
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

2014

IMPLICITLY RESTARTED KRYLOV SUBSPACE METHODS FOR IMPLICITLY RESTARTED KRYLOV SUBSPACE METHODS FOR

LARGE-SCALE LEAST-SQUARES PROBLEMS LARGE-SCALE LEAST-SQUARES PROBLEMS

Daniel J. Richmond
University of Rhode Island, djrichmond1@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Richmond, Daniel J., "IMPLICITLY RESTARTED KRYLOV SUBSPACE METHODS FOR LARGE-SCALE LEAST-
SQUARES PROBLEMS" (2014). Open Access Dissertations. Paper 217.
https://digitalcommons.uri.edu/oa_diss/217

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/217?utm_source=digitalcommons.uri.edu%2Foa_diss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

IMPLICITLY RESTARTED KRYLOV SUBSPACE METHODS FOR

LARGE-SCALE LEAST-SQUARES PROBLEMS

BY

DANIEL J. RICHMOND

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

MATHEMATICS

UNIVERSITY OF RHODE ISLAND

2014

DOCTOR OF PHILOSOPHY DISSERTATION

OF

DANIEL J. RICHMOND

APPROVED:

Dissertation Committee:
Major Professor James Baglama

Tom Bella

Richard Vaccaro

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2014

ABSTRACT

The LSQR algorithm is a popular Krylov subspace method for obtaining so-

lutions to large-scale least-squares problems. For some matrices, however, LSQR

may require a prohibitively large number of iterations to determine an approximate

solution within a desired accuracy. This is often the case when the solution vector

has large components in the direction of the singular vectors associated with the

smallest singular values of the matrix. This dissertation describes how the Krylov

subspaces generated from LSQR can be conveniently updated to contain good ap-

proximations to the singular vectors corresponding to the smallest singular values

of the matrix. The updates can be carried out by using harmonic Ritz vectors to

augment the Krylov subspaces, or by applying harmonic Ritz values as implicit

shifts. Computed examples show each proposed method to be competitive with

existing methods. Furthermore, theoretical results show the connection between

the proposed methods, and MATLAB functions and demos are provided showing

their implementation and correct use.

ACKNOWLEDGMENTS

I would first like to express my gratitude to Dr. James Baglama for designing

an accessible and interesting research project for me. I consider myself fortunate

to have met James and even more fortunate to have him as my academic advisor.

Without his guidance, support, and patience, many professional relationships, a

career opportunity, and of course this dissertation, would not have been possible.

James devoted a lot of time and patience in guiding me through all facets of the

research project. This includes helping me learn and become proficient with the

programming language MATLAB, understanding important background material,

creating publishable work, and correcting my mistakes. I believe James Baglama

is one of the top advisors a mathematics student could hope to work with.

I would like to thank Dr. Lothar Reichel. His previous work with Dr.

Baglama, having discussions with him, and his comments proved invaluable for

completing my first research paper.

I would like to acknowledge the generosity of the mathematics department for

funding me with a teaching assistantship for four years, providing me with oppor-

tunities to teach over the summers, lending me a computer, and providing generous

office space. The faculty and professors here have all been friendly, encouraging,

provided a great environment for learning, and formed an excellent network of

support. I am especially grateful to Tom Bella, Li Wu, and the electrical engineer-

ing department’s Richard Vaccaro and Steven Kay, all for agreeing to be part of

my dissertation committee, and offering valuable comments which improved this

dissertation.

Last but certainly not least, I would like to thank my family for their unending

support and encouragement throughout all my scholarly activities.

iii

PREFACE

This dissertation has been prepared using manuscript format and contains as

the main body of work the two research papers: “An augmented LSQR method”

by James Baglama, Lothar Reichel, and Daniel Richmond, published in Numerical

Algorithms, volume 64, issue 2 (2013) pp. 263-293, and “Implicitly restarting the

LSQR algorithm” by James Baglama and Daniel Richmond, which has been ac-

cepted for publication in Electronic Transactions on Numerical Analysis on Febru-

ary 7, 2014, but has yet to appear as of this writing.

Dr. James Baglama was involved with the ideas, design, and writing of both

research papers and Dr. Lothar Reichel assisted in providing ideas, comments, and

writing for the first research paper.

A list of references used for the respective manuscripts are provided at the

end of each, and a bibliography containing all references used is given at the end

of this dissertation.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

PREFACE . iv

TABLE OF CONTENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introductory remarks . 1

1.1 Statement of the problem . 1

1.2 Motivation . 1

1.3 Dissertation structure . 2

List of References . 4

2 An augmented LSQR method . 5

2.1 Introduction . 6

2.2 Convergence of LSQR using augmented Krylov subspaces 10

2.3 A restarted augmented GK bidiagonalization method 16

2.4 A restarted LSQR method . 26

2.5 An augmented LSQR algorithm 32

2.6 Rank-deficient LS problems . 37

2.7 Numerical examples . 38

v

Page

vi

2.8 Conclusion . 50

List of References . 51

3 Implicitly restarting the LSQR algorithm 54

3.1 Introduction . 55

3.2 Implicitly restarted Golub-Kahan bidiagonalization 59

3.2.1 Implicit restart formulas for the GK bidiagonalization . . 62

3.2.2 Implicit restart with harmonic Ritz values as shifts . . . 64

3.2.3 Adaptive shift strategy 69

3.3 Implicitly restarted LSQR . 71

3.4 Harmonic bidiagonal method . 74

3.5 Connection to augmented LSQR 78

3.6 Numerical examples . 80

3.7 Conclusion . 86

List of References . 86

4 Conclusions . 91

APPENDIX

A Speculative discussion . 92

A.1 Right preconditioned LSQR . 92

A.2 Creation of a suitable preconditioner 93

A.3 Comparsion of Krylov subspaces 96

List of References . 98

B MATLAB code . 99

Page

vii

B.1 MATLAB function alsqr.m . 99

B.2 Demo MATLAB script for using alsqr.m 122

B.3 MATLAB function irlsqr.m 123

B.4 Demo MATLAB script for using irlsqr.m 141

BIBLIOGRAPHY . 144

LIST OF TABLES

Table Page

2.1 Matrix Market collection of matrices A, their properties, and
vectors b used in the numerical examples of Chapter 2 41

3.1 Comparison of values of |α+
m| for bulgechasing and harmonic

bidiagonal methods . 76

3.2 Collection of matrices from the Matrix Market and Universty of
Florida Collection used in the numerical examples of Chapter 3 82

3.3 Convergence results for ‖b− Ax‖ using different gap values for
matrices ILLC1850 and E30R0000 82

viii

LIST OF FIGURES

Figure Page

2.1 A comparison between augmented and standard LSQR 14

2.2 Comparsion of the convergence rates between LSQR, LSMR,
and ALSQR for the matrix ILLC1850 42

2.3 Comparsion of the convergence rates between LSQR, LSMR,
and ALSQR for the matrix E05R0000 44

2.4 Comparsion of the convergence rates between LSQR, LSMR,
and ALSQR for the matrix E20R0100 46

2.5 Comparsion of the convergence rates between LSQR, LSMR,
and ALSQR for the matrix NOS5 47

2.6 Comparsion of the convergence rates between LSQR, LSMR,
and ALSQR for the matrix CK656 49

2.7 Comparsion of the convergence rates between LSQR, LSMR,
and ALSQR for the rank-deficient matrix RDILLC1850 50

3.1 Comparsion of the convergence rates between LSQR, LSMR,
and IRLSQR for the matrix ILLC1850 83

3.2 Comparsion of the convergence rates between LSQR, LSMR,
and IRLSQR for the matrix E30R0000 84

3.3 Comparsion of the convergence rates between LSQR, LSMR,
and IRLSQR for the matrix LANDMARK 85

3.4 Comparsion of the convergence rates between LSQR, LSMR,
and IRLSQR for the matrix BIG DUAL 87

ix

CHAPTER 1

Introductory remarks

1.1 Statement of the problem

The focus of this dissertation is the development and implementation of new

and improved algorithms to provide fast and efficient solutions, x ∈ Rn, to large-

scale least-squares (LS) problems of the form

min
x∈Rn
‖b− Ax‖2, A ∈ R`×n, b ∈ R`, ` ≥ n. (1.1)

The matrix A is considered to be sparse, and too large to effectively apply the use of

direct methods (e.g., QR factorization, singular value decomposition), therefore,

iterative methods (e.g., stationary, Krylov subsapce) must be used. There are

many iterative methods that provide solutions to (1.1), and the most popular is

the Krylov subspace method LSQR of Paige and Saunders [1]. The LSQR method

can, however, exhibit extremely slow, or even no convergence in circumstances

where the matrix A and/or the solution x have certain undesired properties. The

most profound conditions for causing slow/no convergence are if the matrix A is

ill-conditioned, or the solution x has strong components in the direction of the

right singular vectors associated with the smallest singular values. Finding fast

and efficient solutions to this class of LS problems is the primary focus of this

dissertation.

1.2 Motivation

The need to develop fast and efficient solvers for large-scale LS problems is

apparent in many applications across many scientific disciplines. The increase in

computational power, memory, and instrumentation has provided the ability to

quickly compute and store larger sets of data for various problems, and as a result

1

the matrices in corresponding LS problems have grown larger. In turn, these

larger problems tend to lead to ill-conditioned matrices. The need for fast and

efficient LS solvers is so apparent that The Matrix Market Collection [2] and The

University of Florida Sparse Matrix Collection [3] provide forums for researchers in

scientific fields to upload matrices from LS (and other) problems that arise in their

disciplines. These problems are ones which researchers are interested in solving,

however, existing solvers generally do not perform well on, or in some cases, cannot

even obtain a viable solution.

For example, the need to solve large-scale LS problems is vital in the discipline

of surveying. The original matrices tested by Paige and Saunders [1] in determining

the effectiveness of the LSQR algorithm were problems from surveying of size

1850×712. These problems are still currently listed on The Matrix Market and The

University of Florida Sparse Matrix Collection. By today’s standards, problems of

this size are not considered large-scale, however, modern geodetic survey problems

contain many large-scale LS problems, see e.g., [4]. Furthermore, the techniques

of X-ray tomography and microtomography also require the solution of large-scale

LS problems for image reconstruction that can be up to the order of millions, see

e.g., [5, 6] and references therein. As recent as 2005, researchers in this field have

expressed the desire and need for innovative iterative methods to solve their LS

problems. There are, of course, many other applications where the solution of large-

scale LS problems are necessary, and the desire for fast and efficient methods to

solve large-scale LS problems by researchers in such fields serves as the motivation

for improving and developing better LS solver algorithms.

1.3 Dissertation structure

The rest of the dissertation is structured as follows: Chapter 2 details an

augmented LSQR method, in which the Krylov subspaces are augmented with the

2

harmonic Ritz vectors associated with the smallest harmonic Ritz values. The

algorithm which provides the basis for LSQR, the Golub-Kahan bidiagonalization,

is given and explained. It is shown how to efficiently compute the harmonic Ritz

vectors using the information given from the Golub-Kahan bidiagonalization, and

how LSQR is effectively restarted on the augmented spaces. Theoretical results are

given as to how using augmented Krylov subspaces improves the convergence rate

of LSQR, and why the harmonic Ritz vectors are selected as augmenting vectors.

Numerical examples are given at the end of the chapter.

Chapter 3 details an implicitly restarted LSQR method, in which the Krylov

subspaces are improved by applying the largest harmonic Ritz values as implicit

shifts and restarting LSQR. Results are given as to why harmonic Ritz values are

chosen as shifts, and how they are effectively applied to successfully restart the

LSQR algorithm. A gap strategy is proposed to provide a near optimal method

for determining how many shifts should be applied. Theoretical results are given

showing how the implicitly restarted LSQR method is connected with the aug-

mented LSQR of Chapter 2, and numerical examples showing the competitiveness

of the method are given at the end of the chapter.

Appendix A provides an overview of using a right preconditioner in conjunc-

tion with the LSQR algorithm. The creation of a specific preconditioner that is

comparable to the methods proposed in Chapter 2 and Chapter 3 is proposed and

a brief comparison is made between the Krylov subspaces that result from applying

the proposed preconditioner and the Krylov subspaces from Chapter 2.

Finally, Appendix B provides all MATLAB [7] functions and demos neces-

sary for the use of the augmented LSQR method of Chapter 2 and the implicitly

restarted LSQR method of Chapter 3.

3

List of References

[1] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equa-
tions and sparse least squares,” ACM Transactions on Mathematical Software,
vol. 8, no. 1, pp. 43–71, 1982.

[2] R. F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, and J. Dongarra,
“Matrix Market: a web resource for test matrix collections,,” in Quality of
Numerical Software, 1996, pp. 125–137.

[3] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,”
ACM Transactions on Mathematical Software, vol. 38, no. 1, p. 1, 2011.

[4] D. B. Zilkoski, J. H. Richards, and G. M. Young, “Special report: Results of the
general adjustment of the North American vertical datum of 1988,” Surveying
and Land Information Systems, vol. 52, no. 3, pp. 133–149, 1992.

[5] J. Baruchel, J.-Y. Buffiere, and E. Maire, X-ray tomography in material science.
Hermes Science, 2000.

[6] E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef, P. Cloetens, and
J. M. Letang, “X-ray tomography applied to the characterization of cellular
materials. Related finite element modeling problems,” Composites Science and
Technology, vol. 63, no. 16, pp. 2431–2443, 2003.

[7] MATLAB, version R2011a. Natick, Massachusetts: The MathWorks Inc.,
2011.

4

CHAPTER 2

An augmented LSQR method

James Baglama1, Lothar Reichel2, and Daniel Richmond3

Published in Numerical Algorithms, volume 64, issue 2 (2013), pp. 263-293.

