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Dynamic Exponent of the Two-Dimensional Ising Model and Monte Carlo Computation
of the Subdominant Eigenvalue of the Stochastic Matrix

M. P. Nightingale
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

H. W. J. Blöte
Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 16 January 1996)

We introduce a novel variance-reducing Monte Carlo algorithm for accurate determination of
correlation times. We apply this method to two-dimensional Ising systems with sizes up to15 3 15,
using single-spin flip dynamics, random site selection, and transition probabilities according to the
heat-bath method. From a finite-size scaling analysis of these correlation times, the dynamic critical
exponentz is determined asz ­ 2.1665s12d. [S0031-9007(96)00379-1]

PACS numbers: 64.60.Ht, 02.70.Lq, 05.50.+q, 05.70.Jk

The onset of criticality is marked by a divergence of
both the correlation lengthj and the correlation time
t. While the former divergence yields singularities in
static quantities, the latter manifests itself notably as
critical slowing down. To describe dynamic scaling
properties, only one exponent is required in addition to
the static exponents. This dynamic exponentz links the
divergences of length and time scales:t , jz . In our
computation ofz we exploit that, for a finite system,j
is limited by the system sizeL, so thatt , Lz at the
incipient critical point.

In this Letter, we focus on the two-dimensional Ising
model with Glauber-like dynamics. Values quoted in the
literature forz vary vastly, fromz ­ 1.7 to z ­ 2.7 [1],
but recent computations seem to be converging towards
the value reported here. Finally, results are beginning
to emerge of precision sufficient for sensitive tests of
fundamental issues such as universality.

The numerical method introduced in this Letter is re-
lated to Monte Carlo methods used to compute eigenval-
ues of Hamiltonians of discrete or continuous quantum
systems [2,3] and transfer matrices of statistical mechani-
cal systems [4]. In particular, the current method is suit-
able to obtain more than one eigenvalue by adaptation of
the diffusion Monte Carlo algorithm of Ref. [5].

To compute the correlation time of smallL 3 L lattices
we exploit the following properties of the single-spin-
flip Markov (or stochastic) matrixP [6]. It operates
in the linear space of all spin configurations and its
largest eigenvalue equals unity. The corresponding right
eigenvector contains the Boltzmann weights of the spin
configurations; the left eigenvector is constant, reflecting
probability conservation. The correlation timetL (in units
of one flip per spin, i.e.,L2 single-spin flips) is determined
by the second-largest eigenvaluelL,

tL ­ 2
1

L2 lnlL
. (1)

For a system symmetric under spin inversion, the corre-
sponding eigenvector is expected to be antisymmetric.

We used two methods to computelL: exact, numerical
computation forL # 5 and Monte Carlo for4 # L # 15.
The exact method used the conjugate gradient algorithm
[7] and the symmetries of periodic systems. This calcu-
lation resembles that in Ref. [8], but currently we realize
Glauber-like dynamics using heat-bath or Yang [9] transi-
tion probabilities and random site selection.

The Monte Carlo method used a stochastic form of the
power method, as follows [5]. A spin configurations with
energyEssd has a probability

expf2EssdykT g
Z

;
cBssd2

Z
, (2)

where Z is the partition function. The elementPss0jsd
of the Markov matrix is the probability of a single-spin-
flip transition from s to s0. Since P satisfies detailed
balance,

P̂ss0jsd ;
1

cBss0d
Pss0jsdcBssd (3)

is symmetric. For an arbitrary trial statej fl an effective
eigenvaluelstd

L is defined by

l
std
L ­

kP̂t11lf

kP̂tlf
, (4)

where k?lf is the expectation value in the statej fl.
In the limit t ! `, the effective eigenvalue converges
generically to the dominant eigenvalue allowed by the
symmetry ofj fl. The convergence is exponential in the
time lagt.

