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PHYSICAL REVIEW B VOLUME 47, NUMBER 22 1 JUNE 1993-II

Antiferromagnetic triangular Ising model: Critical behavior of the ground state

Henk W. J. Blote
Laboratorium voor Technische Natuurkunde, Technische Universiteit Delft, Postbus 5046, 2600 GA Delft, The Netherlands

M. Peter Nightingale
Physics Department, University ofRhode Island, Kingston, Rhode Island 02881

(Received 11 June 1992; revised manuscript received 2 March 1993)

The critical ground state of the antiferromagnetic triangular Ising model is studied with finite-size

scaling, with the use of exact techniques and numerical transfer-matrix methods. Exact solution of the

model in zero field yields a conformal anomaly equal to 1, and values of critical exponents. For nonzero

fields, dominant eigenvalues of the transfer matrix are computed for systems with linear dimensions up

to 27 with the use of an efficient coding of spin states as a system of nonintersecting strings. The results

are in perfect agreement with the Gaussian-model —Coulomb-gas scenario proposed by Nienhuis et ah.

for this model. Quantitative agreement is found with the predictions for exponents of spin-wave and

vortex operators. Furthermore, we locate the field-induced Kosterlitz-Thouless transition to a long-

range-ordered state at a field H, =0.266+0.010.

I. INTRODUCTION tice X„the height variables mod3 equal l. The reduced
Hamiltonian is

Three mutually interacting spins can be pairwise paral-
lel, but not pairwise antiparallel. This leads to an asym-
metry between the ferromagnetic and antiferromagnetic
spin models on the triangular lattice. For instance, con-
sider a triangular Ising model with equal nearest-
neighbor couplings E described by the reduced Hamil-
tonian

2

+H & g (1 &(t „mod3), t )
1 =0 kCXI

+H g ( —1)",
km'

(2)

=K g s, s +H gs„,
(i j& k

where (i,j ) indicates summation over pairs of nearest-
neighbor sites. The exact solution of this model' in zero
reduced field H shows that there is no antiferromagnetic
phase transition at nonzero temperature. In this paper
we shall deal almost exclusively with the K~ —~ limit
of this model, i.e., the zero-temperature triangular anti-
ferromagnetic Ising model or Ising model for short. The
corresponding ground state has interesting properties: It
is infinitely degenerate and carries a nonzero residual en-
tropy density. It is in fact a critical state, as follows, e.g. ,
from the algebraic decay of correlations. Furthermore,
there exists an exact mapping onto the triangular solid-
on-solid (SOS) model, which describes the equilibrium
shape of a cubic crystal near its [l, l, l] corner. An exact
solution ' has shown that this system undergoes a
commensurate-incommensurate transition when finite
differences between the infinite couplings are introduced
in the three lattice directions of the original Ising model,
but here we shall consider only the isotropic model.

The SOS model is defined on a triangular lattice X,
consisting of three interpenetrating triangular sublattices
Xt, l =0, 1,2. The height of the SOS surface at site k EX
is integral and denoted by hk. The hk have the following
restrictions: (i) The height difference of no nearest-
neighbor pair of sites is to exceed two units; (ii) on sublat-

where 0 is the step function, in the limit
K =H —+ —~. The first two terms impose the restric-
tions described above. The last two terms are periodic
potentials on the height variables with periods 2 and 3, so
that the system is invariant under global changes of the
heights generated by the transformation hk ~hk+6.
However, cyclic permutations of the sublattices involving
a translation by one lattice unit change the height vari-
ables by one, which corresponds with a symmetry under
global changes of height by one unit. This symmetry
holds only when H =0 because the last term in Eq. (2)
changes sign under this operation. For HWO the global
symmetry of Eq. (2) is over two units of height. For com-
pleteness we review the transcription of the Ising spin
configurations to SOS height configurations. A spin
configuration is represented as a tiling of the plane by 60'
rhombi whose edges connect nearest-neighbor spins of
opposite signs. Choose an elementary up-triangle [see
Fig. 1(a)]. Following the edges counterclockwise, the
SOS height increases by one unit between antiparallel
spins and decreases by two units between parallel spins.
The same holds for the down-triangles if one follows the
edges clockwise instead. Note that with a single spin and
a single height fixed, this is a one-to-one correspondence
(disregarding dislocations, as further qualified below).

The phase diagram of the zero-temperature triangular
Ising antiferromagnet in a magnetic field follows from the
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exact mapping of the Ising model, Eq. (1), to the SOS
model, Eq. (2), and a subsequent standard, but not
rigorously justified renormalization-group mapping to
the Gaussian model. This analysis predicts that this Ising
model is in the universality class of the Gaussian model
with Hamiltonian

g (h, —h ) + g m~ g cos
R (I j) P

(3)

Here the heights h; are continuous variables. Spin-wave
terms given by the double sum have the following origins:
(i) The term with p =1 reflects the discreteness of the
height variables in the original SOS model, i.e., the
periodicity of Eq. (2) with global changes of height by 1

when H =0; (ii) a nonzero field H lowers the symmetry of
Eq. (2) under global changes of height to two units, and
thus generates a p =2 term, with w2 ~H; and (iii) p =3
or p =6 terms are absent for the uniform model given in
Eq. (1), but they can be introduced by considering
nearest-neighbor couplings (p = 3) or magnetic fields

(p =6) that are sublattice dependent.
For the SOS model the correlation function

G (r) = ((ho —h„) ) of two height variables at a distance r
can be obtained from the energy-energy correlation func-
tion of the triangular Ising model, which is known exact-
ly. The result for the zero-field SOS model, Eq. (2), is

G(r)= lnr .9
772

This is the key to the identification of the temperature
Tz of the Gaussian model onto which the H =0 Ising
model maps under renormalization. That is, for the
Gaussian model, Eq. (3), one readily finds the asymptotic
long-distance behavior of G(r) for w =0:

TRG(r)= lnr .
2%-2

term in the Gaussian model proportional to m, i.e., the
spin-wave operator of period p, has a critical dimension

~(s)—TR
P 2 2

Consequently, the. spin-wave operator with period 1, cor-
responding to the discrete character of the SOS heights,
is irrelevant for T~ =18. The same holds for the p =2
spin-wave operator, corresponding to the uniform mag-
netic field H. Hence the prediction that a sufficiently
small magnetic field does not destroy the critical state of
Eqs. (1) and (2). The Gaussian temperature T~ de-
creases with increasing H, until at T~ =16 the p =2
operator become relevant.

For p ~ 3 the spin-wave operators are relevant at
H=0. The p =3 operator corresponds to a periodic
modulation of the Ising couplings, which indeed intro-
duces a phase transition to a long-range-ordered state.
The most relevant spin-wave operator has p =6; this is
the longest period compatible with the Ising representa-
tion of the model. It corresponds to a staggered field act-
ing on the Ising spins, e.g., positive on one sublattice and
negative on the two other ones. In zero uniform field its
dimension is, according to Eq. (6), X~6' =—,', which agrees
with Stephenson's result g= —,

' for the spin-spin correla-
tion function because of the identification T~ =18 at
H =0.

