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ABSTRACT

Many Cyber-Physical Systems (CPS), distributed eldéé real-time (DRE)
applications like military command and control, énaritical planning collaboration,
and wireless embedded sensor networks, requireedhaata among various
components of the system to be available withimgént deadlines for processing and
for making critical decisions on time. In order ftivese decisions to be correct in
accordance with the current situation, the dataived and processed must be valid.
These applications need a data distribution meshathat can deliver valid data in a
specified time. The goal of this work was to depelsuch a mechanism. We
approached it in the following way. First, sincéetter understanding of the problems
involved in real-time data distribution leads tobatter solution, we, by grouping
characteristics of different systems that requeéa-time data distribution, defined the
data distribution problem space taxonomy. Thentamgeted specific subspaces (static
and dynamic systems) in the real-time data distiobuproblem space and worked on
our solutions for them. The solutions we providedlude a theoretical base, data
models and algorithms for computation of distribotdeadlines to ensure data validity
in both static and dynamic environment, and theauactata delivery mechanism

Timely Data Distribution Service (TDDS).
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Many Cyber—Physical Systems (CPS), distributed eludbe real-time (DRE)
applications like military command and control, ¢iraritical planning collaboration,
and wireless embedded sensor networks, requireeghdata among various
components of the system. Further, these systerghtmequire that the data be
available within stringent deadlines for processang for making critical decisions on
time. In order for these decisions to be in accocdawith the current situation and
correct, the data received and processed mustlltk atemporally consistenthat
is, data must be no older than a specified agereTisea need for a mechanism that
will distribute valid data in a specified time.

One simple solution to achieve this would be tovjate client-server or point-to-
point communication to deliver the data within tieal-time system. However, this
type of communication may become extremely comg@ed inflexible if there are
multiple components requiring the same data aewdfit rates. A more efficient and
flexible solution would be decoupled, in which theviders of data do not directly
communicate with data consumers. This allows tha pgeoviders to produce data at a
rate consistent with data production, and allovesabnsumers to receive data at a rate

consistent with application needs.



The challenge of this solution is to provide a natbm that will synthesize the
provisions of the provider with the needs of constsnso that data arrives at each
consumer in time and is temporally valid. The ditra becomes even more
challenging when the distributed system that rexsguttata sharing is dynamic in its
nature, that is, data producers and data consumays come into and leave the
system. In this case the solution mechanism muast tiee ability to adjust the system
based on new requirements.

Before proceeding any further we would like to pdevsome basic definitions.

Real-Time Data Distributioms the transfer of data from one source to oraare
destinations within a deterministic timeframe, meliess of the method and the
timescale.

Data temporal consistency defined by a mean of a certain permissiblervatieof

time, regardless of a time scale within which taéads considered to be valid.

1.2 Research Goals

The goals of this work are to provide solutions $pecific subspaces in the real-
time data distribution problem space (we targetics@nd dynamic systems). These
solutions should include algorithms for computatodrdistribution deadline to ensure
data consistency, and the actual data delivery amesim (Timely Data Distribution

Service).



1.3 Our Approach

Since a better understanding of the problems iratin real-time data distribution
leads to better solutions, we started our work i attempt to define the real-time
data distribution problem space. By grouping charistics of the different systems
that require real-time data distribution, we dediriee taxonomy of a data distribution
problem space. Then we worked on a solution tal#ia distribution problem in static
real-time systems. This solution includes an atbori that determines data
distribution scheduling parameters, an implememmatihat uses a real-time event
service to deliver the data, and a real-time sclwglservice to ensure that data is
delivered on time. We worked next on a solutiond&da distribution problems in
dynamic real-time systems. This includes an algorifor calculation of scheduling
parameters and transition-implementation that stipgwoper data delivery from data

providers to data recipients.

1.4 Dissertation Outline

The remainder of this thesis is organized as falo@hapter 2 gives a background
on techniques and tools involved in the projecaldb provides a summary of current
work related to the area of data distribution. Gba@ presents the Real-Time Data
Distribution (RTDD) problem space, highlights thalwgion space provided by this
work, and describes the (RTDD) model, algorithmg #reorems. Chapter 4 discusses
Static RTDD, including system design, implementatend evaluation. Chapter 5
deals with Dynamic RTDD, its design, implementatiand evaluation. Chapter 6
concludes this thesis with summary of contributjac@mparisons with related work,

limitations of our work, and possible future diieats.
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CHAPTER 2
BACKGROUND AND RELATED WORK

This section describes our architecture and someapooents within the
architecture that were used to build our systeralsib presents a summary of related
work.

Since our system architecture is build upon TAO ORI open source
middleware based on OMG RT CORBA standard, and se several CORBA
services: RT Event Service, Naming Service and @divey service, we start with
providing background on these components.

2.1 CORBA

The Common Object Request Broker Architecture (CARRIeveloped by The
Object Management Group (OMG) is a standard of aleented middleware for
distributed systems [1]. The goal of this middlesvas to facilitate seamless
client/server interactions in a distributed system.

CORBA is designed to allow a programmer to constolgect-oriented programs
without regard to traditional object boundarieshsas address spaces or location of
the object in a distributed system. This meang, dhdient program should be able to
invoke a method on a server object whether thecblgein the client’'s address space

or located on a remote node in a distributed sysidm CORBA standard defines a



framework to allow communication among applications a distributed system
regardless of platform or programming languageedéffices.

Figure 1 presents the highest level of CORBA speatibn, which is referred to as
the object management architecture and consigtgiomajor components:

e Object Request Broker (ORB) is the middleware thaites requests
among all other architectural components. This he foundation for
building applications from distributed objects ianmo-and heterogeneous
environments.

e CORBA Services provide some basic system level icgsvsuch as

Naming, Persistence, Event Notification, etc.

Application CORBA CORBA
Objects Domains Facilities

(W

Object Request Broker (ORB)

S

CORBA Services

Figure 1. CORBA Architecture

e CORBA Facilities consist of a set of higher—lewghdtions to cover a wide
range of generically applicable facilities in aremsch as information

management and user interface.



e CORBA Domains consists of objects specific to jgattér application
domains. They include financial services, healthcamanufacturing,
telecommunications and business objects.

e Application Objects are the objects (clients amyises) created by system

implementers to provide tailored business capaislit

The CORBA specification also includes the Interf&sdinition Language (IDL),
which is the key component to integration of apgimn objects. By providing the
standard object interfaces among all applicationd data within the CORBA
environment, IDL makes communication between appba objects independent of
their physical locations, platform type, networkingotocol, and programming
languages.

CORBA's theoretical background is based on thregomeoncepts: an object-
oriented model, open distributed computer enviramsieand component integration
and reuse. The latter is achieved through CORBAigoum access to services,
uniform discovery of resources and object name$oum error handling methods and
uniform security policies.

CORBA is one of the major technologies in the fialfl distributed object
management (DOM), in which components grow and iBpatons are adopted
according to emerging needs of the applicationslired. To address the needs of
broad real-time applications, OMG Real-Time Spediderest Group (RT SIG)
defined the standards for the Real-Time CORBA (RJRBA) [2]. To provide the

special capabilities to special applications withorestricting non real-time



development RT CORBA is positioned as a separatension to CORBA 2.2 and

constitutes an optional, additional compliance poin

2.1.1 Real-Time CORBA

The goal of RT CORBA [2] is to provide a standawd CORBA ORB to deal with
expression and enforcement of real-time constraintgxecutions to support end-to
end predictability in a system. RT CORBA consisfstlee following four major
components:

1) The scheduling mechanism in the operating syst®®), which is used to
schedule end-to end application activities (to mteva means for programming such
activity the termdistributable threads used). The RT CORBA specification focuses
on OS’s that allow applications to specify scheuylpriorities and policies. For
example, an OS that implements the IEEE POSIX 100896 Real-Time Extension
has the necessary features to support end-to-eclicability;

2) The real-time ORB provides standard interfacesaflowing RT applications to
specify their resource requirements to the ORBlaas#d on that manages end-system
and communication resources. It also preservesiatiti scalable and predictable end-
to-end behavior of high-level services and applcaicomponents. For example, a
global scheduling service which can be used foredaling and managing of
distributed resources;

3) The communication transport, which includes @e and mechanisms to
support resource guarantees;

4) The application(s).



To achieve end-to-end predictability, RT CORBA def standard interfaces and
Quality of Service (QoS) policies to allow appliocais to configure and control all
kinds of resources in the system. So for exampe, grocessor resources can be
controlled via thread pools, priority mechanismera-process mutexes, and global
scheduling service. The communication resources lmarcontrolled via protocol
properties and explicit bindings, and the memorsoveces can be controlled via
buffering requests in queues and bounding thediaghread pool.

Since strict control over scheduling and using edources is essential for many
RT systems, RT CORBA enables client and serven@gpmns to determine at which
priority a CORBA invocation will be processed, &l servers to predefine the pools
of threads and bounds the priority of ORB threads.

While all the above describes the RT CORBA BasethAecture, which ‘covers’

a wide range of fixed priority systems (static sys$), the Dynamic Scheduling
specification (RTC1.2) generalizes it to meet tbeguirements of a much greater
segment of the real-time computing field. The thnegjor generalizations are: any
scheduling discipline may be employed; the schadybarameter elements associated
with the chosen discipline may be changed at amg tduring execution; and the
schedulable entity is distributable threadhat may span node boundaries carrying its

scheduling context among instances on these nodes.

2.1.2The ACE ORB (TAO)
The ACE ORB (TAO) is a high quality, freely availap open-source OMG

standard-based CORBA middleware platform that waselbped by the Distributed



Object Computing DOC group at Washington UniversitSt.Louis [3] to provide an
effective instrument for a wide community of resders and developers. Our
RTDOC research group has chosen TAO as the undgrRIl' CORBA middleware
platform.

2.2 Dynamic Scheduling Service

While RT CORBA 1.2 provides a flexible means fopesssing and propagating
scheduling information across node boundaries idis&ributed system, all of its
scheduling decisions are assumed to be local. Badsystem local scheduler uses the
same propagated scheduling information to makd kxteeduling decisions, and they
do not have a global view of the overall system.e TlReal-Time Distributed
Scheduling Service (RT DSS) [4] research proje¢iiti RT DOC group attempted to
overcome this issue by providing globally sound-eménd scheduling and overload
management using the local enforcement capabibfitise local endsystem.

The RT DSS architecture is presented in Figurd 2omsists of six independent

and coordinated components:

DT1 |\ A

g Local Scheduler

vB . v |
u| - E N
5 DSS Proxy 0= DSS 5

N

:I__Ll:j System Repository

N

Figure 2. RT DSS System Architecture
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Distributable Thread (DT), Local Scheduler, DSS x¥raDSS, Resource Manager
(RM), and System Repository.

A Distributable Thread (DT) is a schedulable entityhen it is spawned by the
application, it carries its specified schedulinggmaeters including the end-to-end
deadline. The Local Scheduler is an extension &b dlefined in RT CORBA 1.2 for
managing the local portion of a DT. In this arctiitee, it interacts with both the DT
and the DSS Proxy to obtain and use global infamnaiThe DSS Proxy is a running
daemon that works as a proxy to the DSS and isyahiated on the same node as
the Local Scheduler. The DSS is a centralized sdhmegdservice with the following
responsibilities: online schedulability analysisasf end-to-end task, computation of
globally sound scheduling parameters, and triggeh overload management if
necessary. If the system becomes unschedulabl®eabeurce Manager (RM) applies
an overload management solution— QoS adjustmemt,ek@ample. The System
Repository stores the information shared betweerD®S and the RM.

The implementation of the DSS is supposed to etiliaur out of the seven
scheduling points defined in RT CORBA 1.2. They e Begin Scheduling Segment
(BSS), at which a DT sends its scheduling pararseterthe DSS; the Update
Scheduling Segment (USS), at which the DT requarebange to its parameters; the
End Scheduling Segment (ESS), at which messagmtst@ the DSS stating that the
DT is no longer in the system; and receive_req@sthich a subtask on a new node

captures an incoming request of its predecessor.

10



2.3 Event Serviceand RT Event Service

A standard CORBA request results in the synchrorexggsution of an operation
by an object, during which data defined by the apen is communicated between
client and server. Therefore for the request tswecessful, both the client and the
server must be available, however there are someasos where more decoupled

communication between objects is required.

To address this type of communication, OMG issuagpexcification for CORBA
Object Service (COS) Event Service [5]. The Evestiviee decouples communication
between objects by providing for them two roleg supplier and the consumer. Event

data is communicated between supplier and conshynarstandard CORBA call.

The specification describes two approaches toateiticommunication between
supplier and consumer. They are the push modethengdull model (see Figure 3). In
the push model, the supplier is an initiator of camication; it pushes data to the
event channel and then the event channel pushadalabnsumer. In the pull model,
the consumer initiates the connection, it requeata from the event channel, and the
event channel in turn pulls data from the suppkdrthe heart of Event Service is the
Event Channel which plays the role of intermedibegween the objects producing

data or being changed (suppliers) and the objetésested in data or in knowing

about changes (consumers).

Figure 3 - Event Channel Communication Models

11



The Event Channel appears to suppliers as a prorguener and appears to
consumers as a proxy supplier. It is the Event @bhathat frees suppliers and
consumers from limitations of standard synchron@@RBA calls, and provides

flexible communication among multiple suppliers aotisumers.

While the CORBA Event Service provides a flexibledal for asynchronous
communication between objects, its specificatiaksamportant features required by
various real-time applications. The work done byrridan et.al.[6] describes the
design and performance of a RT Event Service ttegt @eveloped as a part of the
TAO project at Washington University [3]. This emsgon is based on enhancements
to the push model of CORBA Event Service and suppeal-time event scheduling
and dispatching, periodic rate based event prawgssid efficient event filtering and
correlation. Figure 4 presents TAO’s Real-Time Bv@arvice (RT ES) architecture

and collaborations within it.