1Professor, Department of Mathematics, University of Rhode Island, Kingston, RI 02881.

e-mail: jbaglama@math.uri.edu

URL: http://math.uri.edu/∼jbaglama

2Professor, Department of Mathematical Sciences, Kent State University, Kent, OH 44242.

e-mail: reichel@math.kent.edu

URL: http://www.math.kent.edu/∼reichel

3PhD Candidate, Department of Mathematics, University of Rhode Island, Kingston, RI 02881.

e-mail: dan@math.uri.edu

URL: http://math.uri.edu/∼dan

5

Abstract. The LSQR iterative method when applied to the solution of least-

squares problems may require many iterations to determine an approximate solu-

tion with desired accuracy. This often depends on the fact that singular vector

components of the solution associated with small singular values of the matrix re-

quire many iterations to be determined. Augmentation of Krylov subspaces with

harmonic Ritz vectors often makes it possible to determine the singular vectors

associated with small singular values with fewer iterations than without augmenta-

tion. This paper describes how Krylov subspaces generated by the LSQR iterative

method can be conveniently augmented with harmonic Ritz vectors. The augmen-

tation may be viewed as adaptive preconditioning of LSQR. Computed examples

illustrate the competitiveness of the preconditioned LSQR method proposed.

Keywords. Partial singular value decomposition, iterative method, large-

scale computation, least-squares approximation, LSQR, precondition, Krylov sub-

space, augmentation.

AMS Subject Classification. 65F15, 15A18

2.1 Introduction

We consider the solution of least-squares (LS) problems

min
x∈Rn
‖b− Ax‖, (2.1)

where A ∈ R`×n is a large sparse matrix with ` ≥ n and b ∈ R`. Throughout, ‖ · ‖

denotes the Euclidean vector norm or the associated induced matrix norm. The

matrix A is assumed to be too large to be factored. We therefore seek to solve

(2.1) by an iterative method. Unless stated otherwise, A is assumed to have full

column rank. Problem (2.1) then has a unique solution, which we denote by x+.

The associated residual vector r+ = b − Ax+ vanishes if and only if b lies in the

range of A, denoted by R(A).

6

Many iterative methods have been proposed for the solution of (2.1); see, e.g.,

[1, 2, 3, 4, 5, 6, 7] and references therein. A popular method is LSQR by Paige and

Saunders [6]. This method does not require the matrix A to be stored; instead each

iteration requires that one matrix-vector product with A and one matrix-vector

product with AT be evaluated. A mathematically, but not numerically, equivalent

method is CGLS proposed by Björck; see, e.g., [1] for a discussion of CGLS.

LSQR [6] is based on the Golub-Kahan (GK) bidiagonalization of A. Let x0

be an initial approximate solution of (2.1) and define r0 = b − Ax0. Generically,

m � min{`, n} steps of the GK bidiagonalization determine orthonormal bases

{q1, q2, . . . , qm} and {p1, p2, . . . , pm} for the Krylov subspaces

Km
(
AAT, q1

)
= span

{
q1, AA

Tq1, (AA
T)2q1, . . . , (AA

T)m−1q1
}

Km
(
ATA, p1

)
= span

{
p1, A

TAp1, (A
TA)2p1, . . . , (A

TA)m−1p1

} (2.2)

respectively, with initial vectors q1 = r0/‖r0‖ and p1 = ATq1/‖ATq1‖. LSQR

computes an approximate solution xm of (2.1) by minimizing ‖b − Ax‖ over the

set x0 + Km
(
ATA, p1

)
. The associated residual vector rm = b − Axm lies in

Km
(
AAT, q1

)
; see [6] or Section 2.4 for details.

The GK bidiagonalization, and therefore LSQR, will in exact arithmetic ter-

minate before m steps have been carried out if the Krylov subspace Km(ATA, p1)

is of dimension less than m. LSQR delivers, in this situation, the solution of (2.1).

However, early termination is rare and it is common for LSQR to require many

iterations before an approximation of the solution x+ of (2.1) of desired accuracy

has been determined. The rate of convergence of LSQR depends on the condition

number of A and on the distribution of the singular values of the matrix; conver-

gence may be slow when A has a large condition number; see [1] or Section 2.2 for

details.

The rate of convergence of LSQR can be improved by using a preconditioner.

7

Instead of solving (2.1), one may solve the right preconditioned LS problem

min
y∈Rn
‖AMy − b‖. (2.3)

The preconditioner M ∈ Rn×n should be nonsingular and such that i) the condition

number of AM is smaller than the condition number of A, or AM has improved

clustering of its singular values, and ii) matrix-vector products with the matrices

M and MT can be evaluated fairly quickly; see, e.g., [8, 1, 9, 4, 10, 11] and refer-

ences therein for several approaches to constructing preconditioners. Many such

preconditioners are constructed prior to computing a solution to the LS problem,

and their determination may require significant computational effort and storage.

Preconditioners affect the Krylov subspaces in which approximate solutions are de-

termined. We describe another approach for modifying Krylov subspaces in which

approximate solutions are computed. Specifically, we determine approximations

of the singular vectors of A associated with the smallest singular values and aug-

ment the Krylov subspaces (2.2) by these vectors. This augmentation is carried

out while improved approximate solutions of (2.1) are computed, and changes the

Krylov subspaces to improve convergence. Our method can be used in conjunction

with a preconditioner.

The idea of augmenting a Krylov subspace with vectors to improve conver-

gence was first discussed by Morgan [12], who considered the solution of linear sys-

tems of equations with a square nonsingular matrix by GMRES. Morgan proposed

to augment the Krylov subspaces used by GMRES with harmonic Ritz vectors

associated with the harmonic Ritz values of smallest magnitude to increase the

rate of convergence. Subsequently, Morgan showed in [13, 14] that the residual

vectors associated with the harmonic Ritz vectors are multiples of the residual

vector at every restart of the (standard) GMRES method and that, therefore, the

augmented Krylov subspace is a Krylov subspace generated by a different starting

8

vector. This result suggested that the augmenting vectors should be chosen to be

harmonic Ritz vectors.

The initial iterations of our augmentation method for LSQR is analogous to

Morgan’s augmented method for GMRES [14] in that we augment the Krylov

subspaces (2.2) with harmonic Ritz vectors for AAT and associated vectors for

ATA. During the initial iterations with LSQR, we compute both improved approx-

imations of the solution of (2.1) and improved approximations to harmonic Ritz

vectors. When the latter approximations are deemed accurate enough, we stop

updating these vectors and carry out LSQR iterations using augmented Krylov

subspaces until a solution of (2.1) with desired accuracy has been found; the solu-

tion subspaces are augmented with fixed harmonic Ritz vectors.

Section 2.2 discusses convergence of LSQR when the Krylov subspaces (2.2)

are augmented with singular vectors of A associated with the smallest singular

values. These singular vectors generally are not explicitly known. We therefore

describe in Section 2.3 how approximations of these vectors can be computed by

a restarted GK bidiagonalization method, which is augmented by harmonic Ritz

vectors of AAT associated with the smallest harmonic Ritz values and with related

vectors for ATA. The method is related to a scheme described in [15], but differs in

certain design aspects to fit better with the restarted LSQR method described in

Section 2.4. In Section 2.5 we show that all residual vectors of the harmonic Ritz

vectors are multiples of the residual vector of the restarted LSQR method. This

result is important for the design of our augmented LSQR method. It implies that

the augmented Krylov subspaces also are Krylov subspaces. Moreover, Section

2.5 describes our augmented LSQR method. Application of this algorithm to LS

problems (2.1) with a rank-deficient matrix A is discussed in Section 2.6. A few

numerical examples are presented in Section 2.7 and concluding remarks can be

9

found in Section 2.8.

We would like to emphasize that the proposed iterative method is not a

restarted LSQR method. Restarting may lead to stagnation; see [3, Section 7.3.1]

for remarks on restarting the related LSMR method. Our method consists of two

stages: i) the augmenting stage, which uses restarted LSQR to approximate the

singular vectors associated with the smallest singular values of A and simultane-

ously improve an available approximation of the solution of (2.1), and ii) the LSQR

stage, in which LSQR is applied using the augmented Krylov subspaces with fixed

harmonic Ritz vectors to solve the LS problem (2.1).

2.2 Convergence of LSQR using augmented Krylov subspaces

Let ui and vi denote the left and right singular vectors of A associated with the

singular value σi. Define Un = [u1, u2, . . . , un] ∈ R`×n and Vn = [v1, v2, . . . , vn] ∈

Rn×n with orthonormal columns, as well as Σn = diag [σ1, σ2, . . . , σn] ∈ Rn×n.

Then

AVn = UnΣn and ATUn = VnΣn (2.4)

are singular value decompositions (SVDs) of A and AT, respectively. We assume

the singular values to be ordered from the smallest to the largest one, i.e.,

0 < σ1 ≤ σ2 ≤ . . . ≤ σn.

While this ordering is nonstandard, it simplifies the notation in the subsequent

sections. The condition number of A is given by κ(A) = σn/σ1. The residual

rm = b − Axm associated with the mth iterate, xm, determined by LSQR with

initial approximate solution x0 satisfies

‖rm − r+‖ ≤ 2

(
σn − σ1

σn + σ1

)m
‖r0 − r+‖ = 2

(
κ(A)− 1

κ(A) + 1

)m
‖r0 − r+‖, (2.5)

10

where x+ denotes the solution of (2.1) and r+ is the corresponding residual; see

[1]. Furthermore, if b ∈ R(A), then

‖rm‖ ≤ 2

(
σn − σ1

σn + σ1

)m
‖r0‖.

From equation (2.5), it can be seen that for well-conditioned LS problems, LSQR

will converge quickly, however, ill-conditioned problems may require a prohibitively

large number of iterations. The use of a preconditioner M with κ(AM) � κ(A)

may alleviate this difficulty.

We first describe how augmentation of the Krylov subspaces (2.2) by singu-

lar vectors of A associated with the smallest singular values reduces the bound

(2.5) and therefore can be expected to speed up convergence. Thus, consider the

augmented Krylov subspaces

Km(AAT , u1, . . . , uk, q1) = span
{
u1, . . . , uk, q1, AA

T q1, . . . , (AA
T)m−k−1q1

}
Km(ATA, v1, . . . , vk, p1) = span

{
v1, . . . , vk, p1, A

TAp1, . . . , (A
TA)m−k−1p1

} (2.6)

obtained by augmenting the Krylov subspace Km−k
(
AAT, q1

)
by the left singular

vectors u1, . . . , uk associated with the k smallest singular values, and by augment-

ing Km−k
(
ATA, p1

)
by the corresponding right singular vectors v1, . . . , vk. At iter-

ation m, the augmented method determines an approximate solution in a subspace

of at most dimension m. The following result shows that the upper bound for the

residual error (2.5) may be reduced considerably by augmentation.

Theorem 2.1. Let A ∈ R`×n have the SVD (2.4) and let xm minimize ‖b− Ax‖

over the augmented and shifted Krylov subspace x0+Km
(
ATA, v1, . . . , vk, p1

)
. Then

with rm = b− Axm,

‖rm − r+‖ ≤ 2

(
σn − σk+1

σn + σk+1

)m−k
‖r0 − r+‖.

11

Proof. Let xm be any vector from x0 + Km
(
ATA, v1, . . . , vk, p1

)
and define rm =

b− Axm. Then

xm = x0 +
k∑
i=1

τivi + φ(ATA)ATr0, (2.7)

where φ is a polynomial of degree at most m − k − 1 and τi ∈ R. Let PR(A) and

PN (AT) denote the orthogonal projectors onto the range of A and the null space of

AT , respectively. Split the vector b according to

b = PR(A)b+ PN (AT)b =
n∑
i=1

ωiui + PN (AT)b,

where the ui are the left singular vectors of A; cf. (2.4). Then

ATr0 = ATb− ATAx0 =
n∑
i=1

ωiA
Tui − ATAx0 =

n∑
i=1

ω̃ivi (2.8)

since {v1, . . . , vn} is an orthonormal basis for Rn. Using (2.7) and (2.8) we obtain

AT rm = ψ(ATA)AT r0 −
k∑
i=1

τiσ
2
i vi =

n∑
i=1

ω̃iψ(σ2
i)vi −

k∑
i=1

τiσ
2
i vi, (2.9)

where ψ(x) = 1− xφ(x). Let γi = −τiσ2
i + ω̃iψ(σ2

i). Then

AT rm =
k∑
i=1

γivi +
n∑

i=k+1

ω̃iψ(σ2
i)vi.

We may now choose τi =
ω̃iψ(σ2

i)

σ2
i

to define xm in (2.7). This yields γi = 0 and,

therefore,

AT rm =
n∑

i=k+1

ω̃iψ(σ2
i)vi. (2.10)

Now let ψ be the shifted Chebyshev polynomial of degree m − k − 1 for the

interval [σ2
k+1, σ

2
n], scaled so that ψ(0) = 1, and take the (ATA)−1 norm of both

sides of (2.10). Using properties of the scaled and shifted Chebyshev polynomial,

we obtain

‖ATrm‖(ATA)−1 ≤ 2

(
σn − σk+1

σn + σk+1

)m−k
‖ATr0‖(ATA)−1 .

12

The desired result follows from the observations that

‖ATrm‖(ATA)−1 = ‖rm − r+‖ (2.11)

and that the norm of the residual vector rm = b−Axm associated with the vector

xm in the statement of the theorem is at least as small as the norm obtained for

our choices of τ and ψ.

Morgan [12] discussed the use of augmented Krylov subspaces of the form

span {b, Ab, . . . , Am−1b, z1, . . . , zk}, where z1, . . . , zk are eigenvectors of A, to in-

crease the rate of convergence of restarted GMRES, and showed a result analogous

to Theorem 2.1 for this situation.

Example 2.1. Let A ∈ R1850×712 be the matrix ILLC1850 and let b be the

vector ILLC1850 RHS1 from the LSQ set of the Matrix Market Collection [16, 17].

Figure 2.1 compares the augmented LSQR method using the Krylov subspaces

(2.6) with k = 20 and the standard LSQR method, with x0 = 0 for both methods.

Figure 2.1 displays the convergence of the quotients ‖ATr‖/‖ATr0‖ as a function

of the number of matrix-vector products with A and AT . Here r0 = b is the resid-

ual associated with the initial iterate x0, and r is the residual associated with the

currently available iterate. The top graph shows implementations of the methods

with full reorthogonalization, while the bottom graph displays the performance of

the methods without reorthogonalization. In this case, we see that reorthogonal-

ization does not change the convergence behavior much, but that augmentation as

described in Theorem 2.1 increases the rate of convergence significantly.

The initial vector q1 for the Krylov subspace in the augmented Krylov sub-

space Km
(
AAT, u1, . . . , u20, q1

)
is orthogonalized against the k = 20 left singular

vectors {u1, . . . , u20}. This makes the vector p1 = ATq1/‖ATq1‖ in the augmented

Krylov subspace Km
(
ATA, v1, . . . , vk, p1

)
orthogonal to the right singular vectors

{v1, . . . , v20}.

