000 300,000 350,000 400
WeaponInterchanges1 500,000 300,000 350,000 5,000
MissilesBackground
Processing2

500,000 300,000 450,000 5,000

EC3_2 500,000 300,000 450,000 400
WeaponData
Conversion2

500,000 300,000 450,000 5,000

EC4_2 500,000 300,000 450,000 400
WeaponInterchanges2 500,000 300,000 450,000 1,000
WeaponSubsystems1 500,000 650,000 150,000 10,000
WeaponSubsystems2 1,000,000 750,000 300,000 10,000

Table 2. Navy Weapons Alignment Application Simulation Parameters

59

The use of the JITDD algorithm for this model was slightly different from its use

in the more generic models described above. In this application, the data is sent

through the Navigation Subsystem, the Nav Data Interchanges, and the Process Nav

Data components in a single path. However, because there are two weapon systems

that require the processed navigational data at the end of the chain of components, the

path splits. Thus, each weapon system will have a deadline by which it must receive

the data, and the delivery of data through the path must meet that deadline. For

example, the deadline for Weapon Subsystem 1 is 150,000 µsec, and the deadline for

Weapon Subsystem 2 is 300,000 µsec. The JITDD algorithm was applied to determine

the deadline for the delivery of this data to each weapon subsystem. However, because

the original data flows from the same source, there must be a single deadline placed on

the receipt of the data at the Process Nav Data component, the point where the path

splits. This deadline was computed by taking the shorter of the two computed

deadlines for the Weapon Subsystems.

Test Results. Here we describe the results of the test scenarios specified above. Again

the main metrics of each of these scenarios are deadlines, and data temporal validity.

The offline analysis has indicated that each of the scenarios is schedulable, and

Theorems One and Two specify that all data that is used is temporally consistent.

These test results are meant to demonstrate that the implementation does indeed meet

the expected theoretical results. For each of the first three test scenarios, we ran the

system over 100 periods of the data source and collected deadline and temporal

consistency data. We ran each test 10 times and graphed the maximum completion

60

time/data age values over these 10 tests. The results are displayed in the graphs of

Figures 17-24, and explained in detail below.

Scenario 1 – Normal Conditions: Figures 16-17 show the results of these tests.

Figure 17 displays the deadline results, one box for each of the data sources. The

horizontal line in each graph indicates the deadline for the distribution of the particular

data source. The other points in the scatter graph represent the completion times of

the data distributions over the 100 periods. As the figure indicates, except for a few

statistical anomalies in the first few periods, all of the data distributions complete

before the specified deadline, as the theoretical results had predicted. In the first few

periods, there may have been some set up execution that caused the tasks to complete

after the deadline.

Scenario 1 Data Source 1 - Distribution Completion Times

20000

30000

40000

50000

60000

70000

80000

0 20 40 60 80 100

Periods

C
o

m
p

le
ti

o
n

 T
im

e
(m

ic
ro

se
co

n
d

s)

Dist Deadline DS 1
Dist 1_1 Complete
Dist 1_2 Complete
Dist 1_3 Complete

Scenario 1 Data Source 2 - Distribution Completion Times

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70 80 90 100

Periods

C
o

m
p

le
ti

o
n

 T
im

e
(m

ic
ro

se
co

n
d

s)

Dist Deadline DS 2
Dist 2_1 Complete
Dist 2_2 Complete
Dist 2_3 Complete
Dist 2_4 Complete

Scenario 1 Data Source 1 - Distribution Completion Times

20000

30000

40000

50000

60000

70000

80000

0 20 40 60 80 100

Periods

C
o

m
p

le
ti

o
n

 T
im

e
(m

ic
ro

se
co

n
d

s)

Dist Deadline DS 1
Dist 1_1 Complete
Dist 1_2 Complete
Dist 1_3 Complete

Scenario 1 Data Source 2 - Distribution Completion Times

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70 80 90 100

Periods

C
o

m
p

le
ti

o
n

 T
im

e
(m

ic
ro

se
co

n
d

s)

Dist Deadline DS 2
Dist 2_1 Complete
Dist 2_2 Complete
Dist 2_3 Complete
Dist 2_4 Complete

Figure 16. Scenario 1. Distribution Completion Time vs. Deadline

61

Figure 18 shows the temporal consistency results for scenario 1, one graph for

each data source. The horizontal line in each graph represents the object validity of

the data object being distributed. The other points in the scatter chart represent the

ages of the data objects at the time they were read by the targets. It is clear to see that

all of the targets, in each of the periods run, read temporally consistent data.

Scenario 2 – Workload Constrained: Figures 18 and 19 show the results of the

Scenario 2 tests.

Scenario 2 - Data Source 1 Distribution Completion

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 20 40 60 80 100

Periods

C
o

m
p

le
ti

o
n

 T
im

e
(m

ic
ro

se
co

n
d

s)

Dist Deadline DS 1
Dist 1_1 Complete
Dist 1_2 Complete
Dist 1_3 Complete

Scenario 2 - Data Source 2 Distribution Completion Time

50000

55000

60000
65000

70000

75000

80000

85000

90000

95000

100000

0 20 40 60 80 100

Periods

Dist Deadline DS 2
Dist 2_1 Complete
Dist 2_2 Complete
Dist 2_3 Complete
Dist 2_4 Complete

Figure 18. Scenario 2. Distribution Completion Time vs. Deadline

Scenario 1 - Data Source 1 Temporal Consistency

100000

110000

120000

130000

140000

150000

0 20 40 60 80 100

Data Periods

D
at

a
A

g
e

(m
ic

ro
se

co
n

d
s)

Data Source 1

TC Consumer 1

TC Consumer 2

TC Consumer 3

Scenario 1 - Data Source 2 Temporal Consistency

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 20 40 60 80 100

Data Periods

D
at

a
A

g
e

(m
ic

ro
se

co
n

d
s)

Data Source 2
TC Consumer 4
TC Consumer 5
TC Consumer 6
TC Consumer 7

Figure 17. Scenario 1. Temporal Consistency of Data Sources

62

Again, we see that in Figure 18, the deadlines of the distributions are met for each of

the periods over which the system was run. Figure 19 indicates that, aside from one

statistical anomaly, the data temporal consistency was maintained for the data objects,

for each period.

Scenario 3 – Navy Weapon Alignment Application: For scenario 3, we have run the

system over 100 periods of the Navy Subsystem component, 10 times. We graphed the

maximum values for the completion times of the two Weapon Subsystems, and for the

object validity of the data arriving at the two Weapon Subsystems components.

Figures 20 and 21 show the results these tests. From the figures we can see that our

computed deadlines are met each time, and the temporal validity of the data is

preserved as well.

The work described in this section was published in [6].

Scenario 2 - Data Source 1 Temporal Consistency

100000

110000

120000

130000

140000

150000

160000

0 20 40 60 80 100

Periods

D
at

a
A

g
e

(m
ic

ro
se

co
n

d
s)

Data Source 1
TC Consumer 1
TC Consumer 2
TC Consumer 3

Scenario 2 - Data Source 2 Temporal Consistency

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

0 20 40 60 80 100

Periods

D
at

a
A

g
e

(m
ic

ro
se

co
n

d
s)

Data Source 2
TC Consumer 4
TC Consumer 5
TC Consumer 6
TC Consumer 7

Scenario 2 - Data Source 1 Temporal Consistency

100000

110000

120000

130000

140000

150000

160000

0 20 40 60 80 100

Periods

D
at

a
A

g
e

(m
ic

ro
se

co
n

d
s)

Data Source 1
TC Consumer 1
TC Consumer 2
TC Consumer 3

Scenario 2 - Data Source 2 Temporal Consistency

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

0 20 40 60 80 100

Periods

D
at

a
A

g
e

(m
ic

ro
se

co
n

d
s)

Data Source 2
TC Consumer 4
TC Consumer 5
TC Consumer 6
TC Consumer 7

Figure 19. Scenario 2. Temporal Consistency of Data Sources

63

N av y W e apo n Align me nt C o mple tio n T ime s

0

5 0 0 0 0

10 0 0 0 0

15 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

0 10 20 30 40 50 60 70 80 90 100

P e rio d s

W eapon Sy s tem 1 Dead line
Comp letion Time 1
W eapon Sy s tem 2 Dead line
Comp letion Time 2

Figure 20 - Navy Weapons Alignment Simulation.
Distribution Completion Time vs. Deadline

Navy Weapon Alignm ent Applicaiton Tem poral Consis tency

400000

450000

500000

550000

600000

650000

700000

750000

800000

850000

0 20 40 60 80 100

Data Periods

Nav Data Object Validity

Weapon System 1

Weapon System 2

Figure 21 - Navy Weapons Alignment Simulation.

Temporal Consistency of Data Source

64

1. "Rapid RMA," TriPacific Software, Inc., www.tripac.com, accessed March, 19th, 2014.

2. Liu, J.W.S., Real-Time Systems, Prentice-Hall, June 2000.

3. Murphy, M., Bryan, K., "CORBA 1.0 Compliant Static Scheduling Service for Periodic Tasks
Technical Documentation," URI Technical Report TR04-297, University of Rhode Island, January
2004.

4. Schmidt, D.C., "Real-time CORBA with TAO (The ACE ORB)," Washington University at St.
Louis, 12 November 2013, http://www.cs.wustl.edu/~schmidt/TAO.html, accessed 19 March 2014.

5. Harrison, T.H., Levine, D.L., Schmidt, D.C., "The Design and Performance of a Real-time CORBA
Event Service," in Proceedings of the Object-Oriented Programming Systems, Languages &
Applications Conference (OOPSLA’97), October 1997, Atlanta, GA.