Timeout Registration

Subscription Info
Correlation Specs

Priority
Timers
Subscription Event Dispatchind | Supplier
& Filtering | | Correlation| [ Module Proxies
Consume
Proxies
Event Channel
Obiject Reference Object Reference
Publish Types RT_Info

Figure 4. Collaborations in the RT Event Servicehtecture
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While in this architecture, the Event Channel plalys same role as it does in
CORBA Event Service, it consists of several procgssnodules, each of which
encapsulates an independent task of the channeD RA ES’s Consumer and
Supplier Proxy interfaces extend the standard CQ8xyPushConsumer and
ProxyPushSupplier so that suppliers can specifyiythes of events they provide, and
consumers can register with Event Channel theirced@n dependencies. The
Subscription and Filtering module allows consumersubscribe for particular subset
of events, then the channel uses this subscriptidiiter supplier events to forward
them only to interested consumers (In COS Eventgi&g all events from suppliers
are delivered to all consumers). The RT Event Cehammovides three types of
filtering: Supplier-based filtering that looks foonsumers that register for and receive
events only from a particular supplier. Type-bagkering that looks for consumers
that register for and receive events only of a ipadr type, and Combined
supplier/type-based filtering. The Event Correlatimodule allows consumers to
specify what kind of events are to occur before Ewent Channel can proceed. The
Dispatching Module determines when events shouldd®ered to consumers and
pushes them accordingly. The architecture of RT d&8ws the service to be
configured in many ways, since its modules can teéed, removed, or modified
without changes to other modules. So, for exaniplepur purposes we configure the
ES by removing the Dispatching and Correlation nieslubecause we use a different
mechanism for enforcing real-time event deliveraesl we do not assume to have

complex inter-event correlation dependencies.

13



2.4 Naming Service

A name bindings a name-to-object association. It is alwaysrafiin anaming
contexf which is an object containing a set of name igdiwhere each name is
unique. Different names can be bound to the ohpettte same or different context at
the same time. Teesolve a namés to find the object associated with the nama in
given context. Tdoind a namas to create a name binding in a given context.

Naming Service is the CORBA Object Service (COS) ffat provides a

mechanism through which the ORB clients locateotbjects they intend to use.

2.5 Summary of Related Work

Real-time data distribution has become an imporaaea of research. One of the
first areas that contributed to the subject is ddissemination in a network. In
Karakaya and Ulusov’s work[8], for example, thelpgem of scheduling the broadcast
of the data is considered. It provides an approtemarsion of the Longest Wait First
heuristic that reduces overhead. Similar work byiXet. al [9] describes a Broadcast
on Demand technique that schedules the broadcasj tiee earliest deadline first,
periodic or hybrid algorithms. The work presented Bestavros [10] describes a
speculative data dissemination service that usegrgphic and temporal locality of
reference to determine which data should be disw#ed. These techniques take into
account the deadline timing constraints of cliebis, do not consider data temporal

consistency.

A large amount of real-time data dissemination iimelg@ss sensor networks

research is done at the University of Virginia (JYh1,12,13,14,15]. While this work
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addresses the deadline of requests, and the tehwadithty is considered in the sense
that data is reported before it expires— by comesing confidence values, the work
does not provide assurance that the data isestilporally valid when it arrives to the

requestor.

Another application area that has provided varimsearch efforts towards data
distribution is embedded sensor networks [16,179,20]. While all of the work here
provides valuable insights into solving the problemdata distribution in sensor
networks, none considers real-time characteristidhe data or the applications. That

is, neither deadlines on data delivery nor tempooakistency of data is supported.

Quite extensive research for the data consisteraylgm can be found in the area
of real-time databases. The first of such algorghwas the Half-Half (HH) algorithm
[21], which suggested that to maintain temporal sestency of data objects, the
periods and deadlines of updating transactions|dhaei less or equal to half of the
data object validity interval (OV). Then, work byiong and Ramamritham [22]
presented the More-Less (ML) approach in whichquyiof updates are assigned to
be more than half of the data validity interval adehdlines to be less than a half of
the interval with deadline monotonic (DM) schedglimhat allowed maximizing the
periods of transactions and hence maximizing thdJ GRilization. Then more
algorithms were presented based on the ML apprdastther work by Xiong et. al
[23,24] considers earliest deadline first basedL KMLgpp) and Deferrable
Scheduling (DS-FP). Xiong and Ramamritham lateeroéd their previous work on
ML to distributed systems introducing transmissibelays of updating jobs [25].

Further, to address variability in transmissioragie| recent work by Wang et. al [26]
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introduces extensions to ML called Jitter-Based é4oess (JB-ML) and Statistical
Jitter-Based More-Less (SJB-ML). As with the claakiML approach, all this extra
information is used to figure out the deadlines @updates, and then assign the
periods (P) according to D + R OV, where D< % OV and P> % QV. All this
work assures that data is temporally consistettieasink, or initial data base storage.

Our work extends this assurance to the end pooeivers.

All ongoing interest and research in various amfadata dissemination lead the
OMG to standardization of data distribution in madare through a Data
Distribution Service (DDS) [27]. This specificati@escribes two levels of interface:
Data Centric Publish Subscribe (DCPS) is respoaditt efficient delivery of the
proper information to the proper recipients, andaDbocal Reconstruction Layer
(DLRL) is responsible for local reconstruction daita from updates and allows an
application to access the data as ‘if it werealo©ne of the major functionalities of
the DCPS along with the topics definition and ameabf publishers and subscribers,
is attaching various quality of service (QoS) pefcto all of the objects it creates.
The policy that is responsible for periodic updateshe Deadline QoS policy. The
deadline on the publishing site is the contractapplication must meet, it means that
the publisher is required to send at least one tepadhin the period, the deadline on
the subscriber side is a minimum requirement ferrégmote publisher supplying the
data. To “match” a DataWriter and a DataReaderPid& checks the compatibility of
settings (offered deadline requested deadline). If they don’t match (commatnoa
will not occur), both sides are informed (via tistdners or condition mechanisms) of

incompatibilities. If matching occurs, the DDS mtons the fulfillment of the service
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agreement and informs the application of any viofet by means of the proper
listener or condition. Another policy related toromork is a Lifespan QoS. The
purpose of this policy is to “avoid” delivering kadata to the application. When a set
of data goes beyond its lifespan, it is deletednfrall caches. Based on that, there
theoretically can be an interval in a periodic dapalate when an expired data set is
already gone, and a new update is not yet cometéhe application trying to read
data during this interval might get no data at all.

There are presently several implementations of Difflh commercial and open
source. Two major commercial products are RTI Atdribution Service from Real-
Time Innovations, Inc. [28] and Open Splice DDSMr@rismTech [29] that was built
upon SPLICE architecture [30], the product of atstyic alliance of THALES [31]
and PrismTech. Open Splice DDS is the most compéstization of OMG standard,
it fully implements both DCPS and LDRL levels. Otheommercially available
products are CoreDX DDS from Twin Oaks Computing. I[82], InterCOM DDS
from Norwegian Kongsberg Gallium Corp. [33], andIS8@FT DDS from Turkish
company MiISOFT [34].

OpenDDS is an open-source CORBA-based implementatfoOMG DDS by
Object Computing Inc. (OCI) [35,36]. It implemerat profiles (including optional)

of the DCPS layer and none of the DLRL functioryalit

Since all these implementations are based on tbeeadpecification, none of them
can guarantee that applications will always acckeda that is temporally consistent

and that all the specified deadlines will be met.
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Another relatively new and fast growing field apgplole to data distribution is
Cyber-Physical Systems (CPS) [37,38,39]. Theseesystare integrations of physical
processes with computational devices that monited @ontrol them. By this
definition, the CPS can be viewed as similar to etded sensors networks. However,
if the latter are “closed” boxes not exposing theamputing capabilities to the
outside, the CPS comes from networking such boagsther. Applications of CPS
include next era avionic systems, defense systhigh, confidence medical systems
and devices, assisted living, traffic control amades/, advanced automotive systems,
process control, energy conservation, environmeodatrol, critical infrastructure
control, etc. Many of these systems require effecéind reliable data dissemination
from sensors in the physical word to all collabmeatentities. Work by Kang et. al
[40] discusses the approach to data disseminatidhe systems with data continuity
(e.g temperature sensors). The authors present béisipisubscribe middleware
architecture called Real-time Data Distribution\g®r (RDDS), with semantic-aware
communication, using predictive sensor models.heirtapproach, both a publisher
and its corresponding subscribers maintain the samdel for each sensor data
stream. A new sensor observation is transmitteah fitee publisher to the subscribers,
and the respective sensor models at both sidessyarehronized only when the
prediction accuracy of the models becomes lowen ttiee required bound. This
architecture implements a broker by which the partan discover each other, but
then communication between publishers and subssrili® performed through
multicast. In our work, the sensor data can berelisqe.g presence of the object in an

environment).
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As we described above, some of the presented wonsiders receiver’s
deadlines, but not considers data validity, soméefwork considers deadlines and
validity, but at sinks or initial data storagesdarot at the end point requestors. The
goal of our work is, by taking into account endrggequestors’ parameters, guarantee

them, the delivery of valid data within the spemifideadlines.
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CHAPTER 3

REAL-TIME DATA DISTRIBUTION: MODEL AND THEORY

In this section we present our description of thebfem space involved in real
time data distribution and existing approaches &ba ddistribution including the
solution space they cover. We also present thetisnlgpace provided by our work
and describe our real time data distribution maded the algorithms we use along
with the theorems that verify correctness of olcwations.

3.1 RTDD Problem Space

In systems that require real-time data distributibrere are some common
characteristics, such as data must be at the pight at the right time and it must be
temporally consistent. There are also other spectiaracteristics that vary from one
problem to another. Here we identify these systpatific characteristics and group
them into three types:

1) System characteristics;

2) Real-time characteristics; and

3) Data characteristics.

These categories are further broken down into &pecharacteristics, each of
which can take on one or more values [1]. Figur#uStrates this concept in RTDD
Problem Space taxonomy. This section describel ea¢he characteristics of a

RTDD problem, and discusses the values that it taksy
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1) System Characteristics
The first layer in the RTDD problem space taxonagpyresents system
characteristics. These are the overall charatt=risf the system that define the

general problem.

System Dynamics
System Size
System Resources

RT Constraints

RT Request Timing

Figure 5. RTDD Problem Space

System DynamicsSome systems that require real-time data distobuarestatic
that is, the system requirements are fully knownadvance and do not change.
Therefore, the needs for data distribution can pecifed and analyzed prior to
system execution to ensure that data that is nesidady particular time and location

is delivered on time. For example, an industrigbenated system may be static if all
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of its parts are known at the design stage and atochange during the system’s
lifetime.

A dynamicsystem is one in which the system specificatiomnoa be predicted
before execution time. Requests for data can bdermé any time during execution,
and the system must be able to either estimatealdtee needs, or react to dynamic
requests in order to meet the timing requiremes.example of this type of system
is an electronic stock trading system, in whicHient's request for a particular stock
price can come at any time during the system’s @@t

There are also some systems with a combinationtatit sand dynamic elements.
That is, there may be some requirements that rertteensame throughout the
execution of the system, while others change, ®uapredictable. For instance, in an
air traffic control system the requirements for haoften to provide wind-speed
information may remain the same, while the requeemto receive aircraft
information may change based on environmental ¢iomgi.

System Size.The size of a system can vary from a single nod#ousands of
nodes. The size can also affect how much datainglstored, how many suppliers of
data there are, and how many consumers there dheigystem. An example of a
small system that requires RTDD is a patient momigpsystem in a hospital. Data
about the vital conditions of a patient can be $ergeveral doctors or other hospital
systems. A much larger system might involve thadsaof cell phone users
requesting stock prices or sports scores from & banservers that have the

information.
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System Resources. The resources of a RTDD system may have various
constraints on their operation. For example, aesysof small, battery-operated
wireless sensors that collect and distribute dataiacertain environmental conditions
has power constraints on each of the nodes, asasetlommunication constraints
based on the strength of the wireless radios. rGiiistems, such as an embedded
network of wired computers aboard a submarine, Hewer physical constraints on

the system.

2) Real-Time Characteristics

The next layer in the taxonomy of Figure 5 représesal-time characteristics that
involve the timing of the system (periodic vs. apeic), as well as the consequences
of missing a specified constraint (hard vs. soft).

RT Constraints. Real-time constraints define the system behaviocage of
missing specified deadlines. Inhard real-time system, if a deadline is missed, the
system fails. For example, in an industrial auttadaystem, if data is not delivered
on time, the system cannot proceed, leading tdvdéurtailures down the line. Data
itself can have hard deadlines as well. In a sulm@acontact tracking system, the
tracks have to be updated from the sensors withspexified time or they will be
considered old, or temporally inconsistent.

A system hassoft real-time constraints if missing the deadlines sesu a
degradation of value to the system, but not afailu-or example, a high-availability

telecom system may specify that it will deliveralan time a certain percentage of the
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time. In a soft real-time system, some tempanabmsistency in the data may be
tolerated as long as it is corrected in a timelyne.

There are systems with a combination of soft armd Ihe@al-time constraints. For
instance in a submarine the contact tracking vallenhard deadlines, while showing
video to the crew will have soft deadlines. Thewccould tolerate some frozen video

frames while the tracking system is following agydtal enemy ship.

RT Request Timing. Requests for data in a real-time distributed systam be
madeperiodically or sporadically (aperiodically). When a periodic request is made,
the data is expected to be delivered at the speécffiequency, or else the delivery
deadline is considered to be missed. Periodicegigwsually occur once, requesting
delivery of the data regularly for many periodsheTrequests can be halted, or the
period can change, but while a request is inthet,data should be delivered every
period. An example of a system that may requireode data delivery is a submarine
contact tracking system. In order to ensure thatdystem is representing the real-
world contact sufficiently, the system requirestttiee new real-time data be updated
frequently enough to represent a smooth transftiemm one contact data point to the
next.

Sporadic requests for real-time data distributiooun when a client requires data on a
one-time basis, or based on events rather thangemneds. For example, in the stock
trading system described above, a client may spéldt they require a stock price

whenever its value changes by 5% or more.

3) Data Characteristics

26



The last layer in the taxonomy represents charatits that involve the kind of
data being shared in a real-time system, and h@wged within the system.