13

0 100 200 300 400 500 600 700 800 900
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR
LSQR (aug, k=20)

Student Version of MATLAB

0 100 200 300 400 500 600 700 800
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSQR (reorth, aug, k=20)

Student Version of MATLAB
Figure 2.1. Example 2.1: A comparison of augmented and standard LSQR.

The singular vectors {u1, . . . , uk} and {v1, . . . , vk} associated with the k small-

est singular values of A are generally not explicitly known. We therefore seek to

determine approximations of these vectors while simultaneously computing im-

14

proved approximations of the solution of (2.1). This is achieved with a restarted

LSQR method. Typically augmenting vectors do not have to be accurate approx-

imations of the singular vectors of A to yield beneficial results. This is illustrated

by the following theorem as well as by numerical examples in Section 2.7. The

theorem is an analog of a result by Morgan [12], concerned with augmenting a

Krylov subspace by approximate eigenvectors to increase the rate of convergence

of restarted GMRES.

Theorem 2.2. Let A ∈ R`×n have the SVD (2.4) and let xm minimize ‖b− Ax‖

over the augmented and shifted Krylov subspace x0 + Km
(
ATA, y1, p1

)
, where the

unit-length vector y1 ∈ Rn is an approximation of the right singular vector v1. Let

ζ be the angle between y1 and v1, and let ω̃1 be defined in (2.8) from Theorem 2.1.

Then with rm = b− Axm,

‖rm − r+‖ ≤ 2

(
σn − σ2

σn + σ2

)m−1

‖r0 − r+‖+
‖ATA‖
σ2

1

tan (ζ)|ω̃1|. (2.12)

Proof. Similarly to (2.7) and (2.9) we have

xm = x0 + τ1y1 + φ(ATA)ATr0,

ATrm =
n∑
i=1

ω̃iψ(σ2
i)vi − τ1ATAy1,

(2.13)

where φ(x) is a polynomial of degree at most m − 2 and ψ(x) = 1 − xφ(x) is a

polynomial of degree at most m− 1. Let

y1 = cos(ζ)v1 + sin(ζ)z, (2.14)

where z ∈ span{v2, . . . , vn} is a unit-length vector. Using (2.14) and the SVD of

A, equation (2.13) becomes

ATrm =
n∑
i=1

ω̃iψ(σ2
i)vi − τ1σ2

1v1 cos(ζ)− τ1ATAz sin(ζ).

15

With τ1 =
ω̃1ψ(σ2

1)

σ2
1 cos(ζ)

, we obtain

ATrm =
n∑
i=2

ω̃iψ(σ2
i)vi −

ω̃1ψ(σ2
1)ATAz tan(ζ)

σ2
1

. (2.15)

Let ψ be the shifted Chebyshev polynomial for the interval [σ2
2, σ

2
n], scaled so

that ψ(0) = 1, and take the (ATA)−1 norm of both sides of (2.15). Using properties

of the shifted and scaled Chebyshev polynomials, we get

‖ATrm‖(ATA)−1 ≤
(
σn − σ2

σn + σ2

)m−1

‖ATr0‖(ATA)−1 +
‖ATA‖
σ2

1

tan(ζ)|ω̃1|.

The theorem now follows from (2.11).

We remark that the right-hand side of (2.12) shows that if the smallest sin-

gular value σ1 is very close to zero or to σ2, then y1 has to be a fairly accurate

approximation of the singular vector v1 in order to be effective.

2.3 A restarted augmented GK bidiagonalization method

This section describes a restarted GK bidiagonalization method for approx-

imating the singular triplets {σi, ui, vi}ki=1 associated with the k smallest singu-

lar values of A. We refer to these singular triplets as the k smallest singu-

lar triplets. Let the matrices Uk ∈ R`×k and Vk ∈ Rn×k consist of the first

k columns of the matrices Un and Vn in the SVD (2.4) of A, and introduce

Σk = diag [σ1, . . . , σk] ∈ Rk×k. Then, analogously to (2.4), we have the partial

SVDs

AVk = UkΣk and ATUk = VkΣk.

There are numerous methods available for computing approximations of the singu-

lar triplets {σi, ui, vi}ki=1; see, e.g., [15, 18, 19, 5, 20, 21, 22, 23, 24] and references

therein. We are interested in using a method that is related to LSQR, so that

while computing these approximations, we also can determine improved approx-

imate solutions of (2.1). Therefore, we will use a restarted augmented harmonic

16

GK bidiagonalization method to determine approximations of the desired singular

triplets. We show in Section 2.4 why this approach is attractive. The restarted

augmented harmonic GK bidiagonalization method of this paper is closely related

to the method presented in [15]; it differs in that here we use a lower bidiago-

nal matrix. This makes it easier to connect our method to LSQR. The following

algorithm describes the computations required for a GK bidiagonalization. We

comment on the algorithm below.

Algorithm 2.1. GK bidiagonalization method

Input: A ∈ R`×n or functions for evaluating products with A and AT,

q1 ∈ R` : initial vector,

m : number of bidiagonalization steps.

Output: Pm = [p1, . . . , pm] ∈ Rn×m : matrix with orthonormal columns,

Qm+1 = [q1, . . . , qm+1] ∈ R`×(m+1) : matrix with orthonormal columns,

Bm+1,m ∈ R(m+1)×m : lower bidiagonal matrix (2.17),

pm+1 ∈ Rn : residual vector,

αm+1 ∈ R.

1. Compute β1 := ‖q1‖; q1 := q1/β1; Q1 := q1

2. Compute p1 := AT q1; α1 := ‖p1‖; p1 := p1/α1; P1 := p1

3. For j = 1 : m

4. Compute qj+1 := Apj − qjαj

5. Reorthogonalize: qj+1 := qj+1 −Q(1:j)(Q
T
(1:j)qj+1)

6. Compute βj+1 := ‖qj+1‖; qj+1 := qj+1/βj+1; Qj+1 := [Qj, qj+1]

17

7. Compute pj+1 := AT qj+1 − pjβj+1

8. Reorthogonalize: pj+1 := pj+1 − P(1:j)(P
T
(1:j)pj+1)

9. Compute αj+1 := ‖pj+1‖; pj+1 := pj+1/αj+1

10. if j < m

11. Pj+1 := [Pj, pj+1]

12. End

13. End

To avoid loss of orthogonality due to finite precision arithmetic, we reorthogonalize

in lines 5 and 8 of the algorithm; see Section 2.5 for a few remarks on reorthogo-

nalization in the context of the GK bidiagonalization.

A matrix interpretation of the computations of Algorithm 2.1 shows that the

algorithm determines the decompositions

ATQm+1 = PmB
T
m+1,m + αm+1pm+1e

T
m+1

APm = Qm+1Bm+1,m,

(2.16)

where the matrices Qm+1 = [q1, . . . , qm+1] ∈ R`×(m+1) and Pm = [p1, . . . , pm] ∈

Rn×m have orthonormal columns, the residual vector pm+1 ∈ Rn satisfies P T
mpm+1 =

0, and em+1 is the (m+ 1)st axis vector of appropriate dimension. The matrix

Bm+1,m =

α1 0
β2 α2

β3
. . .
. . . αm

0 βm+1

 ∈ R(m+1)×m (2.17)

is lower bidiagonal. We refer to (2.16) as a partial GK bidiagonalization of A. The

number of bidiagonalization steps m � min{`, n} is assumed to be small enough

so that the partial bidiagonalization (2.16) with the stated properties exists. We

assume in the following that Algorithm 2.1 does not terminate early, i.e., that all

18

αj > 0 and βj > 0 for 1 ≤ j ≤ m+ 1. Early termination will be commented on in

Section 2.5.

The decompositions (2.16) are closely related to a partial Lanczos tridiagonal-

ization of ATA and AAT. For instance, multiplying the second equation in (2.16)

by AT yields the partial Lanczos tridiagonalization of ATA,

ATAPm = PmB
T
m+1,mBm+1,m + (αm+1βm+1) pm+1e

T
m. (2.18)

Analogously, multiplying the first equation in (2.16) by A gives

AATQm+1 = Qm+1Bm+1,mB
T
m+1,m + αm+1Apm+1e

T
m+1,

and then equating the first m columns yields the partial Lanczos tridiagonalization

of AAT,

AATQm = QmBmB
T
m + αmβm+1qm+1e

T
m, (2.19)

where Bm is the leading m×m principal submatrix of Bm+1,m, Qm ∈ R`×m consists

of the first m columns of the matrix Qm+1, and qm+1 is the last column of Qm+1.

The LSQR method is started or restarted with Krylov subspaces of the form

(2.2). We therefore consider the decomposition (2.19) for determining harmonic

Ritz vectors. The harmonic Ritz values θ̂j of AAT determined by (2.19) are the

eigenvalues θ̂j of the generalized eigenvalue problem((
BmB

T
m

)
+ α2

mβ
2
m+1

(
BmB

T
m

)−1
eme

T
m

)
g̃j = θ̂j g̃j, 1 ≤ j ≤ m, (2.20)

where g̃j ∈ Rm\{0} is an eigenvector; see, e.g., [25, 26] for properties of and

discussions on harmonic Ritz values.

The eigenpairs
{
θ̂j, g̃j

}m
j=1

of (2.20) can be computed without forming the

matrix BmB
T
m. Instead, determine the SVD of Bm+1,m, which satisfies

Bm+1,mṼm =
[
Ũm+1,m ũm+1

] [
Σ̃m

0

]
,

BT
m+1,m

[
Ũm+1,m ũm+1

]
= Ṽm

[
Σ̃m 0

]
,

(2.21)

19

where the matrices Ṽm = [ṽ1, ṽ2, . . . , ṽm] ∈ Rm×m and Ũm+1,m = [ũ1, ũ2, . . . , ũm] ∈

R(m+1)×m have orthonormal columns, ũm+1 ∈ Rm+1 is a unit-length vector such

that ũTm+1Ũm+1,m = 0, and Σ̃m = diag [σ̃1, σ̃2, . . . , σ̃m] ∈ Rm×m. We order the m

singular values according to

0 < σ̃1 ≤ σ̃2 ≤ . . . ≤ σ̃m.

The vector ũm+1 lies in N
(
BT
m+1,m

)
and we will refer to it as the null space vector

of BT
m+1,m.

Consider the (m+ 1)× (m+ 1) symmetric tridiagonal matrix

Bm+1,mB
T
m+1,m =

 BmB
T
m

αmβm+1em

αmβm+1e
T
m β2

m+1

 .
The m nonvanishing eigenvalues of this matrix are harmonic Ritz values, i.e., they

are the eigenvalues of (2.20). We have θ̂j = σ̃2
j ; see [26]. The harmonic Ritz vectors

of AAT can be computed by using the matrix

S =

[
Im αmβm+1

(
BmB

T
m

)−1
em

0 1

]
=

[
Im βm+1B

−T
m em

0 1

]
and noticing that

SBm+1,mB
T
m+1,mS

−1 =

 BmB
T
m + α2

mβ
2
m+1(BmB

T
m)−1eme

T
m 0

...

αmβm+1e
T
m

0

 .
Thus, the first m rows of SŨm+1,m are the eigenvectors in (2.20), i.e.,

[g̃1, g̃2, . . . , g̃m] =
[
Im βm+1B

−T
m em

]
Ũm+1,m.

It follows that the harmonic Ritz vector of AAT associated with the harmonic Ritz

value θ̂j is given by

ûj := Qmg̃j. (2.22)

20

Morgan [13] pointed out that the residual vectors associated with different

harmonic Ritz pairs
{
θ̂j, ûj

}
are parallel in the context of the Arnoldi process and

GMRES. We show this result for the problem at hand, because this property is

central for our augmentation method. Using (2.19), (2.20), and (2.22), we obtain

AAT ûj − θ̂jûj = AATQmg̃j − θ̂jQmg̃j

=
(
QmBmB

T
m + αmβm+1qm+1e

T
m+1

)
g̃j − θ̂jQmg̃j

= Qm

(
BmB

T
m − θ̂jIm

)
g̃j + αmβm+1qm+1e

T
mg̃j

= Qm

(
− (αmβm+1)

2 (BmB
T
m

)−1
eme

T
m

)
g̃j + αmβm+1qm+1e

T
mg̃j

=
(
αmβm+1e

T
mg̃j
)
Qm+1

[
−αmβm+1

(
BmB

T
m

)−1
em

1

]

=
(
αmβm+1e

T
mg̃j
)
Qm+1

[
−βm+1B

−T
m em

1

]
.

This shows that all the residuals for the harmonic Ritz pairs for AAT are multiples

of the same vector.

Define the residual vector for the harmonic Ritz pairs,

rharm
m = Qm+1

[
−βm+1B

−T
m em

1

]
(2.23)

and assume that we are interested in the k smallest singular triplets. Our augmen-

tation process can now be described by considering the starting matrix

[
û1, . . . , ûk, r

harm
m

]
= Qm+1

[[
Im βm+1B

−T
m em

]
Ũm+1,k −βm+1B

−T
m em

0 1

]
. (2.24)

The columns of the matrix in (2.24) are not orthogonal. We therefore compute its

QR decomposition[[
Im βm+1B

−T
m em

]
Ũm+1,k −βm+1B

−T
m em

0 1

]
= Q̃R̃, (2.25)

21

where Q̃ ∈ R(m+1)×(k+1) has orthonormal columns and R̃ ∈ R(k+1)×(k+1) is upper

triangular, and use

Q̂k+1 = Qm+1Q̃ (2.26)

as the starting matrix. Application of (2.16), (2.21), (2.23), and (2.25) yields

AT Q̂k+1 = ATQm+1Q̃ =
[
PmṼkΣ̃k AT rharm

m

]
R̃−1, (2.27)

where Ṽk = [ṽ1, . . . , ṽk] and Σ̃k = diag [σ̃1, σ̃2, . . . , σ̃k].

The relation

AT rharm
m = αm+1pm+1 (2.28)

can be shown by using

AT Q̂k+1 =
(
PmB

T
m+1,m + αm+1pm+1e

T
m+1

)
Q̃ (2.29)

and by equating the right-hand sides of (2.27) and (2.29) and applying (2.25).

