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Hydrodynamic limits for the monomer-dimer surface reaction: Chemical diffusion, wave
propagation, and equistability

M. Tammaro
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

J. W. Evans
Ames Laboratory and Department of Mathematics, Iowa State University, Ames, Iowa 50011

~Received 18 December 1997!

For finite adspecies mobility, the lattice-gas monomer-dimer (A1B2) surface reaction model exhibits a
discontinuous transition from a stable reactive steady state to a stableA-poisoned steady state, as the impinge-
ment ratePA for A increases above a critical valueP* . The reactive~poisoned! state is metastable forPA just
above~below! P* . Increasing the surface mobility ofA enhances metastability, leading to bistability in the
limit of high mobility. In the bistable region, the more stable state displaces the less stable one separated from
it by a planar interface, withP* becoming the equistability point for the two states. This hydrodynamic regime
can be described by reaction-diffusion equations~RDE’s!. However, for finite reaction rates, mixed adlayers of
A andB are formed, resulting in a coverage-dependent and tensorial nature to chemical diffusion~even in the
absence of interactions beyond site blocking!. For equal mobility of adsorbedA andB, and finite reaction rate,
the prediction forP* from such RDE’s, incorporating the appropriate description of chemical diffusion, is
shown to coincide with that from kinetic Monte Carlo simulations for the lattice-gas model in the regime of
high mobility. Behavior for this special case is compared with that for various other prescriptions of mobility,
for both finite and infinite reaction rates.@S1063-651X~98!07905-7#

PACS number~s!: 05.60.1w, 05.40.1j, 82.65.Jv

I. INTRODUCTION

In most surface reactions on single crystal substrates, ad-
layer ordering and mixing significantly influence both the
reaction kinetics and the chemical diffusion of adspecies
across the surface. Atomistic lattice-gas~LG! treatments pro-
vide the possibility to incorporate and accurately describe
such effects@1#, which are ignored in traditional mean-field
~MF! treatments@2#. However, most LG modeling has failed
to recognize and incorporate the feature that rates for hop-
ping between surface sites, for at least some adsorbed reac-
tants, are typically many orders of magnitude larger than
rates for all other processes~adsorption, reaction, and de-
sorption! @3#. Indeed, this rapid mobility is responsible@4–7#
for strong hysteresis and metastability in the reaction kinet-
ics, and for the mesoscopic length scales of spatial pattern
formation, observed in these systems@2#. Thus it is important
to focus on the behavior of LG models in the appropriate
‘‘hydrodynamic limit’’ of rapid mobility of these reactants
@4–7#.

There have been numerous studies of the classic
monomer-dimer (A1B2) surface reaction model, which thus
provides a natural testing ground for the above issues. Early
MF studies revealed bistability between a reactive steady
state, with low monomer coverage, and a monomer-poisoned
steady state@8#. MF reaction-diffusion equation studies of
the evolution of a chemical wave separating these states al-
lows assessment of their relative stability@4#. The initial LG
model studies focused on the casewithout surface mobility
of reactants, where ‘‘large’’ fluctuations readily produce a
discontinuous transition between the reactive and poisoned
states@9,10#. Subsequent studies introduced limited mobility
to examine its effect on the location of the transition@11,12#.

There have even been a few more comprehensive studies
examining behavior of both the reaction kinetics and steady
states~including the enhancement of metastability and hys-
teresis!, as well as the characteristics of chemical wave
propagation, in the regime of high mobility@4–7,13#. How-
ever, there has been no previous study forfinite reaction rate
of the canonical case ofequal mobilityof monomers and
dimers~which can hop to adjacent empty sites!, or any sys-
tematic examination of how the prescription of mobility af-
fects behavior in the hydrodynamic limit. These issues are
addressed in this contribution.

In Sec. II we describe the LG monomer-dimer surface
reaction model, and the basic properties of the model. A
reaction-diffusion equation~RDE! formalism to describe be-
havior in the hydrodynamic limit of large monomer mobility
is presented in Sec. III. In Sec. IV we discuss appropriate
descriptions of chemical diffusion in mixed adlayers. These
descriptions are incorporated into the RDE’s. An analysis of
behavior of the LG model with equal mobility of monomers
and dimers, and with a reaction rate of unity, is presented in
Sec. V. Behavior in the limit of high mobility is compared
with predictions of the appropriate RDE’s. A comprehensive
listing and comparison of values for the equistability point,
PA5P* , is given in Sec. VI for various prescriptions of
mobility, for both finite and infinite reaction rates. Some con-
cluding remarks are presented in Sec. VII.

