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ABSTRACT 

Ornithine decarboxylase (ODC) is the first and rate-limiting 

enzyme in the synthesis of polyamines, which play a regulatory role 

in nucleic acid and protein synthesis. The enzyme may be involved in 

normal and abnormal growth of the myocardium, in the relationship 

between mechanical stress and protein synthesis, and in the 

development of left ventricular hypertrophy (LVH). Results from this 

and other laboratories suggest that experimental diabetes has a more 

profound effect on mechanical function and cellular growth of 

hypertrophic heart muscle than it does on nonhypertrophic tissue. 

Diabetes is associated with reduced serum levels of both insulin and 

thyroid hormone. Both of these hormones are demonstrated regulators 

of ODC activity. Despite this, relatively little is known about the 

effects of diabetes on cardiac ODC activity and polyamine synthesis 

in the presence or absence of LVH. Therefore, we have hypothesized 

that: 1) ODC activity of hypertrophic left ventricle in spontaneously 

hypertensive rat (SHR) is higher than that of nonhypertrophic left 

ventricle in the normotensive rat strains, Wistar Kyoto (WKY) and 

Sprague Dawley (SD); 2) Untreated diabetes will reduce left 

ventricular ODC activity of SHR and of nonhypertensive rats, but its 

effects on the former will be greater in magnitude; 3) The effects of 

diabetes on left ventricular ODC activity, of either SHR or 

normotensive rats, will be preventable with insulin treatment, and at 

least partially preventable by thyroid hormone treatment, in vivo. 

Diabetes was induced in SHR and WKY by Streptozotocin (STZ) at 15 

weeks of age. Subgroups were treated with insulin or 
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triiodothyronine (T3). After 8 weeks of treatment, left and right 

ventricles were assayed for ODC activity, by measuring the rate of 

evolution of 14co
2 

from (1- 14c) L-ornithine. The results show that 

left ventricular ODC activity of nondiabetic SHR was not 

significantly different from that of either the WKY or SD 

normotensive rats. Streptozotocin-induced diabetes reduced left 

ventricular ODC activity to about the same extent in the hypertrophic 

SHR and in the nonhypertrophic WKY, depressing V without affecting max 

the apparent K of the enzyme in both strains. However, experimental 
m 

diabetes had no effect on right ventricular ODC activity in either 

the SHR or WKY strains. Both insulin and T3 treatment were partially 

effective in preventing the reductions in ODC activity caused by 

diabetes. The results show that the depression in ODC activity 

caused by untreated diabetes 1) Is selective for the left 

ventricle perhaps because of its relatively greater workload; 2) Is 

not selective for the hypertrophic ventricle in the SHR strain; and 

3) May be related, in part, to the effects of the hypothyroidism 

which attends diabetes. These results do not support a causal 

relationship between left ventricular ODC activity and the 

maintenance of hypertrophy, nor do they support a predisposition of 

left ventricular hypertrophy to influences of diabetes on ODC 

activity (Hypotheses 1 and 2). The results do support a 

participation of attendant hypothyroidism in the effects of diabetes 

on left ventricular ODC activity (Hypothesis 3). 
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ABSTRACT 

Ornithine decarboxylase (ODC) is the first and rate-limiting 

enzyme in the synthesis of polyamines, which play a regulatory role 

in nucleic acid and protein synthesis. The enzyme may be involved in 

normal and abnormal growth of the myocardium, in the relationship 

between mechanical stress and protein synthesis, and in the 

development of left ventricular hypertrophy (LVH). Results from this 

and other laboratories suggest that experimental diabetes has a more 

profound effect on mechanical function and cellular growth of 

hypertrophic heart muscle than it does on nonhypertrophic tissue. 

Diabetes is associated with reduced serum levels of both insulin and 

thyroid hormone. Both of these hormones are demonstrated regulators 

of ODC activity. Despite this, relatively little is known about the 

effects of diabetes on cardiac ODC activity and polyamine synthesis 

in the presence or absence of LVH. Therefore, we have investigated 

the possible role of ODC in LVH in the spontaneously hypertensive rat 

(SHR) and in the non-hypertensive Wistar Kyoto (WKY) and Sprague 

Dawley (SD) strains. We also examined the effects of diabetes on 

cardiac ODC activity in the presence and absence of LVH. The results 

show that left ventricular ODC activity of nondiabetic SHR was not 

significantly different from that of either the WKY or SD 

normotensive rats. Streptozotocin-induced diabetes reduced left 

ventricular ODC activity to about the same extent in the hypertrophic 

SHR and in the nonhypertrophic WKY, depressing V without affecting 
max 

the apparent K of the enzyme in both strains. However, experimental m 

diabetes had no effect on right ventricular ODC activity in either 
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the SHR or WK.Y strains. Both insulin and triiodothyronine (T
3

) 

treatment were partially effective in preventing the reductions in 

ODC activity caused by diabetes. The results show that the 

depression in ODC activity caused by untreated diabetes 1) Is 

selective for the left ventricle perhaps because of its relatively 

greater workload; 2) Is not selective for the hypertrophic ventricle 

in the SHR strain; and 3) May be related, in part, to the effects of 

the hypothyroidism which attends diabetes. 
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INTRODUCTION 

The polyamines - putrescine, spermidine, and spermine - play an 

important regulatory role in nucleic acid and protein synthesis and 

cellular growth (23, 47, 72, 73). The initial step in their 

formation is catalyzed by ornithine decarboxylase (ODC, EC 4.1.1.17), 

which converts ornithine to putrescine, and appears to be the 

rate-limiting enzyme for polyamine synthesis (44, 61). one is 

unique in that its half-life is approximately 10-20 minutes, the 

shortest of any known mammalian enzyme (40, 64). The activities of 

one and putrescine fluctuate rapidly and specifically in response to 

a variety of hormonal and metabolic factors that alter cell growth 

(73). Thus one is markedly increased in tissues in which growth is 

accelerated, and its activity is usually low when the rate of growth 

is slow (11). 

Cardiac hypertrophy is an early adaptive response to increased 

functional demand on the heart, such as pressure or volume overload 

(52, 80). The message by which increased mechanical stress is 

translated into increased protein synthesis and hypertrophy is not 

clear (60, 84). As a growth-regulating enzyme, ODC is a plausible 

point of control in the hypertrophy process. However, the extent to 

which ODC may contribute to the development and maintenance of 

myocardial hypertrophy is not well defined. The activity of ODC is 

normally higher in the left ventricle than in the right, which seems 

to be a reflection of the relatively greater work required of this 

chamber (6). A rise in ODC activity is a well documented biochemical 
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event in the development of hypertrophy in a variety of tissues (3, 

21). Previous studies have shown an increase in polyamine 

concentration and cardiac one activity in the hypertrophic response 

to aortic constriction (17, 40), catecholamines (3, 4, 9, 22, 30), 

thyroid hormone (12, 13, 45, 46, 54) and hypoxia (32, 55). The fact 

that stimulation of myocardial one activity precedes the development 

of hypertrophy suggests that increased polyamine synthesis may be an 

important regulatory component of cardiac hypertrophy (39, 40, 60, 

62). In fact, a temporal relationship has been described by 

Calderera et al. (10) between an increase in polyamine concentration 

which precedes an increase in RNA synthesis during the early stages 

of exercise-induced cardiac hypertrophy. In addition to these acute 

studies, the results of Ruskoaho et al. (60) show that the onset of 

left ventricular hypertrophy over time in the spontaneously 

hypertensive rat (SHR) model of hypertension is associated with 

elevated left ventricular ODe activity. Boucek et al. (7) have shown 

that changes in tension development alone in isolated rabbit 

papillary muscles can stimulate one activity. 