Data Model. The data model used within a real-time data distidm system can
be homogeneoysvhere each participant is expected to use thee sata model, or
heterogeneoyswhere such an expectation is not required. A dgeneous data
model makes the sharing of data across the digtdbaystem simpler because no
conversion is necessary. However, it may be tstrictive in a large-scale system to
expect that various applications that share dathuse the same data model. A
heterogeneous data model is more flexible, sinceows applications that are
developed at different times, with different reg@mments can share data without
restricting the way in which their own data is sthr However, this type of system
may require conversions from one data model tohampbr the use of an agreed-upon
intermediary representation. For example, in desysthat provides data sharing
among a coalition of forces from various nationss unreasonable to expect the data
to be stored in a homogeneous model. For suclstaraythe various data models are
stored in their own formats, and a data transfeguage, like XML, is used to
interpret the data that is shared among the vagoogponents.

Data usage. Many real-time data distribution systems onlyuieg} that data be
disseminated to various clients within timing coastts, but do not expect the data to
be updated and written back to the source. Thgsestof systems, which we call
read-only do not necessarily require any concurrency cominmong the distributed
clients because they treat the data as their owieso As long as each client receives

data that is temporally consistent, and the dateecgived within specified timing
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constraints, the distribution of the data is susftds For example, in an electronic
stock trading system, the stock prices are didetbuo requesting clients, but the
clients do not update them.

However, there are applications in which distributensumers of the data also update
the data andbvrite it backto the source, or to other copies of the data. ekample, in

a submarine contact tracking system, the track, dsyathesized from sensor
information, may be distributed to various locai@o that it can be used, and viewed
by other applications and human users. Some gkthpplications may receive data
from other sources that would allow it to makenefments to the track data. In this
case, the track data may need to be updated, hoabthe source, but possibly also at
any other copies of the data. This kind of datgaess much more complicated than
read-only data usage because more than one applicaiay wish to update the
original data, and therefore concurrency controbagnthese updates is required. If
copies of the data also have to be updated, tleesystem is even more complex. The
fact that all of the data must be kept both lodycahd temporally consistent with each
other adds to the complexity of the problem.

Data Precision. Some real-time systems require that the data liegt ieceive be
absolutelyprecise consistent with the real-world entities that beeng modeled. In
such systems, the concurrency control mechanisintamtains the integrity of the
data will not allow multiple updates, even if thecking that might be required will
cause deadlines to be missed. Further, the dash Ibeutemporally consistent at all

times — never becoming older than a specified ager instance, a command and
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control system that is closely tracking a targell want to be sure that the data it
receives is precise.

On the other hand, some applications allow forpbgsibility of somemprecision
in the value as well as the age of the data inrotaellow for more flexibility in
meeting other constraints. For example, a cliémnoelectronic stock trading system
may be willing to receive data that is slightly otat slightly imprecise, if it means
paying a lower fee. As long as the amount of imgien is bounded, the client can
analyze the data with the imprecision in mind.

Data Granularity. The amount or granularity of data that is distrdalto clients
can vary from entire tree structures, to singlematoelements. In the case of an
object-oriented system, entire objects can beildigd to various locations for use by
clients. In fact, groupings or hierarchies of albgecan be distributed all together;
these areoarse-grainedlistributions of data. On the other handipar grain of data
can be distributed such as individual attributeugal or return values of object
methods. The granularity of the data being disted depends largely on the
applications that are using the data, as well as tlee data is being used. For
example, in a system in which the distributed dataeing updated and written back, it
might make sense to employ the smallest granulpasgible so that large portions of
data are not locked due to concurrency control.

On the other hand, when groups of objects are lglostated, it may make sense
to distribute them together as a group. This whg, values of the related data are
more likely to be relatively temporally consistewith each other, and therefore more

valuable to the requesting client.
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Data Source. In many real-time systems, real-time data comes fsensors that
provide the most recent version of the data. Inyeases the sensor transaction is the
single sourceof update for the data. However, it is also gassfor the data to be
updated bymultiple sources For example, in a target detection system, uario
sensors may be used to update the data dependomgwipch is the closest, or most
reliable. In this case, it may be possible thathbgensors try to update the data
simultaneously, requiring concurrency control tsue the integrity of the data.

All the characteristics described above form thienden of a problem space for

real-time data distribution.

3.2 Existing Approaches to RTDD and Solution Space Addressed by Our
Work

In this section we discuss different mechanismfR®DD and show the areas
within the problem space that they address. Themn,describe the subset of the
problem space that our work addresses, along Wélsolution provided by our work.

3.2.1. Typesof RTDD

Client-Server. The Client-Server, an example of point-to-point commication
model, can be considered a pioneer method of databdtion. TheClient-Server
model is a central idea in network computing. Mdnuginess applications existing
today use this model. In this model, a server viot requests from clients, who
access data via queries. In some of these apgpheatclients can read and update

information on the server.
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The client-server approach to RTDD is very brodtherefore, the area within the
RTDD problem space that can be addressed depeedtygon the application that is
being served. A client-server model can addres¢h btatic and dynamic systems.
Most applications that use this approach are dyoamit in a system in which all
requests for data are known a priori, a client-eempproach can also work. The
client-server model can work in a system of ang.siHHowever, in order to provide
real-time support for data distribution, a largeescan become unwieldy. Further, if
there are a lot of requests for the same data&cbmes difficult for a single server to
respond in a timely fashion. Thus, multiple sesveight be necessary, which makes

the system more complex.

In the client-server model, clients can access dath to read it and to update it.
The typical client-server model does not specify aflowance for imprecise data.
However, a specialized implementation can build regsion into a particular
application. The granularity of the data depengsnuthe service provided by a
server. Typically, in a client-server model, these single source for any data that is
available. If more than one server provides tha,dausually originates at the same
source.

Broadcast and Multicast. TheBroadcast and Multicast are examples of point-to-
multipoint communication model. With the broadcalsita or signal is transmitted to
anyone and everyone in a particular service areaetwork. For instance, in the
wireless network of portable devices (cell phorfeBA, palmtops etc.) information
such as electronic newspapers, weather and traffarmation, stock and sports

tickers, and entertainment delivery is broadcasaltadevices in the network. The
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difference between broadcast and multicast is thah multicast communication
model, data is transmitted to a select list of perits and not to everyone in the
network. The target systems for broadcast or cagtiRTDD are dynamic. Thus, the
real-time constraints that a broadcast or multisgstem has are usually soft. In order
for the supplier to efficiently serve all requestbry broadcasting or multicasting data,
the data model must be homogeneous.

This is a read-only approach. Broadcast data canpheeise or imprecise
depending upon the requirements of the receivAsslong as the receiver is aware of
the level of imprecision, it can be factored inmahthe data is used. Broadcast data
can be at any level of granularity. However, duéhe widespread use of the network
in a broadcast, smaller, more fine-grained data rmaymore efficient to send.

Typically, in a broadcast model, there is a sirsglarce for any data that is available.

Streaming. Streaming is a technology in which data is tramefkfrom a server
to a client and is processed in a steady and agois stream, without the need to be
stored in a client’'s space. Typical applicatiohattuse streaming for RTDD are
video, and continuous backup copying to a storageium.

Systems that use streaming for RTDD are usuallyaohyo— clients connect and
disconnect at any time. The size of the system lmarquite large. In an HDTV
application, thousands of users view the streamm feosource. Since clients do not
need to store data, they can operate with soméelimesources. Streaming systems
typically have soft real-time constraints, suchnaisimum frame rate on a video

stream.
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Data transfer can be periodic or sporadic. Indewistreaming application, the
frames are transferred periodically so that theylma displayed on the receiving node
with a constant frame rate. For an applicationwhich data is streamed for
continuous backup, the rate of the stream is notngmrtant, and can be more
sporadic. The data model of a streaming applicasaypically homogeneous. This
way, the sender can stream data, such as vide@$taand the receiver knows how to

process it.

Similar to broadcast, streaming RTDD is a read-approach. For best quality,
streaming data should be precise.

The granularity of the data in a stream dependsnugpe application. The
receiving node has to process the data upon reseipt would make sense to use the
smallest granularity possible. Typically, in aestming model, there is a single data
source.

Real-Time Data BasesA real-time database (RTDB) is considered as an
extension to a traditional database. It has adlitional database features, but also is
able to express and maintain timing constraintshsas deadlines, earliest and latest
start time on transactions and timing constragiish as temporal consistency on data
itself. A RTDB consists of RT objects representiagl world entities and updated by
sensor transactions. To be coherent with the sfatiee environment, the RT object
must be refreshed by a transaction before it besanwalid, that is within its temporal
validity interval, whose length is usually applicatdependent. There are many

applications that require real-time data, and \aiflvances in networking they are not
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necessarily located on the same node as the RTDBhanefore require the real-time
data to be distributed to them.

A RTDB can handle both static and dynamic systeinsentral database can serve
small- to medium-scale systems. For larger scastenys, a distributed database is
usually used. Computational resources are usuatlgstcained by the timing
constraints imposed by the applications that URER@B and resource constraints exist
in a RTDB that involves mobile, wireless nodes.

Transactions in a RTDB can be hard or soft, andb&aperiodic or sporadic. The
data model is typically homogeneous. Although,ldrger systems that combine
various RTDBs into a single virtual RTDB, it may pessible to have a heterogeneous
data model. In this case, middleware is typicalged to synthesize the various

models. Most RTDB applications expect precise data.

TAO’s Real-Time Event Services an implementation of point-to-multipoint
communication modelSince we gave a thorough description of RT Evemvi€e in
the background section (2.3), here we only highlitpe solution space provided by
this approach in the RTDD problem space.

TAO’s RT Event Service can handle static and dycasgstems of various sizes.
The computational resources in the system are bdyndhe timing constraints
imposed by the application. The service can p®wdpport for both hard and soft
real-time applications. Publish-subscribe natufethe RT Event Service allows
processing of both periodic and a periodic typeseqgtiests.

The data model for TAO’s RT Event Service is hommagris, since the consumers

use the same data model as the suppliers. Onuh@iers can change their data and
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the consumers are just readers, therefore, the wkstge is read-only. Since the
service allows the suppliers to register for thdke’ event, and not a part of it, only
coarse granularity is supported. On the other hiineke consider an event as a single
piece of information it can be considered fine.efhif a subscriber wants to impose
some event dependencies and get a combination varateevents, that can be
considered coarse. The RT Event Service allowsplmifiype based filtering,
therefore it can address multiple sources of data.

OMG Data Distribution Serviceis an implementation of point-to-multipoint
communication model. Since we described the seaumckexplained the way it differs
from our work in section 2.2.5, here we only witbpide a description of the area in
the problem space addressed by the service.

The DDS can be used for both static and dynamiesygf systems of various
sizes, and it can address soft real-time systerigwever, it does not enforce any
constraints. For this, an underlying real-timeestlling mechanism must be used.
Both periodic and a periodic requests can be dpdcifThe data model assumed by
the DDS is homogeneous. However, implementatiéf3 &L can provide transition
among application data formats to the DDS data madaking the service suitable
for heterogeneous applications. Since there iss@odipling between publishers
writing to the data and subscribers accessing dla¢adata usage can be defined as
read-only.

Both precise data and imprecise data (by meansIMETBASED_ FITERQo0S

and HISTORY policies) can be used by DDS. Varimwels of granularity can also
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be supported. By using MultiTopic Class, a sulbserican select and combine data
from multiple topics into a single resulting type.

The OWNERSHIPQoS policy allows multiple DataWritdos update the same
instance of data-object. There are two settingshie policy: SHARED indicates that
the service does not enforce unique ownership, shiple writers can update the
same data instance simultaneously and subscribaraacess modifications from all
DataWriters; EXCLUSIVE indicates that each datstance can be updated by one
DataWriter that “owns” this instance, though thenewof data can be changed. Thus
the service provides both multiple and single datarce solutions.

3.2.2 Solution Space Provided by Our Work.

In our work we consider two types of applicatiotatie and dynamic. For the
static model we address the following specific peols in the data distribution

problem space.

e System Characteristics:
o Small- to medium-scale systems consisting of tenfiindreds of
nodes;
o Static applications and infrastructure. All systeeguirements are
known a priori and are invariant;
o Unconstrained resources. We assume high-powereds @Rt high-
speed network with high bandwidth.
e Real-Time Characteristics:
o0 Hard.

o Periodic request timing.
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e Data Characteristic:

o Temporally constrained data;

o Homogeneous data model,

o Asynchronous data production;

0 Precise data;

o Fine or course grained data;

o Single source for each data item.

Our dynamic model covers the following area inpheblem space.

e System Characteristic:

o Small, medium, or large scale;

o Dynamic infrastructure;

0 Unconstrained resources.
e Real-Time Characteristics:

0 Soft real-time;

o Periodic request timing.

e Data characteristics are the same as for the stgtem.

3.3RTDD Model

This subsection describes a real-time data digtdbumodel — the basis of our

work.
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Figure 6 displays our Real Time Data Distributiomd@l. The model consists of

five main elements.

DataObject = <OID, Value, TS, OV>
DataSource = <SID, Node, OID, SP>
DataReader = <RID, Node, OID, SP:
Dist = <DID, OID, SID, <RID, SP>>
SP=<P,D, R, E>

A4

V

Figure 6. Real-Time Data Distribution Model

The DataObjectrepresents the data that is being distribut@tDh is a unique
identifier of the data object within the systeXfalue is the value of the data object.
This can be a simple atomic value, or a structwatlie depending upon the
granularity of the datalS is the time (timestamp) at which the object wast la
updated.OV is the object validity, a time interval within wihicthe data object is
considered to be valid after its update. WhenQNeexpires, the data is considered
temporally invalid. TheDataSourceis the entity that produces the data that is to be
distributed.SID is a unique identifier for the data source. Tls#aReaderis the entity
that requests that data be sent tRID is a unique identifier for a data readdodeis
the computing element on which the source/readecgrsSP is a set of scheduling
parametersP is the period of the task. Recall that our solutaldresses the problem
space of periodic data distributioD.is a deadline within the perioR is the release

time after which the task may start to execties the worst-case execution time of
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the task. Note that the data source and the datéer may have different scheduling
parametersDist is a distribution of data from BataSourceto a DataReader A
distribution has its own unique identifi@®ID. It also has its own scheduling
parameters that will be determined by the propakad distribution algorithms. The
algorithms consider the scheduling parameters efihtaSource the scheduling
parameters of thBataReader and the data object validity interval to deterenthe

scheduling parameters of the distribution.