II. LATTICE-GAS MONOMER-DIMER „A1B2… SURFACE
REACTION MODEL

The monomer-dimer (A1B2) lattice-gas reaction model
includes the steps@8–10#
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A~gas!1E ——→PA A~ads! ,

B2~gas!12E ——→PB 2B~ads! ,

A~ads!1B~ads! ——→k
AB~gas!12E ,

where ‘‘gas’’ denotes gas phase, ‘‘ads’’ denotes adsorbed
species, andE denotes an empty surface adsorption site. To
describe the model more explicitly:A(gas) adsorbs at rate
PA on single empty sites;B2(gas) adsorbs at ratePB on
adjacent pairs of empty sites; and adjacentA(ads) and
B(ads) react to form the productAB(gas) at ratek for each
A(ads)-B(ads) pair. We also allow hopping ofA(ads) and
B(ads) to any adjacent empty site with rateshA and hB ,
respectively, and ‘‘exchange diffusion’’ of each adjacent
A(ads) andB(ads) at ratehAB . We assume here thathA
>hB andhA>hAB . These diffusion processes may be repre-
sented schematically as

A~ads!1E ——→hA E1A~ads! ,

B~ads!1E ——→hB B~ads!1E ,

A~ads!1B~ads! ——→hAB B~ads!1A~ads! .

Thus, implicitly, in this model, there areno interactions
between adspecies, other than exclusion of double site occu-
pancy, and reaction of adjacentA(ads) andB(ads). Below,
we choosePA1PB51, which sets the time scale. We shall
consider finite reaction rates~with k51!, and also instanta-
neous reaction, wherek→`. This model has the same
Langmuir-Hinshelwood adsorption and reaction steps as CO
oxidation @2#, if one makes the identificationsA↔CO and
B2↔O2. Below, coverages~in monolayers, ML! for A(ads)
andB(ads) will be denoted byuA anduB , respectively, and
the total coverage byu5uA1uB .

For finite hop rates, the surface reaction model exhibits a
discontinuous transition from astable reactivesteady state
with low uA , for some or all PA,P* , to a stable
A-poisonedsteady state withuA51, for PA.P* @5,7,9–13#.
The location of the transition,PA5P* , is nontrivial. A
metastable reactivestate persists for some finite rangeP*
,PA,Ps1 bounded above by an upper spinodal pointPs1

~the precise definition of which is unclear! @6,14#. Of course,
the A-poisoned steady state is an absorbing state, which ex-
ists ~with infinite lifetime! for all PA . However, it is only
stable, attracting nonpoisoned states, forPA.P* . It appears
to be metastable ~only transiently attracting nearly
A-poisoned states! for some rangePs2,PA,P* , and to be
unstable for lowerPA ~repelling nonpoisoned states! @6#.
Here Ps2 denotes a lower spinodal.@For completeness, we
note that there is also aB-poisoned adsorbing steady state,
which is typically unstable. The only exception is for limited
mobility of the dimer species, and for a range ofPA,P**
~with P** ,P* !, where it becomes stable. In this case, there
is a continuous transition to the stable reactive state atPA
5P** . Although this transition has been the focus of nu-
merous studies@1#, it does not significantly impact upon the
issues considered here, and is thus deemphasized.#

With increasing mobility ofA(ads), the lifetime of the
metastable reactive state increases and eventually diverges,
and the width of its existence rangePs1 –P* expands sig-
nificantly. The width of the existence rangeP* –Ps2 of the
metastableA-poisoned state, also expands toP* , since
Ps2→0. In the hydrodynamic regime,’’ wherehA→`, fluc-
tuations in nonpoisoned states are quenched, true bistability
is achieved, andP* becomes the equistability point for the
bistable reactive andA-poisoned states@4–7#.

Of particular relevance for this study is the observation
that for PA,P* , a stable reactive state will displace the
metastable or unstableA-poisoned state, separated from it by
an on-average planer interface. This creates a trigger or
chemical wave of velocityV.0, say. ForP* ,PA,Ps1,
the stableA-poisoned state displaces metastable reactive
state, creating a trigger wave with velocityV,0 ~at least
until the metastable reactive state spontaneously poisons!.
This velocity, V, vanishes asPA→P* , where the reactive
and A-poisoned states are in equistable coexistence. See
Refs. @5–7,13#. Near the transition, one hasV'kc(Lr

2

1Ld
2)1/2(P* 2PA), wherekc5O(1) is the overall character-

istic rate for the reaction,Lr5O(1) is the range of direct
spatial contact due to nearest-neighbor reaction and dimer
adsorption mechanisms, andLd;(hA /kc)

1/2 is the diffusion
length ~for hA>hB andhAB! @5,7#. Here, distances are mea-
sured in units of the surface lattice constanta.

III. HYDRODYNAMIC REGIME OF THE A1B2 MODEL

In the hydrodynamic regime, wherehA and possibly also
other hop rates are very large, the local coverages,uA and
uB , can vary not just in time, but also spatially on a macro-
scopic length scale controlled by the diffusivity. This spa-
tiotemporal variation is described by reaction-diffusion equa-
tions of the form@7#

~]/]t !uA5PAuE2zkuAB2¹I •JI A and

~]/]t !uB52PBuEE2zkuAB2¹I •JI B . ~1!