For nonzero Ising temperatures elementary triangles
with three spins of the same sign are no longer frozen
out. As illustrated in Fig. 1, they produce in the SOS sur-
face screw dislocations with Burgers vectors of +6 units.
More generally we shall consider q-fold dislocations. In

The amplitude of the correlation function in Eq. (4) is in-
variant under renormalization. Equating the amplitudes
of both exact results yields Tz = 18 at H =0.

The subject of this paper is the predicted nonuniversal
behavior of the critical ground state of the triangular Is-
ing antiferromagnet in a finite and nonvanishing range of
fields H terminating in a Kosterlitz-Thouless transition
to a state with long-range order. This phase transition
corresponds to a roughening transition ' ' of the SOS
model, Eq. (2), the rough phase occurring for H small in
magnitude. The existence of such a Kosterlitz-Thouless
transition was recently confirmed" by means of finite-size
scaling.

For completeness we mention that Nienhuis, Hilhorst,
and Blote qualitatively derived the phase diagram as a
function of the external field and additional next-nearest-
neighbor couplings. The topology of this phase diagram
derives from the identification of the relevant operators
contained in the Ising model with SOS operators, and
predictions for the critical exponents in zero field and at
the roughening transition. That is, again following the
standard procedure, once T~ is known, the anomalous di-
mensions can be derived from the Gaussian model. The

(b)

FIG. 1. Ising, tiling, string, and SOS representations of a
configuration including a vortex. (a) The correspondence be-
tween Ising spin configurations and SOS height differences. (b)
The tiling representation is obtained by connecting antiparallel
neighbor spins. The elementary faces of the lattice combine
into rhombuses with three possible orientations. The string rep-
resentation follows by connecting the midpoints of the horizon-
tal edges of the rhombuses (dashed lines). An elementary Ising
excitation consists of a triangle of parallel spins, and corre-
sponds with a triangular tile having a linear size twice that of an
elementary face, and with a change of the number of strings by
two. Since each string corresponds with a change of height of
three units, the corresponding vortices have strength q =+6.
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Equivalently one can formulate these operators in
terms of the Coulomb gas. The spin-wave operators in
the Gaussian model correspond with electric charges e in
the Coulomb gas and vortex operators with magnetic
charges m. The Coulomb gas is described by a reduced
Harniltonian

1
ejek+g, sm~mk G(r, —rk )

gcg

+2ieqmk@(
g k ) + Xp( 1 I ) (8)

I

where g, is the coupling constant and p(e, m) is the
chemical potential of a gas particle with charges as indi-
cated. In particular we consider the limit p(e, m )—+ —~
where all particle densities vanish; this limit is supposed
to be approached under renormalization. The long-range
asymptotic behavior of the potentials between the
charges is determined by exp [G (x,y ) + i C&(x,y ) ]= —(x +iy)/a, where a is a short-distance cutoff param-
eter. For more details, see the review given in Ref. 7.

It is natural to fix the scale of the charges such that the
largest spin-wave period p =6 in Eq. (3) corresponds to
an electric charge e =1 in the Coulomb gas. The anoma-
lous dimension associated with electromagnetic charges
+(e, m) is

me geg

2gg 2

The requirement X& O=X6'= —,
' shows that g,g =36/Tz

or g, =2 corresponds to H=0 in Eqs. (1) and (2).
Indeed, the elementary vortex of strength 6, which has
X6"=1, then corresponds to the elementary magnetic
charge m =1: Xo, =1. Thus, the correspondence be-
tween the Gaussian model, Eq. (3), and the Coulomb gas,
Eq. (8), is determined by

g~g 36/T~ &
'8 6/p ~ m q /6 (10)

In the following we adhere to the Gaussian language for
reasons of easy compatibility with Ref. 3.

The rest of this paper is organized as follows. With
both exact (see Sec. II) and numerical (see Sec. III) calcu-
lations, we corroborate the renormalization-group
scenario outlined above. Section III A contains exact re-
sults for the conformal anomaly c and spin-wave ex-
ponent X6' for the zero-temperature triangular Ising an-
tiferromagnet in zero field. Exact results for the vortex
exponent X2' are derived in Sec. IIB. The numerical
analysis is based on the relation between the eigenvalue
spectrum of the transfer matrix and the vortex and spin-
wave exponents. Thus the calculation of these eigenval-
ues reveals the scaling behavior of the model. Section
IIIA is devoted to numerical determination of H„ the

the Gaussian model the corresponding q-fold dislocation
or vortex operators have anomalous dimensions

2
X(v) q

q

value of the field at which the Kosterlitz-Thouless transi-
tion takes place. Numerical results for the conformal
anomaly and critical dimensions for nonzero magnetic
fields (HWO) can be found in Secs. III B and III C, while a
discussion and summary of the results is presented in Sec.
IV. Finally, Appendixes A and B contain technical de-
tails of the exact and numerical calculations, respectively.

II. EXACT RESULTS

We consider finite systems of rectangular shape with
periodic boundary conditions. One side of the rectangle
is formed by the bases of L elementary triangles. This
defines the horizontal or L direction. The other side of
the rectangle runs in the vertical or M direction and has
the length of M times the height of an elementary trian-
gle. We consider the limit M —+ oo.

An Ising spin configuration can be represented by an
SOS surface, as mentioned in the Introduction, and be-
fore presenting our results we discuss some complications
of this representation. First we consider the introduction
of defect lines in the associated SOS surface by the use of
periodic boundary conditions. If one moves to the right
along the horizontal direction, a pair of opposite spins, as
we recall, corresponds to a step up of unit height in the
SOS surface, while a pair of like spins is two steps down.
These possibilities are represented respectively by edges
and short diagonals of rhombi in the tiling representa-
tion. A convenient way of representing the SOS surface,
in particular for numerical purposes, is by strings run-
ning in the vertical direction. As illustrated in Fig. 1,
these strings are defined by drawing lines connecting the
middles of horizontal edges of rhombi. The sum of these
height differences along a loop circling the lattice once in
the horizontal direction equals

q =3', —2L,
the strength of the defect, for a system with X, strings.
This sum vanishes only if there are precisely 2L /3
strings, i.e., pairs of opposite nearest-neighbor spins, a
condition requiring L to be a multiple of 3. Violation of
this requirement corresponds to a line defect in the SOS
surface, created by a pair of q-fold screw dislocations at
~ and —~ in the case of an infinite cylinder.

Conversely, we note that for an SOS configurations
with an odd total height difference or equivalently with
an odd number of strings, there must be an odd number
of sign changes along the loop. This can be realized only
in an Ising model with antiperiodic boundary conditions.

For a finite lattice with cylindrical boundary conditions
an SOS surface with a defect line is the analog of a
periodic surface with nonzero average tilt. Since in equi-
librium the tilt should vanish in the thermodynamic lim-
it, we shall restrict ourselves to configurations without
defects for the calculation of the free energy. Critical ex-
ponents will be obtained by introduction of the defects
discussed above and from correlation effects.

