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Dynamic Exponent of the Two-Dimensional Ising Model and Monte Carlo Computation
of the Subdominant Eigenvalue of the Stochastic Matrix

M. P. Nightingale
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

H.W.J. Blote

Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
(Received 16 January 19p6

We introduce a novel variance-reducing Monte Carlo algorithm for accurate determination of
correlation times. We apply this method to two-dimensional Ising systems with sizes 1dp>ol5,
using single-spin flip dynamics, random site selection, and transition probabilities according to the
heat-bath method. From a finite-size scaling analysis of these correlation times, the dynamic critical
exponent; is determined ag = 2.1665(12). [S0031-9007(96)00379-1]

PACS numbers: 64.60.Ht, 02.70.Lg, 05.50.+q, 05.70.Jk

The onset of criticality is marked by a divergence of For a system symmetric under spin inversion, the corre-
both the correlation lengtl¥ and the correlation time sponding eigenvector is expected to be antisymmetric.
7. While the former divergence yields singularities in We used two methods to computg: exact, numerical
static quantities, the latter manifests itself notably asomputation fol. = 5 and Monte Carlo fod =< L = 15.
critical slowing down. To describe dynamic scaling The exact method used the conjugate gradient algorithm
properties, only one exponent is required in addition td7] and the symmetries of periodic systems. This calcu-
the static exponents. This dynamic exponeninks the lation resembles that in Ref. [8], but currently we realize
divergences of length and time scales> £%. In our  Glauber-like dynamics using heat-bath or Yang [9] transi-
computation of; we exploit that, for a finite systen  tion probabilities and random site selection.
is limited by the system sizé&, so thatr ~ L* at the The Monte Carlo method used a stochastic form of the
incipient critical point. power method, as follows [5]. A spin configuratienvith

In this Letter, we focus on the two-dimensional Ising energyE(s) has a probability
model with Glauber-like dynamics. Values quoted in the
literature forz vary vastly, fromz = 1.7 to z = 2.7 [1], exd—E(s)/kT] _ ¢p(s)?
but recent computations seem to be converging towards 7 -z (2)
the value reported here. Finally, results are beginning

to emerge of precision sufficient for sensitive tests ofynere 7 is the partition function. The elemet(s'|s)

fundamental issues such as universality. _ of the Markov matrix is the probability of a single-spin-
The numerical method introduced in this Letter is re-flip transition froms to s'. Since P satisfies detailed

lated to Monte Carlo methods used to compute eigenvabmance,

ues of Hamiltonians of discrete or continuous quantum

systems [2,3] and transfer matrices of statistical mechani- A 1
cal systems [4]. In particular, the current method is suit- P(s'ls) = ;
able to obtain more than one eigenvalue by adaptation of ¥5(s")
the diffusion Monte Carlo algorithm of Ref. [5].

To compute the correlation time of small X L lattices
we exploit the following properties of the single-spin-
flip Markov (or stochastic) matrixP [6]. It operates By
in the linear space of all spin configurations and its (L’) = Aif’
largest eigenvalue equals unity. The corresponding right (P')s
eigenvector contains the Boltzmann weights of the spin _ _ _
configurations; the left eigenvector is constant, reflectingvhere (-); is the expectation value in the stafg).
probability conservation. The correlation timg (in units I the limit 7 — =, the effective eigenvalue converges
of one flip per spin, i.e L2 single-spin flips) is determined generically to the dominant eigenvalue allowed by the

P(s'|s)ys(s) 3)

is symmetric. For an arbitrary trial stakg) an effective
eigenvalu@\(L’) is defined by

(4)

by the second-largest eigenvalug, symnpetry of| /). The convergence is exponential in the
time lag:.
_ 1 1 Given a trial statd f), standard Monte Carlo method
L= _L2In/\L : 1) suffices to compute the right-hand side of Eg. (4), i.e.,
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the denominator of Eq. (4),

NO = (fIPLf) = 3 flsir)Plsanlls) - Plsals))f (s1)

_ Z f(Sl)f(Sz+1) (5)

st |
SlieensSt1 p(s)¥p(si+1) b’