3.4 RTDD Algorithm

In this section we describe the algorithms we usecompute distribution
parameters for the static and dynamic models, aodige a theoretical background
that ensures the correct work of the algorithmanractual implementation.

3.4.1JIT Static Data Distribution (JITS)

The algorithm we are using to ensure that all desalers receive the temporally
valid data in time is a modification of the Justlime Real Time Replication
algorithm [2] and is called Just in Time Data Dimition Algorithm (JITDD). This
algorithm, based on data source and data readmabktime characteristics, and data
validity time, computes appropriate deadlines fataddistributions.

For a static system, the algorithm works as foltows
Let d be the deadline that is computed for a distribubdst from sourceSto a set of
m data reader®y,...,R, for a request of data obje@ID. The period ofS (and
therefore ofDist) isp. LetN be the least common multiple of the periods otdalia

readers oDID and the period of the source.
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We call N the superperiodof the distribution because it represents a cotaple
cycle of all readers for the data. We def®¥ to be the point in time in th& period
of the distribution that the object (from the mostent update) becomes temporally
invalid. An invalid interval is an interval of tienduring which the object does not

have a valid value associated with it, that is,dbgect is temporarily inconsistent.

Invalid Interval Invalid Interval
A '_JH
P P v Py
OVI 1 I OVI | ! OVi+1
L | L | L | | |
I ! I ! | ! ! |
-d— d d ~d—

Figure 7. Deadline Computation

Figure 7 depicts an invalid intervaDV; is the time within periodP; that the data
that was updated during peri®g, becomes invalid. Thein the figure represents the
deadline of the distribution within its period. &mvalid interval is the time between
OV, and this deadline because after the deadlinewaviague of the data will have

been delivered.

In the algorithm, when computing the deadline @& dlistribution, initially we set
it to be equal to its periodd€p). The key to computing the deadline of the
distribution is to determine if any of the datadews will be executing in the invalid
interval. If so, it is possible that it could usealid data. For each reader, there is a

window, called thedata access windagwwithin its period when it could access the
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data. The data access window falls between tleasel time of the reader and its
deadline. There are three cases to consider whkwlating the deadline of the

distribution:

1) If no reader’s data access window overlaps withitkalid interval, the deadline

is unchanged because no reader will be using theaia.

2) If some reader's data access window begins at tipeafter OV, i.e.
OV, < x; < Pix1 and ends before the next invalid interval, then deadline is
changed tomin(d, xP;). That is, the distribution must complete, befores thi

reader’s data access window begins.

3) If any reader’s data access window has starteddedio or afte©V, and continues
to execute in the same/next invalid interval, tkiea deadline is changed @V, -
Pi. This deadline assignment ensures that therebeitho invalid interval within

the period at all, and thus the reader will usédvdta.

Note that if the deadline is changed@¥, - P at any point, the computation of
deadline is complete, as we have reached the mmipussible deadline. Otherwise

we consider these three cases for each af ffexiods in the superperiod.

It can be noted that a simple way to compute teedtne would be to always use
OV - P. This would provide the required temporal vaiidibut it could be an overly
pessimistic choice, and might cause the systene todmschedulable. Because in our
current implementation this algorithm is computdtioe, the extra work that is

required to compute the more flexible deadlineciseptable.
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While this algorithm works for a static model, sl the computation can be done
off-line, the overhead, which will be imposed b Huperperiodcomputation in case
of significant amount of data readers, makes itranfical to use this algorithm for on-
line computation. Therefore, to suit the needsywoiaghnic application, we changed
the algorithm so that it delivers the same quatityresult with significantly less

computation overhead.

3.4.2. JIT Dynamic Data Distribution
First, let us observe that the least common meli{jpCM) of two numbera andb

can be obtained by finding the prime factorizatideach

an

a= Qal. pZaZ... Ph
b = le_ pzbzm qun’
where ps are all prime factors od and b, and if p does not occur in one
factorization then correspondent exponent is tase, then
LCM (a,b) :Hi=1,..n pimax(ai, bi)
Also LCM (a,b,c) = LCM (LCM(a,b),c)
= LCM Hi=1,..n pimax(ai, bi)’ C)
:Hi=1,..n pimax(ai, bi,ci)

then LCM (a,b,c) / LCM (a,b) Fiza, .o p™® P []icg,_ o g >

_H_ 1 pimax(ai,bi,ci)—max(ai,bi)
—11li=1,.n

andLCM (a,b,c) / LCM (a,c) Ji=1,.n pm @ P iy pmex@ 1)

_H_ 1 pimax(ai,bi,ci)—max(ai, ci)
—11li=1,.n
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etc.

Based on that, we can observe tsabsuperperiods (SubNhat are LCMs
computed based on the source period and each edarrperiod may “repeat” in
superperiod (N) Therefore we can takeubNinstead ofN with the rest of algorithm
remaining the same. Minimum deadline, computedetrh data reader BubNwill
be the same throughohit

Therefore, in a dynamic case, when a new readeesanio system, we do not
need to re-compute thsuperperiodfor all corresponding readers in the system.
Instead we computsubsuperperiodor the new reader and data source, perform our
algorithm and check existing deadline against cdeqpulf existing deadline is less
than computed, nothing changes. If it is biggeentkve change it to the computed

value, because now this is the minimum deadlineghtisfies all readers.

3.5 Theorems

This section presents a theoretical backgroundriagsthe correct work of our
algorithms.
Lemma 1:
For a set of readerdo preserve the data consistency the Distributieriqo must be
equal to the Source period.
Proof:

Without loss of generality we can assume that thiengset of readers is such that
the readers may access data during or over eattte afvalid intervals. Therefore to

preserve the consistency of data, new data mudishéuted before or during each of
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the invalid intervals. This cannot be achieved withthe Distribution period being

equal to theSourceperiod. Assume that is not true and thatsribution period can

be longer or shorter than tls®urceperiod. Then, in the first case, depending on the

source deadline the Distribution can disseminata theat becomes invalid &V, or

OV, (see Figure 8), with nothing that can be doneréwgnt readers from reading old

data. The same may happen with the period of digtan being less than data source

period (see Figure 9). In both cases we cannotagtee that we can manage each of

the invalid intervals, and hence we cannot guasaotasistency of data. Therefore to

preserve the data consistency, istribution period must be equal to the source

period.
Source
| | ' i L .
I ——— Lo T L v
Ph OV, Py ov, P, oV, P, ov, R
Di|St | | | R
I T T T al
Ph P Py Pi-1 Pi
Figure 8. Lemma 1 @Rt > Psourcd
Source
I L L I L .
| ‘ ] ] [ ‘ g
Ph ov, P, oV, R oV, ; Ps P OVi; R
Dist : 1
L | | | ... —] | >
[ [ [ [ [ [ [
Ph Py P P Pt P

Figure 9. Lemma 1 @t < Psourcd
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Lemma 2:

For a Distribution to distribute fresh data and leento preserve data consistency, it
must start at or after S{{bounded by OV-P-ET).

Proof:

To prove the lemma, consider thg Distribution period (see Figure 10). To
preserve data consistency in this period, the datst be updated before some
computed deadline with the data that is not gomgpxpire during this period. To
distribute the data that is not going to expiretle currentDistribution period,
Distribution cannot start before the supposed finish of theeaur(f") data source
update. If it does, it might distribute an old dégag. the same unit) expiring at OV, so
that readers will access invalid data even thoDggtribution finished before the
specified time. Thus to preserve data consistethey{" Distribution must start at or
after the current sensor update deadline. Conségu#re firstDistribution must start

at or after the sensor update deadlfdyj in its first period.

Source

ov,

ov,

Figure 10. Lemma 2
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Though it does not make much sense to dBiayribution, since it will reduce the
time assigned for its execution, we need to no# tieDistribution start has to be
bounded by OV-P-ET, otherwideistribution will not be able to finish before its
deadline (in the case when the computed deadliequal to OV) because it will leave
less time than is necessary faistribution to execute, and as a result data consistency

will not be preserved.

Theorem One:

For a set of readers, if Dist period is equal te theriod of Data Source, Dist deadline
is computed according to the JITDD algorithm andstDphase is at or after QU
(bounded by OV-P-ET), (where $ld the sensor update deadline, OV is data validity
time, P is period of Source, ET is execution timBist), then the readers will always

read valid data.

Proof:
Now having lemmas 1 and 2, and assuming that thedlalgorithm works with
the specifiedistribution period and phase, we will show that the deadloraputed

by the JITDD algorithm guarantees that readersredt valid data.

Recall from the JITDD algorithm that there are éhpossible cases considered for
deadline computation. To prove that no reader readid data, let us re-examine
these cases.

Case 1) No readers read in the invalid intervahdlgsion is clear.

46



Case 2) Some readers start at tlheuch thaDV<X;<d; and finish before the
next invalid interval. The JITDD algorithm changBsstribution deadlined to X;,
reducing the size of the invalid interval and makiiheDistribution update an old data
set with the fresh one before any reader read$is no reader reads the data within
the invalid interval.

Case 3) Some readers read the data through thkdimwvgerval, that is start
before, at or after OV and finishes at some pairihe current/next invalid interval. In
this case the JITDD algorithm computes the deadbrige equal to OV, and by doing
that removes the invalid interval. Therefore nadeza can possibly read data within it.

So, we proved that having the distribution’s peregual to the data source’s
period, the distribution’s phase at or aftersSahd having the deadline computed by
the JITDD algorithm, will guarantee the set of re@dalways receive temporally

consistent data.

Definition:

The optimal deadline is a deadline that cannot laglenany longer

Theorem Two:

The JITDD algorithm assigns the optimal deadling #msuring the temporal

consistency of data.

Pr oof:

a7



Theorem 1 proves that with the deadline assignembrdmg to the JITDD
algorithm, the data read by all requests is alwaggporally consistent. To prove that
the assigned deadline (d) is optimal, let us asdinaiethere exist another greater data
distribution deadline (d1) assigned by some othgorahm, which still preserves data
consistency. The JITDD algorithm computes the dditribution deadline and
consequently redefines the invalid interval to [@Y based on the knowledge that no
request reads data during this invalid intervat, there are requests that may start to
read data right after d. Now, with another deadtipeve have the invalid interval
defined as [OV, ¢ and consequently we have an interval [¢, during which a
request may read an invalid data set. That isgét@ consistency is not preserved, and
our assumption about the existence of another grelaadline is wrong. This implies
that the JITDD algorithm’s deadline assignmentgsmal.

This concludes our theoretical background on madeland algorithms. In the
next two chapters we will present our approachrtplementation of data distribution

mechanisms for both static and dynamic systems.

1. Uvarova, A. and Fay Wolfe, V., "Towards a Defiom of the Real-Time Data Distribution Problem
Space," in Proceedings of the First Internationabrid®hop on Data Distribution for Real-Time
Systems, May 2003, Providence, RI.

2. Peddi, P., "A Replication Strategy for DistriedtReal-Time Object-Oriented Databases," TR01-282,
University of Rhode Island, May 2001
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CHAPTER 4

STATIC RTDD

This chapter presents system design, implementatonevaluation of static real
time data distribution.

4.1 System Design and I mplementation

Since in a static system, all system charactesistre known a priori and system
analysis can be done ahead of time, the implementat data distribution is divided
into two parts: an off-line analysis and on-lin@ettbased data delivery.

4.1.1 Off-line Analysis

Figure 11 depicts the process that is followed ha off-line analysis of our
implementation. It begins with the specificatiohtloe system, in the format of our
model described in Section 3.3. An ASCII file aning descriptions of all of the
data sources, readers, data and nodes is createstaad. The C++ implementation
of the JITDD algorithm reads in the system speaifan and computes the scheduling
parameters for each of the data distributions requi The output of the JITDD
algorithm is another ASCII file containing the syt specification augmented with

the computed distribution scheduling parameters.

System
Specification with
Scheduling Parametefs

Distribution
Analysis
Algorithm

System

Configuration
Specification [—)

File

Real-Time
Analysis

Figure 11. Off-line Analysis Process
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The augmented system specification is fed into a-trme analysis tool to
determine if the system is schedulable. While werendoing this work, the only
available choice was the RapidRMA tool by TriPacifiorporation [1]. The use of
RapidRMA involved manually translating the speatfion into the visual model
required by the tool. We had to transform all comgnts of our system model, that
are the sources, readers, and distributions irggstéem of tasks, resources, and task
dependencies that are required by the RapidRMA. idRMA performs a
schedulability analysis on the specified model gddeadline Monotonic, end-to-end
analysis [2]. If the system is found to be non-schable, the system specification
must be reworked, perhaps adding more nodes or pwwverful nodes to the system.
Once the system is deemed schedulable, RapidRMdupes a configuration file that
provides scheduling priorities for each of the taskthe system. This configuration
file is used in the on-line implementation desadibeext. At present time the
OpenSTARS tool [3] developed by URI RTDOC groupmisilable for the analysis
purpose. This tool eliminates the manual transtatvork, because it gets all necessary

information directly from the system specificatiie.

4.1.2 On-line Implementation

The runtime component of our implementation exextite model specified in the
off-line component described above. The impleméntatvas programmed in C++
and ran on Linux Kernel 2.4.21, with TAO v1.3.5 CBR software [4] to provide
real-time middleware support. The implementaticsoalsed two of TAO’s common
object services: the Real-Time Event Service (RTB$)and the Real-Time Static

Scheduling Service (RTSSS) [6]. The RTES was asel mechanism for distributing
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data asynchronously, and the RTSSS provided pribased scheduling to ensure that

deadlines are met. Figure 12 illustrates our imgletation using these two services.

Event-based Data DistributionTAO’s RTES provides asynchronous, decoupled
communication between sources and readers of date RTES uses a
supplier/consumer model to deliver events. The keippends data from a specific
source to the RTES, and the consumer receives fuata the RTES. In our
implementation, we create a supplier to distrildaga that is produced at each source,

and we create a consumer to receive data for eacler.

Real-Time Configuration
File

A

Static
Scheduling Service

RT Event /
Service

DataReader DataReader

Figure 12. On-line Implementation.