A. Conformal anomaly and spin-wave exponents

The exact solution of this model is given in Appendix
A. As explained above, L has to be a multiple of 3 to
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satisfy the requirement of an SOS surface with zero aver-
age tilt. Indeed, the exact solution depends on whether
or not this condition is satisfied. If L is even in addition,
we can write Eq. (A10) as

L
2m((L. )

Using this relation we obtain

(18)

1
5L /6

lim lnPf A z
= g ln 2sin

L (12)

8L i = (L+6i/6 2L

Sm. /6
dx sin x+

8L ~/6

&3~
4L

(14)

The ellipses in Eqs. (13) and (14) stand for odd powers() 3) in 1/L only. Each row of spins has a height
/=&3/2. Dividing the sum of Eqs. (13) and (14) by this
factor we obtain the reduced free energy per unit of
length F(L) as a series depending only on odd powers of
L:

2F(L)= lim —— lnPfA3
M ~ 3M

4L 7Tf dx ln(2cosx )+ + .
3' 6L

(15)

The conformal anomaly c may be obtained from the
free energy F(L) per unit length, with the general, large-
L expression derived from conformal invariance, ' ' viz. ,

Application of the Euler-Maclaurin summation formula
leads to

1 2L x&3
lim - lnPf A2 = dx ln(2cosx ) — +~M vr 0 6L

(13)
while expansion of the summand of Eq. (A13) in 1/L
yields

lim in[Pf A 3/Pf A z ]
1

(19)

which is in agreement with the energylike (four-spin)
correlation function exponent calculated by Stephenson.

B. Vortex exponents

As mentioned above and illustrated in Fig. 1, a
temperature-induced excitation in the present Ising mod-
el corresponds to a screw dislocation, i.e., the creation or
annihilation of a pair of strings. Since each string corre-
sponds to a step of three height units in the SOS language
[see Eq. (11)],such an excitation corresponds to a six-fold
vortex or antivortex. In an infinite system the correlation
function G~"(r) describing the probability of such a pair
of opposite charges at a distance r decays as

-2X"
G'"'(r) —r

q
(21)

where the Gaussian model prediction, corresponding to
H =0 in Eq. (1), for X~" is given by Eq. (7).

Here we present an independent calculation of this ex-
ponent as a function of q. As a first step, the infinite
two-dimensional plane is mapped onto a cylinder with
circumference L. Covariance under this conformal map-
ping' implies that the correlation function gL (1) on the
cylinder, where / is the coordinate in the length direction
of the cylinder, behaves as

This exponent agrees with the known value of the mag-
netic exponent calculated by Stephenson.

The finite-size behavior for L equal to odd multiples of
3 is similar, and leads to identical results for Eqs. (17) and
(19). Finally we mention that the exact solution in the
presence of a periodic modulation of the Ising couplings,
corresponding with a p =3 spin-wave term in SOS
language, reveals an Ising-like singularity in the free en-
ergy, so that

(20)

F(L)=Lf
6L

(16)
gI (1)-exp[ —1/g" (L ) ] (1 ))L ), (22)

where f is the reduced bulk free-energy density. Com-
parison of Eqs. (15) and (16) shows that

c=l . (17)

In the Ising model, the staggered magnetization is the
operator associated with the correlation function which
decays most slowly with distance. Its anomalous dimen-
sion X6' can be obtained from the asymptotic large-M
behavior of —Pfd z in the partition function, Eq. (A 1).
According to Eq. (44), this correction decays asymptoti-
cally exponentially with M. Denoting the exponential
factor by exp[ —Mg/g(6'(L)], we obtain the correlation
length g(6'(L)=2L/m. According to the theory of con-
formal invariance, the finite-size amplitude of a general
correlation length g(L) is related to the anomalous di-
mension Xof the associated operator' according to

where the correlation length g~"(L) is related to X'"' by
Eq. (18). The correlation function on the cylinder can be
written as

gL (1)—exp{ 1 [FO(L)—F (L) ] ] (1 ))L ),
where

(24)

F (L)= — lim lnZ'
3M

(25)

Z(M)(1)
gL (1)= hm~~ oo Zo

where Z~ '(1) is the partition function evaluated in the
presence of a pair of conjugate q vortices with separation
I. For vortices with a separation large on the scale of the
width of the system we thus have
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is the reduced free energy per unit of length of a system
on a cylinder with a screw defect line of strength q.
Combination of Eqs. (18), (22), and (24) yields

F(e)=F(0)+
9

8Le
3. + (32)

L [Fq(L) Fo(L)]
(26)

The reduced energy E(e) per unit of length is equal to—edF/de or

when L =3n+1, i.e.,

—5'
81L

(27)

2F2(L)= —lim — InpfA3
3M

4L
dx ln(2cosx )

— +
&3qr 18L

(28)

Substitution in Eq. (26) of this result and that of Eq. (15)
yields

(29)

in agreement with Eq. (7) with q =2 and Tz =18. For
odd system sizes that are not multiples of 3, we skip the
details, and mention only that the result Eq. (29) is repro-
duced.

Thus far we have considered the tilt q (or equivalently
the number of strings or pairs of opposite spins) as the in-
dependent thermodynamic variable. Alternatively, we
can introduce a tilt by the conjugate independent variable
e, defined such that the Ising coupling in the horizontal
direction is X+e, and K in the other two directions. We
denote by F(e) the associated reduced free enthalpy per
unit length of a strip of width L.

Disregarding the infinite contribution due to K and
finite-size corrections we have the following exact expres-
sion:

F(e)= —+ f dcoIln[2(1+costs)] —4@I,
2&3L~

3 377 0

with

(30)

cosco, =
—,'exp(4e) —1 .

Second-order expansion in e yields

(31)

We follow two di6'erent ways to study systems with
q&0. First we consider an ensemble in which q is fixed at
a nonzero value. This is automatically realized for sys-
tems with sizes that are not multiples of 3. Second, one
can generalize the Hamiltonian [Eq. (1)] by introducing
anisotropy, the thermodynamic variable conjugate to the
tilt of the SOS surface.

For L =3n+1 with n integral and a system with iV,
strings one has q =3%,—6n+2, so that q=+2 is the
closest one can get to the equilibrium of zero tilt. In or-
der to derive the free energy F2(L), we apply the Euler-
Maclaurin summation formula, using Eqs. (A10) and
(A23), and expand the boundary terms in 1/L:

1 (M) 2L +&3
lim lnZ2 dx ln(2cosx )—

M ~M m' 0 36L

2&3Le 16Le
9 +3~+ (33)

However, the reduced energy per unit length can also
be calculated directly from the number of strings: Each
horizontal bond carries an energy —e if intersected by a
string, and e otherwise. For a system with N, =—', L +aeL
strings, we thus have

E( )
2 3LE 4V3aLe + (34)

9 3

so that a = 4&3/—3'. The relation between the free en-
ergies is F =F(e)+E(e), and it follows that

8LF (L)—Fo(L) = + (35)q 0

where q = —(4/qr)&3L e. Substitution in Eq. (26) gives

2

(36)

in agreement with Eq. (7) for the known value Tz =18,
the Gaussian temperature of the H =0 Ising model, Eq.
(1).