6. Uvarov, A., DiPippo, L., Fay Wolfe, V., Bryan, K., Gadrow, P., Henry, T., Murphy M., Work, P.R.,
DiPalma, L.P., "Static Real-Time Data Distribution," in Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS'04), May 2004, Toronto, Canada

7. The Raytheon Company, www.raytheon.com, accessed March, 19th, 2014

65

CHAPTER 5

DYNAMIC RTDD

This chapter presents our work on real-time dynamic data distribution that includes

description of system design, implementation, and evaluation.

5.1 System Design

In a dynamic system where data sources and data readers may come and leave

at any time, all computation and analysis has to be performed on-line. This type of

system imposes different requirements on system performance and as a result on its

architecture. Our proposed Timely Data Distribution Service (TDDS) system

architecture for dynamic systems is presented in Figure 22.

As the figure shows, the main components of the system are as follows:

Global Data Distribution Service

Consumer

Consumer

:
:

Supplier EC

Supplier EC

:
:

Data Source

Data Source

:
:

Data Reader

Data Reader

:
:

Dynamic Scheduling Service

Source Local DDS

Source Local DDS

:
:

Consumer

Data Reader

:
:

Data Reader

Reader Local DDS

Reader Local DDS

Reader Local DDS

Global Data Distribution Service

Consumer

Consumer

:
:

Supplier EC

Supplier EC

:
:

Data Source

Data Source

:
:

Data Reader

Data Reader

:
:

Dynamic Scheduling Service

Source Local DDS

Source Local DDS

:
:

Consumer

Data Reader

:
:

Data Reader

Reader Local DDS

Reader Local DDS

Reader Local DDS

Figure 22. TDDS System Architecture

66

DataSource and DataReader are the applications analogs to those in a static system.

Source and Reader Local Data Distribution Services (Source/ReaderLocalDDS)

are the local objects residing at the same nodes as the data producing and data

consuming applications and serve as the entrance points of the Data Distribution

Service. These local DDSs are responsible for DataSource and DataReader

registrations, analysis of data distribution parameters and interactions with other parts

of the system such as GlobalDataDistributionService and DynamicSchedulingService

to achieve system goals and actual data distribution.

The Real-Time Event Service (RT ES) is an internal to the DDS data distribution

mechanism, responsible for actual data distribution.

The Global DDS is used by the ReaderLocalDDSs to find the SourceLocalDDS

associated with the data requested by DataReader application. During DataSource

registration, SourceLocalDDS registers itself with Global DDS with association to

data provided by DataSource. Then, this information is used by ReaderLocalDDS to

locate the appropriate SourceLocalDDS.

The Dynamic Scheduling Service (DSS) is responsible for system schedulability

analysis and priority assignments for all tasks in the systems.

Figures 23 and 24 present components collaboration in our real-time data

distribution framework. This collaboration can be split into two phases: the Set-Up

phase and the Run-Time phase. Data Source Set-Up includes the following steps (the

numbers in the steps described below correspond to the numbered events in figures 23

and 24):

67

1 - Data Source connects to the Scheduling Service to schedule its own activity on the

node.

2 - If schedulable, Data Source registers to the Source Local DDS.

3, 4, 5 - Source Local DDS creates an Event, Supplier and Event Channel.

6 - Local DDS requests DSS to schedule an event.

7 - If the event is schedulable, Source Local DDS registers with the Global DDS.

At this point, the data source part is all set and is ready to distribute data.

 The Set-Up phase for Data Reader includes the following steps.

8 - Data Reader request DSS to schedule its own activity.

9 - If schedulable, Data Reader registers with the Reader Local DDS.

GlobalDDS

DSS

8.Begin/End
Sched.Segment

7.Register

DataSource

SourceLocalDDS

Supplier

EC Node 1

2.Register
3.Create Event

4.Create

5.Create

6.Begin
14.End/Append
Scheduling Segment

11.Request
13.Update/
16.Register
Consumer

10.Register
/Lookup

1.Begin/End
Sched.Segment

DataReader

ReaderLocalDDS

Consumer

Node 2

15.Create

9.Register

12.Perform JIT Analysis

GlobalDDS

DSS

8.Begin/End
Sched.Segment

7.Register

DataSource

SourceLocalDDS

Supplier

EC Node 1

2.Register
3.Create Event

4.Create

5.Create

6.Begin
14.End/Append
Scheduling Segment

11.Request
13.Update/
16.Register
Consumer

10.Register
/Lookup

1.Begin/End
Sched.Segment

DataReader

ReaderLocalDDS

Consumer

Node 2

15.Create

9.Register

12.Perform JIT Analysis

Figure 23. Components Collaboration in TDDS Framework (Set-Up Phase)

68

10 - Reader Local DDS registers new Data Reader to the Global DDS. If there is no

local consumer for the requested data, the Reader Local DDS looks up the Global

DDS for an available Source Local DDS.

11. Reader Local DDS creates consumer.

12. Reader Local DDS requests Supplier information from the Source Local DDS.

13. Reader Local DDS performs Just-In-Time analysis for a new Data Reader.

14. Reader Local DDS updates Supplier information for the Source Local DDS.

15. Source Local DDS requests DSS to schedule new distribution and registers new

Consumer.

16. If the new distribution is schedulable, the Source Local DDS registers new

Consumer with the Event Channel.

This is the end of the Set-Up phase

The Run-Time phase performs the actual data distribution in the following order.

1,2 - Data Source produces data and writes it to the Source Local DDS.

3,4 - The Source Local DDS wraps the data into event and pushes it to the Supplier.

5 - Supplier pushes data into the Event Channel.

6 - Event Channel pushes it to all of its Consumers.

7 - Each Consumer then pushes data to its Local Reader DDS.

8 - The Reader Local DDSs un-wraps the data and makes it available for the Readers.

9 - Data Readers access the data according to their own needs.

DataSource

SourceLocalDDS

Supplier

EC Node 1

GlobalDDS

DSS

DataReader

ReaderLocalDDS

Consumer

Node 2

2.Push
3.Create event

4.Push

5.Push

8.Unwrap Data

9.Read Data

7.Push

1.Produce Data

6.Push

DataSource

SourceLocalDDS

Supplier

EC Node 1

GlobalDDS

DSS

DataReader

ReaderLocalDDS

Consumer

Node 2

2.Push
3.Create event

4.Push

5.Push

8.Unwrap Data

9.Read Data

7.Push

1.Produce Data

6.Push

Figure 24. Component collaboration. Run-time Phase.

69

The Run-Time phase depicted in Figure 24 performs the actual data distribution in the

following order.

1,2 - Data Source produces data and writes it to the Source Local DDS.

3,4 - The Source Local DDS wraps the data into event and pushes it to the Supplier.

5 - Supplier pushes data into the Event Channel.

6 - Event Channel pushes it to all of its Consumers.

7 - Each Consumer then pushes data to its Local Reader DDS.

8 - The Reader Local DDSs un-wrap the data and makes it available for their Data

Readers.

9 - Data Readers access the data according to their own needs.

5.2 System Implementation

The whole system is developed upon the Real-Time ORB in TAO [1]. The Real

Time Data Distribution Service framework, excluding scheduling and Just-in-Time

analysis interfaces was implemented as part of a Master’s Thesis project [2], the

system analysis and design, though, were part of this work. The major components of

the system and their collaboration are described below.

5.2.1. Components and Use Cases Implementation.

The following two subsections describe all the system’s components and their

actions during set-up and run-time phases. In comparison to a static system, in a

dynamic system, this differentiation is, of course, arbitrary, since components enter

and leave the system during run-time. We use these two phases just for separation of

70

Data Readers and Data Sources registration and connection from the actual data

distribution.

5.2.1.1 Set-Up Phase

In the set-up phase, new incoming Data Sources and Data Readers are introduced,

scheduled, and based on schedulability result, registered to the system. The

components and their collaborations are as follows.

Global DDS, the keeper of a system-wide repository for event entities, is

implemented as a wrapper around CORBA Naming Service. For the purpose of

reduction of network communication, it is designed as distributed agents between

Local DDS and Naming Service, residing on each network node.

Source Local DDS is implemented as a multi-threaded server, with Supplier and

Event Channel on each of the threads. To decrease a run time overhead instead of

being created when a new Data Source is registering to the system, Suppliers and

Event Channels for each type of event are created ahead of time and are kept running.

Reader Local DDS uses the same thread model as Source Local DDS. It stores

and updates data each time the Consumer pushes a new event.

 Data Source. After registering to Reader Local DDS during the set-up phase, the

Data Source periodically wraps application data into an internal data structure set and

pushes data to its Local DDS.

Data Reader performs two tasks. It registers with its Local DDS and then

periodically reads the data from it.

71

Some of the interfaces for the above components were developed based on the

following four cases of usage: Data Source Registration and Unregistration, and Data

Reader Registration and Unregistration.

Case of Data Source Registration (See Figure 25). Upon coming into the

system, Data Source registers to Real Time Dynamic Scheduling Service, then to

Reader Local DDS. After that, Reader Local DDS creates an end-to-end task,

representing the producing end of data distribution and schedules it with RTDSS. If

scheduled, the source Local DDS registers a new event with Global DDS and requests

a list of Reader Local DDSs waiting for this event, to inform them of the event’s

availability.

Data Source Source

Local DDS
Supplier Event

Channel
Consumer Reader

Local DDS
Data Reader DSS Global DDS

1: Begin Scheduling Segment

3: register_data_source

4: Create e2e task

5: Begin Scheduling Segment

6: Schedulable / Unschedulable

7: Register e2e Task (9: Schedlable)

8: register_source_local_dds

9: Ack

Global DDS binds the IOR
of Source Local DDS to the
Event ID and registers to
Naming Service

13: Ack

14: Delete e2e task (6:Unschedulable)

15: Request denied

2: priority

10: lookup_reader_local_dds

11: IOR List of Reader Local DDS

12: source_avai lable

 Figure 25. Data Source Registration Use Case

72

Case of Data Source Unregistration (See Figure 26). When a Data Source

deactivates, it unregisters itself from the Source Local DDS and RT DSS. After that,

the Source Local DDS associated with the Data Source will unregister the end-to-end

task (distribution) from the RTDSS and unregister itself from the Global DDS. Then it

will request the list of Reader Local DDSs receiving this data, to inform them of the

source unavailability. Once that is executed, all involved Reader Local DDSs will

deactivate their corresponding consumers.