DataReader

The RTES can be configured in various ways, incigdd complex configuration
with a priority-based thread dispatcher, and a Bmgingle-threaded configuration
that maps one Real-Time Event Channel (RTEC) td sapplier [5]. Because our
implementation performs all of the scheduling as&lyoff-line, we have chosen the

simple configuration of the RTES.
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The RTES provides an interface for a supplier tpster events (data) that it will
supply. It also provides an interface for a consuto register for events that it would
like to receive. The RTES matches these requdthstiie supplied events, and sends
the event data to consumers when they are suppjigtie suppliers. Consumers in
their turn make the data available for the reattetsse. Based on our formal model of
Section 3.3, a datBistribution is represented by the delivery of event data ftben

supplier to each consumer.

Scheduling Real-Time Data Distributian In previous work, URI RT DOC group
developed the Real Time Static Scheduling SeniRESSS) that is in the TAO code
base [3]. It is implemented as a set of librargecthat is compiled into the programs
that use it. The library code creates a mappingtask to priority, using the
information in the configuration file produced kyetscheduling tool (RapidRMA, in
this work). When the system starts up, each of gkecuting entities (sources,
suppliers, consumers, readers, RTES) begins bystigg a priority from the RTSSS.
The RTSSS looks the priorities up in the task/fijomapping table, and sets the

priorities accordingly. Each of these tasks thegcates at its specified priority.

4.2 System Evaluation

In order to demonstrate the effectiveness of oyslémentation, we developed
several test scenarios to make sure that our aliensuring temporal validity and
deadline of the distribution holds in our implenaidn. The main metrics we used

aretemporal consistency of delivered daaaddeadline of data delivery

The first two of the test scenarios we used exartiieesystem under “normal”
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conditions and under workload-constrained cond#ian the third set of tests, we
developed a system model based on the real Navypomealignment application.
Below we describe the various test cases, how were modeled and implemented,

and the results of the tests that we performed.

Test Scenarios We tested tree scenarios, each of which is destrere. In each

scenario, we used two nodes, with executing estiistributed across these nodes.
Recall that in each case, the system is modeledaaatyzed up front, so we have
chosen systems that are schedulable, but in soses,canay be close to being non-

schedulable. Figure 13 illustrates the systerudayor the first two test scenarios.

Node 1

Data Source ) Data Source 2

@eaderl ader 1, Reader 1 Data Reader 2 2ader 2 ader 2,8ader 2

Figure 13. Test Scenario Set Up
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Below we describe the specific parameters for tisesearios.

Scenario 1 — Normal Conditiongzigure 14 depicts the layout of entities in thistem

on the two available nodes. On node 1, therevemedtita sources, two suppliers and
the event channel. In the implementation, theanignstance of the event channel for
each supplier. Node 2 has the consumers and ddensthat will use the data. Table
1 gives the specific parameters for each of thesées. The table has two rows for
the event channel (EC1 and EC2). Each of thesesepts the distribution from one
of the data sources to the set of readers that feaneested the data. Additionally, we
specified a network delay of 15@ec for each transmission between node 1 and node
2. The object validity for Data Source 1 is 180 @sec, and for Data Source 2 is
140,000usec. Note that in Table 1, the deadline listedefach consumer represents
the computed deadline for the distribution for @esociated data source. These
consumer deadlines were computed using the JITDrighm, synthesizing the
deadlines for each reader that requested datatfrerdata source. The entire system

model was analyzed in RapidRMA, and found to beedalable.

Scenario 2 — Workload Constrained:his scenario is almost identical to Scenario 1,

except that extra workload was inserted onto NodeTBis workload increased the
utilization on that node from 16.53% to 72.15%..gaM, the model was analyzed
using RapidRMA, and while the extra workload on Bdtlcaused the system to be
more constrained, it was still schedulable. Wesehto perform this test to show that
under tight workload conditions, when the systenfoisnd to be schedulable, our

implementation meets all deadlines and temporasistency constraints.
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Name Period, Release, Deadline, Exec time,
nsec nsec 1Sec nsec

DataSourcel 100 000 0 10000 1500
DataSource2 80000 0 10000 2000
Data Reader 1.1| 100000 80000 30000 1500
Data Reader 1.2 200000 180000 40000 1500
Data Reader 1.3 300000 280000 50000 1500
Data Reader 2.1| 100000 80000 40000 2000
Data Reader 2.2| 120000 130000 50000 2000
Data Reader 2.3 180000 130000 100000 2000
Data Reader 2.4 200000 160000 80000 2000
Supplierl 100000 10000 70000 1000
Supplier2 80000 10000 60000 1000
EC1 100000 10000 70000 400
EC2 80000 10000 60000 400
Consumerl.* 100000 10000 70000 1000
Consumer2.** 80000 10000 60000 1000

* All consumers of DataSourcel (** and of DataS@&chave the same

parameters

Table 1. Test Scenario Parameters

In this system, a set of navigation subsystemsymesl navigation data. This data

property of the Raytheon Company [6].
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processes it so that tReocess Nav Dataomponent can use it.

Scenario 3 — Navy Weapons Alignment Applicatitmorder to demonstrate how our
algorithm and implementation work with a real apalion we have developed a

simulation of the Navy weapon alignment system (Sgere 14). This Figure is the

must be distributed along a chain of componentghabit can eventually be used by
the weapon subsystems to align the weapons acgotdithe latest location of the
ship. The data is not only distributed along thaichbut it is also processed along the

way. For example, thHav Data Interchangesomponent receives the raw data and
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Figure 14 - Navy Weapons Alignment Application

In this application, it is critical that data beidered within specified deadlines so
that the alignment operations can take place ire tt;m get weapons prepared for
deployment. Further, the data that is receivedHgy weapons subsystems must be
temporally valid. Otherwise, the weapons may emdeing aligned according to old

navigation data.

This application is static in the sense that althef components have well-known
and stable parameters, such as execution timedoand deadline. Also, the number
of components in the system remains the same. i$Shdatis known a priori how

many, and which weapons subsystems will requirenévegation data, and when.
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Presently, this type of application uses point-doap communication to send the
data along the chain. This is very inflexible singbenever new components are
inserted, new direct communications must be adBed.example, if more than one
weapon subsystem requires the navigation datariiesiles and torpedoes), there
would be the need to set point-to-point communacafirom theProcess Nav Data
component to each of thilissiles Background Processingomponents. Using a
decoupled data distribution mechanism we descmbéhis work, allows for more
flexibility in terms of where the data is sent. Tdteta distribution mechanism would
allow components to specify the data that they manvide, and the data that they
require, and the delivery of the data would be lahdby the data distribution. All
these make this system a very good real life sébwjemonstrate applicability of our

algorithm and implementation.

Navigation Node 1
Subsyste
NavData Process
terchan Nav Dat
[

v M
Missiles Backgrourid
Processing1l Weapon Interchangg Weapon Interchanges?2
Weapon Data Weapon Data
Weapon Subsysternl Weapon Subsystepn?

Figure 15 - Navy Weapons Alignment Application Siation

Node 2

Processing2
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Figure 15 illustrates how we have simulated thdesgs Again, we use two nodes,
with the shared navigational components and thateefeannel on Node 1 and the
specific weapons components on Node 2. In thislampntation, we have
implemented two different weapons systems, each mwatown final deadline. Table
2 shows the parameters that we used to simulaefplication. The object validity

of the navigation data being distributed is 800,086c. The values in the table are

representative of the numbers for the real appdinat
Name Period, Release, | Deadline, Exec time,
nSsec nSsec nSsec nSec

NavigationSubsystem 500,000 0 300,000 100,000
NavDatalnterchanges 500,000 300,000 350,000 5,000
EC1 500,00Q 300,000 350,000 400
ProcessNavData 500,000 300,000 350,000 5,000
EC2 500,00Q 300,000 350,000 400
WeaponBackground 500,000, 300,000 350,000 5,000
Processingl

EC3_1 500,000 300,000 350,000 400
WeaponData 500,000{ 300,000 350,000 5,000
Conversionl

EC4 1 500,000 300,000 350,000 400
WeaponlInterchangesl 500,000 300,000 350,000 5,000
MissilesBackground 500,000{ 300,000 450,000 5,000
Processing2

EC3 2 500,000 300,000 450,000 400
WeaponData 500,000[ 300,000 450,000 5,000
Conversion2

EC4 2 500,000 300,000 450,000 400
WeaponlInterchanges?2 500,000 300,000 450,000 1,000
WeaponSubsystems1 500,000 650,000 150,000 10,000
WeaponSubsystems?2 1,000,000 750,000 300,000 10,000

Table 2. Navy Weapons Alignment Application Sintida Parameters
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The use of the JITDD algorithm for this model waghdly different from its use
in the more generic models described above. Is dipplication, the data is sent
through theNavigation Subsystenthe Nav Data Interchangesand theProcess Nav
Data components in a single path. However, becauge e two weapon systems
that require the processed navigational data a¢rnldeof the chain of components, the
path splits. Thus, each weapon system will hadeaaline by which it must receive
the data, and the delivery of data through the patlst meet that deadline. For
example, the deadline fWeapon Subsystemid 150,000usec, and the deadline for
Weapon Subsystem<2300,00Qusec. The JITDD algorithm was applied to determine
the deadline for the delivery of this data to eagapon subsystem. However, because
the original data flows from the same source, tinewst be a single deadline placed on
the receipt of the data at tliocess Nav Dat@omponent, the point where the path
splits. This deadline was computed by taking therter of the two computed

deadlines for the Weapon Subsystems.

Test Results Here we describe the results of the test scemapecified above. Again
the main metrics of each of these scenarios ardlidea, and data temporal validity.
The offline analysis has indicated that each of skenarios is schedulable, and
Theorems One and Two specify that all data thaisesd is temporally consistent.
These test results are meant to demonstrate thamiiementation does indeed meet
the expected theoretical results. For each ofitbethree test scenarios, we ran the
system over 100 periods of the data source ancatetl deadline and temporal

consistency data. We ran each test 10 times armghgdathe maximum completion
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time/data age values over these 10 tests. Thetsesnd displayed in the graphs of

Figures 17-24, and explained in detail below.

Scenario 1 — Normal Conditions:Figures 16-17 show the results of these tests.

Figure 17 displays the deadline results, one baoxe&xh of the data sources. The
horizontal line in each graph indicates the deadior the distribution of the particular
data source. The other points in the scatter graptesent the completion times of
the data distributions over the 100 periods. Asftbure indicates, except for a few
statistical anomalies in the first few periods, ailthe data distributions complete
before the specified deadline, as the theoretesullts had predicted. In the first few
periods, there may have been some set up exedhtibicaused the tasks to complete

after the deadline.

Completion Time

(microseconds)

Seenario 1 DetaSource 1- Distribution Gompletion Times Seenario 1 CetaSource 2- Distribution Gompletion Times
800
B #
R e o K
£% .
0o EZ
ﬁ-‘ngg"u'—‘gnHQDUNMMQ'_‘Q ';g u
50000 { 2 § =
%3 P K K KR JL K N
ANARANA] ) Q= Yo % 1% N XK R ;z‘ KXok O X
i ,_,”Ug» 'u,,,_u:‘_. W " '_Ug,_g Q_,vw‘u U’ n gg 40000) &%& &%@w%& A By X_ﬂ_% A
A} o>
00 nh, pr ANAl UL _‘,J_LQJ_‘I'Q." ,_.v«f-).v,_,'i
200 . , i ¢ Dst Geedlire 051 : ‘ ‘ ‘ ‘ ‘ ‘ : %%&mﬁ
0 D o @ n Ost1 1Gnpee 0 b 2 0 2 50 60 © | [g5 2Cnpete
Dst 1 2CGnete m2:3anme
Periods Ost1 3@npete Reriods X Ost2 4Gnplete
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Figure 18 shows the temporal consistency resultséenario 1, one graph for
each data source. The horizontal line in eachihgrapresents the object validity of
the data object being distributed. The other mointthe scatter chart represent the
ages of the data objects at the time they were bbgdde targets. It is clear to see that

all of the targets, in each of the periods rungremporally consistent data.

Scenario 2 — Workload ConstrainedFigures 18 and 19 show the results of the

Scenario 2 tests.
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Again, we see that in Figure 18, the deadlineshefdistributions are met for each of
the periods over which the system was run. Fid@endicates that, aside from one
statistical anomaly, the data temporal consistemay maintained for the data objects,

for each period.
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Figure 19. Scenario 2. Temporal Consistency of [Satarces

Scenario 3 — Navy Weapon Alignment Applicatidfor scenario 3, we have run the

system over 100 periods of tNevy Subsysteeomponent, 10 times. We graphed the
maximum values for the completion times of the Weapon Subsysteend for the

object validity of the data arriving at the tMéeapon Subsysterosmponents.

Figures 20 and 21 show the results these tests t#re figures we can see that our
computed deadlines are met each time, and the tampalidity of the data is

preserved as well.

The work described in this section was publishej@jn
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CHAPTER 5

DYNAMIC RTDD

This chapter presents our work on real-time dynatate distribution that includes
description of system design, implementation, araduation.
5.1 System Design
In a dynamic system where data sources and dadarsemay come and leave
at any time, all computation and analysis has tgpd&dormed on-line. This type of
system imposes different requirements on systerforpeance and as a result on its
architecture. Our proposedimely Data Distribution Servic(TDDS) system

architecture for dynamic systems is presentedgnriéi 22.

Global Data Distribution Service Dynamic Scheduling Service

=

Reader Local DD\:/ Datg Reade

Source Local DDS }y] Consumer

Data Sourcel—| | Supplier EC ; \ Data Reader
Reader Local DD$

U

N Consumer | | [Data Reader

Source Local DDS | Reader Local DD$

U

=

Data Sourceé—| | Supplier EC Consumer Data Reade

Figure 22. TDDS System Architecture

As the figure shows, the main components of theegysre as follows:
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DataSourceandDataReadeiare the applications analogs to those in a stgtem.
Sourceand Reader Local Data Distribution ServedSource/ReaderLocalDDS
are the local objects residing at the same nodetheslata producing and data

consuming applications and serve as the entransdspof the Data Distribution
Service These local DDSs are responsible fDataSource and DataReader
registrations, analysis of data distribution parargeand interactions with other parts
of the system such &slobalDataDistributionServiceand DynamicSchedulingService
to achieve system goals and actual data distributio

The Real-Time Event Service (RT ES) is an intetnalhe DDS data distribution
mechanism, responsible for actual data distribution

The Global DDSis used by théReaderLocalDDS$ to find theSourceLocalDDS
associated with the data requestedOntaReaderapplication. DuringDataSource
registration, SourceLocalDDSegisters itself withGlobal DDS with association to
data provided bypataSource Then, this information is used BReaderLocalDDSo
locate the appropriateourceLocalDDS

The Dynamic Scheduling Servid®SS) is responsible for system schedulability
analysis and priority assignments for all taskdhansystems.