Here z is the coordination number of the lattice,uAB is the
local probability that any adjacent pair of sites has one speci-
fied site occupied byA, and the other byB ~i.e., uAB is the
‘‘coverage’’ of AB pairs!, and uEE is the local probability
that sites in an adjacent pair are both empty~i.e., uEE is the
‘‘coverage’’ of EE pairs!. For a completely randomized ad-
layer, one hasuAB5uAuB , anduEE5(uE)2. However, in the
presence of spatial correlations as is the case of finite mobil-
ity of B(ads), these simple relations are not satisfied, and Eq.
~1! should be regarded as the lowest order equations in an
infinite hierarchy@6#. In Eq.~1!, JI K denotes the diffusive flux
of adspeciesK5A or B. In general, a gradient in the cover-
age of one adspecies generates a diffusive flux in both ad-
species, so one writes@15#

S JI A

JI B
D52D= S ¹I uA

¹I uB
D , where D= 5S DAA DAB

DBA DBB
D ~2!

is a tensor of diffusion coefficients. See Sec. IV for further
discussion.
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First, we discuss the steady-state behavior and kinetics for
spatially homogeneous systems@4,6,8#. A stableA-poisoned
steady state~P! exists for allPA . In a bistable regime with
05Ps2<PA<Ps1, there also exists a stable reactive steady
state~R! @except for limited mobility ofB(ads), where this
state is replaced by a stableB-poisoned state forPA,P** #.
In the bistable regime, there also exists an unstable steady
state or ‘‘saddle point’’~S!, using the terminology of non-
linear dynamics, which ‘‘connects’’ the stable states. The
upper ~lower! spinodal s1(s2) located atPA5Ps1 (PA
5Ps250), which bounds the bistable regime, corresponds
to a saddle-node~transcritical! bifurcation. Figure 1~a! pro-
vides a schematic of the steady-state behavior foruA , and
Fig. 1~b! indicates schematically the dynamics of the homo-
geneous system in the bistable regime. IfB(ads), as well as
A(ads), is highly mobile, the adlayer is randomized, and
both stable and unstable steady-state behavior is exactly de-
termined from MF rate equations. For limited mobility of
B(ads), nontrivial spatial correlations persist, but one can
precisely analyze the behavior of the stable reactive state by
conventional simulation techniques, and that of the unstable
state by unconventional constant-coverage ensemble simula-
tion techniques@6#.

Next, we discuss chemical wave propagation in the re-
gime of bistability for this model. Specifically, we consider
the propagation in thex direction, with velocityV, of planar
waves which separate theA-poisoned state on the left, from
the reactive state on the right. Such waves correspond to
solutions of the RDE’s~1! of the form uA5uA(j5x2Vt),
uB5uB(j5x2Vt), uAB5uAB(j5x2Vt), etc. Here, it is
useful to introduce a quasimechanical terminology~cf. Ref.
@16#!: XI 5(uA ,uB)T denotes the ‘‘position’’ of a quasiparti-
cle at ‘‘time’’ j; D= denotes its position-dependent ‘‘tensor
mass’’; PI 5D= (]/]j)XI denotes its ‘‘momentum’’; andFI 5
(2PAuE1zkuAB ,22PBuEE1zkuAB)T denotes the
position-dependent ‘‘force’’ field in which the quasiparticle
moves@17#. Then, the poisoned state~P! and reactive steady
state ~R! correspond to unstable equilibrium points in the
force field, and the unstable state~S! corresponds to a equi-
librium saddle point@cf. Fig. 1~b!, where the arrows point in
the opposite direction of the force vectorFI #. Then, the
RDE’s can be recast in the form of Newton’s equations,
including an extra drag~antidrag! force term, forV.0 (V
,0). Specifically, one has

~]/]j!PI 5FI 2V~]/]j!XI . ~3!

The profile of the chemical wave corresponds to a spe-
cially selected trajectory of the quasiparticle which starts al-
most at rest atP, and ends up at rest atR. If P is more~less!
stable thanR in the RDE’s, it corresponds to the less~more!
stable equilibrium point ofFI , in that a drag~antidrag! force,
V.0 (V,0), is required to achieve the above motion. In
the case of equistability, which is of primary interest below,
the particle achieves this motion between the unstable equi-
librium points without any drag force (V50). We note that
when D= is diagonal withDAA5DBB , and in some other
cases for instantaneous reaction, Eq.~3! becomes a conven-
tional Newton’s equation~see Sec. VI!.

Finally, we briefly comment on the limiting case,k→`.
Such instantaneous reaction, together with rapid mobility in
the hydrodynamic regime, means that only one type of ad-
species can populate any macroscopic point in space@4,5#. In
regions populated byA(ads), the adlayer is completely ran-
domized, sincehA→`. Here, the reaction rate must ap-
proach the B-adsorption rate, so zkuAB→2PBuEE
52PB(uE)2, and one can setuE512uA in both the adsorp-
tion and reaction terms of Eq.~1! @4#. In regions populated
by B(ads), the reaction rate approaches theA-adsorption
rate, sozkuAB→2PAuE , but the adlayer is only completely
randomized if hB→`, which somewhat complicates the
analysis@4#.