This derivation uses the bulk free energy, and thus it
neglects the "conformal" finite-size contribution to the
free energy, which is equal to qr/(6L) per unit of length'
for systems with central charge c =1. This is inconse-
quential if these contributions, which appears in both free
energies in (26), are equal and thus cancel. Indeed, calcu-
lation on the Gaussian model' show that the finite-size
amplitude of the free energy consists of two independent
parts: One is equal to m. /(6L) and is identified as the con-
formal contribution of the unperturbed Gaussian model,
while the other is introduced by a "seam" [equivalent to a
tilted SOS surface and with the same tilt dependence as
Eq. (35)]. This separation of amplitudes is furthermore in
line with the derivation of Eq. (29).

III. NUMERICAL FINITE-SIZE SCALING ANALYSIS

The analytic results presented in the preceding section
are restricted to the soluble case, the Ising model in a
vanishing magnetic field, i.e., H =0 in Eqs. (1) and (2).
We apply numerical finite-size scaling to the free energy
and correlation lengths to investigate the HAO proper-
ties. The finite-size data are obtained by means of the
transfer matrix T defined in Appendix B. The transfer
matrix applies to a system with a cylinder geometry:
infinitely long in one direction and periodic with finite
size L in the other direction. The calculations were per-
formed up to L =27, corresponding with a transfer rna-
trix of size 9 373 650 .

Expecting slow convergence because of logarithmic
corrections at the Kosterlitz-Thouless transition, we are
interested in as wide as possible a range of system sizes.
Therefore we have chosen not to use the Ising spin repre-
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F (L)= —
—,'&31nA (L) . (37)

The transfer matrix defined in Appendix B adds two rows
of spins to the lattice. This accounts for the factor of 2
difference in the prefactors of Eqs. (25) and (37). Gaps in
the transfer-matrix spectrum yield correlation lengths as
usual. For the q =0 block the correlation length is given
by

Ao(L)= —&3 ln
g~"(L) 3 A(~)(L)

(38)

A. The Kosterlitz-Thouless transition

The Kosterlitz-Thouless (KT) phase transition can be
located using the condition that X2' is marginal at the
transition. However, the smallest gap of the transfer ma-
trix tends to have the best numerical convergence proper-
ties and this gap is associated with the p =6 spin-wave
operator. With Eq. (6), the condition of marginality
translates to X6"=

—,'. Using Eq. (18), we can obtain
finite-size estimates of the critical field H, by numerically
solving for H in the equation

sentation which carries redundant information. Instead,
we represent the ground state by nonintersecting strings;
details of the construction of a transfer matrix using this
representation are explained in Appendix B.

Since the number of strings, N„ i.e., the number of
pairs of opposite spins, per row is conserved, the transfer
matrix decomposes into diagonal blocks or sectors associ-
ated with different values of N, . The eigenvalues of the
transfer matrix can therefore be labeled by q via Eq. (11).
Within blocks the eigenvalues used below may be associ-
ated with different spin-wave operators. We denote them
by A (L). With this notation A (L) is the dominant ei-
genvalue of block q, the q =0 block containing the
overall dominant eigenvalue.

From these eigenvalues one can calculate the reduced
free energy per unit length,

TABLE I. Estimates of the critical field H, at which the KT
transition to the ordered Ising state takes place. Solutions
H(1,1.) of Eq. (39) were obtained for finite sizes up to L =27.
Iterated fits H(2, L) (last column) seem to converge more rapid-
ly.

3
6
9

12
15
18
21
24
27

H(1,L)

0.098 117618 145 143
0.339 112 158 002 366
0.362 806 739 565 371
0.366 650 325 704 477
0.366 070 496 281 102
0.364 319050 913208
0.362 309 008 314749
0.360 330 661 076 380
0.358 476 170229 427

H(2, L)

0.2843
0.2695
0.2666
0.2676
0.2672
0.2662

Having numerically calculated Fo(L) for a range of L
values, we can use Eq. (16) to determine the conformal
anomaly c. Two subsequent finite-size results for the free
energy are used to produce an estimate c (1,L) of c, by
solving for c(1,L) and f (L) in

FG(I) =1f'„(L)— (42)

for l =L and l =L+3. Corrections to scaling are given
by power laws for critical systems, so that up to the
Kosterlitz-Thouless transition it is reasonable to intro-
duce iterated estimates by solving for c(2,L), a (L), and
b (L) in

value —2. The iterated estimates thus obtained are also
shown in Table I. Although the variation in the latter re-
sults is rather small, the apparent convergence is not
monotonic. Under these circumstances, we can only
guess that the difFerence of the last estimate H(2, 18) and

H, does not exceed by a factor greater than ten the
difFerence H(2;15) H(2, 18—) between the last two esti-
mates. Thus, on the basis of the data in Table I we esti-
mate H, =0.266+0.010.

B. Conformal anomaly

c (1,l) =c (2,L)+a (L)l (43)

Because of corrections to scaling, the solution, denoted
H(1,L), depends on the finite size L. Numerical data are
given in Table I for sizes L =3, . . . , 27. These results do
not appear to converge rapidly. Indeed, one expects loga-
rithmic corrections due to the presence of a marginally
irrelevant field. Integrating the renormalization equa-
tions (see, e.g., Nauenberg and Scalapino' and Blote and
Nightingale' ) including such a field and a finite-size field
L ' leads to corrections with a form given by

with l =L, l =L +3, and l =L +6. This process can be
iterated to yield c (3,L); etc. , until the process terminates
because of round-off errors or lack of data. This pro-
cedure was applied to the free energies of systems up to
size L =24 for H =0, 0.1, 0.2, 0.3, and 0.4. The results
are shown in Table II, together with the estimated uncer-
tainties in the last decimal place. These results demon-
strate that the conformal anomaly stays approximately
constant as H varies.

H(1,L)=H, +a/(b +lnL)+. . . (40) C. Exponents

We generated sequences of iterated estimates of H, by
solving for H (2,L),a (L ),b (L), and c (L) in the equations

H(2, L)=H(1, I)+a (L)/[b (L)+lnl ]+c(L)/I, (41)

where l=L, L+3, L+6, and L+9. The last term in
Eq. (41) accounts for a possible irrelevant exponent with

The vortex exponents X" can be calculated from Eq.
(26). By a minor generalization of this expression one can
calculate the exponent X'"'=

—,
' from the difference

F+4(3n+1)—F+2(3n+1), where the two terms are cal-
culated from systems containing 2n+2 and 2n strings, re-
spectively, at H =0. We have confirmed this value nu-
merically, but the extrapolation revealed strong correc-
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TABLE II. Estimates of the conformal anomaly c and the anomalous dimensions X6', X3', and X2'.
Estimated numerical inaccuracies in the last decimal place are given between parentheses.

Quantity

C

X"
6

X(s)
3

X(v)
2

X(s) /X(s)
6 3

X(v)X(s)
2 3

H=0

1.000000 (1)
0.250000 (1)
1.ooo ooo (2)
0.111 111 (1)
0.250000 (2)
0.111 111 (1)

H =0. 1

1.0000 (1)
0.2479 (1)
0.991 (2)
0.1119 (2)
0.2502 (6)
0.1110 (2)

H =0.2
1.0003 (3)
0.2410 (5)
0.96 (1)
0.116 (1)
0.251 {3)
0.111 (2)

H =0.3
1.001 (1)
0.228 (4)
0.91 (3)
0.123 (2)
0.25 (1)
0.112 (6)

H =0.4
0.999 (2)
0.20 (1)
0.82 {5)
0.133 (3)
0.24 (3)
0.109 (9)

tions to scaling proportional to 1/L. These corrections,
which are unusual (in most cases terms dominate
effectively behaving as L ) are due to the presence of a
L term in F(L) when N, W2L /3 —see Eq. (27). While
such corrections are still tractable in the numerical
analysis at H =0, the case N, &2L/3 is diKcult to ana-
lyze for IIAO.