Data Source Source
Local DDS

Supplier Event
Channel

Consumer Reader
Local DDS

Data Reader DSS Global DDS

1: unregister_data_source

2: unregister_source_local_dds

4: End Scheduling Segment

5: Ack

6: Delete e2e task

7: lookup_reader_local_dds

8: IOR List of Reader Local DDS

11: source_unavailable

12: Deactivate

9: Unregister Consumer

10: Ack

3: Ack

13: Ack

 Figure 26. Data Source Unregistration Use Case.

73

Cases of Data Reader Registration (See Figures 27 and 28). There are two

scenarios in this case. In the first, general case, when a new Data Reader comes into

the system, it registers with RT DSS and then with Reader Local DDS.

 Then, the Reader Local DDS creates a consumer and looks up the Global DDS for

Data Source Source
Local DDS

Supplier Event
Channel

Consumer Reader
Local DDS

Data Reader DSS Global DDS

23: Delete Append (16: Unshedulable)

24: Request Denied

25: Destroy

3: register_data_reader

5: Create (4: not found)

13: JITDD Analysis

14: regis ter_consumer

15: Append e2e task

18: Register Consumer to Event Channel (16:Schedulable)

20: Record Append

21: Ack

4: Consumer Lookup (if found, see DataReaderRegistration (ConsumerExis ts))

22: Ack

26: Request Denied

10: Ack (9: SourceNotAvailable)

1: Begin Scheduling Segment

2: Priority

16: Append Scheduling Segment

17: Schedulable / Unschedulable

6: register_reader_local_dds

7: Ack

8: lookup_source_local_dds

9: IOR of Source Local DDS

11: get_supplier_info (9: SourceAvailable)

12: RT_Info

19: Ack

 Figure 27. Data Reader Registration Use Case

74

an available Source Local DDS. If there is no Data Source, the Reader Local DDS

returns the notification.

If the Data Source is available, the Reader Local DDS calls upon the Source Local

DDS to get the Data Source information to perform Just-In-Time analysis. After that,

the Reader Local DDS registers the new consumer to the Source Local DDS.

The Source Local DDS in its turn adds the new Consumer to the corresponding

End-to-End task and calls upon RT DSS to schedule it. If schedulable, the Consumer

is registered to the Event Channel and everything is ready for the data transfer.

Otherwise the Source Local DDS denies the request for Consumer registration and

returns Request Deny back to the Reader Local DDS, which in turns destroys the

Consumer.

Data Source Record
Update

Supplier Event
Channel

Consumer Reader
Local DDS

Data Reader DSS Global DDS

1: JIT Analys is (following s tep 4 in General Case)

2: Ack (1: Deadline Unchanged)

3: update_consumer (1: Deadline Changed)

4: Update e2e task

5: Update Scheduling Segment

6: Schedulable / Unschedulable

7: Record Update (6: Schedulable)

8: Ack

9: Record Consumer Update

10: Ack

11: Delete e2e task (6: Unschedulable)

12: Request Denied

13: Delete Consumer Update

14: Request Denied

 Figure 28. Data Reader Registration (Consumer Exists) Use Case

75

The second scenario is applied when Consumer Look Up reveals its existence at

step 4 of the general case. Here, Just-In-Time analysis is performed to compute a new

deadline for Consumer. Then if the computed deadline is bigger than the existing

Consumer’s deadline, the Consumer will continue to perform on existing conditions,

and the/a new Reader will get valid data. If the new deadline is less than the existing,

the Reader Local DDS calls upon the Source Local DDS to modify deadline

parameters on the corresponding End-to-End task and schedule it with RT DSS. If

schedulable, the Source Local DDS records the update, otherwise the update is deleted

and request is denied.

Case of Data Reader Unregistration (See Figure 29). When a Data Reader

leaves the system, it unregisters itself with the Reader Local DDS. The Reader Local

DDS calls the Just-in-Time block to check if the Consumer deadline will change when

the Data Reader leaves. Based on the result, we observe three possible scenarios.

In the first scenario, the deadline is unchanged (Reader’s deadline is longer than

Consumer’s). Nothing needs to be done. (Figure 29, Step 3)

In the second scenario, when the leaving Reader’s deadline was the shortest, the

Reader Local DDS call the Just-in-Time block to compute a new deadline for the

Consumer. Then it calls the Source Local DDS to update the Consumer’s information.

The Source Local DDS updates the End-to-End task and calls RT DSS to adjust the

system. (Figure 29, Step 5)

In the third scenario, we consider the case when the leaving Data Reader is the last

requestor of data from the Consumer. In this case, the Reader Local DDS unregisters

the Consumer from the Source Local DDS. The Source Local DDS updates the End-

76

to-End task, calls RT DSS, and unregisters the Consumer from the Event Channel.

(Figure 29, Step 13)

 5.2.1.2 Run-Time Phase

After completion of registration, Data Sources are ready for periodic data updates,

and Data Readers are ready for their periodic data consuming. The case of Data

Distribution, the one we associate with the run-time phase, is presented in Figure 30.

Data Source Source
Local DDS

Supplier Event
Channel

Consumer Reader
Local DDS

Data Reader DSS Global DDS

1: unregister_data_reader

2: Deadline Checkup: (unchanged / changed / last reader)

4: Ack

5: update_consumer (2: deadline changed)

6: Update e2e task

7: Update Scheduling Segment

8: Schedulable / Unschedulable

9: Record Update

10: Ack

11: Record Consumer Update

12: Ack

13: delete_consumer (2: last reader)

14: Update e2e task

15: Update Scheduling Segment

16: Schedulable / Unschedulable

17: Unregister Consumer

18: Ack

19: Record Update

20: Ack

21: Destroy

22: Ack

3: Delete Data Reader (2: deadline unchanged)

 Figure 29. Data Reader Unregistration Use Case.

77

Case of Data Distribution. The Data Source produces data, wraps it into Internal

Data Structure, and pushes it to the Source Local DDS. The Source Local DDS wraps

the data into Event and pushes it to Supplier. The Supplier pushes it to Event Channel

and Event Channel to all its Consumers. Consumers push data to their respective

Reader Local DDSs. Each Reader Local DDS unwraps the data from the event and

stores it internally, making it accessible to their Data Readers. The Readers then

check the data’s time stamp and validity to determine its freshness. If a Reader keeps

reading the same old data, it is a sign that there is no Data Source providing the data.

The reader application then may choose to continue to read with the same interval, to

increase the reading interval, or to stop reading.

Data Source Source
Local DDS

Supplier Event
Channel

Consumer Reader
Local DDS

Data Reader

1: write_data
2: Wrap Data into Event

3: push_event

4: push

5: push

6: push_event

7: Unwrap Data from Event

8: read_data

9: Data

 Figure 30. Data Distribution Use Case

78

5.2.2 Major Data Structures.

There are four major data structures in our implementation.

 To provide real-time constraints, the Data Source wraps the data into an internal

data structure called Data_Set_t (Figure 31). During each update, it also stamps the

data with the time it was updated. This time stamp along with the data validity time is

used by the Data Reader to ascertain whether data is still valid at the time of reading.

The real time information structure Rt_Info_t (refer to Figure 35) is used to

provide real-time constraints of all major components in the system (Data Sources,

Data Readers, Source/Reader Local DDSs, Consumers, Suppliers and Event

Channels) to be used for Just-In-Time block and for building end-to-end distribution

The real-time information structure Rt_Info_t (refer to Figure 32) is used to

provide real-time constraints of all major components in the system (Data Sources,

Data Readers, Source/Reader Local DDSs, Consumers, Suppliers, Event Channels) for

use in JIT computation and in building end-to-end distribution tasks.

Struct Data_Set_t
{

EventID_t eid;
Data_t data;
TimeType_t validity;
TimeType_t lastupdate;

};

Figure 31. Internal Data Structure

79

The Subtask structure (refer to Figure 33) is used to keep all real-time info of tasks

involved in end-to-end data distribution. This information is used by RT DSS to

compute all intermediate deadlines and to assign priority to the tasks in the system.

This structure is defined as a recursive structure to accommodate the non-linear nature

of the data distribution task. (We could also argue that a non-linear task is a more

general approach to the end-to-end task presentation, while a linear task is just a basic

variation). Along with common real-time parameters, the structure also includes

resource usage information (acquisition and deacquisition time) and parameters

specific to RT DSS.

Struct Rt_Info_t
{

/// A user define name of the entity
string name;

///The entity’s IOR. Can be null if not a servant.
IOR_t ior;

/// The network ID of the computer the entity resid es.
NodeID_t nid;

///The event ID that the entity is associated with.
EventID_t eid;

TimeType_t period;
TimeType_t release;
TimeType_t deadline;
TimeType_t exec_time;
TimeType_t validity;

};

Figure 32. Real-Time Information Structure.

80

The End2EndTask structure (refer to Figure 34) is used for definition of actual data

distribution, that starts at the Source Local DDS and ends at the Reader Local DDS. It

stores real-time information of all the subtasks involved in the chain, and end-to-end

parameters of the task itself. The RT DSS uses this information to compute

intermediate deadlines of involved subtasks, to perform schedulability analysis, and to

struct Subtask_t
{

/// A user defined name of the entity.
string name;

/// The network ID of the computer the entity resid es
NodeID_t nid;

TimeType_t period;
TimeType_t phase;
TimeType_t deadline;
TimeType_t exec_time;

/// Resources used by the task
ResourceUsageSet_t resources;

///Tasks successors
sequence<Subtask_t> subtasks;

};

Here ResourceUsageSet_t is the list of ResourceUsage_t structures, where

struct ResourceUsage_t
{

string name;
TimeType_t acqTime;
TimeType_t deacqTime;

};

 Figure 33. Subtask Structure.