IV. CHEMICAL DIFFUSION IN MIXED ADLAYERS
OF A„ads… AND B„ads…

Again we consider the hydrodynamic regime, wherehA
and possibly also other hop rates are very large. For a reac-
tion rate which is comparable to or lower than the total ad-
sorption rate~and thus fork51!, the steady states in the
reaction model are mixed adlayers with significant local cov-
erages of bothA(ads) andB(ads). This feature implies that
the description of chemical diffusion is nontrivial, even in
the absence of adspecies interactions~beyond site blocking!.
One can, however, enumerate some properties ofD= for gen-
eral hop rates. Below, we letDK

0 5za2hK/4 denote the single-
particle diffusion coefficients, forK5A and B ~wherea is
the surface lattice constant!. Note that, due to the lack of
adspecies interactions,DK

0 also corresponds to the chemical
diffusion coefficient for an adlayer populated by a single
species,K @18#. For general mixed adlayers~in the absence
of interactions beyond site blocking!, one has@15# the fol-
lowing features.

~a! (D= )JK5DJK→dJKDK
0 , as bothuA→0 and uB→0,

since there is negligible interference of surface diffusion by
coadsorbed species.

~b! DAB→0, asuA→0, andDBA→0, asuB→0, since the
diffusive flux in adspeciesK induced by a gradient in the
coadsorbed species must vanish with the coverage ofK.

~c! If hAB is negligible compared with the diverging hop
ratehA , thenJI K→0I , asuA1uB→1, since the lack of vacan-
cies on the ‘‘jammed’’ surface precludes significant diffu-
sion. WhenuA1uB51, one has¹uA52¹uB , so JI K50I
implies thatDKA5DKB .

We now give the explicit form of the diffusion coeffi-
cients in some special cases. For all these, the diverging hop
rate~s! will be denoted byh, and we setD05za2h/4. See the
Appendix for further discussion of these and other cases.

FIG. 1. ~a! Schematic of steady-state behavior ofuA ~in ML !
versus PA in the hydrodynamic limit, and in the absence of a
B-poisoned state.R, P, andS denote the reactive,A-poisoned, and
unstable states, respectively;s1 (s2) denotes the upper~lower!
spinodal.~b! Schematic of the evolution ofuA anduB ~in ML ! for a
spatially homogeneous system in the bistable regime.
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~i! hA5hB5hAB5h→`. Here, each type of adspecies
diffuses independent of the other. Furthermore, due to the
lack of interactions, chemical diffusion is described by
single-particle equations@18#. Thus one has ‘‘simple diffu-
sion’’ described byDJK5dJKD0.

~ii ! hA5hB5h→`; hAB /h→0. Here, one can exploit
special physical and symmetry properties to analyzeD= @15#.
The total coverage,u5uA1uB , must satisfy the classic
diffusion equation for a noninteracting single-species lattice
gas with hop rateh. Thus it follows that DAA1DBA
5DAB1DBB5D0. Furthermore, ifDAA5DuA

(uB), then by

symmetryDBB5DuB
(uA), soD= is determined by the single

function Dy(x). In the limit y→01, D01(x)5D tr(x)
5D0(12x) f (x) reduces to the conventional tracer diffusion
coefficient for a particle in a bath of particles of densityx
with the same hop rate. The ‘‘correlation factor’’f (x)<1
reflects a tendency for backward hopping of the tracer
particle. Simulations show thatf (x)'120.62x10.08x2

for random adlayers. SinceDAB1DBB5D0, and DBA
5DAA at jamming, wherey→12x, one also hasD12x(x)
1Dx(12x)5D0, indicating that D12x(x)5D0(12x).
More generally, one can show that@15,19#

Dy~x!5pyD
01pxD tr~y1x! for 0<y<12x,

where px5x/~x1y! and py5y/~x1y!. ~4!

~iii ! hA5hAB5h→`; hB /h→0. In this case, the diffu-
sion of A(ads) is independent ofB(ads), soDAA5D0 and
DAB50. It is also clear that diffusion of eachB(ads) is
independent of otherB(ads), so one expects that
DBB5uAD0 andDBA52uBD0.

~iv! hA5h→`; hB /h and hAB /h→0. HereA(ads) dif-
fuses rapidly through an effectively immobile background of
coadsorbedB(ads). Due to the lack of interactions,DAA cor-
responds to the ‘‘percolative’’ diffusion coefficient for a
single particle ofA(ads). DAA5Dperc(uB) decreases from
D0 to zero, asuB increases from zero to a percolation thresh-
old, where paths of sitesnot occupiedby B(ads) ceaseto
span the system.Dperc actually depends on the full configu-
ration $B% of B(ads), since spatial correlations in this distri-
bution affect both the percolation and transport properties
@7#. Also, due to the lack of interactions, the diffusive flux of
A(ads) induced by a gradient inuB is directly proportional to
uA , i.e., DAB5uAG(uB). The equalityDAA5DAB , whenu
5uA1uB51, then implies thatG(uB)5Dperc(uB)/(12uB)
@7#. Clearly, here one hasDBB5DBA50.

The case of instantaneous reaction deserves special com-
ment. As noted in Sec. III, here only one adspecies can oc-
cupy a macroscopic point~so only one ofuA anduB can be
nonzero at a single point!. Thus the diffusion in such a
single-species region of the adlayer is trivial~in the absence
of adspecies interactions!, being described by a constant
single-particle diffusion coefficient@4,5,18#.