In view of this problem we have chosen to limit our-
selves to quantities that can be calculated with X, =2I /3
and the behavior of the free energy as a function of L.
That is, the average F2(L)= —,'F2(L —1)+—,'F 2(L +1),
where L is a multiple of 3, can be used to approximate
F2(L), a quantity that cannot be calculated directly. The
difference F2(L) —Fo(L) can then be used with Eq. (26)
to obtain an effective exponent approximating Xz".

Figure 2(a) shows the behavior of this effective ex-
ponent as a function of the magnetic field H for
L =3—18. For H =0, the data agree well with the exact
result (see Sec. II) X2'= —,'. For II%0 the exponent in-

creases, in agreement with the hypothesis that the corre-
sponding Gaussian coupling increases with increasing H
up to the roughening transition at Tz =16. The expected
value of the exponent at the transition point is Xz' =

—,'.
Indeed, the data points seem reasonably convergent for
X2' ~

—,'. At higher values of H, crossover to a different
behavior takes place associated with a fiat phase in the
SOS model in which X2' is relevant.

The anomalous dimension of spin-wave operators can
be estimated from corresponding correlation lengths as
determined from subsequent eigen values in the
N, =2L/3 sector of the transfer matrix. The second-
largest eigenvalue is the dominant eigenvalue of the q =0
sector of states that are antisymmetric under spin global
inversion at H=0. This state is associated with the Ising
spin-spin correlation function, which has an exponent
denoted by X6'. The estimate X6'(1,L) is obtained from
Eq. (18) for subsequent system sizes, in analogy with Eq.
(42). Numerical results for X~6'(1,L), which were already
obtained in Ref. 11, are included in Fig. 2(b) for compar-
ison. They illustrate the dual behavior of spin-wave and
vortex exponents: Their values are, at least approximate-
ly, inversely proportional, as they should according to
Eqs. (6) and (7). Both sets of data points agree with the
presence of a Kosterlitz- Thouless transition near H =0.3.

In addition to X2' and X6' we have also investigated
X3' as a function of H. The latter is obtained from the
second-largest eigenvalue of the q =0 sector of states
symmetric under spin inversion at H =0. The results, ob-

TABLE III. Estimates of the anomalous dimension X2' at
the field-induced KT transition. The iterated fits yielding
X2'(2, L) make use of the expected scaling behavior at the
KT transition which is of the form X2'(1,L)=X2'
+s/(t+lnL )+;this is difFerent from that at other critical
points.

3
6
9

12
15
18
21
24

X,"(1,I )

0.080 796 846 0
0.104 897 863 2
0.111044 317 8

0.113548 435 6
0.114834 733 4
0.115597 696 8
0.116097029 3
0.116447 970 7

X,"(2,L)

0.1431
0.1382
0.1327
0.1292
0.1269
0.1255
0.1244

tained from iterated fits assuming power-law corrections,
are summarized in Table II. The latter dimension is asso-
ciated with the third- or fourth-largest eigenvalue of the
iV, =2L/3 sector of the transfer matrix, depending on L
and H. The crossing eigenvalue was analyzed only in the
case H =0; the corresponding eigenstate is antisymmetric
under spin inversion. The fits are less well behaved and
the associated dimension X=1.25+0.01 has only three
significant decimal places, in contrast with the six or
seven for c and the other anomalous dimensions for
H =0.

While the exponents vary continuously with H, Eqs. (6)
and (7) imply that ratios of spin-wave or vortex ex-
ponents, and the product of vortex and spin-wave ex-
ponents are constants. Indeed, Table II illustrates this
behavior. It is remarkable that the renorrnalization-
group predictions still seem to apply for H =0.3 and 0.4,
which is outside the algebraic phase. As quantitative re-
sults they are pointless; however, they provide an illustra-
tion of the anomalously slow crossover behavior in the
ordered phase near a roughening transition (i.e., in the
disordered phase near a Kosterlitz-Thouless transition).

Finally, the numerical estimates of the location of the
Kosterlitz-Thouless transition were based on the predic-
tion X~6' =—,', i.e., Tz = 16. From Eq. (7) it follows that at
this point one should have X2' =

—,'. To demonstrate the
consistency of our estimate of the transition point we
display the numerical estimates of Xz' obtained at
H=0. 266 in Table III. Two estimates are given: one de-
rived directly from Eq. (18); the other was obtained by an
iterated fit assuming 1/lnL corrections.
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IV. DISCUSSION

0.4

x", (L)

0.2

0 I

0.5
l

1.0

0.2

x", (L)

0.1

0
0

I

0.5
I

1.0

FIG. 2. Transfer-matrix results for the effective exponent as-
sociated with (a) vortices of strength 2 and (b) spin waves of
period 6 vs the Ising magnetic field H. The data points (not
shown) are connected by smooth curves labeled by the system
size L. The data for both exponents at H =0 converge rapidly
to the exactly known values (indicated as 0). The short dashed
lines indicate the predicted values of the exponents at the ex-
pected KT-like transition. Not shown are those parts of the
L = 12 and 15 curves that lie too close to the L = 18 curve.

The mapping of the triangular zero-temperature Ising
model onto the Gaussian model and the Coulomb gas in-
volves a nonrigorous renormalization step. We summa-
rize the following evidence that this step indeed is
justified.

The renormalization-group scenario predicts that the
amplitude of the height-height correlation function of the
SOS mode is 3 = T~ /2m, that the anomalous dimension
of the spin-spin correlation function is given byX"= Tz l2p with p =6, and that a periodic modulation
of the Ising couplings as studied in Ref. 3 is described by
the similar exponent with p =3. In zero magnetic field
the predicted ratios agree with the previously known ex-
act values ~ =9Z~"X"= ] ' and X"=1.'

Likewise, the exact calculation of the general vortex
exponent X"=q /36 in this paper confirms the predic-
tion Eq. (7). At the same time the exact results reported
here confirm the predicted relations between finite-size
amplitudes and critical exponents. ' Similarly, in zero
field, the exact result c =1—see Eq. (17)—for the con-
formal anomaly confirms the conformal invariance pre-
diction for models with continuously varying ex-
ponents. '

For nonvanishing magnetic fields our numerical results
show no deviations within the numerical accuracy from
c = 1 and also the appropriate ratios and products of ex-
ponents remain constant. This was verified in particular
at the estimated Kosterlitz-Thouless transition point.