81

assign priority for task’s execution.

5.2.3 Intermediate Deadlines Computation.

This section presents a description of our suggested approach for intermediate

deadline computation in a non-linear distribution End-to-End task. Even though this

considered to be the part of RT DSS project, we sought it would be beneficial to give

our insights on the subject.

 For an End-to-End task to complete before its deadline, all involved subtasks

must complete before this deadline. Since, a task successor starts only after its task

predecessor completes, the intermediate deadlines for all subtasks need to be assigned

one after another within the end-to-end deadline. The original algorithm in RT DSS is

accommodated to compute intermediate deadlines in a linear end-to-end task.

struct End2EndTask_t
{

/// A user defined name of the entity.
string name;

/// The event ID that the entity is associated with .
EventID_t eid;

TimeType_t period;
TimeType_t release;
TimeType_t deadline;
Iportance_t importance;
TimeType_t exec_time;

/// Set of subtasks
sequence <Subtask_t> subtasks;

};

Figure 34. End-to-End Task Structure

82

There were two approaches discussed for intermediate deadline computation. In

the first approach (head-to-tail approach), the deadline assignment starts from the

beginning of the End-to-End task. The deadline for the first subtask is defined by

addition of the first subtask’s execution time to the End-to-End task’s release time, the

deadline for the second subtask is subsequently defined by addition of the second

subtask execution time to the first subtask deadline, and so on and so forth. In the

second approach (tail-to-head), computation starts from the end of the End-to-End

task. The last subtask deadline is assigned as the End-to-End task’s deadline. The next

to last subtask’s deadline is defined by subtraction of last subtask’s execution time

from its deadline, and so on and so forth.

To illustrate these approaches let us considered the following example. Let End-to-

End task E2E have period (P) and deadline (D) equal to 10, and its release (R) be at

the beginning of its period. Let this task consist of 3 subtasks (ST1, ST2, ST3) with

execution times (ST1E, ST2E, ST3E) equal to 2, 3, and 2, respectively. Then with the

first approach, we assign intermediate deadlines ST1D, ST2D, ST3D, as follows:

ST1D = R + ST1E = 0+2 = 2

ST2D = ST1D + ST2E = 2 + 3 = 5 and

ST3D = D = 10

 With the second approach:

ST3D = D = 10

83

ST2D = ST3D – ST3E = 10 – 2 = 8

ST1D = ST2D – ST2E = 8 – 3 = 5

As we can see from Figure 35, all free (slack) time is allocated to the last subtask

in the chain in the first approach, and to the first subtask in the second approach.

Now let us consider the case of a non-linear distribution task E2E (refer to Figure

36), with the same period, deadline and release time as in the previous example. Let

the subtasks be ST1, ST2, ST3 and ST4 where subtask ST2 is a point of spawning. That

is, at the end of execution of ST2, subtasks ST3 and ST4 start to execute

simultaneously. Let their execution times be ST1E =2, ST2E =3, ST3E = 2 and ST4E

= 3.

0

R

10

D, ST3D

2 5

ST1D ST2D
ST1E ST2E

ST3E

slack

10

D, ST3D

85

ST1D ST2D
ST1E ST2E ST3E

slack

R

0

Head-to-tail approach

Tai-to-head approach

0

R

10

D, ST3D

2 5

ST1D ST2D
ST1E ST2E

ST3E

slack
0

R

10

D, ST3D

2 5

ST1D ST2D
ST1E ST2E

ST3E

slack

10

D, ST3D

85

ST1D ST2D
ST1E ST2E ST3E

slack

R

0 10

D, ST3D

85

ST1D ST2D
ST1E ST2E ST3E

slack

R

0

Head-to-tail approach

Tai-to-head approach

Figure 35. Intermediate Deadlines Assignment in RT DSS

84

With the first approach, subtasks intermediate deadlines will be:

ST1D = R + ST1E = 0+2 = 2

ST2D = ST1D + ST2E = 2 + 3 = 5 and

ST3D = ST4D = D = 10

For the second approach, the algorithm needs to be modified a little. We start

from the end of one branch, let us say ST3. Then:

ST3D = D = 10

ST2D = ST3D – ST3E = 10 – 2 = 8

Here, we need to take into account another branch:

0

R

10

D, ST3D, ST4D

2 5

ST1D

ST2D

ST1E ST2E
ST3E

slack

ST4E

Head-to-tail approach

10

D, ST3D, ST4D

84

ST1D
ST2D

ST1E ST2E ST3E

slack

R

0 7

ST4E

Tail-to-head approach

0

R

10

D, ST3D, ST4D

2 5

ST1D

ST2D

ST1E ST2E
ST3E

slack

ST4E

Head-to-tail approach

0

R

10

D, ST3D, ST4D

2 5

ST1D

ST2D

ST1E ST2E
ST3E

slack

ST4E

Head-to-tail approach

10

D, ST3D, ST4D

84

ST1D
ST2D

ST1E ST2E ST3E

slack

R

0 7

ST4E

Tail-to-head approach

10

D, ST3D, ST4D

84

ST1D
ST2D

ST1E ST2E ST3E

slack

R

0 7

ST4E

Tail-to-head approach

 Figure 36. Intermediate Deadlines Assignment for Distribution Task

85

ST4D = D = 10

ST2D = ST4D – ST4E = 10 – 3 = 7

For both subtasks ST3 and ST4 to complete before their deadlines, the deadline of

their predecessor subtask ST2 needs to be assigned as the shortest of these two. That

is:

ST2D = 7, and now,

ST1D = ST2D – ST2E = 7 – 3 = 4

Here again the slack time is accumulated either at the last subtasks or at the first.

To spread this slack time more evenly, and hence to relax constraints along the

chain, we propose to allocate tasks’ deadlines in proportions to their execution times

(proportional assignment). For that we need to compute E2E task execution time,

again taking into account its non-linear nature. So for the branch constructed with

subtask ST3, we have E2E execution time:

E = ST1E + ST2E + ST3E = 2 + 3 + 2 = 7

For the branch constructed with subtask ST4, have we have E2E execution time:

E = ST1E + ST2E + ST4E = 2 + 3 + 3 = 8

E2E execution time is assigned as the longest of these two. Therefore, for 8

execution time units we have 10 allocation time units, that is, for each execution unit

we can assign 1.25 allocation units. With this, obviously, either Head-to-Tail or Tail-

to-Head approach will lead to the same intermediate deadlines (refer to figure 37).

Head-to-Tail computation:

86

ST1D = R + ST1E * 1.25 = 0+2 * 1.25 = 2.5

ST2D = ST1D + ST2E * 1.25 = 2.5 + 3 *1.25 = 6.25 and

ST3D = ST4D = D = 10

Tail-to-Head computation:

ST3D = D = 10

ST2D = ST3D – ST3E *1.25 = 10 – 2.5 = 7.5

Here again, we need to take into account another branch:

ST4D = D = 10

10

D, ST3D, ST4D

84

ST1D ST2D

ST1E ST2E ST3E
R

0 7

ST4E

Tail-to-head approach

0

R

10

D, ST3D, ST4D

2 5

ST1D ST2D

ST1E ST2E ST3E

slack

ST4E

Head-to-tail approach

slackslack

10

D, ST3D, ST4D

84

ST1D ST2D

ST1E ST2E ST3E
R

0 7

ST4E

Tail-to-head approach

10

D, ST3D, ST4D

84

ST1D ST2D

ST1E ST2E ST3E
R

0 7

ST4E

Tail-to-head approach

0

R

10

D, ST3D, ST4D

2 5

ST1D ST2D

ST1E ST2E ST3E

slack

ST4E

Head-to-tail approach

slackslack0

R

10

D, ST3D, ST4D

2 5

ST1D ST2D

ST1E ST2E ST3E

slack

ST4E

Head-to-tail approach

slackslack

 Figure 37. Proportional Intermediate Deadline Assignment

87

ST2D = ST4D – ST4E * 1.25 = 10 – 3.75 = 6.25

So, ST2D = 6.25 and,

ST1D = ST2D – ST2E * 1.25 = 6.25 – 3.75 = 2.5

The choice of computational approach in this case should be based on other

parameters, such as the effectiveness of the implementation. In our substitute for

RTDDS (see below) for intermediate deadlines computation we implemented Tail-to-

Head approach.

5.3 System Evaluation

This section describes the empirical studies used/conducted to justify our approach

of Dynamic Real-Time Data Distribution Service.

5.3.1 Experimental Platform

Middleware consists of TAO Real Time ORB and TAO Real Time Event Channel.

The experimental applications use TAO Real-Time ORB and TAO’s Real-Time

Event Channel to communicate both between components requiring event-mediated

interactions on the same end system and components, distributed across different end

systems. The software architecture also was supposed to include the RTDSS

framework. The implementation of this framework was separate from our project and

due to reasons beyond our control is not complete. Since the process of schedulability

lays outside of our project’s scope, and by knowing that with the low CPU utilization

(<= 69%) our set of task is going to be schedulable (classic Rate Monotonic

Scheduling), we simply use “dummy” function calls, whenever we need interactions

with the RTDSS.

88

Our experimental application is running on a desktop computer, equipped with

Gentoo Linux i686 2.6.39-r3, installed with ACE 6.0.3 and TAO 2.0.3.

The computer is running a global Naming Service. For a single node simulation it

is running a Global DDS agent, a Source Local DDS server, and a Reader Local DDS

server. For a multiple node simulation we add additional Global DDS agents, Source

Local DDS and Reader Local DDS servers. Multiple data-centric applications

providing or receiving different types of data are also running on the computer.