V. DETAILED ANALYSIS OF THE A1B2 MODEL
FOR EQUAL MOBILITY OF A„ads… AND B„ads…

AND FINITE REACTION RATE „k51…

Here, we first present results from a simulation study of
theA1B2 model withhA5hB5h, hAB50, andk51. Simu-

lations were performed on a 60031000 site square lattice
with periodic boundary conditions. We focus on the propa-
gation of a planar interface between the reactive and
A-poisoned states. Specifically, a band of theA-poisoned
state is placed across an otherwise empty lattice~aligned the
short side!. After the reaction process is initiated for some
PA,Ps1, a stable or metastable reactive state is ‘‘quickly’’
formed on the empty region of the lattice, and then a chemi-
cal wave develops associated with the contraction~for PA
,P* ! or expansion~for PA.P* ! of the A-poisoned band
immersed in the reactive state.

From analysis of such evolution, we obtain the variation
with PA of the interface propagation velocityV, measured in
surface lattice constants per unit time. This behavior is
shown in Fig. 2, for varioush values indicated. We consider
only a narrow range ofPA around the location of the discon-
tinuous transition,PA5P* , where V50 @noting that P*
5P* (h) varies little with h#. As expected~cf. Sec. II!, the
slope of these curves increases withhA . However, there is
also a ‘‘near-crossing feature’’ in that the curves tend to
roughly pivot about a single pointPA'Px50.43060.003
and V50.0560.05. Analogous behavior has been observed
previously for other cases of the monomer-dimer surface re-
action model@7,13#. This feature is particularly useful as it
allows ready extrapolation to assessP* (h→`) @7#. When
h→`, V versusPA must be represented by a vertical line on
the scale of this plot, located atPA5P* (h→`)'Px
'0.430. ThusPx50.43060.003 provides an estimate of the
location of the equistability point in the hydrodynamic limit.
Finally, in Fig. 3, we show predictions from simulations with
large h5512 for the variation of the scaled velocity,n
5V/h1/2, over a broader range ofPA . This scaled velocity
for h5512 has effectively converged to the finite value cor-
responding to the hydrodynamic limith→`.

Next, we compare these predictions from the simulations
for large-h hydrodynamic behavior with those of appropriate
reaction-diffusion equations of the form of Eq.~1!. First, we
note that since bothA(ads) andB(ads) are highly mobile on
the time scale of adsorption and reaction, there will be no
spatial correlations in the adlayer. As a result, a simple
mean-field treatment of adsorption and reaction kinetics can

FIG. 2. Propagation velocityV ~measured in lattice constants
per unit time! versusPA , for an on-average planar interface sepa-
ratingA-poisoned and reactive states. Behavior is only shown for a
narrow range ofPA close toP* ~where V50!. Here k51, hAB

50, and behavior is shown for various values ofhA5hB5h ~indi-
cated!.
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be used in the RDE’s and, in particular, one finds thatPs1

5 1
2 . In contrast, the description of chemical diffusion for

this choice of equal adspecies mobility is nontrivial. How-
ever, the appropriate exact prescription is provided by case
~ii ! in Sec. IV. The predictions of such exact RDE’s for the
scaled velocityn versusPA , are shown in Fig. 3, and are
completely consistent with predictions from the simulation
behavior for largeh. In particular, one obtains a precise
value ofP* 50.430 from these RDE’s.

For contrast, in Fig. 3, we have also shown the predictions
for n versusPA of reaction-diffusion equations with exact
mean-field treatments of kinetics, but with approximate treat-
ments of diffusion. The ‘‘standard’’ treatment of diffusion,
where (D= )J,K5D0dJ,K , ignores the interference of coad-
sorbed species on diffusion. This substantially overestimates
n for PA,P* , and predicts thatP* 50.456. In a ‘‘modi-
fied’’ treatment of diffusion, which accounts in an approxi-
mate way ~and actually underestimates! the influence of
coadsorbed species on diffusion@6,7,15#, we set (D= )J,K

5D0(12uJ8)dJ,K1D0uJ(12dJ,K), whereJ85A(B) when
J5B(A). As one might expect, the corresponding predic-
tions for n versusPA , and thus forP* 50.444, are consid-
erably closer to the exact values.

Finally, as well as considering the propagation velocity
and equistability point, one can also examine the coverage
profiles across the chemical wave front. Here, we consider
these profiles only forPA5P* . In Fig. 4, we compare such
profiles obtained from simulations for largeh5128 with
those from reaction-diffusion equations with various pre-
scriptions of chemical diffusion.@In the simulations on a
square lattice with sites labeled by (i , j ), we have simply
determined the average concentration of both adspecies
along rows,j , orthogonal to the direction of propagation,i .#
As expected, the profile shape is reproduced by RDE’s with
the exact treatment of diffusion, but not by those with the
approximate ‘‘standard’’ and ‘‘modified’’ treatments. For
purposes of comparison between the simulations and RDE’s,
we have shown coverages as a function of the appropriately
scaled position,i /h1/2 or x/(D0)1/2.