It is well known that diabetes diminishes protein and RNA 

synthesis (16, 43) and accelerates protein degradation (81) in a 

variety of tissues, including cardiac muscle. Previous studies in 

this and other laboratories have also shown that diabetes reduces 

heart size, and in the SHR model of hypertension may also reverse 

left ventricular hypertrophy (15, 58, 70). Despite this, relatively 

little is known about the effects of diabetes on cardiac ODC activity 

and polyamine synthesis in the presence or absence of hypertension. 

Indeed, the influence of diabetes on one activity in any tissue is 
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not well characterized. Levine et al. (36) and Brosnan et al. (8) and 

others (25, 59) have reported an increase in ODC activity in liver 

and kidney of diabetic normotensive rats. However, Sochor et al. 

(69) and Conover et al. (14) both reported profound decreases in ODC 

activity in liver and heart of diabetic rats which could be prevented 

with insulin treatment. The effect of diabetes on myocardial ODC 

activity has not been investigated in any model of cardiac 

hypertrophy. 

An attendant hypothyroidism, or "low thyroid state" (53), is 

often associated with human and experimental diabetes. 

Hypothyroidism alone decreases myocardial ODC activity (13), and 

thyroid hormone is an established regulator of myocardial ODC 

activity (12, 13, 54). Thus, studies of the effects of experimental 

diabetes on ODC activity should be designed to take into account the 

possible influence of attendant hypothyroidism. 

The central hypotheses of the proposed study can be stated as 

follows: 1) ODC activity of hypertrophic left ventricle in SHR, at a 

given age, is higher than that of nonhypertrophic left ventricle in 

normotensive rat strains; 2) Untreated diabetes of moderate severity 

and eight weeks duration will reduce left ventricular ODC activity of 

SHR and of nonhypertensive rats, but its effect on the former will be 

greater in magnitude; 3) Effects of diabetes on left ventricular ODC 

activity, of either SHR or normotensive rats, will be preventable 

with insulin therapy, and at least partially preventable by thyroid 

hormone treatment, in vivo. Secondary aims of the study include 

comparisons of left and right ventricular ODC activities of 
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nondiabetic SHR and normotensive rats, and analysis of the kinetics 

of ODC obtained from nondiabetic and diabetic rat left ventricle. 
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MATERIALS AND METHODS 

Experimental Groups and Treatments. Male Spontaneously Hypertensive 

rats (SHR) and age-matched normotensive control Wistar Kyoto (WKY) 

and Sprague Dawley (SD) rats were obtained from Charles River 

Breeding Laboratories (Wilmington, MA.). The animals were housed in 

temperature-controlled animal rooms (22°C) with a 12-hr light-dark 

cycle (8:00 a.m. to 8:00 p.m.). They were kept in group cages by 

strain and maintained on standard rat chow (Agway Inc., Syracuse, 

N.Y.) and tap water ad libitum. At 15 weeks of age, animals were 

matched according to body weight (BW) and blood pressure (SAP) within · 

strains and divided into either diabetic or nondiabetic groups. 

Diabetes was induced in the SHR and WKY rat strains via a single tail 

vein injection, under light ether anesthesia, of Streptozotocin (STZ, 

Sigma Chemical Co., St. Louis, MO.). The dose of STZ for each strain 

was adjusted in order to induce similar degrees of diabetes as 

assessed by serum glucose concentrations. Based on preliminary 

results, the doses used in this study for SHR and WKY strains were 45 

mg STZ/kg BW and 50 mg STZ/kg BW respectively. The ·sTZ was dissolved 

in citrate buffer (0.1 Mat pH 4.5) just prior to use. The 

nondiabetic animals were also anesthetized and were injected with a 

similar volume of citrate buffer. The duration of either untreated 

or treated diabetes was eight weeks and the extent of diabetes was 

monitored weekly by urinary glucose measurements (Diastix (R)) and 

verified by serum glucose and insulin levels at time of sacrifice. 
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A series of three studies, consisting of separate treatment 

groups, were carried out as follows (see Table 4): 1) A preliminary 

study of the effects of diabetes on left ventricular ODC activities 

in the SHR and WKY rats; 2) The effects of insulin and 

triiodothyronine (T
3

) treatment of diabetic SHR; 3) The effects of 

insulin and T3 treatment of diabetic WKY. In addition, kinetic 

analyses were performed in Study 3 as described below. The animals 

were divided into experimental and control groups as follows. The 

nondiabetic animals from both SHR and WKY consisted of untreated 

controls and those treated with daily administration of 3,5,3'

triiodothyronine sodium (T
3

). Those animals treated with STZ were 

subdivided into diabetic and insulin- and T3-subgroups. Daily 

injections of T3 (lOug/kg BW, Sigma Chemical Co., St. Louis, MO.) 

(74) and Protamine Zinc Insulin (I; 10 U/kg BW, Eli Lilly, 

Indianapolis, IN.) (75) were administered subcutaneously. This dose 

of T3 was selected in previous studies in this laboratory according 

to its ability to prevent diabetes- induced bradycardia and to 

restore low serum thyroid hormone levels of diabetic rats to normal 

(15). 

In vivo measurements. Systolic arterial pressure (SAP), heart rate 

(HR) and body weight (BW) were taken just prior to tail vein 

injections, and then four and eight weeks after STZ injection. A 

standard tail-cuff sphygmomanometer within a temperature controlled 

chamber (34°C) was used to measure SAP and HR, after the animals were 

prewarmed for 20 minutes (51). The SAP reported for each rat is the 

mean of at least six consecutive measurements. All measurements were 

recorded prior to the daily injections of T3 or insulin. 
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Serum assays. After eight weeks of diabetes (at approximately 23 

weeks of age), the animals were sacrificed by decapitation and their 

serum collected and stored at -20°C. Treated animals were always 

sacrificed 15-20 hours after their last daily injection. Serum 

titers of glucose were determined by the glucose oxidase assay 

(Sigma) and used to evaluate the degree of diabetes. Animals were 

classified retrospectively as diabetic if serum glucose values 

exceeded 300 mg/dL. Radioimmunoassays were used to determine serum 

insulin (Micromedic Systems Inc., Horsham, PA.) and total T3 and 

total thyroxine (T4 ) concentrations (Cambridge Medical Diagnostics, 

Billerica, MA.). Rat insulin was generously supplied by Dr . R. 

Chance (Eli Lilly) and was used as the standard for the insulin 

assays. 