Given a trial statej fl, standard Monte Carlo method
suffices to compute the right-hand side of Eq. (4), i.e.,
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the denominator of Eq. (4),

N std ; k fjP̂t j fl ­
X

s1,...,st11

fsst11dP̂sst111jstd · · · P̂ss2js1dfss1d

­
X

s1,...,st11

fss1dfsst11d
cBss1dcBsst11d

Psst11jstd · · · Pss2js1dcBss1d2 ­ Z

ø
fss1dfsst11d

cBss1dcBsst11d

¿
P

, (5)

is an autocorrelation;fssd ; ksj fl and k?lP denotes the
average with respect to the probability

Psst11jstd · · · Pss2js1dcBss1d2yZ (6)

of finding a configurations1 in equilibrium and subse-
quent transitions to configurationss2 throughst11.

Similarly, the numerator of Eq. (4),

Hstd ; k fjP̂t11j fl

­
X

s0,...,st11

fsst11dP̂sst11jstd · · · P̂ss1js0dfss0d

­
1
2

Z

ø
flLss1d 1 lLsst11dg

fss1dfsst11d
cBss1dcBsst11d

¿
P

(7)

is a cross correlation, where the “configurational eigen-
value” lLssd of spin configurations is defined as

lLssd ­
1

fssd

X
s0

fss0dP̂ss0jsd . (8)

Finally, with Eqs. (5) and (7), one haslstd
L ­ HstdyN std

for the effective eigenvalue.
In practice,Hstd andN std are estimated by conventional

Monte Carlo methods. As usual, these estimators involve
time averages of stochastic variables. Thus, on the right
of Eqs. (5) and (7)si is replaced byst01i21 (i ­ 1, . . . , t),
and the Monte Carlo average is taken over an appropriately
chosen subset of timest0 after thermal equilibration.

In principle, one could choosef ­ mcB, wherem is
the magnetization. In that case, the above method reduces
to estimating the effective eigenvalue of the Markov
matrix in terms of the magnetization autocorrelation
function gstd via lstd

L ­ gst 1 1dygstd. To estimategstd
one would average over time products of the form
mss1dmsst11d. Equation (7) would then yieldgst 1 1d
by replacingmsstd by the conditional expectation value of
the magnetization at timet 1 1, evaluated explicitly asP

st11
msst11dPsst11jstd.

The crux is that the estimator oflstd
L satisfies a zero-

variance principle [5], since Eqs. (5) and (7) contain an
optimizable trial statej fl. In the ideal case,j fl is
an exact eigenstate of the symmetrized Markov matrix
P̂, and the “configurational eigenvalue”lLssd equals the
eigenvalue independent ofs. Then, the estimator of
the effective eigenvaluelstd

L yields the exact eigenvalue
without statistical and systematic errors at finitet, if care

is taken to arrange cancellation of the fluctuating factors in
the estimators ofHstd andN std. It should be noted that this
is true only if the numerator of Eq. (4) is evaluated with
Eq. (7), in which the change fromt to t 1 1 is made by
an explicit matrix multiplication, rather than by using the
analog of Eq. (5) witht replaced byt 1 1. In practice,j fl
is not an exact eigenstate, and this introduces statistical and
systematic errors. However, these errors are kept small by
the zero-variance principle, if the trial states are accurate.

Such optimized trial states are constructed prior to the
main Monte Carlo run, by minimization of the variance
x2 of the configurational eigenvalue

x2spd ­ kkksP̂ 2 kP̂lfd2lllf . (9)

As indicated, the variance depends on the parametersp
of the trial state. Optimization overp is done following
Umrigar, Wilson, and Wilkins [10]: one samplesM con-
figurationssi , typically a few thousand, with probability
c

2
BZ21 and approximatesx2spd by

x2spd ø
PM

i­1f fssi , pdycBssidg2 flLssi , pd 2 l̄Lspdg2PM
i­1f fssi , pdycBssidg2

.