VI. BEHAVIOR FOR OTHER CHOICES OF MOBILITY
AND REACTION RATE

It is instructive to compareA1B2 reaction model behav-
ior for the choice of parameters considered in Sec. V with
that obtained for different prescriptions of adspecies mobility
~retaining a reaction rate ofk51!, and with that for instan-
taneous reaction,k5`. Here, we focus on results for the
equistability point,PA5P* , which are summarized in Table
I.

We first elaborate on these results for the case offinite
reaction rate, k51.

~i! hA5hB5hAB5h→`. As noted in Sec. IV, and in the
Appendix, the traditional description of diffusion applies
here, i.e.,DJK5dJKD0. Furthermore, the rapid diffusion of
both adspecies guarantees that the adlayer is randomized, so
the mean-field description of kinetics applies, andPs15 1

2 .
Analysis of the appropriate traditional RDE’s then yields@4#
P* 50.456.

~ii ! hA5hB5h→` andhAB /h→0. This is the case ana-
lyzed in Sec. IV, where mean-field kinetics applies~so again
Ps15 1

2!, but where diffusion is nontrivial due to the influ-
ence of coadsorbed species. We found thatP* 50.430.

FIG. 3. Scaled propagation velocityn5V/h1/2 versus a broad
range of PA , for an on-average planar interface separating
A-poisoned and reactive states, in theA1B2 model fork51. Simu-
lation results~symbols! are forhAB50, andhA5hB5h5512. RDE
results ~curves! are for mean-field kinetics, and various prescrip-
tions of diffusion described in the text.

FIG. 4. Coverage profiles for the stationary interface between
A-poisoned and reactive states in theA1B2 model with k51 at
equistability. Spatial coordinates are rescaled. Simulation results
~symbols! are for hAB50, and hA5hB5h5128. RDE results
~curves! are for mean-field kinetics, and various prescriptions of
diffusion described in the text.

TABLE I. Location of the equistability pointPA5P* in the
hydrodynamic limit of theA1B2 reaction model with various pre-
scriptions of adspecies mobility. Results are shown for both finite
reaction rate,k51 ~wherePs1' 1

2!, and instantaneous reaction,k
5` ~where Ps15

2
3!. For k5`, exact P* values are ~a!

(2)22)/(2)21) and~b! 4
7.

k51 k5`

hA5hB5hAB5h→` 0.456 0.594~a!

hA5hB5h→` andhAB /h→0 0.430 0.594~a!

hA5hAB5h→` andhB /h→0 0.450 0.571~b!

hA5h→`, hB→` with hB /h→0
andhAB /h→0

0.406 0.571~b!

hA5h→`, hB5hAB50 0.397 0.571~b!
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~iii ! hA5hAB5h→`, andhB /h→0. As noted in Sec. V
and the Appendix, here the traditional description of diffu-
sion applies forA(ads), but not forB(ads). This prescription
of rapid mobility also ensures a randomized adlayer, and
thus mean-field kinetics, andPs15 1

2 . Analysis of the appro-
priate RDE’s yieldsP* 50.450.

~iv! hA5h→`, hB→` with hB /h→0, andhAB /h→0.
SincehB /h→0, A(ads) diffuses through an effectively im-
mobile background of coadsorbedB(ads), so diffusion is
percolative. Since alsohB→`, the B(ads) distribution is
randomized, so ‘‘simple’’ random percolation applies, as
well as mean-field kinetics, andPs15 1

2 . Analysis of the
appropriate RDE’s yields@20# P* 50.406.

~v! hA5h→`, hB5hAB50. Again, diffusion ofA(ads)
is percolative. However, nowB(ads) is immobile, and spa-
tial correlations develop in theB(ads) distribution which af-
fect the kinetics, and the percolation and transport properties
@7# ~although we still find thatPs1' 1

2! @6#. Application of a
hybrid simulation procedure@6,7# to account for such spatial
correlations at distinct macroscopic points across the chemi-
cal wave front, or analysis of appropriate correlated RDE’s,
yields P* 50.397.

Continuous transitions in the value ofP* between various
of these special cases are possible. For example, lethA→`
and retain finitehB , and sethAB50. Then forhB increasing
from zero to infinity, P* will increase continuously from
0.397 to 0.406. On the other hand, if one takeshA→` and
hB→`, with fixed ratio a5hB /hA , and setshAB50, then
P* will increase continuously from 0.406 to 0.430, asa
increases from 01 to 1.

Next, we consider the case ofinstantaneous reaction, k
5`. As noted above, here chemical diffusion in the hydro-
dynamic limit is artificially simple, since there is no adlayer
mixing, i.e., each macroscopic point is only populated by one
type of adspecies.~It is also clear that behavior is indepen-
dent of hAB , for finite hop rates, since adjacentA-B pairs
react before exchanging.! Analysis of the simplified reaction
kinetics for the randomizedA(ads)-populated region shows
immediately thatPs15 2

3 ~rather than1
2 when k51! @4,21#.