Therefore, we have

AT Q̂k+1 =
[
PmṼk pm+1

]

σ̃1 0

σ̃2

. . .

σ̃k
0 αm+1

 R̃−1

= P̂k

(
Σ̃kR̃

−1
k,k+1

)
+

αm+1

r̃k+1,k+1

pm+1e
T
k+1,

(2.30)

where

P̂k = PmṼk, (2.31)

the matrix R̃−1
k,k+1 is the leading k × (k + 1) submatrix of R̃−1, and r̃k+1,k+1 is the

(k + 1)st diagonal entry of R̃. It follows from the structure of the matrix on the

left-hand side of (2.25) that 1/r̃k+1,k+1 = q̃m+1,k+1, the (m + 1, k + 1)-element of

the matrix Q̃. It follows from P̂ T
k pm+1 = 0 that

P̂ T
k A

T Q̂k+1 = Σ̃kR̃
−1
k,k+1. (2.32)

22

The decomposition (2.30) is important for the derivation of our iterative method;

it is analogous to the first decomposition in (2.16).

We now derive a decomposition for AP̂k that is analogous to the second de-

composition in (2.16). Using (2.16), (2.21), and (2.31), we obtain

AP̂k = Qm+1Ũm+1,kΣ̃k. (2.33)

This gives

BT
m+1,m = BT

m

[
Im βm+1B

−T
m em

]
,

and from (2.21) it follows that

[
Im βm+1B

−T
m em

]
Ũm+1,k = B−Tm ṼkΣ̃k (2.34)

and therefore

Ũm+1,k =

[
B−Tm ṼkΣ̃k −βm+1B

−T
m em

0 1

] [
Ik

eTm+1Ũm+1,k

]
. (2.35)

We obtain from (2.25), (2.34), and (2.35) that

Ũm+1,k = Q̃Q̃T Ũm+1,k, (2.36)

and inserting (2.36) into (2.33) yields

AP̂k = Qm+1Q̃Q̃
T Ũm+1,kΣ̃k = Q̂k+1Q̃

T Ũm+1,kΣ̃k. (2.37)

Now using (2.32) and (2.37), we get

Q̂T
k+1AP̂k = Q̃T Ũm+1,kΣ̃k =

(
Σ̃kR̃

−1
k,k+1

)T
. (2.38)

Let

B̂k+1,k = Q̃T Ũm+1,kΣ̃k, (2.39)

α̂k+1 = αm+1q̃m+1,k+1. (2.40)

23

Then from (2.30) and (2.37)–(2.40), we obtain

AT Q̂k+1 = P̂kB̂
T
k+1,k + α̂k+1p̂k+1e

T
k+1

AP̂k = Q̂k+1B̂k+1,k,

(2.41)

where p̂k+1 = pm+1 and B̂k+1,k ∈ R(k+1)×k is lower triangular. This is the desired

analogue of (2.16).

Starting with (2.41), computations with the GK bidiagonalization can be con-

tinued using Algorithm 2.1 with q̂k+1, the (k + 1)st column of Q̂k+1. Application

of m− k steps of GK bidiagonalization yields the new decompositions

AT
[
Q̂k+1 Q̂m−k

]
=
[
P̂k P̂m−k

]
B̂T
m+1,m + α̂m+1p̂m+1e

T
m+1,

A
[
P̂k P̂m−k

]
=
[
Q̂k+1 Q̂m−k

]
B̂m+1,m,

(2.42)

where the first column of P̂m−k is p̂k+1,

B̂m+1,m =

B̂k+1,k α̂k+1 0

β̂k+2
. . .
. . . α̂m

0 β̂m+1

 ∈ R(m+1)×m, (2.43)

and the matrices
[
Q̂k+1 Q̂m−k

]
∈ R`×(m+1) and

[
P̂k P̂m−k

]
∈ Rn×m have or-

thonormal columns. We now proceed by computing the SVD of B̂m+1,m, harmonic

Ritz vectors of AAT, cf. (2.22), and then new decompositions analogous to (2.41)

and (2.42). The k smallest singular triplets

{σ̃j, q̂j, p̂j}kj=1 , (2.44)

where q̂j, j = 1, . . . , k, are the first k columns of Q̂k+1 and the p̂j, j = 1, . . . , k, are

the first k columns of P̂k, furnish approximations of the k smallest singular triplets

{σj, uj, vj}kj=1 of A.

A singular triplet {σ̃j, q̂j, p̂j} defined by (2.44) is accepted as an approximate

24

singular triplet of A if√
‖Ap̂j − σ̃j q̂j‖2 + ‖AT q̂j − σ̃j p̂i‖2

=
√
σ̃2
j‖ũj − q̃j‖2 + ‖BT

m+1,mq̃j − σ̃j ṽj‖2 + |αm+1eTm+1q̃j|2

≤ δharm‖A‖,

(2.45)

where q̃j is the jth column of Q̃ from (2.25), ũj and ṽj are the jth columns of

Ũm+1,m and Ṽm respectively in the SVD (2.21) of B̂m,m+1, and δharm > 0 is a

user-specified tolerance. In (2.45) ‖A‖ can be approximated by σ̃m, the largest

singular value of B̂m+1,m. Typically, several matrices B̂m+1,m are generated during

the iterations and therefore an acceptable approximation of ‖A‖ can be obtained

from the largest singular value of all the matrices B̂m+1,m generated.

We remark that accurate computation of the vector B−Tm em, used in (2.25),

might be difficult when Bm has a large condition number. This computation can

be avoided by noticing that the vector[
−βm+1B

−T
m em

1

]
(2.46)

is in the null space of
[
Im βm+1B

−T
m em

]
∈ Rm×(m+1), and

BT
m+1,m = BT

m

[
Im βm+1B

−T
m em

]
.

Therefore, the vector (2.46) is a multiple of the null space vector ũm+1 of BT
m+1,m,

cf. (2.21). We have [
−βm+1B

−T
m em

1

]
= (1/ũm+1,m+1) ũm+1, (2.47)

where ũm+1,m+1 is the last element of the vector ũm+1. It follows that any multiple

of the matrix [
[ũm+1,m+1Im − ũm+1,1:m] Ũm+1,k ũm+1

0

]
(2.48)

25

can be used in place of the left-hand side of (2.25). Here ũm+1,1:m denotes the

vector consisting of the first m elements of ũm+1.

The restarted GK bidiagonalization method described above will be combined

with the restarted LSQR method reviewed in the following section.

2.4 A restarted LSQR method

We describe a restarted LSQR method for solving the LS problem (2.1).

The method will be used in conjunction with the restarted GK bidiagonalization

method for computing harmonic Ritz vectors presented in the previous section.

The description of our restarted LSQR method parallels as much as possible that

of the standard LSQR method [6].

Application of k steps of Algorithm 2.1 with starting vector q1 ∈ R` yields the

decompositions

ATQk+1 = PkB
T
k+1,k + αk+1pk+1e

T
k+1

APk = Qk+1Bk+1,k.

(2.49)

Let rk = b − Axk for some vector xk ∈ Rn such that rk = Qk+1fk+1 for some

fk+1 ∈ Rk+1; if k = 0, then we let r0 = q1f1 where f1 = ‖r0‖.

Extend the k-step decompositions (2.49) by carrying out m − k additional

GK bidiagonalization steps to obtain the m-step decompositions (2.16). Let xm =

xk + Pmym and notice that

rm = b− Axm = b− A (xk + Pmym)

= rk − APmym

= rk −Qm+1Bm+1,mym

= Qm+1

([
fk+1

0

]
−Bm+1,mym

)
.

It follows that

min
xm∈xk+Km(ATA,p1)

‖b− Axm‖ = min
y∈Rm

∥∥∥∥[fk+1

0

]
−Bm+1,my

∥∥∥∥ . (2.50)

26

We solve (2.50) with the aid of the QR decomposition

Bm+1,m = Q̃
(B)
m+1R̃

(B)
m+1,m, (2.51)

where Q̃
(B)
m+1 ∈ R(m+1)×(m+1) is orthogonal and R̃

(B)
m+1,m ∈ R(m+1)×m is upper trian-

gular. Substituting (2.51) into (2.50) yields the equivalent minimization problem

min
y∈Rm

∥∥∥∥(Q̃(B)
m+1

)T [fk+1

0

]
− R̃(B)

m+1,my

∥∥∥∥ . (2.52)

Since the last row of R̃
(B)
m+1,m vanishes, the LS solution ym of (2.52) satisfies the

first m rows exactly. The residual norm for (2.52) is given by

φ̄m+1 = eTm+1

(
Q̃

(B)
m+1

)T [fk+1

0

]
.

This yields the residual vector for the LSQR method

rlsqr
m = b− Axm

= Qm+1

([
fk+1

0

]
−Bm+1,mym

)

= Qm+1Q̃
(B)
m+1

((
Q̃

(B)
m+1

)T [fk+1

0

]
− R̃(B)

m+1,mym

)

= Qm+1φ̄m+1Q̃
(B)
m+1em+1.

(2.53)

The process can be restarted with the vectors xk = xm and rk = rlsqr
m , where

we again assume that rk is a linear combination of the columns of the matrix Qk+1

in (2.49). Section 2.5 shows how this condition can be guaranteed.

There are several ways to compute the QR decomposition in (2.51). In the

context of the restarted GK bidiagonalization method of Section 2.3, the first k+1

rows and k columns of B̂m+1,m in (2.43) is the matrix B̂k+1,k in (2.39), which is lower

triangular and typically not lower bidiagonal. We compute a QR decomposition

of B̂k+1,k by an arbitrary method and then switch to using Givens rotations when

carrying out m − k GK bidiagonalization steps to produce the bottom part of

27

the matrix B̂m+1,m. This approach allows our algorithm to incorporate all of the

formulas, e.g., for computing residual norms, of the standard LSQR algorithm [6]

from step k + 1 and onwards.

The following algorithm describes our restarted LSQR method, where we as-

sume that the starting residual vector rk is in R (Qk+1). The algorithm uses the

elegant formulas of the LSQR method by Paige and Saunders [6] whenever possible

to reduce the computational cost and storage requirements. We comment further

on the algorithm below.

Algorithm 2.2. A restarted LSQR method

Input: A ∈ R`×n or functions for evaluating products with A and AT ,

k-step GK bidiagonalization decomposition (2.49),

xk ∈ Rn : initial approximate solution of (2.1),

fk+1 ∈ Rk+1 : where rk = b− Axk = Qk+1fk+1, Qk+1 is given in (2.49),

m ≥ k + 2 : maximum number of iterations,

mreorth : maximum number of vectors for reorthogonalization

in steps 25 and 28,

δlsqr : tolerance for accepting an approximate solution to (2.1).

Output: Approximate solution xm to (2.1),

(optional) φ̄m+1, cm, and m-step GK bidiagonalization (2.16).

1. If k = 0

2. Compute q1 := r0/f1; Q1 := q1

3. Compute p1 := AT q1; α1 := ‖p1‖; p1 := p1/α1; P1 := p1

28

4. Set B1,0 := []

5. End

6. Compute qk+2 := Apk+1 − qk+1αk+1

7. Reorthogonalize: qk+2 := qk+2 −Q(1:k+1)

(
QT

(1:k+1)qk+2

)
8. Compute βk+2 := ‖qk+2‖; qk+2 := qk+2/βk+2; Qk+2 := [Qk+1, qk+2]

9. Compute pk+2 := AT qk+2 − pk+1βk+2

10. Reorthogonalize: pk+2 := pk+2 − P(1:k+1)

(
P T

(1:k+1)pk+2

)
11. Compute αk+2 := ‖pk+2‖; pk+2 := pk+2/αk+2; Pk+2 := [Pk+1, pk+2]

12. Compute QR decomposition Bk+2,k+1 = Q̃R̃ of

Bk+2,k+1 :=

[
Bk+1,k αk+1

0 βk+2

]
∈ R(k+2)×(k+1),

where Q̃ ∈ R(k+2)×(k+2) and R̃ ∈ R(k+2)×(k+1)

13. Compute f̃k+2 := Q̃T

[
fk+1

0

]
14. Compute ρ̄k+2 := αk+2

(
eTk+2Q̃ek+2

)
15. Compute φ̄k+2 := eTk+2f̃k+2

16. Solve R̃k+1,k+1y = f̃1:k+1, where R̃k+1,k+1 ∈ R(k+1)×(k+1) is the

leading submatrix of R̃

17. Update solution vector xk+1 := xk + P(1:k+1)y

18. Compute ‖rk+1‖ := |φ̄k+2|

19. Compute ‖AT rk+1‖ := αk+2βk+2|eTk+1y|

20. Check convergence: if (2.54) is satisfied, then exit.

21. Compute θk+2 := eTk+1Q̃
T
[
Bk+2,k+1 0

αk+2

]
ek+2

22. Compute w := pk+2 − P(1:k+1)y (θk+2/fk+1,k+1)

23. For j = k + 2 : m

24. Compute qj+1 := Apj − qjαj

25. Reorthogonalize:

29

Compute i := max{1, j −mreorth + 1}

Compute qj+1 := qj+1 −Q(i:j)

(
QT

(i:j)qj+1

)
26. Compute βj+1 := ‖qj+1‖; qj+1 := qj+1/βj+1; Qj+1 := [Qj, qj+1];

27. Compute pj+1 := AT qj+1 − pjβj+1

28. Reorthogonalize:

Compute i := max{1, j −mreorth + 1}

Compute pj+1 := pj+1 − P(i:j)

(
P T

(i:j)pj+1

)
29. Compute αj+1 := ‖pj+1‖; pj+1 := pj+1/αj+1

30. if j < m

31. Pj+1 := [Pj, pj+1]

32. End

33. Compute ρj :=
√
β2
j+1 + ρ̄2

j ; cj := ρ̄j/ρj; sj := βj+1/ρj

34. Compute θj := sjαj+1

35. Compute ρ̄j+1 := −cjαj+1

36. Compute φj := cjφ̄j; φ̄j+1 := sjφ̄j

37. Compute xj := xj−1 + (φj/ρj)w; w := pj+1 − (θj+1/ρj)w

38. Compute ‖rj‖ := |φ̄j+1|

39. Compute ‖AT rj‖ := |φ̄j+1ρ̄j+1|

40. Check convergence: if (2.54) is satisfied, then exit.

41. End

When k = 0 on input to Algorithm 2.2 and no reorthogonalization and ac-

cumulation of the matrices Bm+1,m, Pm, and Qm+1 is carried out, m steps of the

algorithm are equivalent to m steps of the LSQR method of Paige and Saunders

[6]. In particular, Algorithm 2.2 can be used as a restarted or nonrestarted LSQR

method.