P(si+1lse) - -P(s2|S1)¢’B(S1)2 = Z< (s)Yp(si41)

is an autocorrelationf(s) = (s| f) and(:)p denotes the! is taken to arrange cancellation of the fluctuating factors in

average with respect to the probability the estimators off ¥ andN. It should be noted that this
) is true only if the numerator of Eq. (4) is evaluated with
P(si+1ls) -+ P(s2ls1)ips(s1)7/Z (6)  Eq. (7), in which the change fromto ¢ + 1 is made by

o , . . i an explicit matrix multiplication, rather than by using the
of finding a}'conflgurathnn in equilibrium and subse- analog of Eq. (5) with replaced by + 1. In practice] f)
quent transitions to configurations throughs 1. is not an exact eigenstate, and this introduces statistical and
Similarly, the numerator of Eq. (4), systematic errors. However, these errors are kept small by
HO = <f|13’+1|f> the zero-va_ria_nce principle, if the trial states are gccurate.
Such optimized trial states are constructed prior to the
main Monte Carlo run, by minimization of the variance

= Z F(sex1)P(sals) -+ Plsilso)f (so) x?2 of the configurational eigenvalue
2 — D _ /D)2
= i f(s1)f(s141) x~(p) (P <P>f) )f~ 9)
= —Z{[A(s1) + Ap(see)] =———— o _
2 Ys(s1)¥p(sir1) /p As indicated, the variance depends on the parameters

. . ! ) . of the trial state. Optimization over is done following
is a cross correlation, where the “configurational eig9eNymrigar, Wilson, and Wilkins [10]: one samplé# con-
value” A.(s) of spin configuratiors is defined as figurationss;, typically a few thousand, with probability

Y3Z ! and approximateg?(p) by

M) = 25 SR, ®) ]
s 2(p) ~ SM L f(si,p)/wp(s)P[AL(si, p) — Au(p)P
Finally, with Egs. (5) and (7), one hag’ = H®/N® o LS (siu p) /s (s) P2 .
for the effective eigenvalue. (20)

In practice,H® andN" are estimated by conventional
Monte Carlo methods. As usual, these estimators involv
time averages of stochastic variables. Thus, on the rig
of Egs. (5) and (7); is replaced by, +;— (i = 1,...,1),
and the Monte Carlo average is taken over an appropriate
chosen subset of time$after thermal equilibration.

Elere A. denotes the weighted average of the configura-
jonal eigenvalue over the sample, while the modified no-
tation explicitly shows dependences on the parameiers
the trial statg f). Near-optimal values of the parame-
ers p can be obtained by minimization of the expres-

In principle, one could choosg = m, wherem is sion on the right-hand side of Eq. (10) fofiredsample.

the magnetization. In that case, the above method reduc&fatistical independence in the sample requires that the
to estimating the effective eigenvalue of the Markoy configurations be selected at intervals on the order of the

matrix in terms of the magnetization autocorrelationCOXeg;itiE?]éirSﬁhciple for the construction of trial states

function g(¢) via A = g(¢+ + 1)/g(¢). To estimateg(r) . : ate

one woﬁl(d) averége og\ser tin)1/eg(p)roducts of ﬂ%e( 3‘orm's that long-wavelength fluctuations of the magnetization

m(s))m(s,;+,). Equation (7) would then yielg(: + 1) have the longest decay time. Furthermore, analysis of
; o ; the exact left eigenvectors of the Markov matix for

by replacingn(s,) by the conditional expectation value of

the magnetization at time + 1, evaluated explicitly as systems withL = > Sh.OWS that the elementg depen_d
S m(ses)P(sials) only on the magnetization to good approximation. This
Si+1 1 1 2

. . . suggests trial functions depending on long-wavelength
The crux is that the estimator o\f(L’) satisfies a zero- 99 P g g 9

. inciple 5] si E o d (7 tai components of the Fourier transform ef, the zero-
variance principle [5]. since Egs. ( .) and (7) con an aNymomentum component of which is just the magnetization
optimizable trial state| f). In the ideal case|f) is

. . .m. The form
an exact eigenstate of the symmetrized Markov matrix

P, and the “configurational eigenvalug’ (s) equals the £(s) = @)™ () (s), (11)
eigenvalue independent of. Then, the estimator of

the effective eigenvalua(L’) yields the exact eigenvalue where ¢*) — +4(*) under spin inversion, yields an
without statistical and systematic errors at finitef care  antisymmetric trial function, as required. The tilde in