Enzyme assays. The heart was quickly excised, rinsed in ice cold 25 

mM HEPES buffer, pH 7.2 

(N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid, Research 

Organics, Cleveland, OH.), and blotted dry. The left ventricle with 

septum was carefully isolated from the right ventricle and each 

weighed separately. The left ventricle was diced and a 5% homogenate 

prepared in hypotonic 25mM HEPES at pH 7.2, using a Bio-Homogenizer 

(Biospec Products, Bartlesville, OK.) and centrifuged at 36,000g for 

20 minutes. Triplicate aliquots of the supernatant fluid were used 

as the source of the enzyme. Right ventricles were quickly frozen in 

0 liquid nitrogen, stored at -80 C and assayed later. 

The activity of ODC was determined by a modification of the 

procedure of Russell and Synder (61). The assay is based on the rate 

of evolution of 14co2 from (1- 14c) L-ornithine (Amersham Corp., 
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Arlington Heights, IL.). The supernatant fluid was added to the 

reaction mixture in a 7 mL glass vial sealed with a rubber stopper 

through which was suspended a plastic center well (Kontes Glassware, 

Vineland, NJ.) containing 0.35 mL of lM KOH and a small piece of 

filter paper. The assay mixture contained the following at the 

designated reaction concentrations in a final volume of 0.5 mL (all 

reagents from Sigma): dithiothreitol, 0.5 mM; pyridoxal phosphate, 

0.05 mM; sodium bicarbonate, 3.0 mM; (1- 14
c) L-ornithine, 25 uM,200 

uM, or 400 uM (0.1 uCi; approximately 16,000, 2000, or 1000 

cpm/nmol); and enzyme preparation, 0.3 mL, equally approximately one 

mg of protein. (Values for left ventricular ODC activity at 200 µM 

and 400 uM substrate concentration are in Appendix). In the kinetic 

studies (1- 14
c) L-ornithine was isotopically diluted with unlabelled 

L-ornithine to achieve the desired concentrations (6.25 to 300 uM; 

approximately 64,000 to 1,350 cpm/nmol). After diluting the (1- 14
c) 

L- ornithine, the open vial was gently stirred at room temperature in 

a fume hood for one to two hours in order to release free 14co
2 

and 

minimize background (78). Assay blanks contained 0.3 mL of 25 mM 

HEPES in place of cardiac enzyme supernatant and normally averaged SO 

cpm/tube/hr. The lowest signal-to-noise ratio was usually in the 

range of 300 to 500 cpm above background for 25 uM ornithine and 150 

to 200 cpm for 200 uM ornithine. 

The reaction was allowed to proceed for one hour at 37°C and was 

terminated by the injection of 0.3 mL of 3.0 M citric acid through 

the rubber stopper. The 14co
2 

generated from the decarboxylation of 

(1- 14c) L-ornithine was distilled into the center well during a 

second incubation of one hour. Approximately 96% of the generated 
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14co2 was recovered in one hour (see Appendix). The center wells 

were transferred to scintillation vials for quantification of 

radioactivity (counting efficiency - 85%). Preliminary experiments 

verified that the rate of 
14co generation was linear with time and 2 

enzyme concentration (see Appendix). Activity of ODC is expressed as 

pmol of 14co
2 

generated/hr/mg protein in the cell-free supernatant 

fluid after determination of protein content by the Lowry method 

(37). 

Statistical analysis. The effects of diabetes and the hormone 

treatments were evaluated by one- or two-factor analysis of variance 

(ANOVA) with repeated measures when appropriate, and the Student 

Newman-Keuls test (Statistical Analysis Systems, Cary, NC.) for 

multiple comparisons. Straight lines for kinetic analysis were 

determined by linear regression. A level of significance of p < 0.05 

was considered sufficient. Lower probabilities were not reported. 
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RESULTS 

Serum assays. The effects of STZ-induced diabetes of 8 weeks 

duration on measurements of serum glucose, insulin, T3 and T4 of SHR 

and WKY rats are swmnarized in Table 1. Injection of STZ increased 

serum glucose, and reduced serum insulin of SHR and WKY rats to the 

same extent. By these criteria, the degree of diabetes was 

equivalent in both strains. The diabetic animals of both strains 

were also characterized by depressed serum T
3 

and T4 levels. The 

magnitude of attendant hypothyroidism was about the same in the two 

diabetic groups, but the T
3 

levels of nondiabetic SHR were 

significantly higher than those of the nondiabetic WKY. 

Treatment with T3 had no effect on serum glucose or insulin 

levels of any of the experimental groups (Table 1). Treatment of 

diabetic SHR with T
3 

restored the depressed serum T
3 

levels to 

normal, and also aggravated the decline in serum T4 , probably by 

inhibiting TSH production by the pituitary and T4 secretion from the 

thyroid gland. T
3 

treatment of nondiabetic SHR had the same 

depressing effect on T4 levels, but had no effect on the other serum 

measurements. However, the same dose of T
3

, when administered to 

either nondiabetic or diabetic WKY, significantly increased serum T3 

levels as well as exacerbating the decline in serum T4 levels. 

Insulin treatment of diabetic SHR did not correct the 

hyperglycemia although it caused a pronounced increase in serum 

immunoreactive insulin activity (Table 1). Insulin treatment did not 

restore serum T
3 

and T4 levels to normal. In contrast, treatment of 
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diabetic WKY with the same dose of insulin effectively reversed the 

hyperglycemia and depressed serum insulin levels, and corrected the 

reductions in serum T3 and T4 levels. 

Arterial Pressure and Heart Rate In Vivo. Nondiabetic SHR were 

hyper-tensive and tachycardic compared to nondiabetic WKY and SD rats 

at both Week 0 and Week 8 (Table 2). Diabetic SHR were characterized 

by depressed SAP and HR after 8 weeks, confirming previous results 

(58). Diabetes had no significant effect on either SAP or HR in the 

WKY strain. Treatment of diabetic SHR with either insulin or T
3 

was 

sufficient to prevent the decrease in both SAP and HR. Treatment of 

nondiabetic SHR with T3 had no effect on either SAP or HR, but 

administration of the same dose of T
3 

to diabetic and nondiabetic WKY 

rats did cause significant elevations in both SAP and HR. 

Body and Heart Weights. Left ventricles of SHR were hypertrophic, 

both relatively (LVW/BW) and absolutely (LVW/RVW) compared to left 

ventricles of the nonhypertensive WKY and SD rats (Table 3). 

Diabetes reduced BW, left ventricular weight (LVW), and right 

ventricular weight (RVW) of SHR, but did not have a significant 

effect on indices of left ventricular hypertrophy . Diabetes reduced 

BW in WKY rats but had no effect on left or right ventricular 

weights. The effects of diabetes on heart weights (LV and RV) were 

more pronounced in the SHR than they were in the WKY strain. 

Insulin treatment of diabetic SHR either partially or fully 

restored BW, LVW, and RVW, but had no effect on LVW/BW or LVW/RVW 

(Table 3). Insulin treatment effectively restored BW of diabetic WKY 

rats. Treatment of diabetic SHR with T3 caused a slightly greater 
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decline in BW and an increase in LVW, leading to a restoration of 

LVW/BW. Treatment of nondiabetic SHR with T
3 

increased RVW 

significantly, and increased LVW/BW. Treatment of nondiabetic and 

diabetic WKY with T
3 

induced a relative left ventricular hypertrophy 

(LVW/BW), due apparently to a reduction in body weight. 