30

The stopping criteria outlined in [3, 6] can be used in the convergence tests

(lines 20 and 40) of Algorithm 2.2. This is recommend for public domain im-

plementations of the algorithm. For ease of comparison with other methods, we

terminate the computations in the examples reported in Section 2.7 when in lines

20 or 40 the inequality

‖AT rj‖ ≤ δlsqr‖AT r0‖ (2.54)

holds, where δlsqr > 0 is a user-specified tolerance.

The formula for ‖rk+1‖ in line 18 follows from (2.53), and the expression for

‖AT rk+1‖ in line 19 is taken from Jia [27]. The formulas for ‖rj‖ and ‖AT rj‖ in

lines 35 and 36, respectively, are obtained from [6]. If αj+1 = 0 or βj+1 = 0 for

some j, then ‖AT rj‖ = 0; see [28] and more recently [27, Theorem 2].

We reorthogonalize in lines 25 and 28 of Algorithm 2.2 to avoid loss of or-

thogonality due to finite precision arithmetic. Reorthogonalization requires the

accumulation of the matrices Q(i:j) in line 25 and P(i:j) in line 28. Both these

matrices have a fixed maximum number of columns, denoted by mreorth. Sev-

eral reorthogonalization strategies are discussed in [15, 23, 29]. When ` � n,

reorthogonalization of the columns of P(i:j) only, reduces the computational effort

required to compute the decompositions (2.16) considerably, compared with re-

orthogonalization of the columns of both the matrices P(i:j) and Q(i:j). We refer to

reorthogonalization of the columns of P(i:j) only as one-sided reorthogonalization.

Algorithm 2.2 can easily be modified to implement one-sided reorthogonalization;

see [15, 29] for discussions on this reorthogonalization approach.

We are interested in combining Algorithm 2.2 with the augmented harmonic

GK bidiagonalization method of Section 2.3. In this context, we assume that m�

min {`, n} and apply one-sided reorthogonalization as described in [15] and applied

in the MATLAB code irlba accompanying [18]. When, instead, Algorithm 2.2 is

31

used as a nonrestarted LSQR algorithm, either no reorthogonalization is carried

out or only the last generated mreorth columns of P(i:j) are reorthogonalized. The

latter reorthogonalization approach also is implemented by Fong and Saunders [3]

in their MATLAB code lsmr. Reorthogonalization in lines 7 and 10 of Algorithm

2.2 is always carried out when k > 0. Moreover, when k > 0 we use a k-step

GK bidiagonalization (2.49) as input. To be able to apply the formulas of the

LSQR algorithm [6], we carry out the (k + 1)st step of the GK bidiagonalization

separately, i.e., we perform the computations of lines 6–11 of Algorithm 2.2, and

subsequently determine the quantities ρ̄k+2 in line 14, φ̄k+2 in line 15, θk+2 in line

21, and w in line 22 by formulas analogous to [6, equations (4.6)–(4.12)].

Line 12 of Algorithm 2.2 computes the QR decomposition of the matrix

Bk+2,k+1. This can be done with MATLAB’s internal qr function. The input

restriction m ≥ k + 2 ensures that the For-loop (lines 23–38) is executed at least

once. Typically, k is quite small; in the computed examples of Section 2.7, we let

k ≤ 20.

2.5 An augmented LSQR algorithm

In order to be able to conveniently combine the restarted LSQR method of

Section 2.4 with the restarted augmented GK bidiagonalization method of Section

2.3, the residual vector from restarted LSQR, rlsqr
m in (2.53), should be in the range

of the matrix Q̂k+1 defined in (2.26). We now show that the residual vector rharm
m of

the harmonic Ritz vectors, defined by (2.23), and rlsqr
m are parallel. It then follows

from (2.23)–(2.26) that rlsqr
m ∈ R(Q̂k+1).

Theorem 2.3. The residual vector of the harmonic Ritz vectors rharm
m , defined

by (2.23), and the residual vector of the restarted LSQR method rlsqr
m , given by

(2.53), are parallel provided that the lower bidiagonal matrix Bm+1,m (2.17) from

GK bidiagonalization (2.16) is unreduced. Moreover, rharm
m and rlsqr

m are multiples

32

of Qm+1ũm+1, where ũm+1 ∈ N (BT
m+1,m), cf. (2.21).

Proof. Consider the (m+ 1)-vector

Q̃
(B)
m+1φ̄m+1em+1 (2.55)

of rlsqr
m and note that this vector is in N (BT

m+1,m), i.e.,

BT
m+1,mQ̃

(B)
m+1φ̄m+1em+1 = φ̄m+1

(
eTm+1

(
Q̃

(B)
m+1

)T
Bm+1,m

)T
= φ̄m+1

(
eTm+1R̃

(B)
m+1,m

)T
= 0.

(2.56)

It is easy to see that the (m+ 1)-vector[
−βm+1B

−T
m em

1

]
(2.57)

in the definition (2.23) of rharm
m lies in N

(
BT
m+1,m

)
:

[
BT
m βm+1em

] [−βm+1B
−T
m em

1

]
= 0. (2.58)

The matrix Bm+1,m is unreduced by assumption. Therefore, it has rank m and so

does its transpose BT
m+1,m. Equations (2.56) and (2.58) show that the vectors

Q̃
(B)
m+1φ̄m+1em+1 and

[
−βm+1B

−T
m em

1

]
are in N

(
BT
m+1,m

)
. It follows that they are multiples of each other and of the

vector ũm+1 defined in (2.21).

We can easily determine the scalar multiplier between rharm
m (2.23) and rlsqr

m

(2.53) by examining the For-loop (lines 23–38) in Algorithm 2.2. LSQR eliminates

the subdiagonal element of the lower bidiagonal matrix via Givens rotations, but

does not explicitly form the orthogonal matrix made up by the products of these

33

rotations. If this matrix were generated, then in the last iteration (lines 23–41) of

Algorithm 2.2, we would obtain

Q̃
(B)
m+1 :=

Im−1 0

0
[
cm sm
sm −cm

]
Q̃(B)

m 0

0 1

 , (2.59)

where Q̃
(B)
m ∈ Rm×m is the orthogonal matrix from the QR factorization of Bm,m−1.

It follows from (2.59) that the last element of the vector (2.55) is −cmφ̄m+1. More-

over, the last element of the vector (2.57) is one. Therefore,

rlsqr
m = −cmφ̄m+1r

harm
m .

Using (2.47), we also have that

Q̃
(B)
m+1φ̄m+1em+1 = −cmφ̄m+1

[
−βm+1B

−T
m em

1

]
=
(
−cmφ̄m+1/ũm+1,m+1

)
ũm+1.

If Q̃ is the matrix with orthonormal columns in the QR decomposition of (2.48),

then

rlsqr
m = Q̂k+1fk+1,

where fk+1 =
(
−cmφ̄m+1/ũm+1,m+1

)
Q̃T ũm+1.

We are now in a position to describe our augmented LSQR algorithm that

combines the methods of Sections 2.3 and 2.4. We assume that augmentation is

carried out with vectors that approximate the singular vectors associated with the

smallest singular values.

Algorithm 2.3. An augmented LSQR method

Input: A ∈ R`×n or functions for evaluating products with A and AT ,

x0 ∈ Rn : initial approximate solution of (2.1),

34

r0 := b− Ax0 ∈ R` : initial residual vector,

k : number of augmenting vectors,

m ≥ k + 2 : maximum length GK bidiagonalization,

maxaug: maximum number of iteration for augmenting stage,

maxlsqr: maximum number of iteration for the non-restarted LSQR method,

δlsqr : tolerance for accepting an approximate solution to (2.1),

δharm : tolerance for accepting approximate singular triplet, cf. (2.45),

Output: Approximate solution x to (2.1).

1. Call Algorithm 2.2

Input: A, k := 0, x0, f1 := ‖r0‖, q1 := r0/f1, mreorth := m, m and δlsqr

Output: xm, φ̄m+1, cm, and an m-step GK bidiagonalization (2.16)

2. For i = 1 : maxaug

3. Compute the singular value decomposition (2.21) of Bm+1,m

4. Compute the augmenting vectors:

Compute the QR factorization of (2.48).

Determine the matrices Q̂k+1, P̂k, and B̂k+1,k by (2.26), (2.31) and (2.39),

respectively and α̂k+1 by (2.40) to get (2.41).

5. Check convergence: if all k singular triplets satisfy (2.45), then goto 9.

6. Call Algorithm 2.2

Input: A, xk := xm, fk+1 :=
(
−cmφ̄m+1/ũm+1,m+1

)
Q̃T ũm+1, mreorth := m,

m, δlsqr, and a k-step GK bidiagonalization (2.41)

Output: xm, φ̄m+1, cm, and an m-step GK bidiagonalization (2.42)

35

7. Set

Bm+1 := B̂m+1,m

Qm+1 :=
[
Q̂k+1 Q̂m−k

]
Pm :=

[
P̂k P̂m−k

]
pm+1 := p̂m+1

αm+1 := α̂m+1

8. End

9. Call Algorithm 2.2

Input: A, xk := xm, fk+1 :=
(
−cmφ̄m+1/ũm+1,m+1

)
Q̃T ũm+1, mreorth := m,

m := maxlsqr, δ
lsqr and a k-step GK bidiagonalization (2.41)

Output: xm

The above algorithm describes a simplification of the actual computations

carried out. For instance, the number of augmenting vectors used at each restart is

typically chosen to be larger than the number of desired singular triplets. This often

yields faster convergence without increasing the memory requirement; see [15, 18]

for a discussion. The number of vectors to be reorthogonalized, mreorth, is set to

the maximum number of columns of the computed GK bidiagonalization. This is

to ensure that accurate approximations of the singular vectors are computed.

In the nonrestarted LSQR stage of Algorithm 2.3, i.e., in line 9, the reorthog-

onalization applied is that of the nonrestarted LSQR method described by Algo-

rithm 2.2. We set mreorth = m. Letting 0 ≤ mreorth < m instead would reduce the

computational work for each iteration, but could require more iterations to satisfy

the convergence criterion and, therefore, may require more computational effort in

total. The choice mreorth > m increases the storage requirement and therefore is

avoided.

36

2.6 Rank-deficient LS problems

An LS problem (2.1) is said to be rank-deficient if A has linearly dependent

columns. We are interested in determining the unique solution, x+, of minimal

Euclidean norm. This solution is orthogonal to N (A) and therefore lies in R(AT);

see, e.g., [1] for a discussion on rank-deficient LS problems.

The standard LSQR algorithm [6] produces a sequence of iterates that lie in

R(AT) provided the initial iterate x0 does. To ensure the latter one may choose

x0 = 0. Note that the iterates determined in lines 17 and 34 of Algorithm 2.2

are in R(AT) if the initial approximation xk of x+ used in Algorithm 2.2 is in

R(AT). In order to show that the approximate solutions determined by Algorithm

2.3 are in R(AT) when this holds for the first iterate x0, it remains to establish

that the harmonic Ritz vectors used to augment the Krylov subspace in Algorithm

2.3 also lie in R(AT). Observe that the restarted augmented harmonic method

of Section 2.3 does not determine approximations of eigenvectors associated with

the eigenvalue zero. The reason for this is that the harmonic Ritz values are the

square of the nonvanishing singular values of Bm+1,m (2.17). The singular values

are nonvanishing, since by assumption all αj and βj are nonzero. The situation

when some αj or βj vanish is discussed in Section 2.4. The iterations with the

augmented Krylov subspaces of Algorithm 2.3 determine approximate solutions

xm of (2.1) in subspaces of the form

Km(ATA, p̂1, . . . , p̂k, p̂k+1) = span
{
p̂1, . . . , p̂k, p̂k+1, A

TAp̂k+1, . . . , (A
TA)m−k−1p̂k+1

}
where p̂1, . . . , p̂k are approximate right singular vectors of A associated with non-

vanishing singular values, and p̂k+1 = pm+1 is the residual vector of the GK bidi-

agonalization (2.16); see also Algorithm 2.1. Using (2.18) and (2.28), we have for

37

j ≤ k,

p̂j =
1

σ̃2
j

(
ATAp̂j −

(
βm+1e

T
mṽk
)
αm+1pm+1

)
=

1

σ̃2
j

AT
(
Ap̂j −

(
βm+1e

T
mṽk
)
rharm
m

)
.

It follows that Km
(
ATA, p̂1, . . . , p̂k, p̂k+1

)
⊂ R(AT). Example 2.7 in Section 2.7

illustrates the performance of Algorithm 2.3 when applied to a rank-deficient LS

problem.

2.7 Numerical examples

We describe a few numerical experiments that illustrate the performance of

Algorithm 2.3 as implemented by the MATLAB code alsqr4. This code uses the

following user-specified parameters:

4Code is available in Appendix B.

38

adjust Additional vectors used together with k augmenting vectors

to speed up convergence; see [15] for comments on the inclu-

sion of additional vectors.

k Number of augmenting vectors.

maxitp Maximum number of iterations in the augmenting stage.

maxitl Maximum number of iterations with the nonrestarted LSQR

method when the augmented vectors are kept fixed.

m Maximum number of GK vectors.

reorth012 String deciding whether no, one, or two-sided reorthogonal-

ization is used in either stage.

mreorth Number of vectors to be reorthogonalized during the non-

restarted LSQR stage, when the augmented vectors are kept

fixed. If mreorth > 0, then one-sided reorthogonalization is

applied to the “short” vectors.

tollsqr Tolerance δlsqr in (2.54) for accepting a computed approxi-

mate solution as the solution of (2.1).

tolharm Tolerance δharm in (2.45) for accepting an approximate sin-

gular triplet as a singular triplet of A and use it for augmen-

tation.

We compare alsqr to the MATLAB code lsqr5 for the standard LSQR

method by Paige and Saunders [6] and to the MATLAB code lsmr6 by Fong and

5The lsqr MATLAB code is not the code that comes with MATLAB. The used code was adapted

to output the norm of the residual error in each iteration and to carry out reorthogonalization

as described in Section 2.4.
6http://www.stanford.edu/group/SOL/software/lsmr.html. The code was adapted to output the

norm of the residual error in each iteration.