4549



VOLUME 76, NUMBER 24 PHYSICAL REVIEW LETTERS 10uNE 1996

Y5 indicates that the temperature is used as a variationalABLE I. Second-largest eigenvaluk, of the Markov ma-
parameter, but we found that its optimal value is Virtua”ytl‘ix. The first column indicates the method: exact numerical or

indistinguishable from the true temperature. T#e") ~ Monte Carlo.
were chosen as Method L AL Error
+) _ o (+) o (-) Exact 2 0.985702 260395516 0.000 000000001
P = amPmy + mYy be(mPmy . (12)  Exact 3 0.997409385126011  0.000000 000001
k k Exact 4 0.999245567 376453 0.000 000000001
O () () Exact 5 0.999 708 953 624 452 0.000 000000001
p 7 = m Y amPm + X dmPmic, (13) e 4 09992455685 0.000 000 009 4
k k MC 5 0.9997089453 0.000 000 006 0
. . MC 6 0.9998657194 0.000000004 5
where the indek runs through a small set of multlplets of MC 7 0.9999299708 0.000000003 1
four or fewer long-wavelength wave vectors defining theyc 8  0.9999600854 0.000 000002 3
mf), translation and rotation symmetric sums of prod-MC 9 0.9999756630 0.000000001 7
ucts of Fourier transforms of the local magnetizationMC 10 0.9999843577 0.000000001 4
the k are selected so that ’ is odd andm|” is even e E 8-888 ggg ggg? 8-888 88888(1)2
urder s rerso, e osfioents, gk NG i oassmiato  ooooooumns
k are poly : : 14 0.9999961736 0.000 0000005
degrees of these polynomials were chosen so that no ter 15 09999971314 0.0000000005
occur of higher degree than four in the spin variables. We
used trial functions dependent on system size only in the
optimal values of the parameters. This yieldeg’aand
an error in the variational estimaté” decreasing witi; ~ expect
yet, the relative error irr, increases. n,
Since the probability distribution Eq. (6) is precisely L~ LF Y a2, (14)
the one purportedly generated by standard Monte Carlo k=0

method, the sampling procedure is straightforward. Theyhere the series was arbitrarily truncated at orgerbut
Monte Carlo algorithm used a random-number generatogther powers ofl /L might occur as well. Ignoring the
of the shift-register type. It was selected with care tojatter, we fitted the correlation times of Table | to this
avoid the introduction of systematic errors; see discussiofprm. Typical results of such fits are given in Table IL.
and references in Ref. [11]. We used two Kirkpatrick-The smallest systems do not fit Eq. (14) well, at least not

Stoll [12] generators, the results of which were combinedor the n, values used. The residuals decrease rapidly
by a bitwise exclusive or [13]. For test purposes we re-

placed one Kirkpatrick-Stoll generator by a linear congru-
ential rule, but this did not reveal clear differences [11]. TaBLE II. Results of least-squares fits for the dynamic

For each system sizé = L = 15, Monte Carlo aver- exponent. The first column shows the minimum system size
ages were taken ovex X 108 spin configurations. For included, the second the number of correction terms included,

L = 13-15 these were separated by intervals of 16 sweepdnd Itthe fthier<CC5"um” .whletge(; ()'?horl ”Ott (”l) numerict:a_l e’;ﬁm

(Monte Carlo steps per spin); 8 sweepsfor 11 and 12;  esults (forL = 5) are included. The last column contains the
chi-square confidence index [16].

2 sweeps fol. = 5 and 6; and only one sweep for= 4.

The simulations of the remaining system sizes consisted df = ne Exact z Error 0
parts using intervals of 2, 4, or 8 sweeps. 4 1 n 21769 0.0001 0.00
The numerical results for the effective second largest s 1 n 2.1705 0.0002 0.00
eigenvalue/\(L’) as a function of the projection timeap- 6 1 n 2.1688 0.0003 0.23
peared to converge rapidly. In agreement with scaled re-7 1 n 2.1679 0.0006 0.43
sults forL < 5 spectra, we observe that convergence oc- 8 1 n 2.1672 0.0010 0.42
curs within a few intervals as given above. Monte Carlo 4 2 n 2.1650 0.0003 0.17
estimates ofA; are shown in Table |, as are exact results 5 2 n 2.1665 0.0006 0.70
for small systems. For system sizes= 4 and 5, thetwo 6 2 n 2.1662 0.0013 0.60
types of calculation agree satisfactorily. The small numer- 7 2 n 2.1648 0.0024 0.52
ical errors indicate that the variance-reducing method in- 4 3 n 2.1672 0.0009 0.64
troduced above is quite effective. 5 3 n 2.1656 0.0020 0.61
For finite system sizeL there are corrections to © 3 n 2.1625 0.0044 0.56
the leading scaling behavior; ~ L*. In the two- j g ; gig?g 88883 8‘23
dimensional Ising model corrections to static equilibrium 5 3 y 51657 0.0020 0.49