Furthermore, it is clear that the chemical wave front consists
of a region populated byA(ads), on the left~say!, separated
from a region populated byB(ads), on the right, at a single
macroscopic point where bothuA anduB vanish.

If both hA→` andhB→`, the adlayers are randomized,
and theA(ads)- andB(ads)-populated regions are respec-
tively described by the RDE’s~cf. Sec. II! @4#

~]/]t !uA5PA~12uA!22PB~12uA!21DA
0~]2/]x2!uA

when uA.0 and uB50,
~5!

~]/]t !uB52PB~12uB!22PA~12uB!

1DB
0~]2/]x2!uB when uB.0 and uA50.

These RDE’s can be analyzed using a one-dimensional
quasimechanical analogy with conservative ‘‘force fields’’
~cf. Sec. III! @4#. Here, we just consider these equations at

equistability, where ]/]tuK50, and present the key result
from such an analysis@4#. At the single macroscopic point of
contact between theA(ads)- andB(ads)-populated regions,
the diffusive fluxes ofA(ads) andB(ads) ~towards this
point! are, respectively@4#,

JA5~DA
0 !1/2~PB!1/2@PA /PB24/3#1/2 and

JB5~DB
0 !1/2~PB!1/2@~PA /PB!3/122PA /PB14/3#1/2

for PA5P* . ~6!

If hB is finite or zero, then spatial correlations persist in
the B(ads)-populated region, and the above mean-field de-
scription of kinetics is not valid. While one expects that these
correlations could be reasonably described even at the level
of a pair approximation, appropriate analytic treatment of the
sharp chemical wave interface is nontrivial. Nonetheless, it is
clear that the above expression for the diffusive flux of
B(ads) can be replaced exactly byJB50.

Finally, to obtain explicit values for the equistability point
P* from the above flux results, one imposes the condition
that JA5JB at the interface betweenA(ads)- and
B(ads)-populated regions~see Ref.@22#!. This condition en-
sures the requisite balance in reactants diffusing to the inter-
face. The following results are obtained in special cases.

~i! hA5hB5hAB5h→`.
~ii ! hA5hB5h→` andhAB /h→0.
Setting DA

05DB
0 in Eq. ~6!, and requiring thatJA5JB

yields a cubic equation forP* 5(2)22)/(2)21)
'0.594.

~iii ! hA5hAB5h→`, andhB /h→0.
~iv! hA5h→`, hB→` with hB /h→0, andhAB /h→0.
~v! hA5h→`, hB5hAB50.
Here we setJB50, and then solving forJA50 yields

P* 54/7'0.571.
We emphasize that in the last case~v!, we are able to

obtain an exact result forP* despite the persistence of spa-
tial correlations in theB(ads)-populated region. We also
note that detailed simulations for this case@13# reveal a near-
crossing feature ofV versusPA curves~for varioush!, with
a near-crossing point atPA5Px50.57460.003. This value
of Px is consistent with the above exact value ofP* 5 4

7 . Of
course, using Eq.~6!, one could also examine the continuous
decrease ofP* from 0.594 to 0.571, as one decreases the
ratio DB

0/DA
0 from unity towards zero@22#. Finally, note that

the substantially higher values ofP* for k5`, compared
with k51, should be expected given the higher value of
Ps1.

VII. CONCLUSIONS

In this study, we have demonstrated that wave propaga-
tion and equistability features of the bistable monomer-dimer
surface reaction model withk51 in the hydrodynamic re-
gime are significantly influenced by the nontrivial form of
chemical diffusion in mixed adlayers. Furthermore, different
atomistic prescriptions of adspecies mobility produce distinct
behavior in the hydrodynamic limit, and, in particular, dis-
tinct equistability points. For finite reaction rates and mixed
adlayers, it is only in the special and artificial case where
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rates for different adspecies to hop to vacant sites are equal
to each other, and equal to the rate for exchange diffusion,
that one recovers the ‘‘conventional’’ diffusion.

It is appropriate to consider generalizations of the above
monomer-dimer reaction model. One such natural modifica-
tion is to introduce nonreactive desorption of the monomer
species, with a rated.0. In the LG model, the discontinuous
transition is preserved for smalld, but it disappears asd
increases above some critical valuedc @1,23#, analogous to a
critical point in equilibrated systems displaying phase sepa-
ration. In the hydrodynamic limit, this critical point corre-
sponds to a cusp bifurcation associated with the disappear-
ance of bistability@4,6#. The key point of relevance here is
that the above prescriptions of chemical diffusion apply to
this more general model, and can be used to examine, e.g.,
chemical wave propagation and equistability for 0<d,dc
@4,6#.