39

Saunders [3]. We remark that the performance of the methods in our comparisons

depends on the machine architecture, coding style, and stopping criteria. These

may significantly affect the performance, regardless of the theoretical properties of

the methods. We therefore do not report CPU times, but instead measure perfor-

mance in terms of the required number of matrix-vector product evaluations with

the matrices A and AT. We set all common parameters for different methods to the

same values for each example, and reorthogonalize only against the last m vectors

in each method. We use the initial approximate solution x0 = 0 for all methods

and examples.

There are many preconditioned iterative methods available for the solution of

(2.1). It is difficult to make a fair comparison, because the construction of many

preconditioners is determined by several parameters, including drop tolerance and

available storage. Here we only note that our method is unique in that an approx-

imate solution to the LS problem is computed already during the construction of

the augmented Krylov subspaces.

We present six numerical examples with matrices from the Matrix Market

collection [16, 17]. The matrices A, their properties, as well as the definition of

the vector b, are described in Table 2.1. All matrices are of full column rank

except for the matrix of Example 2.7. In Table 2.1 “`” denotes the number of

rows, “n” the number of columns, and “nnz” the number of nonzero entries of the

matrices. The column labeled “Cond. #” shows the condition number estimate

computed by the MATLAB function condest when A is square. For the rectan-

gular matrix ILLC1850, we determined the condition number with the MATLAB

function cond. The vectors b were also chosen from the Matrix Market collection

when available, otherwise we computed the vector b with the MATLAB function

b=rand(size(A,1),1). This yields a vector b with uniformly distributed entries

40

in the interval (0, 1). All computations were carried out using MATLAB version

7.12.0.0635 R2011a [30] on a Dell XPS workstation with an Intel Core2 Quad pro-

cessor and 4 GB of memory running under the Windows Vista operating system.

Machine precision is 2.2 · 10−16. One-sided reorthogonalization is used in both

stages for all examples except for Example 2.4 where two-sided reorthogonaliza-

tion is used in the augmenting stage and one-sided reorthogonalization is used in

the LSQR stage. The matrix A in Example 2.4 is very ill-conditioned, see Table

2.1; hence two-sided reorthogonalization is required during the iteration process

to approximate singular vectors. See [15, 29] for remarks on requiring two-sided

reorthogonalization during the GK process for singular triplet approximation.

Table 2.1. Matrix Market collection of matrices A, properties, and vectors b used
in the numerical examples. The rank-deficient matrix ILLC1850∗ was obtained
from ILLC1850 by replacing the second column by twice the first column.

Example Matrix ` n nnz Cond. # b
Example 2.2 ILLC1850 1850 712 8758 1.4 · 103 ILLC1850 RHS1
Example 2.3 E05R0000 236 236 5856 5.9 · 104 E05R0000 RHS1
Example 2.4 E20R0100 4241 4241 131566 2.2 · 1010 E20R0100 RHS1
Example 2.5 NOS5 468 468 2820 2.9 · 104 rand(468,1)

Example 2.6 CK656 656 656 3884 1.2 · 107 rand(656,1)

Example 2.7 ILLC1850∗ 1850 712 8645 − ILLC1850 RHS1

Example 2.2. This example uses the same matrix A and vector b as Example

2.1 of Section 2.2. The vector b is not in R(A). The top graph of Figure 2.2 is

determined with the code alsqr using the parameter values k = 20, adjust = 40,

and m = 100. The bottom graph of Figure 2.2 is obtained with alsqr using the

parameters k = 20, adjust = 70, and m = 140. We used tolharm = 5 · 10−2 to

determine when to accept approximate singular vectors. The iterations were con-

tinued until the residual vectors r generated by alsqr for the first time satisfied

‖ATr‖/‖ATr0‖ ≤ 10−12. The graphs of Figure 2.2 show the quotient ‖ATr‖/‖ATr0‖

41

0 500 1000 1500 2000 2500 3000 3500 4000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (100,20)

Student Version of MATLAB

0 500 1000 1500 2000 2500 3000 3500 4000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

Figure 2.2. Example 2.2: LSQR(reorth) and LSMR(reorth) denote that reorthog-
onalization was applied to the last m vectors. ALSQR(100,20) denotes alsqr with
parameters m = 100 and k = 20, and ALSQR(140,20) shows the performance of
alsqr with m = 140 and k = 20. alsqr switched to nonrestarted LSQR at 2, 840
matrix-vector products in the top graph and at 2, 680 matrix-vector products for
the bottom graph.

42

versus the number of matrix-vector products with A and AT for each iteration of

each method. The graphs marked lsqr(reorth) and lsmr(reorth) are for itera-

tions with reorthogonalization. All methods reorthogonalized the last 100 vectors

for the top graph and the last 140 vectors for the bottom graph of Figure 2.2. The

alsqr algorithm exited the augmenting stage with all k = 20 approximate singular

vectors converged after 2, 840 matrix-vector product evaluations for the top graph,

and after 2, 680 matrix-vector product evaluations for the bottom graph. Having

computed these approximate singular vectors, alsqr continued the iterations as a

nonrestarted augmented LSQR method. The graphs show that augmentation by

approximate singular vectors led to faster convergence and that alsqr converged

before lsqr and lsmr.

Example 2.3. We let the matrix A and vector b be E05R0000 and

E05R0000 RHS1, respectively, from the DRIVCAV set of the Matrix Market col-

lection. The intended use of the linear systems in this collection is for testing

iterative Krylov solvers, because it is difficult to find suitable preconditioners for

the matrices. Since the linear system of equations is consistent, we can show

convergence of both the quotients ‖ATr‖/‖ATr0‖ and ‖r‖/‖r0‖, where as usual r

denotes the generated residual vector and r0 the initial residual vector. We use the

parameters k = 15, adjust = 40, m = 90 for alsqr. The value tolharm = 3.5·10−3

was used when deciding when to accept computed approximate singular vectors

as converged. alsqr exited the augmening stage with all k = 15 approximate

singular vectors converged when the matrix-vector product count was 1, 230. The

iterations were continued with the fixed augmenting vectors until a residual vector

satisfied ‖ATr‖/‖ATr0‖ ≤ 10−9.

The top graph of Figure 2.3 displays ‖ATr‖/‖ATr0‖ versus the number of

matrix-vector products with the matrices A and AT for each iteration and for

43

0 500 1000 1500 2000 2500
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 e05r0000

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (90,15)

Student Version of MATLAB

0 500 1000 1500 2000 2500
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 e05r0000

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (90,15)

Student Version of MATLAB

Figure 2.3. Example 2.3: LSQR(reorth) and LSMR(reorth) indicates that re-
orthogonalization of the last m vectors was carried out. ALSQR(90,15) denotes
alsqr with parameters m = 90 and k = 15. alsqr switched to nonrestarted LSQR
at 1, 230 matrix-vector product evaluations. The top graph shows ‖ATr‖/‖ATr0‖
for each iteration and the bottom graph displays ‖r‖/‖r0‖ for each iteration.

44

each method in our comparison. The bottom graph is analogous; it displays the

quotients ‖r‖/‖r0‖ instead of ‖ATr‖/‖ATr0‖. This graph shows a fast steady de-

crease of the residual norm when alsqr carries out LSQR iterations with the fixed

augmenting vectors.

Example 2.4. Let the matrix A and vector b be E20R0100 and

E20R0100 RHS1, respectively, from the DRIVCAV set of the Matrix Market col-

lection; see Example 2.3 for comments on this set of linear systems of equations.

The code alsqr used the parameter values k = 20, adjust = 90, and m = 140. The

matrix has a large condition number, 2.2 · 1010, which leads to large oscillations in

the quotients ‖ATr‖/‖ATr0‖ and very slow convergence. We used the same stop-

ping criterion as in Example 2.3. Figure 2.4 is analogous to Figure 2.3. We used the

parameter value tolharm = 1.22 · 10−4 to decide when approximate singular vec-

tors could be considered converged. The code alsqr exited the augmenting stage

with k = 20 converged approximate singular vectors when 30, 280 matrix-vector

products with A and AT had been computed. Notice that the residual curve in the

bottom graph starts to decrease steadily long before the augmenting stage ends.

This illustrates the positive effect of augmentation already while the augmenting

vectors are computed.

Example 2.5. The matrix A is NOS5 from the LANPRO set in the Matrix

Market collection. The matrices in this set stem from linear equations in structural

engineering. This matrix set does not contain vectors b that can be used in (2.1).

We therefore let b be a random vector with uniformly distributed entries in the

interval (0, 1). We use the parameter values k = 20, adjust = 60, m = 120,

and tolharm = 10−2 for the code alsqr. The augmenting stage, which lasted

until k = 20 approximate singular vectors had converged, required 4, 000 matrix-

vector product evaluations with A and AT. Iterations were then continued with

45

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 e20r0100

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 e20r0100

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

Figure 2.4. Example 2.4: LSQR(reorth) and LSMR(reorth) indicate that reorthog-
onalization of the m last vectors was carried out. The method ALSQR(m,k) for
m = 140 and k = 20 is compared with LSQR and LSMR. alsqr switched to non-
restarted LSQR after 30, 280 matrix-vector product evaluations. The top graph
depicts ‖ATr‖/‖ATr0‖ for each iteration, while the bottom graph shows ‖r‖/‖r0‖
for each iteration.

46

0 1000 2000 3000 4000 5000 6000 7000
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 nos5

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (120,20)

Student Version of MATLAB

0 1000 2000 3000 4000 5000 6000 7000
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 nos5

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (120,20)

Student Version of MATLAB

Figure 2.5. Example 2.5: LSQR(reorth) and LSMR(reorth) denote that reorthog-
onalization of the last m vectors was performed. The method ALSQR(m,k) is
for m = 120 and k = 20 compared to LSQR and LSMR. alsqr switched to non-
restarted LSQR after 4, 000 matrix-vector product evaluations. The top graph
shows ‖ATr‖/‖ATr0‖ for each iteration and the bottom graph displays ‖r‖/‖r0‖ for
each iteration.

47

the augmented LSQR method until ‖ATr‖/‖ATr0‖ ≤ 10−9. Figure 2.5 is analogous

to Figure 2.4. The bottom graph displays fast and steady decrease of ‖r‖/‖r0‖ of

the nonrestarted LSQR method with fixed augmented vectors.

Example 2.6. The matrix A is chosen to be CK656, which is the largest matrix

in the CHUCK set of the Matrix Market collection. This matrix has many clustered

and multiple eigenvalues. The matrices in this collection arise from linear systems

of equations in structural engineering. This collection does not contain right-hand

side vectors. Therefore, we let b be a vector with random entries as in Example

2.5. We use the parameters k = 20, adjust = 80, m = 140, and tolharm = 10−4

for alsqr. Iterations were terminated when ‖ATr‖/‖ATr0‖ ≤ 10−9. The top graph

of Figure 2.5 depicts ‖ATr‖/‖ATr0‖ versus the number of matrix-vector products

with A and AT. Figure 2.6 is analogous to Figure 2.5. In this example, alsqr did

not exit the augmenting stage before the stopping criterion was satisfied, i.e., the

stopping condition was satisfied before k = 20 approximate singular vectors had

converged.

Example 2.7. The matrix A used in this example is obtained from the matrix

ILLC1850 of Example 2.2 by letting the second column be twice the first column.

We refer to the rank-deficient matrix so obtained as ILLC1850∗. The vector b is

the same as in Example 2.1. The LS problem (2.1) is inconsistent. We chose the

parameters k = 20, adjust = 40, and m = 100 for alsqr, and used tolharm =

4 · 10−2 to decide when to accept approximate singular vectors as converged. All

methods reorthogonalized the 100 last vectors. The required k = 20 approximate

singular vectors had converge after 3, 080 matrix-vector product evaluations with

A and AT. At this point the code switched to run as an augmented nonrestarted

LSQR method. The iterations were terminated as soon as ‖ATr‖/‖ATr0‖ ≤ 10−11.

48

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 ck656

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 ck656

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
ALSQR (140,20)

Student Version of MATLAB

Figure 2.6. Example 2.6: LSQR(reorth) and LSMR(reorth) denotes that reorthog-
onalization of the last m vectors was carried out. ALSQR(140,20) indicates that
alsqr is applied with m = 140 and k = 20. The code alsqr did not switch to
nonrestarted LSQR before the convergence criterion was satisfied. The top graph
displays ‖ATr‖/‖ATr0‖ for each iteration, and the bottom graph shows ‖r‖/‖r0‖ for
each iteration.

49

0 500 1000 1500 2000 2500 3000 3500 4000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 illc1850*

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
ALSQR (100,20)

Student Version of MATLAB

Figure 2.7. Example 2.7: The matrix A in this example is rank-deficient and
the right-hand size b is not in the column space of A. Therefore, we show only
the graph ‖ATr‖/‖ATr0‖ versus the number of matrix-vector products with A and
AT. The graphs LSQR(reorth) and LSMR(reorth) display results obtained when
reorthogonalization of the last m vectors was carried out. ALSQR(100,20) denotes
that alsqr is applied with the parameters m = 100 and k = 20. alsqr switched
over to nonrestarted LSQR after 3, 080 matrix-vector product evaluation.

Figure 2.7 shows ‖ATr‖/‖ATr0‖ versus the number of matrix-vector product

evaluations with A and AT. This example illustrates that alsqr can be competitive

also when applied to a rank-deficient LS problem.

2.8 Conclusion

We have described a new augmented LSQR method for large-scale linear LS

problems or linear systems of equations. During the initial iterations, the method

computes approximations of harmonic Ritz vectors that are used for augmenting

the solution subspaces. Simultaneously, the method computes improved approxi-

mate solutions of the LS problem (2.1). Subsequently, the augmented vectors are

kept fixed and used to form nonstandard Krylov subspaces used by a nonrestarted

50

LSQR method. Numerical examples show the proposed method to be competitive.

Acknowledgment

We would like to thank the referees for carefully reading the paper and for

many comments that improved the presentation.

List of References

[1] Å. Björck, Numerical methods for least squares problems. Siam, 1996.