In addition to exponents that can be directly interpret-
ed in terms of spin-wave and vortex operators, we have
also found evidence for a scaling dimension X=—,

' at
H=0. This value does not correspond to an integral
spin-wave number. It could be a conformal follower' '
ofX"=-'

6 4

The analytic and numerical results indicate that contri-
butions to F(L) proportional to L (i.e., of order L
with respect to the leading finite-size dependence) arise
whenever an excess number of strings is introduced. We
propose an interpretation on the basis of anisotropic cou-
plings in the context of the Gaussian model (different
couplings between neighbors in the x direction and those
in the y direction) to which the SOS model renormalizes.
Note that N, =2L/3 is a special symmetric case corre-
sponding with a "horizontal" SOS surface. However,
positive and negative slopes are not related by symmetry.
An excess number of strings does not only introduce a
slope in the surface (which can be transformed away in
the Gaussian model), it also destroys the symmetry be-
tween the x and y directions. This deviation from sym-
metry is proportional to 1/L for a given excess; this may
explain the 1/L corrections.
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FIG. 4. Site labeling of the honeycomb lattice deformed to a
square grid (a) and definition of the arrows for the four matrices
A; (b).

APPENDIX A:
SOLUTION OF FINITE DIMER MODELS

To calculate the partition function of the zero-
ternperature antiferrornagnetic triangular Ising model, we
make use of the equivalence with the dimer model on the
honeycomb lattice. The correspondence between the
rhombus tiling of the triangular lattice (and thus the
string representation) and the dimer covering of the dual
honeycomb lattice is illustrated in Fig. 3. Exact solutions
of dimer models by means of Pfaffians were constructed
by Kasteleyn and by Ternperley and Fisher. ' A de-
tailed review of the method was given by McCoy and
Wu. See also a more recent review of dimer models by
Nagle, Yokoi, and Bhattacharjee.

The residual entropy may be greatly reduced by bound-
ary conditions. They can in fact be specified so as to
completely remove the degeneracy of the ground state.
To avoid this problem, we impose a toroidal topology on
the system.

The honeycomb lattice is deformed into a rectangular
grid with horizontal size 2L and vertical size M. The la-
beling of the lattice sites by coordinates 1+j ~2L and
1 ~ k ~M is shown in Fig. 4. Clearly there is a transla-
tional symmetry over two lattice units in the horizontal
direction and over one unit in the vertical direction.

A first step of the Pfaffian solution involves the assign-
rnent of an orientation to each lattice edge that can be
covered by a dimer. Four possible assignments are also
shown in Fig. 4; the only differences occur between
columns 2L and 1 and between rows M and 1. A matrix
A; (i =1,2, 3, or 4) is associated with each of the four

FIG. 3. Correspondence between the rhombus tiling of the
triangular lattice and the dimer model on the honeycomb lat-
tice. Rhombi consist of pairs of elementary faces, and can thus
be represented by dimers (shown as dumbbells) covering a pair
of sites on the dual, i.e., honeycomb lattice. String segments are
indicated by dashed lines.

choices for the edge orientations. The sites of the lattice
are combined into pairs. The pair labeled (j, k) contains
the sites (2j —l, k) and (2j,k). A binary index a=1,2
distinguishes the sites within each pair.

The absolute value of the matrix elements

~
A (a,j,k;a', j', k')

~
is equal to the weight of a dimer

covering the bond between site (a,j,k) and (a', j', k').
The weights are z, for the horizontal bonds between
nearest-neighbor sites and zz for the diagonal bonds. We
will be primarily interested in the case z& =z2 =1. Since
nonzero elements are associated only with nearest-
neighbor bonds, the 2; are sparse matrices. Further-
more, a nonzero matrix element A (a,j,k;a', j', k') is
positive if the arrow —see Fig. 4—points from (a,j,k) to
(a', j', k') and negative if it points the other way.

The derivation of the partition function Z of the
present Ising model wrapped on a torus differs somewhat
from the derivation for the dimer model given in Ref. 22.
That is, apart from dimer configurations for periodic Is-
ing configurations, there are also those for antiperiodic
Ising configurations. The number of changes of sign
along a cyclic path crossing the periodic boundaries is
even for the periodic case and odd for the case of an-
tiperiodic boundary conditions. For M even and equal to
a multiple of L, a combination of Pfaffians in which the
latter antiperiodic configurations are suppressed is

Z= —,'[( —1) (Pfd, +PfA3)+PfA~+PfA4] . (Al)

This can be understood by a direct application of the pro-
cedure described by McCoy and Wu in Chap. IV, Sec. 5
of Ref. 22. As noted before, only configurations with an
even number of vertical strings are allowed for systems
with periodic boundary conditions. Each allowed class of
Co transition cycles (defined in Ref. 22) specified by the
number of loops around the torus in the horizontal h and
vertical U directions contributes twice (i.e., 4 times one-
half) to the linear combination of PfaKans in Eq. (Al),
once for each allowed Ising spin configuration. The disal-
lowed classes contribute zero because the four contribu-
tions cancel. The latter classes are characterized by an
odd number of strings or an odd number of windings over
the vertical periodic boundary. The sign of the contribu-
tions to Eq. (Al) due to each Pfaffian is given in Table IV
which is McCoy and Wu's table modified by the addi-
tional factors ( —1) in Eq. (Al). The sum of the four
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(0,o)
(O, e)
(e,o)
(o,o)

+( —1)
—( —i)

1 )L
—( —1)

A3

+(—1)
1)L

( i )L

+(—i)

A4

TABLE IV. Signs of the contributions of the four PfaSans,

due to configurations generated by Co transition cycles, to Z in

Eq. (Ai).

PfA, =+~detA; ' (A2)

izontal bonds are covered, and this number changes by
one for each time an elementary transition cycle loops the
torus in the vertical direction. The two remaining
classes, which have h =odd, correspond with Ising
configurations that are antiperiodic in the vertical direc-
tion (note that M is even), and their contributions cancel.

For the calculation of Z, it is convenient that the
Pfaffians satisfy

contributions due to a Co transition cycle with
(h, v)=(0, 0) contributes only for even L. The class with
(h, v) =(2n, 2m —1), where n and m are natural numbers,
only contributes for odd L, as it should since the number
of strings is L for dimer configurations in which only hor-

but the signs remain to be determined. Each pair (j,k)
contributes six nonzero elements to the A;: Two are due
to the internal bond, and four are due to bonds connect-
ing to other pairs. Thus, the matrices A;, i =1,2, 3, and
4, can be written as

0

Zl

Zl 0
ILIM+

~0 0
H, L IM+ 0 H; LIM+

Z l

0 0 0 zz

0 —L, Hi, M 0 0 —L —s, M ~

(A3)

with

g [z, (1—e ' )+z,e '
]

j=l k =1

X [zi(1 —e ' )+zze ' ], (A4)

where the subscripts L and M serve to distinguish be-
tween the matrices acting on the row and column indices,
respectively. We have used the definitions II (j,j ') =5~ J'
and H, ~(j,j')=5. '+, +(1—2p;)5 15. i with p, =p2=0
and p3 =p4 = 1. The definition of I; M is similar, as is that
of H; M, but with p,. replaced by q; where q, =q3 =0 and
qz=q4=1. The indices of the 2X2 matrices label the
spins within the pairs. After standard Fourier transfor-
mation one obtains

their signs for z, )0 can be determined from the number
of zeros when zl is varied. Each single zero in Pfd; cor-
responds, because of Eq. (A2), to a double zero of detA;

ix, (j ) —
iy,.( k)and hence to single zero of zi(1 —e ' )+z2e ' for

some wave vector (j,k). Such zeros may occur for spe-
cial values of z i

—see Fig. 5—when m
—x, (j)

=2[y, (k) —m. ]. However, they occur in pairs (x;,y;) and
(2m. —x;,2m —y;), except when x, =y; =m. If such a sin-
gle zero occurs, it is located at z, =zz/2, and it is the
only case in which a PfaKan can change sign. It follows
from Eq. (A5) that a change of sign occurs only in PfA3
for odd L and in Pfd l for even L. Thus it follows from
Eq. (A4) that, for the case zi =z2 = 1, to which we will re-
strict ourselves from now on,

x;(j)=m.(2j —p, )/L,
y;(k)=rr(2k —q;)/M .