5.3.2 Experimental Design

To describe our experiments we are using Goals-Questions-Metrics-Experiments

(GQME) terminology [3].

The Goal was to evaluate TDDS middleware in terms of end-to-end delivery of

information with timing constraints and its support for dynamic changes in real-time

configurations.

The following Questions and subsequently Metrics were defined:

1) How much overhead is there for TDDS middleware to perform real-time end-to-end

data distribution? This question was addressed by measuring:

• Average time to establish a distribution chain.

• End-to-end latency to deliver data.

• Memory consumption to establish a distribution chain.

2) How well does TDDS middleware respond to dynamic configuration changes? Here

as well, average time to establish/destroy a distribution chain was measured.

89

3) How well does TDDS middleware perform in terms of preserving data temporal

consistency? This was measured by the time remaining until data expiration at the

time of data access.

4) How well does TDDS middleware decentralize? This was determined by

quantifying existence of single point of failure, and possible recovery methods if any.

5) How transparent is TDDS middleware from the application? This was measured by

how much a user must know about the system to join.

6) How well does TDDS middleware scale? This was measured, by the effect on

system performance of increasing the number of data applications (event types, data

providers and receivers).

Since, a lot of tests for questions 1, 4, 5, and 6 were performed after initial

framework development and described in a previously published thesis [2] we did not

repeat them in this work. Instead we concentrated on the effect of including JIT block

to the system (questions 2 and 3). That is, on distribution deadlines, on temporal

consistency of delivered data, and the overhead added to the system by JIT

computation associated with maintaining data consistency. In the tests we measured

the time that was involved in establishing and destroying a distribution chain. We

compared the time it took to establish the chain with deadline computation in JIT

block, and without it, assuming the worst case scenario and the minimum deadline

(OV – P). We also measured the time interval between distribution deadlines and

actual time of data delivery, and the interval between data expiration and the time it

was accessed by a Reader. These parameters were computed as follows:

90

Time tsr0 is recorded when starting up Data Source. Time tsr1 is recorded when

the Data Source finishes registration to the Source Local DDS. Time trr0 is recorded

when starting up Data Reader. Time trr1 is recorded when the Data Reader finishes

registration to the Reader Local DDS. Time trs = (tsr1 – tsr0) and trr= (trr1 – trr0) are

the times to establish a source and a reder. For deadline assurance we record the time

ttd when a data is delivered by a Consumer to a Reader Local DDS. Then we check it

against the Consumer deadline rt_info.deadline. If the deadline is met, the

rt_info.deadline - ttd ≥ 0. When a Data Reader reads the data from its Reader Local

DDS, the time value associated with it (ttr) is used to calculate the data validity. For a

data to be valid at the time of access, the data.validity - ttr ≥ 0.

To destroy the chain tim tsu0 is recorded when starting Data Source

unregistration. Time tsu1 is recorded when the Data Source finishes unregistration

from the Source Local DDS. Time tru0 is recorded when starting Data Reader

unregistration. Time tru1 is recorded when the Data Reader finishes unregistration

from the Reader Local DDS. Time tsu = (tsu1 – tsu0) and tru= (tru1 – tru0) is the time

elapsed to destroy a source and a reader.

We performed the following set of test suits:

Test Suite 1: Baseline. Single Node / Single Data Source / Single Data Reader.

Experiments 1-10 (with JIT). Experiments 11-20 (without JIT)

Test Suite 2: Single Node / Single Data Source / Multiple Data Readers. Number of

readers increased to 5. Experiments 21-30 (with JIT). Experiments 31-40 (without JIT)

91

Test Suite 3: Single Node / Multiple Data Sources / Multiple Data Readers. Number

of data sources is increased to 5. Experiments 41-42 (with JIT). Experiments 43-44

(without JIT)

Test Suite 4: Multiple Nodes / Multiple Data Sources / Multiple Data Readers. Data

readers run on both nodes. Experiment 45 (with JIT). Experiment 46 (without JIT).

For these experiments, we generated 10 random sets of parameters for Data

Sources, with values for periods and data validity ranging from 100ms to 2000ms.

Then accordingly, we generated 5 sets of Data Reader parameters for each of the Data

Sources. During the tests’ runs the Data Sources and Data Readers come and leave

the system randomly.

5.3.3 Results

In this section we present the results of our tests.

Test Suite 1: For the base line, we repeated experiments for each of ten generated

Data Sources with one respective Data Reader from the pool for each Data Source.

Then, for the registration/unregistration time analysis for each party, we used the

means of the results from these ten experiments. For the Deadline and Validity charts,

we used all data as-is. We received the following results (refer to Figure 38): the

average registration time of incoming Data Sources in both cases (with JIT, and

without) is within 17 ms: the average Unregistration is within 8 ms. Since the Data

Sources are not affected by JIT computation, there is no difference in the performance.

Registration of incoming Data Readers in both cases is completed within 25 ms. It

takes just 3.7% more time to register a Data Reader with the use of JIT computation,

92

than without it. The un-registration for both cases finishes within 8 ms, with 5.8%

overhead for the Data Reader with JIT. Figures 39, 40 show baseline performance in

terms of accurate data delivery and its validity. Dots on the chart to the left represent

the differences between a deadline and actual delivery time, and the dots on the chart

to the right represent the difference between data validity time and the time the data

was accessed. We can see that all differences are positive. That is, in every instance

the distribution is finished before its deadline, and every time the data was accessed, it

was valid (the shape of the graph represents Data Readers reading patterns). We can

also see that with JIT computation, the distribution deadlines are more relaxed, that is

some of them are longer. Longer deadlines mean a better chance of system being

schedulable.

0

0.005

0.01

0.015

0.02

0.025

Se co n d s

Regis ter Unregis ter

Re g is tr atio n /Unr e g is tr atio n T im e

DS w . JIT

DS

DR w . JIT

DR

DS w .JIT

DS

DR w .JIT

DR

Figure 38. Baseline (Registration/Unregistration)

93

Test Suite 2: Within the second set of experiments, we ran each of ten Data

Sources, but now with all five Readers for each. For the registration/unregistration

time we again used the means of the respective results, and for the Deadline/Validity

charts, we used all data as-is. We observed that registration/unregistration time for the

Figure 39. Baseline with JIT.

Time to Deadline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19 21 23

Distributed, times

S
ec

o
n

d
s

DS1

DS2

DS3

DS4

DS5

DS6

DS7

DS8

DS10

Time to Validity

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Readings

M
ic

ro
se

co
n

d
s

Figure 40. Baseline without JIT.

Time to Deadline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19 21

Number of Periods

S
ec

o
n

d
s

DS9

DS8

DS7

DS6

DS5

DS4

DS3

DS2

DS1

Time to Validity

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 5 9 13 17 21 25 29 33 37 4145 49 53 57

M
ic

ro
se

co
n

d
s

DR9

DR8

DR7

DR6

DR5

DR4

DR3

DR2

DR1

Readings

94

incoming Data Sources, registration time for the first incoming Reader, and

unregistration for the last Reader to leave the system are similar to our baseline time

(refer to Figure 41). The average registration for the Data Source is below 20 ms, for

the first Data Readers is below 25 ms. Average registration time of incoming Readers

two through five, and then unregistration time of Readers one through four (they leave

the system in first–in-first –out order) is below 5 ms. This is due to the fact that at the

time these Readers enter and leave the system, all entities are running and all

distribution chains are set up. An overhead imposed by JIT computation in this set of

experiments was no more than 35 % across all readers (13% on average).

From Figures 42 and 43, it can be observed that with JIT computation, deadlines

are changing in the process of new readers entering the system, and again they are

more relaxed. All deadlines are met, and all the Readers access valid data all the time.

Figure 41. Single Node. Single Data Source. Multiple Data Readers.

0

0.005

0.01

0.015

0.02

0.025

Registration Time

DS w.JIT

DS

DR1 w.JIT

DR1

DR2 w. JIT

DR2

DR3 w.JIT

DR3

DR4 w.JIT

DR4

DR5 w.JIT

DR5

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Unregistration Time
DS w. JIT

DS

DR1 w.JIT

DR1

DR2 w. JIT

DR2

DR3 w.JIT

DR3

DR4 w.JIT

DR4

DR5 w. JIT

DR5

95

Test Suite 3: For the single node multiple sources experiments we ran twice five

data sources with five readers each. We averaged registration/unregistration times for

all ten incoming Data Sources and for all fifty incoming Readers in the order of their

registration. Figure 44 presents our results.

Figure 42. Single Node. Single Data Source. Multiple Data Readers. With JIT

Time to Deadline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 8 15 22 29 36 43 50 57 64 71

Number of Periods

S
ec

o
n

d
s

DS1

DS2

DS3

DS4

DS5

DS6

DS7

DS8

DS9

DS10

Time to Validity

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 21 41 61 81 101 121 141

Readings

M
ic

ro
se

co
n

d
s

DRs for
DS1
DRs for
DS2
DRs for
DS3
DRs for
DS4
DRs for
DS5
DRs for
DS6
DRs for
DS7
DRs for
DS8
DRs for
DS9
DRs for
DS10

Figure 43. Single Node. Single Data Source. Multiple Data Readers. Without JIT

Time to Deadline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 8 15 22 29 36 43 50 57 64

Number of Periods

S
ec

o
n

d
s

DS1

DS2

DS3

DS4

DS5

DS6

DS7

DS8

DS9

DS10

Time to Validity

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 28 55 82 109 136 163 190

Readings

M
ic

ro
se

co
n

d
s

DRs for
DS1
DRs for
DS2
DRs for
DS3
DRs for
DS4
DRs for
DS5
DRs for
DS6
DRs for
DS7
DRs for
DS8
DRs for
DS9
DRs for
DS10

96

These results go along with registration/unregistration time we have already

observed, with average overhead imposed by JIT in this set up being about 30%.