[2] S.-C. T. Choi, “Iterative methods for singular linear equations and least-
squares problems,” Ph.D. dissertation, Stanford University, 2006.

[3] D. C.-L. Fong and M. Saunders, “LSMR: An iterative algorithm for sparse
least-squares problems,” SIAM Journal on Scientific Computing, vol. 33,
no. 5, pp. 2950–2971, 2011.

[4] K. Hayami, J.-F. Yin, and T. Ito, “GMRES methods for least squares prob-
lems,” SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 5, pp.
2400–2430, 2010.

[5] M. E. Hochstenbach, “Harmonic and refined extraction methods for the sin-
gular value problem, with applications in least squares problems,” BIT Nu-
merical Mathematics, vol. 44, no. 4, pp. 721–754, 2004.

[6] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equa-
tions and sparse least squares,” ACM Transactions on Mathematical Software,
vol. 8, no. 1, pp. 43–71, 1982.

[7] L. Reichel and Q. Ye, “A generalized LSQR algorithm,” Numerical Linear
Algebra with Applications, vol. 15, no. 7, pp. 643–660, 2008.

[8] M. Benzi and M. Tuma, “A robust preconditioner with low memory require-
ments for large sparse least squares problems,” SIAM Journal on Scientific
Computing, vol. 25, no. 2, pp. 499–512, 2003.

[9] Å. Björck and J. Yuan, “Preconditioners for least squares problems by LU
factorization,” Electronic Transactions on Numerical Analysis, vol. 8, pp. 26–
35, 1999.

[10] S. Karimi, D. K. Salkuyeh, and F. Toutounian, “A preconditioner for the
LSQR algorithm,” Journal of Applied Mathematics and Informatics, vol. 26,
no. 1-2, pp. 213–222, 2008.

[11] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

51

[12] R. B. Morgan, “A restarted GMRES method augmented with eigenvectors,”
SIAM Journal on Matrix Analysis and Applications, vol. 16, no. 4, pp. 1154–
1171, 1995.

[13] R. B. Morgan, “Implicitly restarted GMRES and Arnoldi methods for non-
symmetric systems of equations,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 21, no. 4, pp. 1112–1135, 2000.

[14] R. B. Morgan, “GMRES with deflated restarting,” SIAM Journal on Scientific
Computing, vol. 24, no. 1, pp. 20–37, 2002.

[15] J. Baglama and L. Reichel, “Augmented implicitly restarted Lanczos bidiag-
onalization methods,” SIAM Journal on Scientific Computing, vol. 27, no. 1,
pp. 19–42, 2005.

[16] R. F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, and J. Dongarra,
“Matrix Market: a web resource for test matrix collections,,” in Quality of
Numerical Software, 1996, pp. 125–137.

[17] I. S. Duff, R. G. Grimes, and J. G. Lewis, “Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I),” Report RAL-92-086, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon, UK, Tech. Rep., 1992.

[18] J. Baglama and L. Reichel, “Restarted block Lanczos bidiagonalization meth-
ods,” Numerical Algorithms, vol. 43, no. 3, pp. 251–272, 2006.

[19] J. Baglama and L. Reichel, “An implicitly restarted block Lanczos bidiago-
nalization method using Leja shifts,” BIT Numerical Mathematics, vol. 53,
no. 2, pp. 285–310, 2013.

[20] Z. Jia and D. Niu, “An implicitly restarted refined bidiagonalization Lanczos
method for computing a partial singular value decomposition,” SIAM journal
on matrix analysis and applications, vol. 25, no. 1, pp. 246–265, 2003.

[21] Z. Jia and D. Niu, “A refined harmonic Lanczos bidiagonalization method and
an implicitly restarted algorithm for computing the smallest singular triplets
of large matrices,” SIAM Journal on Scientific Computing, vol. 32, no. 2, pp.
714–744, 2010.

[22] E. Kokiopoulou, C. Bekas, and E. Gallopoulos, “Computing smallest singular
triplets with implicitly restarted Lanczos bidiagonalization,” Applied numer-
ical mathematics, vol. 49, no. 1, pp. 39–61, 2004.

[23] R. M. Larsen, “Lanczos bidiagonalization with partial reorthogonalization,”
DAIMI Report Series, vol. 27, no. 537, 1998.

52

[24] R. M. Larsen, “Combining implicit restarts and partial reorthogonalization in
Lanczos bidiagonalization,” Program in Scientific Computing and Computa-
tional Mathematics, Stanford University, 2001.

[25] R. B. Morgan, “Computing interior eigenvalues of large matrices,” Linear
Algebra and its Applications, vol. 154, pp. 289–309, 1991.

[26] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, “Approximate solutions
and eigenvalue bounds from Krylov subspaces,” Numerical linear algebra with
applications, vol. 2, no. 2, pp. 115–133, 1995.

[27] Z. Jia, “Some properties of LSQR for large sparse linear least squares prob-
lems,” Journal of Systems Science and Complexity, vol. 23, no. 4, pp. 815–821,
2010.

[28] C. C. Paige, “Bidiagonalization of matrices and solution of linear equations,”
SIAM Journal on Numerical Analysis, vol. 11, no. 1, pp. 197–209, 1974.

[29] H. D. Simon and H. Zha, “Low-rank matrix approximation using the Lanc-
zos bidiagonalization process with applications,” SIAM Journal on Scientific
Computing, vol. 21, no. 6, pp. 2257–2274, 2000.

[30] MATLAB, version R2011a. Natick, Massachusetts: The MathWorks Inc.,
2011.

53

CHAPTER 3

Implicitly restarting the LSQR algorithm

James Baglama1 and Daniel Richmond2

Accepted for publication in Electronic Transactions on Numerical Analysis on

February 7, 2014.

1Professor, Department of Mathematics, University of Rhode Island, Kingston, RI 02881.

e-mail: jbaglama@math.uri.edu

URL: http://math.uri.edu/∼jbaglama

2PhD Candidate, Department of Mathematics, University of Rhode Island, Kingston, RI 02881.

e-mail: dan@math.uri.edu

URL: http://math.uri.edu/∼dan

54

Abstract. The LSQR algorithm is a popular method for solving least-squares

problems. For some matrices, LSQR may require a prohibitively large number of

iterations to determine an approximate solution within a desired accuracy. This

paper develops a strategy that couples the LSQR algorithm with an implicitly

restarted Golub-Kahan bidiagonalization method to improve the convergence rate.

The restart is carried out by applying the largest harmonic Ritz values as shifts and

LSQR is used to compute the solution to the least-squares problem. Theoretical

results show how this method is connected to the augmented LSQR method of

[1] in which the Krylov subspaces are augmented with the harmonic Ritz vectors

corresponding to the smallest harmonic Ritz values. Computed examples show the

proposed method to be competitive with other methods.

Keywords. Golub-Kahan bidiagonalization, iterative method, implicit

restarting, harmonic Ritz values, large-scale computation, least-squares, LSQR,

Krylov subspace.

AMS Subject Classification. 65F15, 15A18

3.1 Introduction

In this paper, we will investigate large-scale least-squares (LS) problems

min
x∈Rn
‖b− Ax‖, A ∈ R`×n, b ∈ R`, ` ≥ n (3.1)

where ‖ · ‖ denotes the Euclidean vector norm. The matrix A is assumed to be

sparse and too large to apply the use of direct solvers efficiently, therefore iterative

methods, which can also take advantage of the sparse structure of A, are required

in order to solve the LS problem. When ` ≥ n the preferred iterative method for

solving LS problems is the LSQR Algorithm of Paige and Saunders [2]. LSQR is

a Krylov subspace method that is based on the Golub-Kahan (GK) bidiagonaliza-

tion, in which orthonormal bases for the m-dimensional Krylov subspaces

55

Km
(
AAT, w1

)
= span

{
w1, AA

Tw1, (AA
T)2w1, . . . , (AA

T)m−1w1

}
Km

(
ATA, p1

)
= span

{
p1, A

TAp1, (A
TA)2p1, . . . , (A

TA)m−1p1

} (3.2)

are formed using the starting vectors w1 = r0/‖r0‖ and p1 = ATw1/‖ATw1‖,

where r0 = b − Ax0 for an initial guess solution x0 of the LS problem. Using

the orthonormal bases for the spaces in (3.2) the LSQR Algorithm computes

an approximate solution xm ∈ x0 + Km
(
ATA, p1

)
and corresponding residual

rm = b−Axm ∈ Km
(
AAT , w1

)
such that ‖b−Axm‖ is minimized over all possible

choices for xm. The LSQR algorithm is a non-restarted method where the dimen-

sion m is increased until an acceptable solution of the LS problem is found. The

theoretical foundation of LSQR yields a process that only requires the storage of a

few basis vectors for each Krylov subspace. In exact arithmetic, LSQR terminates

with the solution of the LS problem when linear dependence is established in (3.2).

For LS problems with a well-conditioned matrix A or a small effective condition

number, LSQR converges quickly yielding an approximation of the solution of the

LS problem of desired accuracy long before linear dependence is encountered in

(3.2), see Björck [3] for remarks. However, for LS problems with an ill-conditioned

matrix A and a solution vector x with many components in the direction of the

singular vectors associated with the smallest singular values, LSQR may require a

prohibitively large number of iterations, see [3]. A contributing reason is that in

finite arithmetic, the storage of only a few basis vectors at a time cannot maintain

orthogonality among all previously non-stored basis vectors, hence the generated

Krylov subspaces have a difficulty obtaining good approximations to the smallest

singular triplets. The loss of orthogonality can be overcome by keeping previously

computed basis vectors and reorthogonalizing. However, as m becomes large, this

can become computationally expensive with an impractical storage requirement.

56

One solution is to use a restarted Krylov subspace method to solve the LS problem.

Restarting Krylov subspace methods after m << n can maintain orthogonality

with a modest storage requirement. The restarted GMRES method of Saad and

Schultz [4] is one of the most popular Krylov subspace methods for solving the

LS problem when ` = n. Using the restarted GMRES method to solve the LS

problem introduces another problem, stagnation and/or slow convergence, [5, 6].

To overcome stagnation and/or slow convergence, restarted GMRES is often com-

bined with a preconditioner or generated over an augmented Krylov subspace, see

[7, 8, 9, 10, 11, 12] and references within.

If we implement a restarted LSQR method, i.e. restarting LSQR after m << n

iterations, we can maintain strong orthogonality among the bases by keeping all

the vectors in storage, however, similar to GMRES, the restarted LSQR method

can encounter stagnation and even slower convergence than using LSQR without

reorthogonalization (cf. [13] for details on restarting the related LSMR algorithm).

To overcome stagnation and/or slow convergence of restarting LSQR, we propose

to solve the LS problem implicitly over an improved Krylov subspace, a form of

preconditioning. We consider implicitly restarting the GK bidiagonalization (and

hence LSQR) with a starting vector w+
1 , such that w+

1 = φ
(
AAT

)
w1 for some

polynomial φ that is strong in the direction of the left singular vectors associ-

ated with the smallest singular values. The Krylov subspaces Km
(
AAT , w+

1

)
and

Km
(
ATA, p+

1

)
will then contain good approximations to the left and right singu-

lar vectors corresponding to the smallest singular values, respectively. Also, with

judiciously chosen shifts (i.e. zeros of φ
(
AAT

)
) we can ensure that Km

(
AAT , w+

1

)
will contain the LSQR residual vector on each iteration of the restarted method.

This is essential so that our restarted LSQR method produces a non-increasing

residual curve. Since the singular values of A are not known prior to starting the

57

LSQR method, approximations must be found.

Implicitly restarted GK bidiagonalization methods [14, 15, 1, 16, 17, 18] have

been used very successfully in providing good approximations to the smallest and

largest singular triplets of a very large matrix A while using a small storage space

and not many matrix-vector products. In this paper, we describe an implicitly

restarted GK bidiagonalization method which selects a polynomial filter that pro-

duces good approximations of the singular vectors associated with the smallest

singular values, thus improving the search spaces, while simultaneously computing

approximate solutions to the LS problem. There are many methods for precondi-

tioning LSQR to improve convergence [19, 3, 20, 21, 12], however most methods

require constructions prior to approximating solutions to the LS problem adding

to the storage and/or computational time.

In [1], we solved the LS problem with an LSQR method over a Krylov subspace

that was explicitly augmented by approximate singular vectors of A. Augmenting

Krylov subspaces in conjunction with solving the LS problem when ` = n with

the restarted GMRES method was first discussed by Morgan in [10]. Later, Mor-

gan showed the mathematical equivalence between applying harmonic Ritz values

as implicit shifts and augmenting the Krylov subspaces by harmonic Ritz vectors

to solve the LS problem when ` = n with restarted GMRES cf. [11]. Similarly,

in Section 3.5, we show that our proposed method of this paper, applying har-

monic Ritz values as implicit shifts to a restarted LSQR method to improve the

Krylov subspaces is mathematically equivalent to the routine in [1] that obtains

Krylov subspaces by explicitly augmenting them with the harmonic Ritz vectors

to improve convergence. Therefore, the theorems from [1] which show improved

convergence for LSQR using augmented spaces are applicable to this method. Ap-

plying the shifts implicitly is simple, and we introduce a new strategy for choosing

58

and applying the shifts, which, based on our heuristics, further improves the con-

vergence rates.

The paper is organized as follows: Section 3.2 describes, in detail, an implic-

itly restarted GK bidiagonalization method and the simplifications that can be

utilized when using the harmonic Ritz values as shifts. Section 3.3 describes how

LSQR can be successfully restarted by using the implicitly restarted GK bidiago-

nalization algorithm with harmonic Ritz values as shifts. The numerical issues of

implicitly shifting via the buglechasing method are discussed in Section 3.4 along

with a new method for implicitly applying harmonic Ritz values as a shift. Section

3.5 gives the theoretical results of how the implicitly restarted LSQR algorithm

generates the same updated Krylov subspaces as the augmented LSQR algorithm

from [1]. Section 3.6 gives numerical experiments to show the competitiveness of

the proposed method, and Section 3.7 gives concluding remarks.

Throughout this paper, we will denote N (C) as the null space and R(C) as

the range of the matrix C.