Ornithine Decarboxylase Activity. Left ventricular Ornithine 

Decarboxylase (ODC) activity in 23 week old nondiabetic SHR was not 

significantly different from that of either the WKY or the more 

outbred SD rat strain (Table 4, Study 3), confirming previous results 

(60). Diabetes reduced left ventricular (LV) ODC activity in both 

SHR and WKY to about the same extent (Table 4, Studies 1, 2, and 3). 

Insulin treatment prevented the decline in LV ODC activity in the WKY 

(Study 3), but not in the SHR group (Study 2). Treatment with T3 was 

partially effective in preventing the decline in LV ODC activity in 

both the SHR and WKY strains (Studies 2 and 3). The results of Table 

4, obtained at a substrate concentration of 25 uM, were confirmed at 

a saturating concentration of 200 or 400 uM ornithine (see Table 6, 

Appendix). Right ventricular ODC activity was not significantly 

affected either by diabetes or by any treatment (see Table 7, 

Appendix). The activity of the crude enzyme preparation seemed to 

display Michaelis-Menten kinetics in both the nondiabetic and 

diabetic state (Figure 1). The inset in Figure 1 depicts the 

Lineweaver-Burk plots for nondiabetic and diabetic SHR. It 

demonstrates that diabetes caused a decrease in V , but had no max 

effect on the apparent K for ornithine, in the SHR strain. A 
m 

similar pattern was evident in the WKY strain (Table 5). 
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TABLE I. Serum glucose, insulin, triiodothyronine and thyroxine levels of 
nondiabetic, diabetic and treated SHR, hKY and SD. 

Strain 
Group 

SHR 

Nondiabetic 

Diabetic 

Diabetic + T
3 

Diabetic + I 

Nondiabetic + T
3 

Nondiabetic 

Diabetic 

Di;; bet i.: + T 
3 

Di.;l:octic + 

SD 

\'ond i 1; bl! tic; 

11 

12 

8 

6 

9 

6 

12 

11 

') 

Glucose 
(r.ig/dl) 

131 ± 164> 

633 + 55'" 

666 ± 77"' 

676 + 42* 

170 + 23 

636 + 60;': 

176 ± 1.8 

187 + 2) 

160 + l.~ 

Insulin 
(µU/r.il) 

83 ± 22 

20 ± 10* 

31 ± 14* 

193 ± 74'"* 

117 ± 78 

23 ± 6* 

.;1 ± 29* 

> ;oo .... 

161, ± 57 

l·~ l ± 37 

T 
(ngfdl) 

112 + 224> 

·~6 + 12* 

125 + 45 

61 + 18* 

101 ± 21 

86 ± 154> 

86 ± 12 

T, 
(pg/dl) 

0. I 7 ± 0. 11 '""' 

0. 21 ± 0.11"'"' 

3.05±0.40"' 

0.03 ± 0.01''"" 

1. ;o ± o. 61 

J.35±0.')7<!> 

V;l1u0s :1rr! r~e.1ns ±SD, 0bt:.iir.0d 8 \..'et-:ks aftc:r init:iat·i1)11 of di.1hc:t.c:s or 
tn".Jf:nt:Jlt frc;:l :;nin.il .s USQd jn StudiC'lS ~and J. r . ~, triied.0tllyr0ninc:; r.',' 
th:1r,);.:inc:; r' pro~:~r.licc zir:c: insulin. 

Signific:.;ntly diffl~1·1:nt frr)n the ne1~cii :i tC· L ) c gl·c;1!p (vithin st.1·.1in; p 
·:::':Sl};nlfic:~ntl:v diffpn;nt fn:-11 t:~~e 11c1~Jjab,"! Lic .: nd di a bc! tic grl~1:p.::; 

C.i i r hi 11 st r .1 in ; p < I) . ll 'i ) . 

< 0.05). 

1> Si~~nif 1 c:1r:t : l:; ... iif1t:r1)nt: f rf' l:l ::,,ndj.:\.:i:itic ~n-•1p.-..; (11 : l\~'l'EI1 :-:ti-.1i11s; i) <.. 0.US). 
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TABLE 2. Systolic arterial pressure and heart rates of nondiabetic, diabetic 
.;nd treated SHJ<, \.'KY .;nd SD. 

Strain 
Group 

Nondiabetic 

Diabetic 

Diabetic + t
3 

Diabetic + I 

::-londiabetic + t
3 

:\ondiabetic 

Di2betic 

Diabetic + r
3 

DLil:etic + 

:-lcr.diabetic + T 
3 

S 1l 

n 

12 

8 

6 

9 

6 

12 

11 

7 

SAP (r.ll:lHg) 
Week 0 ~eek 8 

175 + 16.P 198 ±: 13.P 

179 + 2!. 14·~ ±: 15* 

185 ± 16 18!. + 26 

175 ± 16 191 ± 13 

174 ±: 18 203 ±: 1-" 

127 + 11 1-'<3 ±: 11 

1211 ±: 11 I 2'l ±: 9 

127 + 9 

128 + 18 lid .:!: l f) 

12!1 + 9 

111 + l.'.'l .:!: 1-'1 

HJ< (beats/min) 
\,'eek 0 

399 + 32.P 

389 + 26 

374 ±: 27 

379 ±: 25 

402 ±: 20 

29!. ±: 19<1> 

310 ± 12 

307 .:!: 17 

301 ±: 12 

~21 + 20 

363 + 25¢ 

\.'eek 8 

468 + 37 

:oo ± 22r:> 

270 ± 18 

351 .:!: 26r:> 

\! :1ll~es :1n~ n1e:;1~s .:±:SD, l:bt.3)ned b1~fon? (\,\:i::..:. 0) .1n(i 8 • .. :i.?eks .ifll~r initiation ,)t 
di::J-:12.t:,~s nr trci,:t1~ent. fn)i.l ani;:i.sls u~1~d in SU:dies 2 .-i1:1l 3. 5/..P, sy~tolic 

.1rtcrial pi:esSt!re; HH, heart rat~; T.), triici.!~")1 hyro!1inr~; [, prot..:r.irh? zinc 
j 11 ~~I) ill . 

.. Slg11i fic:.-:ntl:-' diffGrl~nt f1cr.i the ;;(:ndi;:bt.:r-.ic :~ro11p (\Jif·hin ~tr.1i11; p < 1J.USJ. 
~·: ·::si~~nific.:ntly ,jjffQrent fr1~n thl? 1~endl.:hr:tic .:nd. di.Jbet:)c grc1!ps 

( ;.· i t. Ji i 11 St:·-' j 11; p ( I) . 0 ')) . 
•i> 1 )i!:nifi~:.1ntl:.r diffen.:nt fr1~r.i r;1 :· ndi;d;1:t_~i: grc_:.; 1ps (h2t~· c:1;11 s tr.,ins; p < O.U5). 
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TABLE 3. Body and heart \.:eights of nondiabetic, diabetic and treated SHR, \..'KY 
and SD. 