(10)

Here l̄L denotes the weighted average of the configura-
tional eigenvalue over the sample, while the modified no-
tation explicitly shows dependences on the parametersp
of the trial statej fl. Near-optimal values of the parame-
ters p can be obtained by minimization of the expres-
sion on the right-hand side of Eq. (10) for afixedsample.
Statistical independence in the sample requires that the
configurations be selected at intervals on the order of the
correlation time.

A guiding principle for the construction of trial states
is that long-wavelength fluctuations of the magnetization
have the longest decay time. Furthermore, analysis of
the exact left eigenvectors of the Markov matrixP for
systems withL # 5 shows that the elements depend
only on the magnetization to good approximation. This
suggests trial functions depending on long-wavelength
components of the Fourier transform ofsi , the zero-
momentum component of which is just the magnetization
m. The form

fssd ­ c̃Bssdc s1dssdcs2dssd , (11)

where c s6d ! 6c s6d under spin inversion, yields an
antisymmetric trial function, as required. The tilde in
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c̃B indicates that the temperature is used as a variational
parameter, but we found that its optimal value is virtually
indistinguishable from the true temperature. Thec s6d

were chosen as

c s1d ­
X
k

aksm2dms1d
k 1 m

X
k

bksm2dms2d
k , (12)

c s2d ­ m
X
k

cksm2dms1d
k 1

X
k

dksm2dms2d
k , (13)

where the indexk runs through a small set of multiplets of
four or fewer long-wavelength wave vectors defining the
ms6d

k , translation and rotation symmetric sums of prod-
ucts of Fourier transforms of the local magnetization;
the k are selected so thatms2d

k is odd andms1d
k is even

under spin inversion; the coefficientsak, bk, ck, and
dk are polynomials of second order or less inm2. The
degrees of these polynomials were chosen so that no terms
occur of higher degree than four in the spin variables. We
used trial functions dependent on system size only in the
optimal values of the parameters. This yielded ax2 and
an error in the variational estimatels1d

L decreasing withL;
yet, the relative error intL increases.

Since the probability distribution Eq. (6) is precisely
the one purportedly generated by standard Monte Carlo
method, the sampling procedure is straightforward. The
Monte Carlo algorithm used a random-number generator
of the shift-register type. It was selected with care to
avoid the introduction of systematic errors; see discussion
and references in Ref. [11]. We used two Kirkpatrick-
Stoll [12] generators, the results of which were combined
by a bitwise exclusive or [13]. For test purposes we re-
placed one Kirkpatrick-Stoll generator by a linear congru-
ential rule, but this did not reveal clear differences [11].

For each system size4 # L # 15, Monte Carlo aver-
ages were taken over8 3 108 spin configurations. For
L ­ 13 15 these were separated by intervals of 16 sweeps
(Monte Carlo steps per spin); 8 sweeps forL ­ 11 and 12;
2 sweeps forL ­ 5 and 6; and only one sweep forL ­ 4.
The simulations of the remaining system sizes consisted of
parts using intervals of 2, 4, or 8 sweeps.

The numerical results for the effective second largest
eigenvaluelstd

L as a function of the projection timet ap-
peared to converge rapidly. In agreement with scaled re-
sults forL # 5 spectra, we observe that convergence oc-
curs within a few intervals as given above. Monte Carlo
estimates oflL are shown in Table I, as are exact results
for small systems. For system sizesL ­ 4 and 5, the two
types of calculation agree satisfactorily. The small numer-
ical errors indicate that the variance-reducing method in-
troduced above is quite effective.

For finite system sizeL there are corrections to
the leading scaling behaviortL , Lz . In the two-
dimensional Ising model corrections to static equilibrium
quantities occur with even powers of1yL [14]; thus we

TABLE I. Second-largest eigenvaluelL of the Markov ma-
trix. The first column indicates the method: exact numerical or
Monte Carlo.