Figures 45 and 46 present our observations for distribution deadlines and data

validity checks for tests with JIT computation and without it. On the figures we

combined results from both experiments in each set up.

On the charts to the left the lines represent time to deadline for each of ten data

readers (five from each experiment). On the charts to right data points of one color

Figure 44. Single Node. Multiple Data Sources. Multiple Data Readers.

0

0.002

0.004

0.006

0.008

0.01

0.012

Seconds

Unregistration Time DS w. JIT

DS

DR1 w. JIT

DR1

DR2 w. JIT

DR2

DR3 w. JIT

DR3

DR4 w. JIT

DR4

DR5 w. JIT

DR5

0

0.005

0.01

0.015

0.02

0.025

0.03

Seconds

Registration Time DS w. JIT

DS

DR1 w. JIT

DR1

DR2 w. JIT

DR2

DR2 w. JIT

DR3

DR4 w. JIT

DR4

DR5 w. JIT

DR5

Figure 45. Single Node. Multiple Data Sources. Multiple Readers. With JIT.

Time to Validity

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

1 51 101 151 201 251 301 351 401

Readings

M
ic

ro
se

co
n

d
s

25 DRs

25 DRs

Time to Deadline

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Distributed, times

S
ec

o
n

d
s

DSDSs

97

represent times to validity at readings for each of twenty five Readers related to five

Data Sources in one experiment. We can observe that results here are also similar to

the above. All measurements are positive, meaning that distributions complete before

their deadlines, which in case of JIT computation are longer for some of them, and all

the readers always accessed valid data.

Test Suite 4: For the final experiment we ran five sources on each of nodes one

and two with fifty data readers (five for each source) divided between the nodes. With

this set up we had either two or three readers for each source on the node. We

recorded all registration/unregistration time results and then averaged them to build

our charts. For deadlines and validity we used recordings from all ten Data Sources

and all fifty Data Readers. Figure 47 shows a slight increase in

registration/unregistration times compared to all the previous tests. Here the

registration for incoming Data Sources is averaged within 20 ms. For the first

incoming Data Readers it is at 30 ms, and for the second and third Readers it is below

7 ms. Unregistration for Data Sources is complete within 14 ms and for the readers it

is done within 10 ms. Since with our set up some of the second Data Readers are the

Figure 46. Single Node. Multiple Data Sources. Multiple Readers. Without JIT.

Time to Deadline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000

Distributed, times

S
ec

o
n

d
s

DSs

Time to Validity

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

1 55 109 163 217 271 325 379

Readings
M

ic
ro

se
co

n
d

s

25 DRs

25 DRs

98

last to leave for their Data Sources on a node, we see an increase in their unregistration

time, compared to the first Data Readers to leave. The average overhead due to JIT

computation runs at about 24% here.

Figures 48 and 49 present our results for the delivering times and the validity of

data. The results here are similar to the ones we have already observed in the previous

tests. With all the deadlines, either computed with JIT or the worst case, met, the

accessed data is always valid.

The results of our experiments show that the JIT computation relaxes system

deadlines, the overhead associated with it falls in a reasonable range (averaging less

than 35%), across all the tests. And, that all Data Readers always get valid data if it

was delivered before specified deadline.

Combining our results with the results published by Mr. Jie Mao [2], along with

system design and implementation, we can summarize characteristics of our TDDS

middleware.

Figure 47. Multiple Nodes. Multiple Data Sources. Multiple Data Readers.

0

0.005

0.01
0.015

0.02

0.025

0.03

0.035

Seconds

Registration Time

DS w. JIT

DS

DR1 w. JIT

DR1

DR2 w. JIT

DR2

DR3 w.JIT

DR3

0
0.002

0.004
0.006

0.008
0.01

0.012

0.014

Seconds

Unregistration Time

DS w. JIT

DS

DR1 w. JIT

DR1

DR2 w. JIT

DR2

DR3 w. JIT

DR3

99

The TDDS ensures timely and inerrant data delivery from a proper data provider to

a proper data recipient according to their requirements, with the guarantee of data

temporal consistency.

Figure 48. Multiple Nodes. Multiple Data Sources. Multiple Data Readers. With JIT.

Time To Deadline

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

Distributed, times

S
ec

o
n

d
s

10 DSs

Time to Validity

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 500 1000 1500

Readings

M
ic

ro
se

co
n

d
s

50 Readers

Figure 49. Multiple Nodes. Multiple Data Sources. Multiple Data Readers.
Without JIT

Time to Deadline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500

Distributed, times

S
ec

o
n

d
s

10 DSs

Time to Validity

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 200 400 600 800 1000

Readings

M
ic

ro
se

co
n

d
s

50 DRs

100

The TDDS is completely decentralized, with Reader Local DDSs, Source Local

DDSs and Global DDSs, as distributed agents, running on each node.

The TDDS is highly transparent. The service achieves this by hiding all the details

of deadline computations, scheduling and actual data distribution from the end user.

The end user just employs either Source or Reader Local DDS on their side, provides

their real-time parameters and an event type of their interest. After that the middleware

processes all the necessary steps to set up data distribution.

The TDDS scales well. Addition of new distribution chains has no effect on

existing ones.

1. Schmidt, D.C., "Real-time CORBA with TAO (The ACE ORB)," Washington University at St.
Louis, 12 November 2013, http://www.cs.wustl.edu/~schmidt/TAO.html, accessed 19 March 2014.

2. Mao, J., "Implementation of a Dynamic Real-Time Data Distribution Service for Middleware
Systems," MS Thesis, Computer Science Department, University of Rhode Island, May 2005

3. Basili, V.R., “Software Modeling and Measurement: The Goal/Question/Metric Paradigm”,
Goal_Question_Metric.pdf Retrieved from http://drum.lib.umd.edu on March 19 th, 2014

101

CHAPTER 6

CONCLUSION

6.1 Contributions

This thesis has focused on real-time data distribution. This subject covers quite a

wide area, since there are many real-time distributed systems with various parameters

and goals that require different types of data to be dispersed. Since a better

understanding of the problem leads to a better solution, we, by combining together

various characteristics of the systems, real-time characteristics and data characteristics

defined the Real-Time Data Distribution Problem Space Taxonomy. The Taxonomy

provides researchers and developers with a more standardized way of looking at the

problems being addressed and solutions that might fit them. This part of the work was

published in [1].

 Further, we defined two specific subspaces within the problem space to address in

this work. They are static and dynamic application, with the following main

characteristics: hard real-time with periodic timing constrains and consistent data for

the static system; and soft real-time with periodic timing constrains and consistent data

for the dynamic system. We started with the static solution. We defined parameters of

Distribution, and proved their necessity for ensuring the correctness of timely data

transfer. We developed Just-In-Time Static (JITS) algorithm for computation of the

Distribution deadline. This algorithm combines Data Sources and Data Reader

102

parameters, which ensures data temporal consistency whenever it is accessed by the

Readers. We implemented and tested the system with real-life parameters of military

command and control application. The results of the tests show that our claim holds.

With the data delivered by the computed JITS deadline (which with the static system

is always the case, since all the requirements are known and scheduled a priori), it is

temporally consistent whenever it accessed by the reading applications. This part of

the work was published in [2].

After finishing our work on the static solution, we moved on to the dynamic. For

which we first reworked our static JITS algorithm and changed it into a dynamic JIT

version that delivers the same result with a lesser computation overhead. This change

removed some extra computation and made the algorithm more suitable for the

dynamic environment, where all computation is performed on-line. Then, we designed

and implemented the Timely Data Distribution Service middleware that, by

incorporation of JIT computation in its mechanism, allows to adjust Distribution

deadlines according to incoming Data Reader’s requests in a dynamic fashion. The

Distribution deadlines computed with JIT can be longer than the ones set by the worst

case assumption; that is the absolute data object validity less the data distribution

period (OV – P). Longer deadlines, in their turn make the system more flexible in

terms of schedulability, with more tasks being accepted. Our tests show that the

overhead associated with JIT computation averages at 30%. The results also show that

when a system is schedulable and Distribution deadlines are met, the Data Readers

that access data according to their own timing constraints always read temporally valid

data. Summarizing all the results, we can characterize our Timely Data Distribution

103

Service as a completely decentralized, highly transparent and scalable data transferring

mechanism, with the data validity guaranty.

6.2 Comparison with Related Work

There are several areas applicable to RT Data Distribution. One of the first and

very extensive researched is the area of data consistency in real-time databases.

Starting from the HH algorithm[3], that sets data update deadlines and periods to

be half of the absolute object validity (OV), to the More-Less approach [4], where the

periods are longer than half of the OV, and the deadline are shorter, which by using

DM scheduling maximizes CPU utilization, compare to HH. Then the further work in

[5,6] considers earliest deadline first based ML (MLEDF) and Deferrable Scheduling

(DS -FP), the work in [7] extends ML to distributed systems introducing transmission

delays of updating tasks. Later, to address variability in transmission delays, work in

[8] introduces extensions to ML called Jitter-Based More-Less (JB -ML) and

Statistical Jitter-Based More-Less (SJB-ML). In all this extensions, all extra

parameters are used to determine the deadline of a data update(Dupd), and then assign

the period (Pupd) according to Dupd + Pupd ≤ OV, where Dupd ≤ ½ OV≤ Pupd. All this

work guarantees that data is temporally consistent at the sink, or initial database,

where it comes from various physical devices, sensors, cameras, etc. It can’t provide

the assurance that data is still valid when it is distributed to the end point users. Our

work can be seen as extension to this. To assure the data freshness at the end point of

distribution the worst case deadline should be computed as D = Dupd + Dworst , where

Dworst is equal to the worst case execution time for a distribution to be able to

104

complete within the system. Then, the period of update and respectively of distribution

can be computed as above P + D ≤ OV. This will assure that even with worst case

temporally valid data can be physically distributed. Having our distribution period,

we start from here and use our computation to relax the worst case deadlines and make

the system more flexible.