Strain ew LV RV LV/RV LV/B\./ 
Group 11 ( g) ( ng) (r.ig) (ng/mg) (ng/g) 

SHR 

Nondiabetic 12 3~2 ± 31¢> 980 + 92<!> 202 ± 27 !-4. 9.~ ± 0. 77<1> 2.87 ± 0.14¢ 

Diabetic s 191 ± 23"' 510 ± 69* 133 ± 26"' 3.95 + 0.91 2.68 ± 0. 17 

Diabetic + TJ 6 179 ± 24;': 571 ± 91 "' 11,3 ± 33"' !" 11 ± 0. 76 3. 18 ± 0. 18"'"' 

Diabetic + I 9 299 ± 23 i56 ± 65'""' 191 ± 27 1,. 0 l ± 0.56 2 .5 3 ± 0.13 

~ondiabetic + T1 6 331 ± 30 1013 +118 21'3 ± .'~ 4 ;'; ~·: !, • 11 ± 0.91 3 .08 ± 0. 25*"' 

\..'KY 

Nondiabetic 12 1,03 ± 25<!> 903 + 61¢ 229 ± .~ 1 1,. 01. ± 0. 70 2. 21. ± 0. 10<1> 

Diabetic II J.',O :!: 2.',;'; 7 'J6 .!:. 83 217 ± .',() 3. i 5 ± 0.59 2.36 + 0. 15 

Diabetic + Tl 30.'i + 1,Qo'; 890 ± 35 233 ± :n 3. 31, + 0 .8 1 2. 97 .!:. 0 . .'~ 7 ;·,~·: 

!)iabetic + !,JI ± 38 961 :!: 115 2.5·'• ± 73 J.97 + 0.87 2.n "" 0.08 

~c"n diab:t ic + T 
J 

~81 + :'.6 JQ;6 ± 151 ;or; ± <;O J.60 .!:. 0 ;) ? ~I 
~. •.·i + :J. 61•"'"' 

Si) 

:\ond iab"t ic ') 63l + 69'!> iO'? I ± 33<1> 309 ± 5S<l> J.62 + I). 53 1. 71 .!:. 0 . 11<:> 

\'al11p,; .!n~ 11eans ! <:D, {'bt.i i ;11')d 8 \..'CPkS .if t:1 : r initiation ()f di.~ hc:tE.:is or 
trP.;~tr1G11t. f l"Oi:l .-: 11 j r:;1 ls u:oed in St~dil~S ?. :1r:d l. Tl' l : riictiot·hyrc11int~; I' 
rrotami n1'? r. i n1: i r: "1;] in. 

Sig:1ifoc.-,ntlv .ii r f1"'n~nt f l"Ol!l t he~ i1(' 1H1 i, d,r:.t j <.: group ( 1.•i l hi n - t ra i 11; il < '). 05). 
,.,*Sig;1i fic.:;nt J:J .~ 1 l f.~rcnt r rori t hl? nondi :Jb<:t il: .1nd di a bt: tic g:·1'l!pS 

(".Ji th i fl st· r:1 i :1; ;) ( 0. 05) . 
·t> S jg n] r· i l: :~ n t· J :1 d j ff(;l"t?!~t f rl~l:i ;11::ind i.1h~1 j {~ gr~)\ipS (bet \..'tll":ll ~; t. J' .ii:: s; p < o .. J5). 
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TABLE 4. Left Ventricular ODC activity in non~iabetic, diabetic and treated 
SHR, \..1\Y and SD rats. 

Strain 
Group 

SHR 

~ondiabetic 

Diabetic 

Diabetic + I 

~ondiabetic + r
3 

t\'ondiabetic 

Diabetic 

Diabetic + T
3 

Diabetic + 

~fond i:ibet ic + T 
3 

SD 

\'cnJi.ibnr. ic 

STUDY 1 

123 

35 

99 

20 

I.EFT \"E\'HICULAR ODC ACTIVITY 
(pmol co

2
/hr/mg protein) 

n STUDY 2 n 

3 JOO + 16 8 

2 56 + 22"'' 5 

71 + 27'"" 6 

,,3 + 14'°' <] 

97 + 18 6 

2 87 + 23 8 

... I.') + 20"" 

STUDY 3 

66 + 13 

24 + 10"'' 

61 + 13 

~· •. ·.f + 1 J"' 

.'~ 2 ~ J.',~ .. ·, 

52 ~ 20 

; () :+: .'S 

li6 + l.'1 

V.11uP.s :i re '.7\P..-;nc; + SD f:'~•t.1!!~t~d H ,,,_.Q( ~ k~ :1ft:i:r i11it.i.J.ti1~:1 ot dj:;bt~t·t~s {)l' 

trP. ::. t ::H!lltS. f., 1:r)i1>d0 1h:.;rcnin1'll; f, ~)l"\)1.,1mine :~}r:t: jn~11l~;1. 

·· Si~nlfic:311ti:1 differPnt fr1)1a tht~ :'lt):1.lial:l~L)c gr,J11p (1..;it:hi11 ·nr.1in; 
p < I). 05). 

···· Sjgniflcantly ,jjff1?rEnt. fr..-'n t.}H~ 1~1);~di.1b~t · ic .in d di..!i.:1:·ti1.: g1·r'~ps 

(wilhi11 s :r.li11; p < 0.05). 
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Figure 1. Ornithine decarboxylase (ODC) activity of nondiabetic and 
diabetic SHR left ventricle, at various substrate 
concentrations. Inset: Lineweaver-Burk Plot of left 
ventricular ODC activity. 
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TABLE 5. Left ventricul.:;r ODC kinetics in nondiabetic and 
diabetic SHR, \;).:y and SD rats. 

Strain Kn 
1

, Vmax 
Gr cup Jl ( µM) (pmol "co

2
/hr/mg prot.) 

SHR 

Nondiabetic 1, 26.3 ± 9.9 111. 4 ± 21.5 

Diabetic J 23.7 ± 5.7 51. 2 ± 8. 8'
0

' 

1-'KY 

~ondiabetic 
,, 26.0 ± 9.6 118. 5 ± 12. 7 

Diabetic .', 31. 6 ± 7. l 61. 0 ± 13. 2·:, 

Va.lues are neans ± SE!1, cbta.ined 8 weeks after initiation of diabetes or 
trcatr:ients. 
'' Signific~ntly different from the nondiabetic group ("1ithin strain; p <0.05). 
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DISCUSSION 

The first two related hypotheses of the proposed study, that ODC 

activity of nondiabetic, hypertrophic spontaneously hypertensive rat 

(SHR) left ventricle would be higher than that of the nonhypertensive 

rat strains, and that diabetes would exert a selective effect in the 

SHR, were not supported by the results. The rationale for the 

hypotheses was derived, in part, from the assumption that ODC 

activity could be associ~ted with both the development and 

maintenance of left ventricular hypertrophy in a variety of 

experimental models (3, 4, 10, 13, 17, 30, 40, 54, 60). SHR exhibit 

a relatively slow progressive increase in arterial pressure and left 

ventricular mass (52, 80, 84), characterized by a thickening of the 

left ventricular wall (left ventricular hypertrophy). Thus, this 

model of hypertrophy is similar to the cardiac alterations seen in 

essential (idiopathic) hypertension in humans (77, 80). 