guantities occur with even powers of L [14]; thus we
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TABLE Ill. Comparison of recent results for the dynamic [4] M.P. Nightingale, E. Granato, and J. M. Kosterlitz, Phys.

exponentz. Numerical errors are in parentheses. Rev. B 52, 7402 (1995); M.P. Nightingale and H.W. J.

Blote, Phys. Rev. B (to be published), and references
Reference Year Value therein

Present work 1996 2.1665 (12) [5] D.M. Ceperley and B. Bernu, J. Chem. Phy8, 6316

Li et al. [15] 1995 2.1337 (41) (1988); B. Bernu, D.M. Ceperley, and W.A. Lester,

Linke et al. [17] 1995 2.160 (5) J. Chem. Phys93, 552 (1990).

Grassberger [18] 1995 2.172 (6) [6] See, e.g., W. FellerAn Introduction to Probability Theory

Wanget al. [19] 1995 2.16 (4) and its Applications(John Wiley and Sons, New York,

Baker and Erpenbeck [20] 1994 2.17 (1) 1968), Vol. 1; H. HakenSynergetics: an Introduction:

Ito [21] 1993 2.165 (10) Nonequilibrium Phase Transitions and Self-Organization

Dammann and Reger [22] 1993 2.183 (5) in Physics, Chemistry, and Biolog@pringer-Verlag, Ber-

Matz et al. [23] 1993 2.35 (5) lin, 1978).

Miinkel et al. [24] 1993 2.21 (3) [7] M.P. Nightingale, V.S. Viswanath, and G. Mulller, Phys.

Stauffer [25] 1993 2.06 (2) Rev. B48, 7696 (1993).

[8] M.P. Nightingale and H.W.J. Blote, Physica (Amster-
dam)104A, 352 (1980).

when the minimum system size is increased and the[9] C.P. Yang, Proc. Symp. Appl. Matii5, 351 (1963).

consistency between the results for differeptsuggests 101 C.J. Umrigar, K.G. Wilson, and J. W. Wilkins, Phys. Rev.

that Eq. (14) captures the essential scaling behaviey of Lett. 60, 1719 (1988); inComputer Simulation Studies in

From these results we chose the entryffoe 5 andn, — Condensed Matter Physics: Recent Developmerttied

; o i by D.P. Landau, K. K. Mon, and H. B. Schttler, Springer
2 as our best estimate: = 2.1665 * 0.0012, where we Proceedings of Physics Vol. 33 (Springer, Berlin, 1988);

conservatively quote 20 error. To our knowledge, this C.J. Umrigar, Int. J. Quant. Chem. Syng8, 217 (1989).

is the most precise estimate of obtained to date, as [11] H.W.J. Bléte, E. Luijten, and J.R. Heringa, J. Phys. A
evidenced by recent results summarized in Table lll. The 28 6289 (1995).

table shows that the mutual consistency of the result§12] S. Kirkpatrick and E.P. Stoll, J. Comput. Phy0, 517
for z has tended to improve in recent years. The only (1981).

recent result that appears inconsistent with ours is duél3] J.R. Heringa, H.W.J. Bldte, and A. Compagner, Int.
to Li, Schulke, and Zheng [15]. lts error is copied from J. Mod. Phys. G3, 561 (1992). .

Table | of Li et al. The data in that table display finite- [14] See, e.g., H. W.J. Blote and M. P. M. den Nijs, Phys. Rev.
size dependences that exceed the quoted errors, Whi%[ils] B 37, 1766 (1988), and references therein.

. ) . Z.B. Li, L. Schulke, and B. Zheng, Phys. Rev. Lety,
may explain the discrepancy with our result. 3396 (1995)
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