(A5)

Pf~; =r; g / I3 —2cosx;(J)+2cosy, (k)
j k

—2cos[x;(j)+y;(k) ] I
' (A7)

The next step is to determine the signs in Eq. (A2). To
this purpose we put zl =0 so that the dimers are forced
into pairs (2j —l,k;2j, k + 1). The sign of the Pfaffians
then depends only on the vertical boundary condition
specified by i and on the parity of the permutation with
respect to the reference configuration (2j —l,k;2j, k).
The result is that for z l

=0

with —rl =Iz=&3=&4=1.
Next, we consider the behavior of the Pfa%ans in the

limit M ~~. If no zeros occur in Eq. (A7), it leads to

lirn 1n(r; PfA,. )

PfA„PfA3 &0 (L odd),

PfA„PfA3)0 (L even),

PfA2, PfAq & 0 (all L ) .

(A6)

1 2~j dy in[3 —2cosx;(j)+2cosy4m. l O

—2cos[x;(j)+y ]],

Since the Pfaffians are analytic functions of zl and zz, which can be rewritten as
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1 2m
lim ln(r, PfA, . )= g J dy lnI3 —2cosx;(j) —4sin[ —,'x, (j)]sin[y+ —,'x;(j)]] .

M~oo M 477 ) 0g=1

Using jo dx 1n(a+& sinx ) =2vr in@(a'(/a —b )], it follows that

x, (j) 1 x (j)
M ooM ' ' 2 . 2 2 2

lim ln(r, .PfA;)= —g ln —+2sin + —+2sin
2

(A9)

x;(j)8 sin
2

x;(j)
ln '2sin

2 2
(A10)

where 0 is the unit-step function. This result is the same
for i =1 and 2 and also for i =3 and 4. Thus the
Pfaffians (if nonzero) form two approximately equal pairs.

Therefore, while evaluating Eq. (A 1 ) in the limit
M~ ~, it may not be sufhcient to select one of the larg-
est PfaKans since cancellations may occur of the contri-
butions due to Pf3, and Pfd 2, as well as of those due to
PfA 3 and PfA4. We distinguish the following four cases.

1. Case 1:L an odd multiple of 3

Apparent deviations from Eq. (A10) concern only terms
that vanish. Since ln(2sinx ) is a convex function of x in
the pertinent interval, this expression is positive. It fol-
lows that

lim lnZ= lim ln( —PfAi)
1 . 1

~M M ~M

(L =6n +3) . (A12)

The contributions to Eq. (Al) due to Pfd i and PfA2
both are positive. Any differences become unimportant
in the limit specified by Eq. (A10). Furthermore
PfA 3

=0 due to a factor 0 associated with the wave num-
bers j= (L +3 ) /6 and k =2M /3 in Eq. (A7), and
Pf24 & —Pfd, . This can be seen as follows. As a conse-
quence of Eq. (A10) we have

lim ln[ —PfA, /PfA~]
1

M M

2. Case 2: L an even multiple of 3

The contributions to Eq. (A 1) due to Pf3 3 and PfA 4
both are positive. Any differences become unimportant
in the limit specified by Eq. (A10). Furthermore
Pf3,=0 due to a factor 0 associated with the same phase
factors as in the case of odd L, and PfA z & PfA 3. This is
because

(5L —3)/6

j=(L +3)/6

vrj 1 . m (2j —1)
ln 2sin - ——ln .2sin

L 2 2L

lim ln[Pf W, /Pf &, ]
1

M ~ M

1 . rr(2j +1)——ln 2sin
2 2L

(Al 1)
5L /6

j=(L +6)/6

m(2j —1)
ln 2sin

2L

Im(z) 1 . m(j —1)——ln 2sin
2 L

z, (e'"-

-iy

1 . 77J——ln . 2sin
2 L

(A13)

Re(z)
is positive for the same reason as in case 1. It follows
that

lim lnZ= lim ln(PfA3) (L =6n) .
1 . 1

~M m ~M (A14)

FIG. 5. Location of zeros of Eq. (A4) in the complex plane.
Zeros occur for some value of zI /z2 if m —x =2(y —m) (points I
and I'). The phase angles x and y assume discrete values (indi-

cated by 0) according to Eqs. (A5). Only in the case that
x =y =m (when I and I' coincide) will this zero be accompanied

by a change of sign of the PfaKan. For z& =z2, a zero occurs for
x =~/3,y =4m/3 if allowed by Eqs. (A5).

3. Case 3: L odd and not a multiple of 3

First we take L equal to a multiple of 3 minus 1. None
of the PfafBans is zero in this case. We check which pair
of PfaKans is the largest in absolute value:
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lim ln[ —PfA3/PfA, ]=1

M ~M
(SL —1)/6

j=(L+7)/6

m.(2j —1)
ln ~ 2sin

2L
1 . ~j——ln 2sin
2 L

1 . ~(j —1)——ln 2sln
2 L

T

~(L +1)—ln .2sin (A15)

Second-order approximation of the summand in 1/L
yields a positive contribution which dominates over the
last term. Thus PfA 3 and PfA 4 are, in absolute value,
larger than PfA1 and PfA2- But their contributions to
Eq. (Al) have opposite signs. The Euler-Maclaurin sum-
mation formula applied to Eq. (A7) shows that all
coefficients in the 1/M expansion of ln[PfA3/PfA&] are
zero and the possibility arises that the cancellation is so
complete that the contributions due to PfA1 and PfA2
will dominate. For an analytic examination of this prob-
lem, a determination of the large-M asymptotic behavior
beyond that of Eq. (A10) is required. To this purpose we
go back to Eq. (A4):

L
ln[ —PfA4/PfA3]= —g (B.+B ),

j=1
with

(A16)

M

B,=g ln.
k=1

e —p
—~i (2k —1)/M

—2m.ik /M (A17)

where p=e ' J "~ —1 satisfies ~@~%1. An equivalent
definition is

—1B =—. dz cot(~z)ln
2i

e
—7I.i (2z —1)/M

e
—2~iz /M (A18)

because the cotangent has poles at integral values of z.
The path of integration has to contain the integers
k =1,2, . . . , M and no other singularities, i.e., associated
with the points z, =(iM/2vr)in@ and z2 =z, +1/2 where
the numerator or the denominator of the argument of the
logarithm vanishes. The associated branch cuts can be

Re(B. ) =2Re(p ), (A19)

where the + sign is such that
~

p*
~
( 1. The slowest de-

cay in Eq. (A16) is associated with the wave number
j= (L + 1 ) /6, for which

~ p ~

= 1 m. /L &3. T—hus

~Pfa, —Pfa,
~

2e- M' "Pfa, . (A20)

This is to be compared with the contribution due to
PfA 2. From the foregoing it follows that also
PfA2/PfA4 decays exponentially with M, but on a longer
length scale 4&3L /m. . Therefore, at least for sufficiently
large L, the contributions due to —PfA1 and PfA2 dom-
inate in the partition function when M ~ ~ .