We guarantee the freshness of data whenever it is accessed by the client, and may

leave it inconsistent at some other times that is Ddist + P can be more than OV. This

allows us to extend some of the distributions deadlines and increase the chances of

system schedulability.

Another area applicable to data distribution, that in recent years has become an

established technology for a wide application areas, such as monitoring, tracking,

event detection, to name a few, is the Wireless Sensor Networks (WSN). A large

amount of real-time data dissemination in wireless sensor networks research was done

at the University of Virginia (UVa) [9,10,11,12,13]. While authors addressed

deadlines of requests, and the temporal validity was considered in the sense that data

was reported before it expired— by corresponding confidence values, this, work

however did not provide assurance that the data is still temporally valid when it

arrived to the requestor. In their recent work [14] authors presented a data abstraction

layer for collaborative 2-tier sensor network applications. The layer implements a

model-driven predictive replication mechanism, the goal of which is to maintain an

overall data consistency, by disseminating sensor updates to the parties only when

data, predicted by an established model, is outside of specified data accuracy

threshold. Decreasing the amount of dissemination, leads to decreasing CPU

105

utilization, but for this approach to work data must be continuous. In our work we do

not place restriction on data, and decrease CPU utilization by extending distribution

deadlines.

To address the needs of various types of applications requiring data dissemination

the OMG issued a specification for Data Distribution Service (DDS) [15]. Two QoS

policies supported by DDSs DCPS interface and related to our work are the

DeadlineQoS and a LifespanQoS. Where the DeadlineQoS specifies a period during

which the data must be distributed, and the LifespanQoS enables middleware to delete

expired data. Based on these policies, there is no way to define and enforce a deadline

within the period, which can lead to the situation when the previous data is stale and

deleted from the data space, but a new sample is not delivered. Therefore we believe

that DDS can not guarantee the temporal consistency of data. Our work can ensure

that the reading applications get valid data whenever they access it.

The work in [16] presents an extension to OMG DDS, called RDDS. RDDS tries

to achieve overall system data consistency by the mean of semantic-aware

communication, using predictive sensor models on publisher and subscriber sides in

the systems with data continuity. The approach here is very similar to the one

described in [14], except that it is built upon DCPS instead of embedded databases. In

our work we place no restriction on data, and use original sensor updates.

6.3 Limitations and Future Work

We recognize that there are some limitations to the work presented here. Some of

them are highlighted below and can be considered for a future work.

106

(1) The TDDS framework was supposed to work with the RTDSS framework to

enforce real-time scheduling. The RTDSS framework was not completed by the

reasons beyond our control. Therefore it would be beneficial to finish this project, and

to evaluate the system as a whole to ensure its overall functionality and performance.

(2) Currently, we only allow one system-wide Data Source for each type of Event. It is

challenging but interesting to investigate a data distribution service allowing multiple

Data Sources providing the same type of data into the system, and delivering data

from a certain Data Source to certain Data Readers according to some pre-set policy,

or reconnecting a Data Reader to another Source if its original Data Source leaves the

system.

(3) It also would be interesting to accommodate our JIT algorithm to different

DataSource – Data Reader patterns. For example, if the DataSourse produces data

much faster than the DataReaders need it, the distribution period could be set to n*P,

n={1,2,3...}. That could reduce the amount of distributions in the system, and decrease

the workload and amount of communication.

1. Uvarov Frolov, A., Cingiser Dipippo, L., Fay-Wolfe, V., “Real Time Data Distribution,”Handbook
of Real-Time and Embedded Systems, Lee, I., Leung, J. Y-T., Son, S. H., Boca Raton: Chapman &
Hall, 2008.

2. Uvarov, A., DiPippo, L., Fay Wolfe, V., Bryan,K., Gadrow, P., Henry, T., Murphy, M., Work,
P.R., DiPalma, L.P., Static Real-Time Data Distribution, Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS'04), 2004: 502-509.

3. Ho, S., Kuo, T., Mok, A., "Similarity-based load adjustment for real-time data-intensive
applications." in Proceedings of the IEEE real-time system symposium (RTSS'97), December 1997, San
Francisco, CA, pp:144-153.

4. Xiong, M. and Ramamritham, K., “Deriving deadlines and periods for real-time update transactions,”
in Proceedings of the 20th IEEE Real-time Systems Symposium, December 1999, Phoenix, AZ.

107

5. Xiong, M., Han, S., Lam, K.Y., Chen, D., “Deferrable scheduling for maintaining real-time data
freshness: algorithms, analysis, and results,” IEEE Transactions on Computers, 57(7), July 2008.

6. Xiong, M., Wang, Q., Ramamritham, K., “On earliest deadline first scheduling for temporal
consistency maintenance,” Real-Time Systems, 40, 2008, pp:208–237.

7 Xiong, M. and Ramamritham, K., “Deriving Deadlines and Periods for Real-Time Update
Transactions”, IEEE Transactions on Computers, 53(5), 2004.

8. Wang, J., Han, S., Lam, K-Y., Mok, A., “Maintaining Data Temporal Consistency in Distributed
Real-Time Systems," Real-Time Systems, 48, 2012, pp:387–429.

9. Lu, B.C., Blum, B.M., Abdelzaher, T., Stankovic, J.A., He, T., “RAP: A Real-Time Communication
Architecture for Large Scale Wireless Networks,” in Proceedings of the Eighth IEEE Real-Time and
Embedded Technology and Application Symposium (RTAS’02), September 2002, San Jose, CA.

10. Abdelzaher, T., Stankovic, J., Son, S., Blum, B., He, T., Wood, A., Lu, C., “A Communication
Architecture and Programming Abstractions for Real-Time Embedded Sensor Networks,” in
Proceedings of the First International Workshop on Data Distribution for Real-Time Systems, May
2003, Providence, RI.

11. Kim, S., Son, S., Stankovic, J., Li, S., Choi, Y., “SAFE: A Data Dissemination Protocol for Periodic
Updates in Sensor Networks,” in Proceedings of the First International Workshop on Data Distribution
for Real-Time Systems, May 2003, Providence, RI.

12. Bhattacharya, S., Kim H., Prabh, S., Abdelzaher, T., “Energy Conserving Data Placement and
Asynchronous Multicast in Wireless Sensor Networks,” in Proceedings of the First International
Conference on Mobile Systems, Application and Services, May 2003, San Francisco, CA.

13. Li, S., Son, S., Stankovic, J., “Event Detection Service Middleware in Distributed Sensor
Networks,” in Proceedings of the International Workshop on Information Processing in sensor
Networks (IPSN’03), April 2003, Palo Alto, CA.

14. Kang, W., Son, S.H., Stankovic, J.A., “Quality-aware data abstraction layer for collaborative 2-tier
sensor network applications”, Real-Time Systems (2012) 48:463–498 DOI 10.1007/s11241-012-9154-0

15. OMG – Data Distribution Service for Real Time Applications Specification, Version 1.2, OMG
Inc., January 2007, (formal/07-01-01), <http://www.omg.org/spec/DDS/1.2>. Accessed 19 March
2014.

16. Kang,W., Kapitanova, K., Son, S., “RDDS: A Real-Time Data Distribution Service for Cyber-
Physical Systems”, IEEE Transactions on Industrial Informatics, Vol. 8, NO. 2, May 2012

108

BIBLIOGRAPHY

Abdelzaher, T., Stankovic, J., Son, S., Blum, B., He, T., Wood, A., Lu, C., “A

Communication Architecture and Programming Abstractions for Real-Time

Embedded Sensor Networks,” in Proceedings of the First International

Workshop on Data Distribution for Real-Time Systems, May 2003, Providence,

RI.

Aksoy, D., Altinel, M., Bose, R., Cetintemel, U., Franklin, M., Wang, J., Zdonik, S.,

"Research in Data Broadcast and Dissemination," International Conference on

Advanced Multimedia Content Processing (AMCP), November 1998, Osaka,

Japan, pp:196-211.

Baheti, R. and Gill, H., "Cyber-Physical Systems," The Impact of Control

Technology, T. Samad and A.M. Annaswamy (eds.), IEEE Control Systems

Society, 2011, available at www.ieeecss.org.

 Basili, V.R., “Software Modeling and Measurement: The Goal/Question/Metric

Paradigm”, Goal_Question_Metric.pdf Retrieved from http://drum.lib.umd.edu

on March 19 th, 2014

Bestavros, A., "AIDA-based real-time fault-tolerant broadcast disks," in Proceedings

of the 3rd IEEE Real-Time Technology and Applications Symposium (RTAS'96),

June 1996, Boston, MA, pp:49-58.

Bestavros, A., “Speculative Data Dissemination and Service to Reduce Server Load,

Network Traffic and Service Time in Distributed Information Systems,” in

109

Proceedings of the 1996 International Conference on Data Engineering, New

Orleans, LA.

Bhattacharya, S., Kim H., Prabh, S., Abdelzaher, T., “Energy Conserving Data

Placement and Asynchronous Multicast in Wireless Sensor Networks,” in

Proceedings of the First International Conference on Mobile Systems,

Application and Services, May 2003, San Francisco, CA.

Bonnet, P., Gehrke, J., Seshadri, P., “Towards Sensor Database Systems,” in

Proceedings of the Sensor Information Conference on Mobile Data

Management, January 2001, Hong Kong, China.

Gore, P., Pyarali, I., Gill, C.D., Schmidt, D.C., "The Design and Performance of a

Real-time Notification Service," in Proceedings of the 10th IEEE Real-Time and

Embedded Technology and Application Symposium (RTAS’04), May 2004,

Toronto, Canada.

Harrison, T.H., Levine, D.L., Schmidt, D.C., "The Design and Performance of a Real-

time CORBA Event Service," in Proceedings of the Object-Oriented

Programming Systems, Languages & Applications Conference (OOPSLA’97),

October 1997, Atlanta, GA.