Figures 23 and 24 present components collaboraitiorour real-time data
distribution framework. This collaboration can hditsinto two phases: the Set-Up
phase and the Run-Time phaBata SourceSet-Up includes the following steps (the
numbers in the steps described below correspotttetaumbered events in figures 23

and 24):
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1 - Data Sourceconnects to th&cheduling Servic® schedule its own activity on the

node.

2 - If schedulableData Sourceegisters to th&ource Local DDS

3, 4,5 -Source Local DDS$reates an Event, Supplier and Event Channel.
6 - Local DDSrequestSSto schedule an event.

7 - If the event is schedulab®ource Local DD$egisters with th&lobal DDS

At this point, the data source part is all set m@ady to distribute data.

1. Begi n/ End
Sched. Segrent

DataSour ce

3. O eate Event

6. Begi n
14. End/ Append
Schedul i ng Segnent

- Regi st er 8. Begi n/ End

Sched. Segnent

GlobalDDS
10. Regi st er
/ Lookup
\ \

11. Request 12. Perform JIT Anal y$is
13. Updat e/
16. Regi st er
Consurer ReaderLocalDDS

9. Regi st er
15. Create
DataReader
Node 2

Figure 23. Components Collaboration in TDDS Frantéw8et-Up Phase)

The Set-Up phase f@ata Readeincludes the following steps.
8 - Data ReaderequesDSSto schedule its own activity.

9 - If schedulableData Readeregisters with th&Reader Local DDS
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10 - Reader Local DDSegisters nevData Readeito theGlobal DDS If there is no
local consumer for the requested data, Reader Local DDSooks up theGlobal
DDSfor an availablé&source Local DDS

11.Reader Local DD$reates consumer.

12.Reader Local DD$equests Supplier information from tB8eurce Local DDS
13.Reader Local DD$erforms Just-In-Time analysis for a nBata Reader
14.Reader Local DD$ipdates Supplier information for t&@urce Local DDS

15. Source Local DDSequestdDSSto schedule new distribution and registers new
Consumer.

16. If the new distribution is schedulable, tBeurce Local DDSegisters new
Consumer with the Event Channel.

This is the end of the Set-Up phase

1. Produce Data

DataSource

3. Create event

4. Push SourcelL ocalDD3
Supplier GlobalDDS

5. Push

EC Node 1

8. Unwrap Data

6. Push

Node 2

Consumer

Figure 24. Component collaboration. Run-time Phase.
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The Run-Time phase depicted in Figure 24 perfolmasactual data distribution in the
following order.

1,2 -Data Sourceproduces data and writes it to theurce Local DDS

3,4 - TheSource Local DDSvraps the data into event and pushes it té&tigpliet

5 - Supplierpushes data into thievent Channel

6 - Event Channgbushes it to all of it€onsumers

7 - EachConsumethen pushes data to ltecal Reader DDS

8 - TheReader Local DD$ un-wrap the data and makes it available for tBeita
Readers

9 - Data Readersiccess the data according to their own needs.

5.2 System | mplementation

The whole system is developed upon the Real-Tim& @RTAO [1]. The Real
Time Data Distribution Service framework, excludiagheduling and Just-in-Time
analysis interfaces was implemented as part of até&fa Thesis project [2], the
system analysis and design, though, were parti@fntbrk. The major components of
the system and their collaboration are describéaibe

5.2.1. Components and Use Cases | mplementation.

The following two subsections describe all the syss components and their
actions during set-up and run-time phases. In cosyato a static system, in a
dynamic system, this differentiation is, of couraehitrary, since components enter

and leave the system during run-time. We use thvegghases just for separation of
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Data Readers and Data Sources registration andecton from the actual data
distribution.

5.2.1.1 Set-Up Phase

In the set-up phase, new incomibgta SourcesindData Readersre introduced,
scheduled, and based on schedulability result,stegd to the system. The
components and their collaborations are as follows.

Global DDS, the keeper of a system-wide repository for eventities, is
implemented as a wrapper around CORBA Naming Servi@r the purpose of
reduction of network communication, it is desigresl distributed agents between
Local DDSandNaming Serviceresiding on each network node.

Source Local DDS is implemented as a multi-threaded server, \Bitipplierand
Event Channebn each of the threads. To decrease a run timeheae instead of
being created when a neldata Sourceis registering to the systerBuppliersand
Event Channelfor each type of event are created ahead of tmdeage kept running.

Reader Local DDS uses the same thread modelSasirce Local DDSIt stores
and updates data each time @@nsumeipushes a new event.

Data Source. After registering tdReader Local DD$luring the set-up phase, the
Data Sourceperiodically wraps application data into an intdrdata structure set and
pushes data to itsocal DDS

Data Reader performs two tasks. It registers with itocal DDS and then

periodically reads the data from it.
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Some of the interfaces for the above component® wereloped based on the
following four cases of usage: Data Source Redistraand Unregistration, and Data
Reader Registration and Unregistration.

Case of Data Source Registration (See Figure 25). Upon coming into the
system,Data Sourceregisters toReal Time Dynamic Scheduling Seryitieen to
Reader Local DDS After that, Reader Local DDScreates an end-to-end task,
representing the producing end of data distribuiod schedules it witRTDSS If
scheduled, the sourt®cal DDSregisters a new event witklobal DDSand requests
a list of Reader Local DDS waiting for this event, to inform them of the st

availability.
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Figure 25. Data Source Registration UseCas
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Case of Data Source Unregistration (See Figure 26). When Bata Source
deactivates, it unregisters itself from tBeurce Local DD&ndRT DSS After that,
the Source Local DD%ssociated with thBata Sourcewill unregister the end-to-end
task (distribution) from th& TDSSand unregister itself from th@lobal DDS Then it
will request the list oReader Local DDSsgeceiving this data, to inform them of the
source unavailability. Once that is executed, allolved Reader Local DDSwvill

deactivate their corresponding consumers.

Data Reader,|
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Figure 26. Data Source Unregistration Use Case.
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Cases of Data Reader Registration (See Figures 27 and 28). There are two
scenarios in this case. In the first, general caben a newData Readercomes into

the system, it registers wiRRT DSSand then wittReader Local DDS
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Figure 27. Data Reader Registration Use Case

Then, theReader Local DD®reates a consumer and looks up @ebal DDSfor
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an availableSource Local DDS If there is noData Sourcethe Reader Local DDS
returns the notification.

If the Data Sourcas available, th&keader Local DD$alls upon th&ource Local
DDSto get theData Sourcanformation to perform Just-In-Time analysis. Afthat,
theReader Local DDS$egisters the new consumer to 8@urce Local DDS

The Source Local DDSn its turn adds the ne®@onsumerto the corresponding
End-to-End task and calls up&T DSSo schedule it. If schedulable, t®nsumer
is registered to th&vent Channeland everything is ready for the data transfer.
Otherwise theSource Local DDSlenies the request f@onsumerregistration and
returns Request Deny back to tReader Local DDSwhich in turns destroys the

Consumer
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|
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Figure 28. Data Reader Registration (Consumernt&xisse Case
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The second scenario is applied wheéonsumer Look Upeveals its existence at
step 4 of the general case. Hehast-In-Timeanalysis is performed to compute a new
deadline forConsumer Then if the computed deadline is bigger than gkisting
Consumer’'sdeadline, the&Consumemwill continue to perform on existing conditions,
and the/a nevReaderwill get valid data. If the new deadline is lebart the existing,
the Reader Local DDScalls upon theSource Local DDSto modify deadline
parameters on the correspondiBgd-to-End taskand schedule it witiRT DSS If
schedulable, th8ource Local DD$®ecords the update, otherwise the update is delete
and request is denied.

Case of Data Reader Unregistration (See Figure 29). When Rata Reader
leaves the system, it unregisters itself with iteader Local DDSThe Reader Local
DDS calls theJust-in-Timeblock to check if th&€onsumedeadline will change when
theData Readeteaves. Based on the result, we observe threéhpmssenarios.

In the first scenario, the deadline is unchandeea@er’'sdeadline is longer than
Consumer’s Nothing needs to be done. (Figure 29, Step 3)

In the second scenario, when the leaMitgpder’'sdeadline was the shortest, the
Reader Local DD&all the Just-in-Timeblock to compute a new deadline for the
ConsumerThen it calls th&source Local DD$o update th€onsumer’'anformation.
The Source Local DDSipdates thé=nd-to-Endtask and callRT DSSto adjust the
system. (Figure 29, Step 5)

In the third scenario, we consider the case whenedvingData Readers the last
requestor of data from tH@onsumer In this case, thReader Local DD&inregisters

the Consumerfrom theSource Local DDS TheSource Local DDSIpdates th&nd-
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to-End task, callsRT DS$ and unregisters th€onsumerfrom the Event Channel

(Figure 29, Step 13)

SS

Data Source] Source Supplier Event Consumer Reader
Local DDS Channel Local DDS
T

T
| 1: unregister_data_reader
|

Data Reader|
T

Global DDS‘

T

|

|

| |
2: Deadlil‘he Checkup: (unchanged / changed / last read‘ér)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

-

T T
| |
| |
| |
| |
| |
| | |
: : 3: Ij‘elete Data Reader (2: deadling|unchanged)
| | |
| | |
| | |
| | |
| | |

5: updq‘:ltefconsumer k2: deadline chq‘mged) | n
I I I |

| | | |
|

|

6: Update e2e task

| |
<— ! 7: Update Scheduling Segmert

é: Schedulable) Unschedulabl|
<-—-—-—-—-—-F------ B T ——— - ———-

9: Record Update

1

10: 'Ack
7777777 e A T |
| | | 11: Record|Consumer Update
U | | | P— | |
| | | | | |
| | | | 12: Ack 1 !
| | | [ |
| | | | |
| | | | U | |
1 13: ldeletefconsumer (2: last read‘er) : :
| | | | |
14: Update e2e task | | | | |
— | | | | |
| 15: Update Scheduling Segme | |
T T T T
! 16: Schedulable!/ Unschedulabl !
<--—--=-= -————= +-—-——== - == H-—-—--=-= ===
17: Unregister Consumer | | |
| |
18: Ack | | |
S E | | |
19: Record Update : : : :
< | 20: Ack | | |
7777777 [ ol el | |
I 21: Destroy : :
X 22: Ack ! :
|
|
|
|
|
|

e

Figure 29. Data Reader Unregistration Use Case.

5.2.1.2 Run-Time Phase
After completion of registration, Data Sources i@&dy for periodic data updates,
and Data Readers are ready for their periodic datssuming. The case of Data

Distribution, the one we associate with the runetipmase, is presented in Figure 30.
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Case of Data Distribution. TheData Sourceproduces data, wraps it inftaternal
Data Structureand pushes it to tifeource Local DDSTheSource Local DDSvraps
the data intdeventand pushes it tBupplier TheSupplierpushes it t&cvent Channel
andEvent Channelo all itsConsumersConsumergush data to their respective
Reader Local DDS€achReader Local DD$Sinwraps the data from the event and
stores it internally, making it accessible to th2ata ReadersTheReaderghen
check the data’s time stamp and validity to deteaiis freshness. IfReaderkeeps
reading the same old data, it is a sign that tisene@ Data Sourceproviding the data.
The reader application then may choose to continuead with the same interval, to

increase the reading interval, or to stop reading.

Data Source Source Supplier Event Consumer Reader Data Reader
LocalDDS Channel LocalDDS
1: write_data
2: Wrap|Data into Event
P
3: push_event

4: push

5: push

6: push_event

7: Unwrap Data from Event

p—

8: read_data

R

9: Data

Figure 30. Data Distribution Use Case
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5.2.2 Major Data Structures.

There are four major data structures in our impieiateon.

To provide real-time constraints, thata Sourcewraps the data into an internal
data structure calleBata_Set_t(Figure 31). During each update, it also stamgs th
data with the time it was updated. This time stagmg with the data validity time is

used by thédata Readeto ascertain whether data is still valid at tineetiof reading.

Struct Data_Set t
{
EventlD_t eid;
Data_t data; to
TimeType_t validity;
TimeType_t lastupdate;
2

Figure 31. Internal Data Structure

The real-time information structure Rt _Info t (ref® Figure 32) is used to
provide real-time constraints of all major compadseim the system (Data Sources,
Data Readers, Source/Reader Local DDSs, ConsuBgspliers, Event Channels) for

use in JIT computation and in building end-to-ergdrbution tasks.
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Struct Rt_Info_t

{
/Il A user define name of the entity
string name;

/lIThe entity’s IOR. Can be null if not a servant.
IOR_t ior;

/Il The network ID of the computer the entity resid es.
NodelD _t nid;

/lIThe event ID that the entity is associated with.
EventlD_t eid;

TimeType_t period,;
TimeType_t release;
TimeType_t deadline;
TimeType_t exec_time;
TimeType_t validity;

Figure 32. Real-Time Information Structure.

The Subtaskstructure (refer to Figure 33) is used to keepeall-time info of tasks
involved in end-to-end data distribution. This imfation is used byRT DSSto
compute all intermediate deadlines and to assigrity to the tasks in the system.
This structure is defined as a recursive strudini@ccommodate the non-linear nature
of the data distribution task. (We could also ar¢juet a non-linear task is a more
general approach to the end-to-end task presentatiale a linear task is just a basic
variation). Along with common real-time parametefise structure also includes
resource usage information (acquisition and deadgqn time) and parameters

specific toRT DSS
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struct Subtask_t
{
/Il A user defined name of the entity.
string name;

//l The network ID of the computer the entity resid es
NodelD_t nid;

TimeType_t period;
TimeType_t phase;
TimeType_t deadline;
TimeType_t exec_time;

//l Resources used by the task
ResourceUsageSet_t resources;

///Tasks successors
sequence<Subtask_t> subtasks;

b
Here ResourceUsageSet_t is the list of ResourceUsage_t structures, where

struct ResourceUsage_t
{ -
string name;
TimeType_t acqTime;
TimeType_t deacqTime;

Figure 33. Subtask Structure.