Diabetes affects a number of variables which conceivably might 

influence the course of hypertrophy development in the left 

ventricle. One proposed etiologic factor in the development of 

hypertensive hypertrophy in the SHR model is an increase in either 

the activity of, or the myocardial responsiveness to, sympathoadrenal 

influences (1, 83). Catecholamines, the mediators of sympathetic 

activation, stimulate myocardial ODC activity and induce left 

ventricular hypertrophy (4, 9, 22, 30, 76). One consequence of 

untreated diabetes is interference with sympathetic activation of 

cardiac muscle, characterized in part bY. a reduction in the density 
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of beta adrenoceptors (16, 24, 79). Another proposed stimulus of 

cardiac ODC activity is physical stress on the ventricular wall (7). 

Left ventricular hypertrophy results in part from elevated wall 

stress secondary to abnormally increased total vascular resistance 

(80). Previous studies from this laboratory and others have shown 

that diabetes reduces arterial pressure of SHR (15, 58, 70), and thus 

would likely relieve the pressure load on the left ventricle. The 

depressor effect of diabetes in SHR was confirmed in the present 

study (Table 2). The earlier studies also showed that diabetes 

caused a relatively more pronounced reduction in whole heart and left 

ventricular m~ss in SHR than it did in the WKY strain, associated 

with an inconsistent reversal of left ventricular hypertrophy (15, 

58). 

The only available study of ODC activity in nondiabetic SHR 

myocardium was reported by Ruskoaho et al (60). They observed that 

left ventricular (LV) ODC activity was elevated in the SHR, relative 

to that of the WKY, only in young animals during the development of 

left ventricular hypertrophy. However, after left ventricular 

hypertrophy was established, beginning at about 20 weeks of age, the 

ODC activities of SHR and nonhypertensive WKY rat left ventricle were 

not different. The results of this study (Table 4), confirm those of 

Ruskoaho et al. (60). At 23 weeks of age, the activity of LV ODC in 

SHR was similar to that of the WKY and the more outbred SD rat. The 

results also show that the effect of diabetes on ODC activity was 

approximately equal in magnitude in the hypertrophic SHR and 

nonhypertrophic WKY left ventricle (Table 4). Thus, hypertrophy did 

not seem to predispose the left ventricle to the influences of 
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diabetes on LV ODC activity. These results are not consistent with a 

role of increased ODC activity in the maintenance of left ventricular 

hypertrophy in the SHR. 

Although diabetes did not exert a selective effect on 

hypertrophic myocardial ODC activity, it did exhibit a preferential 

action on the left ventricle versus the right in both the SHR and WKY 

rat strains (Table 4 and Table 7, Appendix). The data confirm and 

extend previous results from other laboratories, which showed that 

untreated diabetes depressed myocardial ODC activity after 8 days and 

4 weeks (14, 25, 69). However, these earlier studies did not 

distinguish between left and right ventricular ODC activity. The 

present results also seem to show that the apparent differences in 

ODC activity between left and right ventricles, present in 

nondiabetic animals, disappear after imposing chronic, untreated 

diabetes. The difference in workload between left and right 

ventricle "is much greater than the incremental increase in workload 

imposed on the left ventricle by hypertension (26). Even acute 

elevations in workload can stimulate ODC activity (7). In general, 

the data support the concept that myocardial ODC activity may be 

regulated by mechanical and hormonal influences. 

Stimulation of myocardial ODC activity by a variety of stimuli 

has been shown to precede the development of hypertrophic responses, 

and suggests that polyamine synthesis may be an important regulatory 

component of cardiac hypertrophy (9, 10, 17, 22, 30, 39, 40, 45, 60, 

62). It is now well established that virtually all stimulatory or 

trophic hormones cause an increase in ODC activity in their 
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appropriate target tissues (2). Although, the mechanism of one 

regulation has not been well defined, several have been proposed. 

First, as mentioned earlier, an increase in one activity in 

various tissues may be the result of an increase in the amount of 

enzyme protein which, in turn, results from either a decrease in 

degradation or an increase in synthesis of the enzyme, or both (61). 

This mechanism is supported by an observed accumulation of onc-mRNA 

in mouse kidney which had been induced by androgens (31, 64, 68). 

Such regulation by alteration in the rate of enzyme protein synthesis 

or degradation is unusual in mammalian cells. Regulation is usually 

accomplished by posttranslational modification (47), such as 

phosphorylation, thiol modification, and related mechanisms. In 

order for rapid changes to occur by the former mechanism, the protein 

must turn over rapidly. The bulk of the available data indicates 

that one has a half-life of approximately 10-20 minutes (40, 65, 67). 

Insulin has been shown to increase one activity in various cell 

cultures (5). This increase is due to the formation of new one mRNA 

and a subsequent rise in one protein (5). Mallette and Exton (38) 

observed an increase in liver one activity during ex vivo perfusion 

with a pharmacological dose of insulin. Finally, Conover (14) and 

Sochor (69) both found that insulin could prevent the decrease in 

cardiac one activity due to diabetes. However, it should be noted 

that the insulin-treated animals in these two studies were profoundly 

hypoglycemic. Insulin-induced hypoglycemia can markedly increase 

sympathoadrenal activity, which can increase cardiac one activity. 

Consequently, the prevention of the diabetic decrease in cardiac one 

activity may be a direct or indirect effect of insulin. 
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Second, some hormonal influences may affect the affinity of ODC 

for its substrate. Lau and Slotkin proposed that increases in 

cardiac ODC due to acute isoproterenol or T
3 

treatment resulted in 

the appearance of a form of the enzyme with an increased affinity for 

ornithine (33, 35). This suggests that the stimulation of cardiac 

ODC occurs through a Km shift in the absence of any increase in the 

number of ODC molecules. Millan (41) reported that both the K and 
m 

V of ODC were decreased in neonatal rat heart following hypertonic max 

saline injection. No changes were found in liver and other tissues, 

thus supporting the hypothesis that myocardial ODC may be under 

unique regulatory control. However, Flamigni et al. (19) observed a 

marked increase in V , with no change in the K , of myocardial ODC max m 

from rats treated with isoproterenol. Thus, the exact role of 

changing affinity states as a point of regulation remains unclear. 

Third, regulation of the enzyme may involve the expression of 

more than one isoform. Flamigni et al. (18, 19) also showed that two 

chromatographically distinct forms of ODC exist in the rat heart. 

Separable forms of ODC have been detected in other tissues (56), and 

do not seem to differ in their affinity for ornithine (42), but do 

differ with respect to their half-lives (49). Both forms are 

increased after isoproterenol treatment to the same extent, and thus 

the two forms cannot reasonably explain the isoproterenol induction 

of ODC (19). However, the analytical methods used do not eliminate 

the possibility of purification artifacts due to the high level of 

pyridoxal phosphate used during the extraction (48). When analysed 

by gel electrophoresis, no heterogeneity of ODC protein was observed 

with respect to size, but two forms were detected which varied 
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slightly in charge (65). The possible role of ODC isoforms in the 

hormonal regulation of the enzyme is not known. 