Harrison, T.H., Levine, D.L., Schmidt, D.C., "The Design and Performance of a Real-

time CORBA Event Service," in Proceedings of the Object-Oriented

Programming Systems, Languages & Applications Conference (OOPSLA’97),

October 1997, Atlanta, GA.

Heinzelman, W., Chandrakasan, A., Balakrishan, H., “Energy Efficient

Communication Protocol for Wireless Microsensor Networks," in Proceedings

110

of the Hawaii International Conference on System Sciences(HICSS'00), January

2000.

Ho, S., Kuo, T., Mok, A., "Similarity-based load adjustment for real-time data-

intensive applications." in Proceedings of the IEEE real-time system symposium

(RTSS'97), December 1997, San Francisco, CA, pp:144-153.

Kang, W., Kapitanova, K., Son, S., “RDDS: A Real-Time Data Distribution Service

for Cyber-Physical Systems”, IEEE Transactions on Industrial Iinformatics,

8(2), 2012.

Kang, W., Son, S.H., Stankovic, J.A., “Quality-aware data abstraction layer for

collaborative 2-tier sensor network applications”, Real-Time Systems (2012) 48:463–

498 DOI 10.1007/s11241-012-9154-0

Karakaya, M., Ulusov, O., “Evaluation of a Broadcast Scheduling Algorithm”, Lecture

Notes in Computer Science, Springer-Verlag, 2151, 2001.

Kim, S., Son, S., Stankovic, J., Li, S., Choi, Y., “SAFE: A Data Dissemination

Protocol for Periodic Updates in Sensor Networks,” in Proceedings of the First

International Workshop on Data Distribution for Real-Time Systems, May 2003,

Providence, RI.

"InterCOM DDS," Kongsberg Gallium Corp., 2013,

http://www.kongsberg.com/en/kds/kongsberggallium/products/intercom%20dds/,

 accessed 19 March 2014.

Lam,W. and Garcia-Molina, H., "Slicing Broadcast Disks," Stanford University

Technical Report, 2003.

111

Lee, E., "Cyber Physical Systems: Design Challenges." Technical Report No.

UCB/EECS-2008-8,University of California, Berkeley, January 23, 2008.

Li, S., Son, S., Stankovic, J., “Event Detection Service Middleware in Distributed

Sensor Networks,” in Proceedings of the International Workshop on Information

Processing in sensor Networks (IPSN’03), April 2003, Palo Alto, CA.

Liu, J.W.S., Real-Time Systems, Prentice-Hall, June 2000.

Lu, B.C., Blum, B.M., Abdelzaher, T., Stankovic, J.A., He, T., “RAP: A Real-Time

Communication Architecture for Large Scale Wireless Networks,” in

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and

Application Symposium (RTAS’02), September 2002, San Jose, CA.

Ma, C. and Bacon, J., "COBEA: A CORBA Based Event Architecture," in

Proceedings of the 4th USENIX Conference on Object-Oriented Technologies

and Systems (COOTS’ 98), April 1998, Santa Fe, NM.

Mao, J., "Implementation of a Dynamic Real-Time Data Distribution Service for

Middleware Systems," MS Thesis, Computer Science Department, University of

Rhode Island, May 2005.

"Technology Center," MilSOFT, http://www.milsoft.com.tr, accessed 19 March 2014.

Mungee, S., Surendran, M., Krishnamurthy, Y., Schmidt, D.C., "The Design and

Performance of CORBA Audio/Video Streamin Service," Design and

Management of Multimedia Information Systems: Opportunities and Challenges,

Syed, M. (ed), Idea Group Publishing. Hershey, USA, 2001.

112

Murphy, M., Bryan, K., "Corba 1.0 Compliant Static Scheduling Service for Periodic

Tasks Technical Documentation", URI Technical Report TR04-297, January

2004.

Object Mgmt. Group, Real-time Notification: Request For Proposals, OMG Doc.

orbos/00-06-10, June, 2000.

OMG. Common Object Request Broker Architecture – Version 3.3, OMG Inc.,

November 2012, (formal/2012-11-12, formal/2012-11-14, formal/2012-11-16),

http://www.omg.org/spec/CORBA/3.3

OMG CORBA Audio/Visual (A/V) Streams Specification, OMG Inc., 2000

(formal/2000-01-03)

OMG – Data Distribution Service for Real Time Applications Specification, Version

1.2, January 2007, (formal/07-01-01), http://www.omg.org/spec/DDS/1.2

OMG Event Service –Specification – Version 1.2, OMG Inc., October 2004,

(formal/2004-10-02), http://www.omg.org/spec/EVNT/1.2

OMG Naming Service – Specification – Version 1.3, October 2004, (formal/2004-10-

03), http://www.omg.org/spec/NAM/1.3

OMG Notification Service – Specification – Version 1.1, OMG Inc., 2004 (formal/04-

10-11)

OMG RT CORBA - Version1.2 OMG Inc., January 2005, (formal/2005-01-04),

http://www.omg.org/spec/RT/1.2

"OpenDDS," Object Computing Inc., 2013, http://opendds.sourceforge.net/, accessed

19 Mar 2014.

113

"OpenSPLICE|DDS", PrismTech, 2014, http://www.prismtechnologies.com, accessed

19 March 2014.

Peddi, P., "A Replication Strategy for Distributed Real-Time Object-Oriented

Databases," TR01-282, University of Rhode Island, May 2001.

"RTI Connext DDS Professional," Real-Time Innovations, 2014,

http://www.rti.com/products/data_distribution/index.html, accessed 19 March

2014.

Rujkumar, R., Lee, I., Sha, L., Stankovic, J., "Cyber-Physical Systems: The Next

Computing Revolution," in Proceedings of the 47th Design Automation

Conference, June 2010, Anaheim, CA, pp:731-736.

Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., Estrin, D., “Data-Centric Storage

in Sensornets”, in Proceedings of the First ACM SIGCOMM Workshop on Hot

Topics in Networks (HotNets-I), October 2002, Princeton, NJ.

"The ACE ORB (TAO)," Object Computing, Inc.,

http://www.ociweb.com/products/tao, accessed 19 March 2014.

Schmidt, D.C., "Real-time CORBA with TAO (The ACE ORB)," Vanderbilt

University, 12 November 2013, http://www.cs.wustl.edu/~schmidt/TAO.html,

accessed 19 March 2014.

"Thales," Thales Group, http://www.thalesgroup.com, accessed 19 March 2014.

"Rapid RMA," TriPacific Software, Inc., www.tripac.com, accessed 19 March 2014.

"CoreDX DDS Data Distribution Service Middleware," Twin Oaks Computing Inc.,

http://www.twinoakscomputing.com/coredx.php, accessed 19 March 2014.

114

Uvarov, A., DiPippo, L., Fay Wolfe, V., Bryan, K., Gadrow, P., Henry, T., Murphy

M., Work, P.R., DiPalma, L.P., "Static Real-Time Data Distribution," in

Proceedings of the 10th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS'04), May 2004, Toronto, Canada, pp:502-509.

Uvarova, A. and Fay Wolfe, V., "Towards a Definition of the Real-Time Data

Distribution Problem Space," in Proceedings of the First International

Workshop on Data Distribution for Real-Time Systems, May 2003, Providence,

RI.

van ‘t Hag, J.H., "Data-centric to the Max, the SPLICE Architecture Experience," in

Proceedings of the First International Workshop on Data Distribution for Real-

Time Systems, May 2003, Providence, RI.

Wang, J., Han, S., Lam, K-Y., Mok, A., “Maintaining Data Temporal Consistency in

Distributed Real-Time Systems," Real-Time Systems,48, 2012, pp:387–429.

Xiong, M. and Ramamritham, K., “Deriving Deadlines and Periods for Real-Time

Update Transactions”, IEEE Transactions on Computers, 53(5), 2004.

Xiong, M., Han, S., Lam, K.Y., Chen, D., “Deferrable scheduling for maintaining real-

time data freshness: algorithms, analysis, and results,” IEEE Transactions on

Computers, 57(7), July 2008.

Xiong, M. and Ramamritham, K., “Deriving deadlines and periods for real-time

update transactions,” in Proceedings of the 20th IEEE Real-time Systems

Symposium, December 1999, Phoenix, AZ.

Xiong, M., Wang, Q., Ramamritham, K., “On earliest deadline first scheduling for

temporal consistency maintenance,” Real-Time Systems, 40, 2008, pp:208–237.

115

Xuan, P., Sen, S., Gonzales O., Fernandez, J., Ramamritham, K., “Broadcast on

Demand: Efficient and Timely Dissemination of Data in Mobile Environments,”

in Proceedings of the 3rd IEEE Real-Time and Embedded Technology and

Application Symposium (RTAS’97), June 1997, Montreal, Canada.

Yao, Y. and Gehrke, J., “Query Processing for Sensor Networks,” in Proceedings of

the 2003 Conference on Innovative Data System Research (CIDR2003), January

2003, Asilomar, CA.

Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L., “A Two –Tier Data Dissemination

Model for Large-Scale Wireless Sensor Networks,” in Proceedings of the Eighth

Annual International Conference on Mobile Computing and Networking

(MOBICOM’02), September 2002, Atlanta, GA.

Zhang, J., DiPippo, L., Fay-Wolfe, V., Bryan, K., Murphy, M., “A Real-Time

Distributed Scheduling Service for Middleware Systems,” in Proceedings of the

10th IEEE International Workshop on Object-Oriented Real-Time Dependable

Systems (WORDS 2005), February 2005, Sedona, AZ.

	REAL-TIME DATA DISTRIBUTION
	Terms of Use
	Recommended Citation

	Microsoft Word - 270580_supp_undefined_51A6150C-C64F-11E3-8C7B-0C0FEF8616FA.doc