TheEnd2EndTaslkktructure (refer to Figure 34) is used for deifomtof actual data
distribution, that starts at ti#ource Local DD&nd ends at thReader Local DDSIt
stores real-time information of all the subtask#olaed in the chain, and end-to-end
parameters of the task itself. THRT DSSuses this information to compute

intermediate deadlines of involved subtasks, tdoper schedulability analysis, and to
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assign priority for task’s execution.

struct End2EndTask_t

{
/Il A user defined name of the entity.
string name,;

/Il The event ID that the entity is associated with
EventID t eid;

TimeType_t period;
TimeType_t release;
TimeType_t deadline;
Iportance_t importance;
TimeType_t exec_time;

/Il Set of subtasks
sequence <Subtask_t> subtasks;

Figure 34. End-to-End Task Structure

5.2.3 Inter mediate Deadlines Computation.

This section presents a description of our sugdespgproach for intermediate
deadline computation in a non-linear distributiénd-to-Endtask. Even though this
considered to be the part of RT DSS project, welkbit would be beneficial to give
our insights on the subject.

For anEnd-to-Endtask to complete before its deadline, all invohsedbtasks
must complete before this deadline. Since, a taskessor starts only after its task
predecessor completes, the intermediate deadiomes|fsubtasks need to be assigned
one after another within the end-to-end deadlifike original algorithm irRT DSSs

accommodated to compute intermediate deadlinedimear end-to-end task.
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There were two approaches discussed for intermeedieadline computation. In
the first approach (head-to-tail approach), thedtlea assignment starts from the
beginning of theEnd-to-Endtask. The deadline for the first subtask is defitgy
addition of the first subtask’s execution timelte End-to-Endtask’s release time, the
deadline for the second subtask is subsequentipadeiby addition of the second
subtask execution time to the first subtask deadland so on and so forth. In the
second approach (tail-to-head), computation staoi®m the end of théend-to-End
task. The last subtask deadline is assigned asrtido-Endtask’s deadline. The next
to last subtask’s deadline is defined by subtractb last subtask’s execution time

from its deadline, and so on and so forth.

To illustrate these approaches let us considereébtltowing example. LeEnd-to-
End taskE2E have periodR) and deadlined) equal to 10, and its relead®) be at
the beginning of its period. Let this task consibB subtasksT1 ST2 ST3J with
execution times§T1E, ST2E, ST3Equal to 2, 3, and 2, respectively. Then with the

first approach, we assign intermediate deadIBEsD, ST2D, ST3@&s follows:

STID=R+ST1E=0+2=2

ST2D=ST1D + ST2E=2+ 3 =5 and

ST3D=D=10

With the second approach:

ST3D=D=10
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ST2D=ST3D-ST3E=10-2=38

STID=ST2D-ST2E=8-3=5

As we can see from Figure 35, all free (slack) timallocated to the last subtask

in the chain in the first approach, and to the Brsbtask in the second approach.

Head-to-tail approach

R ST1D ST2D D, ST3D
ST1E ST2E
| | | Sﬂ3E | | | |
0] 2 5 \‘_‘_\v/—__—ffo
slack

Tai-to-head approach

R ST1D ST2D D, ST3D
ST1E ST2E | ST3E

0 5 8 10

slack

Figure 35. Intermediate Deadlines Assignment in0RSIS

Now let us consider the case of a non-linear distion taske2E (refer to Figure
36), with the same period, deadline and release &min the previous example. Let
the subtasks b8T1 ST2 ST3andST4where subtaskT2is a point of spawning. That
is, at the end of execution dbT2, subtasksST3 and ST4 start to execute
simultaneously. Let their execution times be STPEST2E =3, ST3E = 2 and ST4E

=3.
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With the first approach, subtasks intermediate bieeslwill be:
STID=R+ST1E=0+2=2
ST2D =ST1D + ST2E=2+ 3 =5 and

ST3D=ST4D=D =10

Head-to-tail approacg.l.2D

R ST1D ST4E D, ST3D, ST4D

ST1E ST2E ST3E — —

T T T = T T T T

0 2 5 \—Y—/J_O

Tail-to-head approach ST2D D, ST3D, ST4D

R ST1D ST4E
STIE ST2E ST3E

0 "4

slack

_—

7 8 10

Figure 36. Intermediate Deadlines Assignment fistribution Task

For the second approach, the algorithm needs tmduified a little. We start

from the end of one branch, let us §#3 Then:
ST3D=D =10
ST2D=ST3D-ST3E=10-2=8

Here, we need to take into account another branch:
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STAD=D =10

ST2D =ST4D -ST4E=10-3=7

For both subtaskST3andST4to complete before their deadlines, the deadline o
their predecessor subtaSH2needs to be assigned as the shortest of theselhab.

is:

ST2D =7, and now,

STID=ST2D-ST2E=7-3=4
Here again the slack time is accumulated eithévealast subtasks or at the first.
To spread this slack time more evenly, and henaelsx constraints along the
chain, we propose to allocate tasks’ deadlinesapqrtions to their execution times
(proportional assignment). For that we need to admg2E task execution time,
again taking into account its non-linear nature.f&othe branch constructed with
subtaskST3 we haveE2E execution time:
E=STIE+ST2E+ST3E=2+3+2=7
For the branch constructed with subt&3ik4 have we havE&2E execution time:
E=STIE+ST2E+ST4E=2+3+3=8
E2E execution time is assigned as the longest esethtwo. Therefore, for 8
execution time units we have 10 allocation timetgrthat is, for each execution unit
we can assign 1.25 allocation units. With this,iobsly, either Head-to-Tail or Tail-
to-Head approach will lead to the same intermediatalines (refer to figure 37).

Head-to-Tail computation:
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STID=R+ST1E*1.25=0+2*1.25=25
ST2D = ST1D + ST2E *1.25=2.5+ 3 *1.25 = 6.2%an

ST3D=ST4Db=D =10

Head-to-tail approach

ST1D ST2D D, ST3D, ST4D
R ST4E ‘

ST1E ST2E ST3E

T LYJ T T
0 zslack

o+
28
D
2 <
~ 9
:ié
o

Tail-to-head approach

ST1D
R

ST1E ST2E

Figure 37. Proportional Intermediate Deadline gsBient

Tail-to-Head computation:

ST3D=D =10

ST2D =ST3D-ST3E*1.25=10-25=7.5

Here again, we need to take into account anotlarchr

ST4D=D =10
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ST2D = ST4D - ST4E*1.25=10-3.75=6.25

So, ST2D = 6.25 and,

ST1ID=ST2D-ST2E*1.25=6.25-3.75=2.5

The choice of computational approach in this cdseulsl be based on other
parameters, such as the effectiveness of the ingolation. In our substitute for
RTDDS (see below) for intermediate deadlines comtput we implemented Tail-to-
Head approach.

5.3 System Evaluation

This section describes the empirical studies usadiacted to justify our approach
of Dynamic Real-Time Data Distribution Service.

5.3.1 Experimental Platform

Middleware consists oFAO Real Time ORBndTAO Real Time Event Channel

The experimental applications uS&0O Real-Time OREnd TAO’s Real-Time
Event Channeto communicate both between components requinmmntemediated
interactions on the same end system and comporwstisbuted across different end
systems. The software architecture also was sudpdseinclude theRTDSS
framework. The implementation of this framework veaparate from our project and
due to reasons beyond our control is not comp&itece the process of schedulability
lays outside of our project’s scope, and by knowtna; with the low CPU utilization
(<= 69%) our set of task is going to be schedulaf@kassic Rate Monotonic
Scheduling), we simply use “dummy” function callghenever we need interactions

with theRTDSS
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Our experimental application is running on a desktomputer, equipped with

Gentoo Linux i686 2.6.39-r3, installed with ACE @@&nd TAO 2.0.3.

The computer is running a gloddbming ServiceFor a single node simulation it
is running aGlobal DDSagent, &ource Local DDServer, and &eader Local DDS
server. For a multiple node simulation we add aoldi#ti Global DDSagentsSource
Local DDS and Reader Local DDSservers Multiple data-centric applications

providing or receiving different types of data afgo running on the computer.

5.3.2 Experimental Design

To describe our experiments we are using Goals{#ipmssMetrics-Experiments
(GQME) terminology [3].

The Goal was to evaluate TDDS middleware in terms of eménd delivery of
information with timing constraints and its suppft dynamic changes in real-time
configurations.

The followingQuestions and subsequentMetrics were defined:

1) How much overhead is there for TDDS middlewarpdrform real-time end-to-end

data distribution? This question was addresseaégsuring:

e Average time to establish a distribution chain.

e End-to-end latency to deliver data.

e Memory consumption to establish a distribution ohai

2) How well does TDDS middleware respond to dynacoicfiguration changes? Here

as well, average time to establish/destroy a tistion chain was measured.
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3) How well does TDDS middleware perform in ternfspeeserving data temporal

consistency? This was measured by the time rentpinimil data expiration at the

time of data access.

4) How well does TDDS middleware decentralize? Thias determined by

guantifying existence of single point of failuredapossible recovery methods if any.

5) How transparent is TDDS middleware from the agaplon? This was measured by
how much a user must know about the system to join.

6) How well does TDDS middleware scale? This wassuesd, by the effect on

system performance of increasing the number of dpafications (event types, data
providers and receivers).

Since, a lot of tests for questions 1, 4, 5, anWd&e performed after initial
framework development and described in a previopalllished thesis [2] we did not
repeat them in this work. Instead we concentratethe effect of including JIT block
to the system (questions 2 and 3). That is, orribigion deadlines, on temporal
consistency of delivered data, and the overheadedhdd the system by JIT
computation associated with maintaining data comscy. In the tests we measured
the time that was involved in establishing and mgstg a distribution chain. We
compared the time it took to establish the chaithwieadline computation in JIT
block, and without it, assuming the worst case agenand the minimum deadline
(OV — P). We also measured the time interval betwdistribution deadlines and
actual time of data delivery, and the interval edw data expiration and the time it

was accessed byReader These parameters were computed as follows:
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Time tsrO is recorded when starting ata Source Timetsrl is recorded when
the Data Sourcefinishes registration to th8ource Local DDSTimetrrO is recorded
when starting ufData ReaderTimetrrl is recorded when tHeata Readeffinishes
registration to th&keader Local DDSTimetrs = (tsrl —tsrO) andtrr= (trr1 —trr0) are
the times to establish a source and a reder. Faatlide assurance we record the time
ttd when a data is delivered byCansumeto aReader Local DDSThen we check it
against the Consumer deadline rt_info.deadline If the deadline is met, the
rt_info.deadline- ttd > 0. When aata Readereads the data from iReader Local
DDS, the time value associated withftir) is used to calculate the data validity. For a
data to be valid at the time of access,data.validity - ttr > O.

To destroy the chain timtsu0 is recorded when startindpata Source
unregistration. Timesul is recorded when thBata Sourcefinishes unregistration
from the Source Local DDSTime truO is recorded when startinData Reader
unregistration. Timerul is recorded when thBata Readerfinishes unregistration
from theReader Local DDSTimetsu= (tsul —tsu0) andtru= (trul —tru0) is the time
elapsed to destroy a source and a reader.

We performed the following set of test suits:

Test Suite 1: Baseline. Single Node / Single Data Source / I8irigata Reader.

Experiments 1-10 (with JIT). Experiments 11-20 fwilt JIT)

Test Suite 2: Single Node / Single Data Source / Multiple DRi@aders. Number of

readers increased to 5. Experiments 21-30 (with HXperiments 31-40 (without JIT)
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Test Suite 3: Single Node / Multiple Data Sources / MultipletBd&eaders. Number
of data sources is increased to 5. Experiments24@adth JIT). Experiments 43-44

(without JIT)

Test Suite 4: Multiple Nodes / Multiple Data Sources / Multiplzata Readers. Data

readers run on both nodes. Experiment 45 (with. BEXperiment 46 (without JIT).

For these experiments, we generated 10 random asepmrameters for Data
Sources, with values for periods and data validdyging from 100ms to 2000ms.
Then accordingly, we generated 5 sets of Data Rgmidameters for each of the Data
Sources. During the tests’ runs the Data SourndsDmta Readers come and leave

the system randomly.

5.3.3 Results

In this section we present the results of our tests

Test Suite 1. For the base line, we repeated experiments fdr eaten generated
Data Sources with one respective Data Reader fhmmpool for each Data Source.
Then, for the registration/unregistration time gsa for each party, we used the
means of the results from these ten experimentsthéoDeadline and Validity charts,
we used all data as-is. We received the followiegults (refer to Figure 38): the
average registration time of incoming Data Sourcedoth cases (with JIT, and
without) is within 17 ms: the average Unregistmatis within 8 ms. Since the Data
Sources are not affected by JIT computation, tieene difference in the performance.
Registration of incoming Data Readers in both casesompleted within 25 ms. It

takes just 3.7% more time to register a Data Reattarthe use of JIT computation,
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than without it. The un-registration for both cad$esshes within 8 ms, with 5.8%
overhead for the Data Reader with JIT. FiguresAB3how baseline performance in
terms of accurate data delivery and its validitpton the chart to the left represent
the differences between a deadline and actual efglittme, and the dots on the chart
to the right represent the difference between dalaity time and the time the data
was accessed. We can see that all differencegoasigve. That is, in every instance
the distribution is finished before its deadlinedavery time the data was accessed, it
was valid (the shape of the graph represents Dataiéts reading patterns). We can
also see that with JIT computation, the distributiteadlines are more relaxed, that is
some of them are longer. Longer deadlines meanttarbehance of system being

schedulable.

Registration/Unregistration Tim e

0.025

m DS w.JIT
0.02 A m DS
ODRw.JIT
ODR
0.01 W DS w JIT
o DS
W DRw JIT
04 O DR
Register Unregister

0.015

Seconds

0.005

Figure 38. Baseline (Registration/Unregistration)

92



Time to Deadline Time to Validity
07 1600000
08 temm=mmmm e e e 1400000 1
—e—DsSL
I 200000000400000000000004 ) 4 1200000
» pss 2 1000000
T 04 D4 o
5 —%—DS5 @ 800000 ¥
) 0000000000 00000000000000 %]
03 —e—DS6
3 o g 600000 'S
02 —=—Ds8 = 400000 fiEfEyLT
F@W DSID R LR
01 200000 *
0 (A A A i At it vt
1357 0UB B TP 2123 1 5 9 13 17 2125 29 33 37 41 45 49 53 57
Distributed, times Readings
Figure 39. Baseline with JIT.
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Figure 40. Baseline without JIT.