Finally, ODC antizymes may be targets of regulation. Canellakis 

has demonstrated the existence of a non-competitive protein inhibitor 

of ODC (antizyme) in various cell types, which is induced by 

polyamines (11). Recent evidence supports the existence of an 

antizyme molecule in the rat heart treated with putrescine and 

indicates that a significant amount of ODC occurs in an inactive, 

complexed form (20). The absolute and relative levels of ODC 

protein, as well as activity, may vary with different conditions or 

stimuli. The antizyme appears to have a half-life comparable to ODC 

and thus could constitute a sensitive modulator of enzyme activity 

(27). Also, the decline in ODC protein after exposure to exogenous 

polyami~es has been shown to occur more rapidly than the fall when 

protein synthesis is blocked by cycloheximide (11). This observation 

has led to the suggestion that another physiological role of antizyme 

may its involvement in the initial step of degradation of the ODC 

protein (48), perhaps by making ODC more susceptible to proteolytic 

cleavage (27). The development of specific antibodies and RIA 

techniques has permitted more thorough investigation of the mechanism 

of rapid ODC induction. No evidence has been found for the 

regulation of ODC enzyme protein by post-translational modifications 

or by changes in the content of activating or inhibitory factors. 

Seely and Pegg (65, 66) found an excellent correlation between the 

amount of ODC protein and the enzymic activity in induced rat liver 

and kidney. ODC activity declines very quickly in cells in response 

to exogenous polyamines (11) possibly through the induction of the 
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antizyme, and appears to be due to an increased degradation rate and 

a decreased rate of synthesis. However, there is no change in the 

content of ODC-mRNA, suggesting that the translation of ODC-mRNA may 

be affected by the polyamine content. In some instances the 

increased synthesis of ODC protein in response to acute treatment 

with ODC inhibitors is also not accompanied by any change in the mRNA 

content (50). Thus, it seems that overall regulation of ODC protein 

occurs both at the level of transcription of the ODC gene and at the 

level of translation of the ODC-mRNA. 

The presents results, which demonstrated that diabetes caused a 

decrease in the maximum velocity without affecting the apparent K of m 

ODC for ornithine (Figure 1 inset, and Table 5), are not inconsistent 

with mechanisms 1, 3, and 4 as discussed above. They do tend to rule 

out, however, those which invoke an alteration in the affinity of the 

enzyme for its substrate (mechanism 2 above). This is consistent 

with some preliminary results which show a decrease in the total 

activity of the enzyme in the cytosol and particulate fraction (Table 

8 Appendix). The present results also imply that diabetes causes a 

shift in the subcellular localization of the enzyme (Table 8, 

Appendix), as indicated by the ratio of ODC activity in the pellet 

versus the supernatant fractions. Obviously, these experiments need 

to be repeated in order to obtain a more definitive characterization. 

One explanation for this phenomenon may be an increase in the amount 

of antizyme-ODC complex. The ODC antizyme is a non-competitive 

protein inhibitor of ODC, which would decrease the velocity of the 

decarboxylase reaction, without affecting the K (27). The design of 
m 
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our experiments cannot define the role of antizyme in the diabetic 

decrease of LV ODC activity. 

Experimental diabetes also decreases absorption in the intestinal 

tract (8). Starvation of nondiabetic rats has been shown to depress 

ODC activity in normotensive hearts to the same extent as diabetes 

does (14). However, decreased sympathetic activity as well as a 
receptor concentration during fasting could contribute to the 

reduction of cardiac ODC activity (79). Also, serum T
3 

and insulin 

levels are both reduced during fasting and may contribute to the 

decrease in cardiac ODC activity (79). Consequently the overall 

influence of malabsorption secondary to diabetes remains unclear. 

Another possible explanation of the decrease of LV ODC due to 

diabetes may be due to changes in cellular ornithine concentration, 

which may have resulted in alterations in the rate of myocardial 

synthesis of ODC protein (8). Ornithine is formed from arginine by 

the enzyme arginase, and thus changes in ornithine concentration may 

be secondary to alterations in arginine content. Conceivably, a 

fraction of the ornithine substrate might originate from myocardial 

arginase in addition to the arginine obtained from the serum. 

Ornithine is primarily manufactured in the liver and is an essential 

part of the urea cycle. Ornithine concentration in human plasma 

ranges between 30 and 50 µM (71), which is close to the apparent K m 

of ODC in the left ventricle (Table 5). It is also known that human 

red blood cells contain arginase and can secrete ornithine in 

surprisingly high concentrations into the plasma (82). Finally, 

Brosnan et al. (8) showed that ornithine concentration actually 

increases in the liver during severe experimental diabetes. We 
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carried out preliminary experiments which demonstrated minimal 

arginase activity in the heart (Table 9, Appendix), confirming 

previous results (28). Thus, any role of myocardial arginase in the 

effects of diabetes on cardiac ODC activity seems highly unlikely. 

Insulin treatment prevented the decrease in LV ODC activity in 

diabetic WKY, but did not in the SHR strain (Table 4). Although 

insulin prevented the serum alterations of diabetes in the WKY, it 

did not reverse them in the diabetic SHR (Table 1). However, insulin 

restored SAP and HR in the SHR (Table 2) and partially or fully 

restored BW, LVW, and RVW (Table 3). The ineffectiveness of insulin 

in diabetic SHR may be due to inappropriate therapy, leading to poor 

metabolic control. These animals were sacrificed 15-20 hours after 

their last injection. Conover et al. (14) and Sochor et al. (69) 

both found that insulin could prevent the decrease in cardiac ODC 

activity due to diabetes. However, as mentioned previously, it 

should be noted that the insulin-treated animals in these two studies 

were profoundly hypoglycemic. Insulin-induced hypoglycemia can 

markedly increase sympathoadrenal activity, which can increase 

cardiac ODC activity. Consequently, the prevention of the diabetic 

decrease of cardiac ODC activity in these two studies may be a direct 

or indirect effect of insulin. Hu et al. (29) have described a 

temporal increase of liver ODC activity in response to 

pharmacological doses of insulin. Unfortunately, they·did not show 

any time points after 6 hours. Later time points would better reveal 

the effectiveness of insulin therapy on tissue OSC activity in 

diabetes. The enzyme's very short half-life may require constant 

stimulation in order to maintain normal levels in the myocardium. 
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This treatment group is presently being repeated with the aim of 

better control of the hyperglycemia in the diabetic SHR. 

Induction of ODC activity by different growth factors on various 

cultured cells seems to require a minimum concentration of specific 

ornithine decarboxylase-inducing amino acids, such as asparagine, in 

the medium (57). Growth factors, including insulin, appear to act 

synergistically with the inducing amino acid (57). Insulin has also 

been shown to increase amino acid transport in cultured embryonic 

chick heart cells (63). Thus, the inability of insulin to restore LV 

ODC activity in diabetic SHR may also have been related, in part, to 

decreased plasma or tissue concentrations of specific ODC-inducing 

amino acids during diabetes. 

T3 treatment of diabetic SHR and WKY restored serum T
3 

levels 

(Table 1) and partially prevented the decline in LV ODC activity 

(Table 4). It also prevented the depressions in HR and SAP of SHR 

(Table 2). Hypothyroidism, which is associated with diabetes (53), 

has been shown to decrease cardiac ODC activity (13), whereas 

injections of T3 stimulate it (12, 13, 34, 45, 46, 54). Raymondjean 

et al. (54) found that T3 induced a biphasic response of cardiac ODC 

activity, with peaks at 4 and 21 hours that were inhibited by 

cycloheximide, indicating that T
3 

increased the synthesis of new ODC 

molecules. The trough of this response could be explained by the 

complexing of ODC to antizyme, since there was an accumulation of ODC 

molecules that " ... were catalytically inactive but inununologically 

reactive ... " (54). 