The case L odd and equal to a multiple of 3 plus one is
quite similar, and the answer is the same. Thus

lim lnZ= lim ln( —Pfg
&

) (L =6n+I) . (A21)
1 . 1

~M M ~M

4. Case 4: L even and not a multiple of 3

First we take L equal to a multiple of 3 minus 1. Then

made to annihilate except on a line segment between z1
and z2. Next, the contour of integration is deformed into
an elongated rectangle with its long dimension in the
Im(z) direction. It is located at 1/2(Re(z) (M+ —,

' and
—yo(Im(z)(y„, while we consider the limit yo~ ce.
The integration along the rectangle yields only an imagi-
nary contribution that will eventually cancel. However,
the branch cut is located inside the rectangle; integration
along both sides of the cut yields, in the limit of large M,

1 (SL —4)/6
lim In[PfA2/PfA4]=

j=(L+4)/6
ln 2sin - ——ln .2sin

mj 1 . m. (2j —1)
L 2 2L

1 . ir(2j + 1) . vr(L + 1)
(A22)

lim lnZ= lim 1nPfA3 (L =6n+2) .1 1

~M M ~M (A23)

In analogy with case 3, this expression is positive. Thus
PfA1 and PfA2 are largest in absolute value. They have
opposite signs and their contributions nearly cancel in
Eq. (Al), and it appears that PfA3 and PfA4 dominate.
Since the case L even and equal to a multiple of 3 plus
one appears to behave similarly, the result is

APPENDIX B: THE TRANSI'KR MATRIX

The construction of the transfer matrix is based on the
mapping of the zero-temperature antiferromagnetic tri-
angular Ising model on a system of nonintersecting
strings as described in Sec. I. Since the number X, of
strings running in the length direction of the cylinder is
conserved, the transfer matrix decomposes into sectors
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characterized by N, . These strings intersect the horizon-
tal edges between antiparallel spins and the other edges
between parallel spins. Thus the positions of the strings
are coded by bond variables b; located on the midpoints
of the edges: b; =1 describing the presence of a string
and b; =0 its absence. In order to determine the sign of
the Ising spins we use, in addition to the bond variables,
one Ising variable s =+1.

The transfer-matrix construction involves establishing
a one-to-one correspondence between the states of a row
of spins and the positive integers o, =1,2, 3, . . . . There
are (& ) ways in which positions of N, strings (i.e., the

S

nonzero bond variables) can be distributed over L edges.
The enumeration of these distributions is straightforward
and can be found, e.g., in Ref. 16. The additional Ising
variable s increases the number of states per row by a fac-
tor of 2. Thus, the state of row M of the model is coded
by an integer 1 ~ a ~ NL where NI =2(~ ). Given N„ the

S

index a determines the spins thus denoted s (a) for the
jth site in the row.

The elements of the one-row transfer matrix T„are

(a)

bL,

S

b'L

L+1

O'L )

0+
bL

(c)

b'L

b'L

b,

b',

Q$

b2

b'2

b3

b,

b')

b2

b',

b2 b3

XexpI 1II[sj(a)+s)(P)]] . (81)

An infinite factor (e per spin) due to the nearest-
neighbor coupling [see Eq. (1)] has been discarded.

Next we express T„by means of the bond variables.
The state a of the topmost row is denoted
a =I(s, b 1,b2, . . . , bl ), where I denotes the function
whose value is the transfer-matrix index. After append-
ing the new row, it is written a'=I(s', bi, bz, . . . , bl ).
The transfer matrix becomes

L
T"& = Q [3 s, (a)sj. (P—) sj.(P)s~+—, (P)

] 1

—sj. +1(p)sj(a) ]

X [3—s (a)s (P) s (P)s 1—(a).—s. 1(a)sz(a)]

FIG. 6. Illustration of the action of the sparse transfer ma-
trices P, Q and R, on the topmost boundary of a triangular lat-
tice with periodic boundaries in the horizontal direction. The
indices of these matrices correspond with states of the set of
bond variables b; on the boundary edges supplemented with one
spin value. The bond variables associated with the first matrix
index are shown as o, those with the second index as +. (a)
The sparse matrix g appends the first site of a new row to the
lattice. It thus increases the number of bond variables with one.
Furthermore, it determines the new spin () on the basis of the
old one (0) and of the bond variable bL. (b) This diagram shows

Q appending the second site of a new row, as evident from the
shape of the boundary. However, Eq. (86) applies also to ap-
pending sites 3 to L. (c) Multiplication by P reduces the number
of boundary edges again to L. The last site was already append-
ed by a Q matrix.

b) b2 bL L

1 2

(82)

where the a; describe whether a string meanders to the left (a, =1) or to the right (a, =0), and TH is diagonal with ele-
ments

L k —1

T =exp s g + (2bj —1)
k=1 j=l

(83)

For reasons of computational efficiency, T„ is decomposed into sparse matrices, in analogy with, e.g. , Ref. 24. By in-
troducing powers of the shift operator S relabeling the bonds b, +b,'=b;+1 (i =1.,—2, . . . , L+1), L —1 of these ma-
trices become identical

T —T 1 /2PQ L —1+T 1 /2

where R =ST„Q=S T2S ', and P = TL +,S can be expressed as follows in bond variables:

L
R( ', b', , . . . , b', ;,b„. . . , b )=5, „, „5, , „+5,

L L+l' 1 ' L k=2 k —1' k

L
Q(s' &1 ~ . &L+1'sl&1 . . . &I. +1)=[&, +, s, &I'. +1&I.+1(1 &L, )(1——&1)]&',. g—

&f,
L L+1' L+1 1 k —1' k

(84)

(85)
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L
P(s', bI, . . . , bl;s, b), . . . , bL+, )=5, „5g,g 5 ~

The action of the sparse matrices P, Q, and R is illustrated in Fig. (6). Note the relabeling of the sites due to the shift
operations.

For the determination of the largest eigenvalues, it is convenient to have a symmetric transfer matrix. The matrix

T=S T,p& (B8)

where S is the matrix representation of the shift operator relabeling the sites s; ~s =s;+,(i = 1,2, . . . , L ), satisfies this
condition. Equation (B8) defines the transfer matrix used to derive the numerical data used in Sec. III. A number of ei-
genvalues can be obtained by application of the conjugate gradient algorithm in combination with orthogonalization
and, where possible, imposing symmetries on the eigenvector. Since Eq. (B8) accounts for two layers of spins, each with
a thickness g= —,'+3 lattice units, Eqs. (37) and (38) contain a factor I/2g.
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