Method L lL Error

Exact 2 0.985 702 260 395 516 0.000 000 000 001
Exact 3 0.997 409 385 126 011 0.000 000 000 001
Exact 4 0.999 245 567 376 453 0.000 000 000 001
Exact 5 0.999 708 953 624 452 0.000 000 000 001

MC 4 0.999 245 568 5 0.000 000 009 4
MC 5 0.999 708 945 3 0.000 000 006 0
MC 6 0.999 865 719 4 0.000 000 004 5
MC 7 0.999 929 970 8 0.000 000 003 1
MC 8 0.999 960 085 4 0.000 000 002 3
MC 9 0.999 975 663 0 0.000 000 001 7
MC 10 0.999 984 357 7 0.000 000 001 4
MC 11 0.999 989 505 6 0.000 000 001 0
MC 12 0.999 992 710 7 0.000 000 000 8
MC 13 0.999 994 784 0 0.000 000 000 6
MC 14 0.999 996 173 6 0.000 000 000 5
MC 15 0.999 997 131 4 0.000 000 000 5

expect

tL ø Lz
ncX

k­0

akL22k , (14)

where the series was arbitrarily truncated at ordernc, but
other powers of1yL might occur as well. Ignoring the
latter, we fitted the correlation times of Table I to this
form. Typical results of such fits are given in Table II.
The smallest systems do not fit Eq. (14) well, at least not
for the nc values used. The residuals decrease rapidly

TABLE II. Results of least-squares fits for the dynamic
exponent. The first column shows the minimum system size
included, the second the number of correction terms included,
and the third column whether ( y) or not (n) numerical exact
results (forL # 5) are included. The last column contains the
chi-square confidence index [16].

L $ nc Exact z Error Q

4 1 n 2.1769 0.0001 0.00
5 1 n 2.1705 0.0002 0.00
6 1 n 2.1688 0.0003 0.23
7 1 n 2.1679 0.0006 0.43
8 1 n 2.1672 0.0010 0.42

4 2 n 2.1650 0.0003 0.17
5 2 n 2.1665 0.0006 0.70
6 2 n 2.1662 0.0013 0.60
7 2 n 2.1648 0.0024 0.52

4 3 n 2.1672 0.0009 0.64
5 3 n 2.1656 0.0020 0.61
6 3 n 2.1625 0.0044 0.56
3 3 y 2.1653 0.0004 0.34
4 3 y 2.1670 0.0009 0.64
5 3 y 2.1657 0.0020 0.49
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TABLE III. Comparison of recent results for the dynamic
exponentz. Numerical errors are in parentheses.

Reference Year Value

Present work 1996 2.1665 (12)
Li et al. [15] 1995 2.1337 (41)
Linke et al. [17] 1995 2.160 (5)
Grassberger [18] 1995 2.172 (6)
Wanget al. [19] 1995 2.16 (4)
Baker and Erpenbeck [20] 1994 2.17 (1)
Ito [21] 1993 2.165 (10)
Dammann and Reger [22] 1993 2.183 (5)
Matz et al. [23] 1993 2.35 (5)
Münkel et al. [24] 1993 2.21 (3)
Stauffer [25] 1993 2.06 (2)

when the minimum system size is increased and the
consistency between the results for differentnc suggests
that Eq. (14) captures the essential scaling behavior oftL.
From these results we chose the entry forL $ 5 andnc ­
2 as our best estimate:z ­ 2.1665 6 0.0012, where we
conservatively quote a2s error. To our knowledge, this
is the most precise estimate ofz obtained to date, as
evidenced by recent results summarized in Table III. The
table shows that the mutual consistency of the results
for z has tended to improve in recent years. The only
recent result that appears inconsistent with ours is due
to Li, Schulke, and Zheng [15]. Its error is copied from
Table I of Li et al. The data in that table display finite-
size dependences that exceed the quoted errors, which
may explain the discrepancy with our result.
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