In sununary, the results of this study show that chronic, 

untreated diabetes depresses ODC activity in the left ventricle, but 
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not the right ventricle, of the rat heart. This effect of diabetes 

is: 1) Not influenced by preexisting left ventricular hypertrophy in 

the SHR model of hypertension; 2) Reversible by insulin treatment 

which confers good metabolic control; 3) Partially reversible by T
3 

treatment; and 4) Not associated with any apparent change in the 

affinity of the enzyme for its substrate. The results support the 

hypothesis that both insulin and thyroid hormone, along with 

mechanical stress on the ventricle, are important regulators of 

myocardial ODC activity. They also suggest that neither ODC activity 

nor its possible regulation by these factors is uniquely influenced 

by established left ventricular hypertrophy. 
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APPENDIX. RESULTS ANCILLARY TO MANUSCRIPT 
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Figure 2a,b. Myocardial Ornithine Decarboxylase activity is 
typically higher in weanlings than in mature adult. Thus, 
characterization of the enzyme was initially carried out in 21 to 35 
day old Sprague Dawley (SD) rat hearts. Figure 3a depicts the 
Michaelis-Menten kinetics of myocardif! ODC activity over 2 hours, 
obtained by isotopically diluting (1- C) L-ornithine with unlabelled 
L-ornithine to the desired concentration. The double reciprocal plot 
of weanling SD cardiac ODC f~tivity is shown in Figure 3b. The K is 
35 uM and v is 710 pmol co2 generated/hr/mg protein, obtaine~ by 
linear regr~~ion analysis. 
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Figure 3. Effect of increasing concentrations of enzyme supernatant 
at a fixed ornithine concentration of 25 uM and time of 2 hours on 
ODC activity in weanling SD rat hearts. 
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Figure 4. Verification of linearity with time of myocardial ODC 
activity at a fixed enzyme supernatant volume (0.3 mL) and substrate 
concentration (SOuM). 
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Figure 5. Verificar!on of recovery of generated 
14co from 

incubation media. C-NaHC03 was added to correct votume and 
concentration of incubation constituents (see Methods). Vials were 
acidified and allowed to incubate14or the indicated times. The 
results indicate that 967. of the co2 was recovered in one hour and 
1007. recovery was obtained at four hours. 
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TABLE 6. Left ventricular ornithine decarboxylase (ODC) in nondiabetic, 
diabetic and treated SHR, ~KY and SD. 

Strain 
Group 

(Ornithine] 

SllR 

Nondiabetic 

Diabetic 

Diabetic + T
3 

Diabetic + I 

Nondiabeti c + T
3 

\'ondi»bctic 

Dia betic 

Di.1betic t r
3 

Di.1bP.t ic + 

SD 

STUDY l n 

400 µM 

204 3 

90 2 

187 2 

/,6 .~ 

Left Veniricular ODC Activity 
(pmol ~co2/hr/mg protein) 

STUDY 2 n STL'DY 3 

200 µM 200 µM 

178 + '•2 8 112 + 16 

89 + 73* 5 53 + 7* 

143 ! ·'~ 7 :';~ 6 

121 + 2 7 '" 9 

176 + 35 6 

168 ! '' . .:. , 3 113 t 

107 ! l )°'' 55 + ~~ .'i ~·~ 

76 .! 1,0,,-,, 

90 + :, 5 

l 3!1 .! (;0 

J J ! ! ;\ 

n 

4 

3 

4 

!, 

') 

V. 1)l; 1:s :1n! 1:ie.J1!:; + · ~D 1•bt..1 j1 ~ . ~ d .'1 · ... · , ~c ks ,-J1·: 1~:- ;ni l· i:~t-.i1~~"\ of ,!i.:.L~:t 1•.s (: r 

1 · rc.1t !:"1P!"1f..~. J' .... , triir.•dotllyrcni!H?; J, j)I''~1.1nir:1? ~i!iC in ~ u)i;l. 

·· Sig11i 1- icant(..; ·iilfr1 1P11t: f1 ·un th~ r11_:1:.ii: ... l~C' ti 1: g1·0up (· .. :iihjn -.;r-:·.1::1), 

Jl <1),ll'i. 
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TABLE 7. Right Ventricular ODC activity in nondiabetic, diabetic and treated 
SHR, h~Y and SD rats. 

Strain 
Group 

SHR 

Nondiabetic 

Diabetic 

Diabetic + T3 

Diabetic + I 

Nondiabetic + 

\,'J<Y 

~ondiabetic 

Di;;betic 

Diabetic + T3 

Di .:; b!!t ic + 

\'ond iabl!t ic + 

~ D 

~ondial;!! t;c 

n 

9 

8 

6 

8 

T3 7 

8 

8 

6 

TJ 

:~ 

l' RV ODC Activity 
prnol ~co 2 generated/hr/mg protein 

~o + 25 

29 + 23 

46 + 26 

32 :!: l .', 

30 :!: 15 

15 :!: 18 

26 + 15 

:iO :!: 12 

.'~ 3 + JO 

'il ! 25 

56 .!: ,-_, 

t. t: Patr::t:nts frc"'n ::11j1:-:;il s :....i~1'rl in Su:di~ :; 2 n.111i 3. 
p 1..«.1 t .i r:i i 1. e : ~ i n j· i ;1:-: 11 l j :1. 

CiA.: ll:1it".s : i: ;:-,\ ) 1 ''co ..., .~~"1 ~ 1 ' 1 - .-;.1-, ·: d / hr/r~.~ pr 0t l~i:1, 
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TABLE 8. Subcellular localization of ODC activity in nondiabetic and diabetic 
SHR and 1.l<Y. 

--------------------------------- ------ ---------------------------------------
Strain 

Group 

SHR 

Nondiabetic 

Diabetic 

1-"KY 

Nondiabetic 

Diabetic 

Values are 
previously 
ODC units; 

Pellet Supernatant Total Pellet 
n Supernatant 

2 12 l 66 187 l. 83 

2 82 21 103 3.91 

2 65 57 122 l. 14 

2 84 36 120 2. 33 

rneans of ODC activity from Supernatant of 5% homogenate as described 
in Met~~ds er frorn reconstitution of Pellet with 25 ~1 HEPES. 
pmol ~co2 generated / hr / mg protein, using 25 uM Ornithine. 
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TABLE 9. Arginase activity in liver and heart of adult male Sprague Dawley 
rats. 

Tissue n Arginase activity 

Liver 

Fresh 255 + 48 

Frozen ·~ 281 + 31 

Heart 

Fresh 5 0.25 + D.05 

.frozen 5 0.21 + 0.08 

Values are qeans ±SD fer Argin.ise ."ictivity deter1:1ined by the detection of ure.1 
generation. 
Arginase units: ·~oles of urea for1:1ed/1:1in/g tissue weight 
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