Test Suite 2: Within the second set of experiments, we ran eafcken Data
Sources, but now with all five Readers for each. the registration/unregistration
time we again used the means of the respectivédtseand for the Deadline/Validity

charts, we used all data as-is. We observed thatration/unregistration time for the
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incoming Data Sources, registration time for thestfiincoming Reader, and
unregistration for the last Reader to leave theéesysare similar to our baseline time
(refer to Figure 41). The average registrationtf@ Data Source is below 20 ms, for
the first Data Readers is below 25 ms. Averagest@tion time of incoming Readers
two through five, and then unregistration time @aRers one through four (they leave
the system in first—in-first —out order) is belowrs. This is due to the fact that at the
time these Readers enter and leave the systenengties are running and all
distribution chains are set up. An overhead impdsedIT computation in this set of

experiments was no more than 35 % across all read&% on average).

Registration Time Unregistration Time moSw. JT
@DSw.JIT mbs
0.025+ mDS 0.009 ODRLw.JT
ODRIwWJIT 0.0081 OCRL
0024 ObR1 0.007- W DOR2w. JT|
EDR2 w. JIT 0.006.
0.0 mDR2 0,005 gD
o | o oo
EDR4W.JIT gg BCRAwW.JT
0,005 EDR4 ’
ODRSwW.JIT 0.0014 mERs
ol mDR5 0 QDR w. JT
oo

Figure 41. Single Node. Single Data Source. Mudtiphta Readers.

From Figures 42 and 43, it can be observed thdt Wi computation, deadlines
are changing in the process of new readers entéhimgystem, and again they are

more relaxed. All deadlines are met, and all thadees access valid data all the time.
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Figure 42. Single Node. Single Data Source. Mudtiphta Readers. With JIT
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Figure 43. Single Node. Single Data Source. Mudtiphta Readers. Without JIT

Test Suite 3: For the single node multiple sources experimerdggam twice five
data sources with five readers each. We averaggstnaion/unregistration times for
all ten incoming Data Sources and for all fifty amsing Readers in the order of their

registration. Figure 44 presents our results.
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Figure 44. Single Node. Multiple Data Sources. gtData Readers.

These results go along with registration/unredistinatime we have already
observed, with average overhead imposed by Jiflisnset up being about 30%.

Figures 45 and 46 present our observations foriligion deadlines and data
validity checks for tests with JIT computation amithout it. On the figures we

combined results from both experiments in eacliget
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Figure 45. Single Node. Multiple Data Sources. hdtReaders. With JIT.

On the charts to the left the lines represent timdeadline for each of ten data

readers (five from each experiment). On the chi@artsght data points of one color
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represent times to validity at readings for eachwanty five Readers related to five
Data Sources in one experiment. We can observedhlalts here are also similar to
the above. All measurements are positive, mearmagdistributions complete before
their deadlines, which in case of JIT computatioslanger for some of them, and all

the readers always accessed valid data.
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Figure 46. Single Node. Multiple Data Sources. Nidt Readers. Without JIT.

Test Suite 4: For the final experiment we ran five sources ocheaf nodes one
and two with fifty data readers (five for each sm)rdivided between the nodes. With
this set up we had either two or three readersetwrh source on the node. We
recorded all registration/unregistration time réswnd then averaged them to build
our charts. For deadlines and validity we used mogs from all ten Data Sources
and all fity Data Readers. Figure 47 shows a hsligincrease in
registration/unregistration times compared to die tprevious tests. Here the
registration for incoming Data Sources is averagethin 20 ms. For the first
incoming Data Readers it is at 30 ms, and for do®sd and third Readers it is below
7 ms. Unregistration for Data Sources is compldathiw14 ms and for the readers it

is done within 10 ms. Since with our set up soméhefsecond Data Readers are the
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last to leave for their Data Sources on a nodeseeean increase in their unregistration
time, compared to the first Data Readers to leallkee average overhead due to JIT

computation runs at about 24% here.
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Figure 47. Multiple Nodes. Multiple Data Sourceaultiple Data Readers.

Figures 48 and 49 present our results for the eetig times and the validity of
data. The results here are similar to the onesave hlready observed in the previous
tests. With all the deadlines, either computechwifT or the worst case, met, the
accessed data is always valid.

The results of our experiments show that the Jliihmaation relaxes system
deadlines, the overhead associated with it falla heasonable range (averaging less
than 35%), across all the tests. And, that all DReaders always get valid data if it

was delivered before specified deadline.

Combining our results with the results publishedMhry Jie Mao [2], along with
system design and implementation, we can summahaeacteristics of our TDDS

middleware.
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Figure 48. Multiple Nodes. Multiple Data Sourceaultyple Data Readers. With JIT.
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Without JIT

The TDDS ensures timely and inerrant data deliemy a proper data provider to
a proper data recipient according to their requéets, with the guarantee of data

temporal consistency.
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The TDDS is completely decentralized, with Readecdl DDSs, Source Local

DDSs and Global DDSs, as distributed agents, rgnomeach node.

The TDDS is highly transparent. The service achgdhies by hiding all the details
of deadline computations, scheduling and actua datribution from the end user.
The end user just employs either Source or ReadealIDDS on their side, provides
their real-time parameters and an event type af tierest. After that the middleware

processes all the necessary steps to set up datawution.

The TDDS scales well. Addition of new distributi@mmains has no effect on

existing ones.

1. Schmidt, D.C., "Real-time CORBA with TAO (The ECORB)," Washington University at St.
Louis, 12 November 2013, http://www.cs.wustl.edohmidt/TAO.html, accessed 19 March 2014.

2. Mao, J., "Implementation of a Dynamic Real-Tibeta Distribution Service for Middleware
Systems," MS Thesis, Computer Science Departmentelsity of Rhode Island, May 2005

3. Basili, V.R., “Software Modeling and Measuremeéiitie Goal/Question/Metric Paradigm”,
Goal_Question_Metric.pdRetrieved fronhttp://drum.lib.umd.eduon March 19 th, 2014
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CHAPTER 6

CONCLUSION

6.1 Contributions

This thesis has focused on real-time data disiohufThis subject covers quite a
wide area, since there are many real-time diseihslystems with various parameters
and goals that require different types of data & dispersed. Since a better
understanding of the problem leads to a bettertisoluwe, by combining together
various characteristics of the systems, real-timsracteristics and data characteristics
defined the Real-Time Data Distribution Problem &paaxonomy. The Taxonomy
provides researchers and developers with a monelatdized way of looking at the
problems being addressed and solutions that miigtiteim. This part of the work was
published in [1].

Further, we defined two specific subspaces withenproblem space to address in
this work. They are static and dynamic applicatiavith the following main
characteristics: hard real-time with periodic tigniconstrains and consistent data for
the static system; and soft real-time with periddiang constrains and consistent data
for the dynamic system. We started with the statiation. We defined parameters of
Distribution, and proved their necessity for ensgrithe correctness of timely data
transfer. We developed Just-In-Time Static (JITigp@hm for computation of the

Distribution deadline. This algorithm combines Daaurces and Data Reader
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parameters, which ensures data temporal consistghepever it is accessed by the
Readers. We implemented and tested the systemreatHife parameters of military

command and control application. The results oftdsts show that our claim holds.
With the data delivered by the computed JITS deadiwhich with the static system
is always the case, since all the requirementk@ogn and scheduled a priori), it is
temporally consistent whenever it accessed by eéading applications. This part of
the work was published in [2].

After finishing our work on the static solution, weoved on to the dynamic. For
which we first reworked our static JITS algorithmdachanged it into a dynamic JIT
version that delivers the same result with a lessarputation overhead. This change
removed some extra computation and made the digorinore suitable for the
dynamic environment, where all computation is penked on-line. Then, we designed
and implemented the Timely Data Distribution Sesvitniddleware that, by
incorporation of JIT computation in its mechanisallpws to adjust Distribution
deadlines according to incoming Data Reader’s r&gu@ a dynamic fashion. The
Distribution deadlines computed with JIT can beglenthan the ones set by the worst
case assumption; that is the absolute data obpddity less the data distribution
period (OV — P). Longer deadlines, in their turnkendhe system more flexible in
terms of schedulability, with more tasks being ated. Our tests show that the
overhead associated with JIT computation averag@8%. The results also show that
when a system is schedulable and Distribution deesllare met, the Data Readers
that access data according to their own timing itamgs always read temporally valid

data. Summarizing all the results, we can charaeteyur Timely Data Distribution
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Service as a completely decentralized, highly parent and scalable data transferring

mechanism, with the data validity guaranty.

6.2 Comparison with Related Work

There are several areas applicable to RT Dataibusion. One of the first and
very extensive researched is the area of datastensy in real-time databases.

Starting from the HH algorithm[3], that sets datalate deadlines and periods to
be half of the absolute object validity (OV), tetMore-Less approach [4], where the
periods are longer than half of the OV, and thedtiea are shorter, which by using
DM scheduling maximizes CPU utilization, comparéHtd. Then the further work in
[5,6] considers earliest deadline first based MLLAWH and Deferrable Scheduling
(DS -FP), the work in [7] extends ML to distributegstems introducing transmission
delays of updating tasks. Later, to address vditalm transmission delays, work in
[8] introduces extensions to ML called Jitter-Basktbre-Less (JB -ML) and
Statistical Jitter-Based More-Less (SJB-ML). In dhis extensions, all extra
parameters are used to determine the deadlinedafsaupdatéf,,g, and then assign
the period Rupd according taDypg + Pupd < OV, whereDypg < ¥2 O\K Pypg. All this
work guarantees that data is temporally consistéenihe sink, or initial database,
where it comes from various physical devices, sennsmmeras, etc. It can’t provide
the assurance that data is still valid when itigdridhuted to the end point users. Our
work can be seen as extension to this. To assarddta freshness at the end point of
distribution the worst case deadline should be edetpadD =Dypg + Dworst, Where

Dworst 1S equal to the worst case execution time forisridution to be able to
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complete within the system. Then, the period ofatp@nd respectively of distribution
can be computed as aboRet D < OV. This will assure that even with worst case
temporally valid data can be physically distributedaving our distribution period,
we start from here and use our computation to ridaxvorst case deadlines and make

the system more flexible.

We guarantee the freshness of data whenever é¢cesaed by the client, and may
leave it inconsistent at some other times thdgs + P can be more tha®V. This
allows us to extend some of the distributions deadl and increase the chances of

system schedulability.

Another area applicable to data distribution, timatecent years has become an
established technology for a wide application greash as monitoring, tracking,
event detection, to name a few, is the Wirelesss@ehletworks (WSN). A large
amount of real-time data dissemination in wirekssssor networks research was done
at the University of Virginia (UVa) [9,10,11,12,13While authors addressed
deadlines of requests, and the temporal validity e@sidered in the sense that data
was reported before it expired— by correspondingfidence values, this, work
however did not provide assurance that the datstilistemporally valid when it
arrived to the requestor. In their recent work [&dihors presented a data abstraction
layer for collaborative 2-tier sensor network apgfions. The layer implements a
model-driven predictive replication mechanism, gwal of which is to maintain an
overall data consistency, by disseminating sengaoiates to the parties only when
data, predicted by an established model, is outsiflespecified data accuracy

threshold. Decreasing the amount of disseminatieads to decreasing CPU
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utilization, but for this approach to work data mhe continuous. In our work we do
not place restriction on data, and decrease CHZatibn by extending distribution
deadlines.

To address the needs of various types of applicatiequiring data dissemination
the OMG issued a specification for Data Distribati®ervice (DDS) [15]. Two QoS
policies supported by DDSs DCPS interface and edlaio our work are the
DeadlineQoS and a LifespanQoS. Where the DeadliSespecifies a period during
which the data must be distributed, and the Lifa§uzS enables middleware to delete
expired data. Based on these policies, there igayto define and enforce a deadline
within the period, which can lead to the situatwimen the previous data is stale and
deleted from the data space, but a new sampletideliwvered. Therefore we believe
that DDS can not guarantee the temporal consistehdgata. Our work can ensure
that the reading applications get valid data whenéwy access it.

The work in [16] presents an extension to OMG Dbé&led RDDS. RDDS tries
to achieve overall system data consistency by thearmof semantic-aware
communication, using predictive sensor models doligloer and subscriber sides in
the systems with data continuity. The approach hereery similar to the one
described in [14], except that it is built upon D&CiAstead of embedded databases. In

our work we place no restriction on data, and uggnal sensor updates.

6.3 Limitations and Future Work

We recognize that there are some limitations tontbek presented here. Some of

them are highlighted below and can be considered fature work.
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(1) The TDDS framework was supposed to work wite RTDSS framework to
enforce real-time scheduling. The RTDSS framewoiks wot completed by the
reasons beyond our control. Therefore it would é&eelficial to finish this project, and

to evaluate the system as a whole to ensure italb¥wenctionality and performance.

(2) Currently, we only allow one system-wide Dataf®e for each type of Event. It is
challenging but interesting to investigate a das#ribution service allowing multiple
Data Sources providing the same type of data inéoslystem, and delivering data
from a certain Data Source to certain Data Reaaersrding to some pre-set policy,
or reconnecting a Data Reader to another Souiite afiginal Data Source leaves the
system.

(3) It also would be interesting to accommodate dUr algorithm to different
DataSource — Data Reader patterns. For examptegiDataSourse produces data
much faster than the DataReaders need it, theldistm period could be set to n*P,
n={1,2,3...}. That could reduce the amount of ditions in the system, and decrease

the workload and amount of communication.
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Hall, 2008.
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P.R., DiPalma, L.P., Static Real-Time Data Disttido, Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium$RINA2004: 502-509.

3. Ho, S., Kuo, T., Mok, A., "Similarity-based loaddjustment for real-time data-intensive
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Francisco, CA, pp:144-153.
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