Finally, it is appropriate to note that the recent mathemati-
cal statistics literature@24# includes some rigorous analyses
of behavior of simple reaction models in or near the hydro-
dynamic limit. However, thus far, such analyses are re-
stricted to situations where chemical diffusion is trivial. In
particular, for the simplest case of monomer-dimer model
with finite k, andhA5hB5hAB→`, the hydrodynamic limit
~which we regard as intuitive! is treated rigorously.
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APPENDIX: LATTICE-GAS MODEL ANALYSIS
OF CHEMICAL DIFFUSION

Consider a mixed adlayer on a square lattice~with lattice
constanta!, where speciesA and B hop to adjacent empty
sites at rateshA andhB , respectively, and adjacentA andB
interchange at ratehAB . Let @Ai j # denote the probability that
site (i , j ) is occupied byA, @Ai , jEi 11,j # the probability that
( i , j ) is occupied byA and (i 11,j ) is empty, etc. Suppose
that these probabilities depend only on the columni , but not
the row j ~so the latter label is dropped below!. Probability
conservation implies that@Ai #1@Bi #1@Ei #51, @Ai 21Ai #
1@Ai 21Bi #1@Ai 21Ei #5@Ai 21#, etc. The net diffusive flux
of K5A or B from column i 21 to column i is denoted
Ji 21,i

K , so the diffusive contribution to the rate of change of
@Ki # is (d/dt)@Ki #udiff5Ji 21,i

K 2Ji ,i 11
K . For these fluxes, one

has

Ji 21,i
A 5hA~@Ai 21Ei #2@Ei 21Ai # !

1hAB~@Ai 21Bi #2@Bi 21Ai # !, ~A1!

and an analogous expression forJi 21,i
B .

In a mean-field approximation, where one ignores all cor-
relations in the occupancy of adjacent sites, utilizing prob-
ability conservation relations, these expressions reduce to

Ji 21,i
A '2hAD@Ai #2~hA2hAB!~@Ai #D@Bi #2@Bi #D@Ai # !,

~A2!

whereD@Ki #5@Ki #2@Ki 21#, and an analogous expression
applies forJi 21,i

B . In the hydrodynamic limit, one makes the
replacementsa21D→¹ and aJi 21,i

K →JK. Then, from Eq.
~A2!, one immediately obtains the approximations
DAA(MF)5DA

02(DA
02DAB

0 )uB and DAB(MF)5(DA
0

2DAB
0 )uA , whereDK

0 5a2hK andDAB
0 5a2hAB .

Below, we consider some special prescriptions of mobil-
ity, and setD05a2h. In a number of these cases, exact
analysis is possible. A more detailed discussion of case~c!
and case~d! will be presented elsewhere.

~a! Single species adlayer. If only one speciesK5A or B
is present, thenJi 21,i

K 52hD@Ki # is exactly satisfied, and
JI K52D0¹uK . This result was noted by Kutner@18#.

~b! hA5hB5hAB5h→`. Here, bothJi 21,i
A 52hD@Ai #

and Ji 21,i
B 52hD@Bi # are exactly satisfied, so one hasDJK

5dJKD0, as noted in the text.
~c! hA5hAB5h→`; hB /h→0. HereJi 21,i

A 52hD@Ai # is
still exactly satisfied, since the diffusion of theA’s is inde-
pendent of theB’s, and one has thatDAA5D0 and DAB
50. It is also the case here that the diffusive dynamics of a
specificB on the surface is completely independent of the
otherB’s. ~The fast motion of this specificB occurs through
interchange withA’s, which are not influenced by the other
B’s.! Thus theB evolution is a single-particle problem. This
feature, together with the random nature of theA distribu-
tion, indicates thatDBB5D0uA andDBA52D0uB should be
given by the MF results. The latter is negative since diffusion
of B requires adjacentA, andB flows ‘‘uphill’’ in a gradient
of A. Note that whenu51, one obtains the resultJI B5
2D0¹uB ~where here¹uA52¹uB! directly and exactly
from the above master equations.

~d! hAB5h→`; hA /h andhB /h→0 @25#. Here, the total
coverageu5uA1uB is invariant under diffusion. Thus one
has JI 5JI A1JI B50I , and so DAA1DBA5DAB1DBB50.
There is also a symmetry condition that ifDAA
5D(uA ,uB), thenDBB5D(uB ,uA), soD= is determined by
the single functionD(x,y). @These conditions are satisfied in
the MF approximation, whereDMF(x,y)5D0y.# If u5uA
1uB is constant, then it is also clear thatJI K5
2Dant(u)¹uK , for K5A and B, whereDant represents the
diffusion coefficient for a single-particle or ‘‘ant’’ moving
on the~frozen, possibly nonrandom! set of sites occupied by
either A or B. Thus one hasDant50 until u reaches the
percolation threshold ofA1B sites, and thenDant→D0, as
u→1. This implies that D(x,y)1D(y,x)5Dant(x1y),
rather than the MF approximation ofD0(x1y). One can
anticipate that D(x,y)5pyDant(x1y), where py5y/(x
1y). Note that whenu51, one obtains the resultsJI K5
2D0¹uK , for K5A and B, directly and exactly from the
above master equations.

~e! hA5hB5h→`; hAB /h→0.
~f! hA5h→`; hB /h andhAB /h→0.
In both these cases~e! and~f!, nontrivial correlations exist

betweenA and B. This results in deviations of diffusion
coefficients from the above MF forms, as indicated in Sec.
III.
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