3.2 Implicitly restarted Golub-Kahan bidiagonalization

The GK bidiagonalization forms the basis for the LSQR algorithm discussed

in Section 3.3 and is needed to approximate a set of the smallest singular triplets

of A. Define Un = [u1, u2, . . . , un] ∈ R`×n and Vn = [v1, v2, . . . , vn] ∈ Rn×n with

orthonormal columns, as well as Σn = diag [σ1, σ2, . . . , σn] ∈ Rn×n. Then

AVn = UnΣn and ATUn = VnΣn (3.1)

are singular value decompositions (SVD) of A and AT, respectively and

AVk = UkΣk and ATUk = VkΣk (3.2)

for k << n are partial singular value decompositions (PSVD) of A and AT, re-

spectively. We assume the singular values to be ordered from the smallest to the

59

largest one, i.e.,

0 < σ1 ≤ σ2 ≤ . . . ≤ σn,

since we are interested in the smallest singular values of A.

The GK bidiagonalization was originally proposed in [22] as a method for

transforming a matrix A into upper bidiagonal form, however, for its connection

to the LSQR algorithm in solving (3.1), we consider the variant that transforms A

to lower bidiagonal form (cf. [2, bidiag 1]), described in Algorithm 3.1. The lower

bidiagonal algorithm was described by Björk [23] as the more stable version of the

GK bidiagonalization method and this form fits nicely into our implicitly restarted

method.

Algorithm 3.1. GK Bidiagonalization Method

Input: A ∈ R`×n or functions for evaluating products with A and AT ,

w1 ∈ R` : initial starting vector,

m : number of bidiagonalization steps.

Output: Pm = [p1, . . . , pm] ∈ Rn×m : matrix with orthonormal columns,

Wm+1 = [w1, . . . , wm+1] ∈ R`×(m+1) : matrix with orthonormal columns,

Bm+1,m ∈ R(m+1)×m : lower bidiagonal matrix,

pm+1 ∈ Rn : residual vector,

αm+1 ∈ R.

1. Compute β1 := ‖w1‖; w1 := w1/β1; W1 := w1

2. Compute p1 := ATw1; α1 := ‖p1‖; p1 := p1/α1; P1 := p1

3. for j = 1 : m

60

4. Compute wj+1 := Apj − wjαj

5. Reorthogonalization step: wj+1 := wj+1 −W(1:j)

(
W T

(1:j)wj+1

)
6. Compute βj+1 := ‖wj+1‖; wj+1 := wj+1/βj+1

7. Compute pj+1 := ATwj+1 − pjβj+1

8. Reorthogonalization step: pj+1 := pj+1 − P(1:j)

(
P T

(1:j)pj+1

)
9. Compute αj+1 := ‖pj+1‖; pj+1 := pj+1/αj+1

10. if j < m

11. Pj+1 := [Pj, pj+1]

12. endif

13. endfor

After m << n steps, Algorithm 3.1 determines matrices Wm+1 and Pm whose

columns form orthonormal bases for the Kyrlov subspaces Km+1

(
AAT , w1

)
and

Km
(
ATA, p1

)
, respectively, as well as the decompositions

ATWm+1 = PmB
T
m+1,m + αm+1pm+1e

T
m+1

APm = Wm+1Bm+1,m

(3.3)

where pTm+1Pm = 0, and em+1 is the (m+ 1)st axis vector. The matrix

Bm+1,m =

α1

β2 α2 0
β3

. . .

. . . αm

0 βm+1

∈ R(m+1)×m (3.4)

is lower bidiagonal. We assume that Algorithm 3.1 does not terminate early, that

is, αj 6= 0 and βj 6= 0 for 1 ≤ j ≤ m+ 1, see [1] for a discussion on how to handle

early termination. To avoid loss of orthogonality in finite precision arithmetic

in the basis vectors Wm+1 and Pm, we reorthogonalize in lines 5 and 8 of the

algorithm. The reorthogonalization steps do not add significant computational

61

cost when m << n. For discussions and schemes on reorthogonalization we refer

the reader to [14, 1, 13, 24, 25] and references within. For the numerical examples

in Section 3.6 we follow the same scheme used in [1].

It is well known that using a Krylov subspace to obtain acceptable approxima-

tions to the smallest singular triplets of A with equations (3.3) can require a pro-

hibitively large value of m. Therefore, a restarting strategy is required. The most

effective restarting strategy is to use an implicit restart technique. By implicitly

restarting after m << n steps of the GK bidiagonalization, storage requirements

can be kept relatively small and provide good approximations to the desired singu-

lar vectors from the generated Krylov subspaces. The following section provides a

detailed discussion on how to implicitly restart the GK bidiagonalization method.

3.2.1 Implicit restart formulas for the GK bidiagonalization

Implicitly restarting a GK bidiagonalization method was first discussed in [23]

and used in [14, 15, 1, 16, 17, 18]. Starting with the m-step GK bidiagonalization

decomposition (3.3), the implicit restarting is done by selecting a shift µ and

applying the shift via the Golub-Kahan SVD step [26, alg 8.6.1]. The algorithm

given in [26] assumes an upper bidiagonal matrix is given, we modify the algorithm

for a lower bidiagonal matrix and it is given as the bulgechasing (lower bidiagonal)

algorithm (cf. Algorithm 3.2). Algorithm 3.2 uses the shift µ and generates upper

Hessenberg orthogonal matrices QL ∈ R(m+1)×(m+1) and QR ∈ Rm×m such that

B+
m+1,m = QT

LBm+1,mQR is lower bidiagonal. Multiplying the first equation of

(3.3) by QL from the right and the second equation of (3.3) by QR also from the

right yields

ATWm+1QL = PmB
T
m+1,mQL + αm+1pm+1e

T
m+1QL

APmQR = Wm+1Bm+1,mQR.

(3.5)

62

Let W+
m+1 = Wm+1QL, P+

m = PmQR, and

p+
m =

α+
mp

+
m + (αm+1qLm+1,m)pm+1

‖α+
mp

+
m + (αm+1qLm+1,m)pm+1‖

(3.6)

where α+
m is the (m,m) diagonal entry of B+

m+1,m and qLm+1,m is the (m+1,m) entry

of QL. Now set α+
m = ‖α+

mp
+
m+ (αm+1qLm+1,m)pm+1‖. Then we have after removing

the last column from both sides of the equations in (3.5) a valid (m− 1)-step GK

bidiagonalization decomposition,

ATW+
m = P+

m−1B
+T
m,m−1 + α+

mp
+
me

T
m

AP+
m−1 = W+

mB
+
m,m−1.

(3.7)

The (m− 1)-step GK bidiagonalization decomposition (3.7) is the decomposition

that we would have obtained by applying (m− 1) steps of Algorithm 3.1 with the

starting vector w+
1 = γ

(
AAT − µI

)
w1, i.e a polynomial filter has been applied to

w1. See [15, 23, 18] for detailed discussions on polynomial filters in the context of

implicitly restarting a GK bidiagonalization method. Given a suitable choice of

shift µ the polynomial filter helps dampen unwanted singular vector components of

A from w1. Multiple shifts (p = m−k shifts µ1, µ2, . . . , µp) can be applied via this

process yielding the following valid k-step GK bidiagonalization decomposition,

ATW+
k+1 = P+

k B
+T
k+1,k + α+

k+1p
+
k+1e

T
k+1

AP+
k = W+

k+1B
+
k+1,k

(3.8)

which would have been obtained by applying k-steps of Algorithm 3.1 with the

starting vector w+
1 = γ̃

∏p
i=1

(
AAT − µiI

)
w1. Using the vectors p+

k+1, w
+
k+1 the

(k + 1)st vector of W+
k+1, and the scalar α+

k+1 the k-step GK bidiagonalization

decomposition (3.8) can be extended to an m-step GK bidiagonalization decom-

position (3.3) by starting at step 4 of Algorithm 3.1 and continuing for p more

iterations.

63

Algorithm 3.2. Bulgechasing (lower bidiagonal)

Input: Bm+1,m ∈ R(m+1)×m lower bidiagonal matrix,

µ : implicit shift.

Output: QL ∈ R(m+1)×(m+1) : upper Hessenberg matrix with orthonormal columns,

QR ∈ Rm×m : upper Hessenberg matrix with orthonormal columns,

B+
m+1,m = QT

LBm+1,mQR ∈ R(m+1)×m : updated lower bidiagonal matrix.

1. Determine the (m+ 1)× (m+ 1) Givens rotation matrix G(1, 2, θ1) such that[
c s
−s c

] [
b21,1 − µ
b1,1 · b2,1

]
=

[
?
0

]
2. Set QT

L := G(1, 2, θ1); QR := Im; B+
m+1,m := G(1, 2, θ1)Bm+1,m

3. for i = 1 : m− 1

4. Determine the m×m Givens rotation matrix G(i, i+ 1, θi) such that[
b+i,i b+i,i+1

] [c −s
s c

]
=
[
? 0

]
5. Update QR := QRG(i, i+ 1, θi); B+

m+1,m := B+
m+1,mG(i, i+ 1, θi)

6. Determine the (m+ 1)× (m+ 1) Givens rotation matrix G(i+ 1, i+ 2, θi+1)

such that[
c s
−s c

] [
b+i+1,i

b+i+2,i

]
=

[
?
0

]
7. Update QT

L := G(i+ 1, i+ 2, θi+1)Q
T
L; B+

m+1,m := G(i+ 1, i+ 2, θi+1)B
+
m+1,m

8. endfor

3.2.2 Implicit restart with harmonic Ritz values as shifts

The dampening effect of the polynomial filter,
∏p

i=1

(
AAT − µiI

)
, depends on

the choice of shifts µi. There are several choices for µi that have been investigated

in the literature in this context; Ritz and harmonic Ritz values [18], refined Ritz

64

values [16], refined harmonic Ritz values [17], and Leja points [15]. We examine the

choice of using harmonic Ritz values as shifts for our implicitly restarted method.

Harmonic Ritz values not only provide good approximations to the smallest sin-

gular values of A they have a much needed connection with the LSQR algorithm

described in Section 3.3.

The harmonic Ritz values θ̂j of AAT are defined as the eigenvalues to the

generalized eigenvalue problem((
Bm,mB

T
m,m

)
+ α2

mβ
2
m+1

(
Bm,mB

T
m,m

)−1
eme

T
m

)
gj = θ̂jgj, 1 ≤ j ≤ m (3.9)

where Bm,m is the m × m principal submatrix of Bm+1,m, and gj ∈ Rm\{0} is

an eigenvector, see e.g., [27, 28] for properties and discussions of harmonic Ritz

values. The eigenpairs
{
θ̂j, gj

}m
j=1

can be computed without forming the matrix

Bm,mB
T
m,m from the SVD of Bm+1,m,

Bm+1,mṼm =
[
Ũm ũm+1

] [
Σ̃m

0

]
,

BT
m+1,m

[
Ũm ũm+1

]
= Ṽm

[
Σ̃m 0

]
,

(3.10)

where the matrices Ṽm = [ṽ1, ṽ2, . . . , ṽm] ∈ Rm×m and Ũm = [ũ1, ũ2, . . . , ũm] ∈

R(m+1)×m have orthonormal columns, ũm+1 ∈ Rm+1 (the null vector) is a unit-

length vector such that ũTm+1Ũm = 0, and Σ̃m = diag [σ̃1, σ̃2, . . . , σ̃m] ∈ Rm×m. We

order the m singular values according to

0 < σ̃1 < σ̃2 < . . . < σ̃m. (3.11)

The strict inequalities come from the assumption that the diagonal and sub-

diagonal entries of Bm+1,m are all nonzero [29, Lemma 7.7.1].

We have θ̂j = σ̃2
j , see [28] for details. The eigenvectors gj are the columns of[

Im βm+1B
−T
m,mem

]
Ũm, see [1] for details. Furthermore, if σ̃2

j is used as a shift in

Algorithm 3.2 then the return matrix B+
m+1,m has entries α+

m = 0 and β+
m+1 = ±σ̃j.

The following theorem shows this result.

65

Theorem 3.1. Given a lower bidiagonal matrix Bm+1,m (3.4) where αj 6= 0 for

1 ≤ j ≤ m and βj 6= 0 for 2 ≤ j ≤ m + 1. In Algorithm 3.2, µ = σ̃2
j (3.11) if

and only if the return matrix B+
m+1,m has α+

m = 0 and β+
m+1 = ±σ̃j. Furthermore,

Algorithm 3.2 returns the matrices QL and QR such that QLem+1 = ±ũj and

QRem = ±ṽj.

Proof. Compute the QR-factorization of Bm+1,mB
T
m+1,m − µIm+1 = QR where

Q ∈ R(m+1)×(m+1) is orthogonal and R ∈ R(m+1)×(m+1) is upper triangular. An

inspection of steps 1 and 2 in Algorithm 3.2 show that the first columns of QL and

Q are equal. Therefore, via the implicit Q Theorem [26, Theorem 7.4.2] we have

QL = QD where D = diag[1,±1, . . . ,±1] and

B+
m+1,mB

+T
m+1,m = QT

LBm+1,mB
T
m+1,mQL = DQTBm+1,mB

T
m+1,mQD. (3.12)

The matrix B+
m+1,mB

+T
m+1,m is a symmetric tridiagonal matrix and if

µ is an eigenvalue of Bm+1,mB
T
m+1,m then QT

LBm+1,mB
T
m+1,mQLem+1 =

DQTBm+1,mB
T
m+1,mQDem+1 = µem+1, [26, Section 8.3.3]. Therefore,

B+
m+1,mB

+T
m+1,mem+1 = DQTBm+1,mB

T
m+1,mQDem+1 = µem+1 (3.13)

and β+
m+1α

+
m = 0 and β+2

m+1 = µ. Since σ̃2
j 6= 0 are eigenvalues of Bm+1,mB

T
m+1,m, we

have α+
m = 0 and β+

m+1 = ±σ̃j. The reverse holds by noticing that Bm+1,mB
T
m+1,m

is unreduced, and if µ is not an eigenvalue, then B+
m+1,mB

+T
m+1,m must also be unre-

duced [29, Lemma 8.13.1]. Algorithm 3.2 returns the relationships Bm+1,mQR =

QLB
+
m+1,m and BT

m+1,mQL = QRB
+T
m+1,m. Using the structure of the last column of

B+
m+1,m we have

Bm+1,mQRem = QLB
+
m+1,mem = ±σ̃jQLem+1

BT
m+1,mQLem+1 = QRB

+T
m+1,mem+1 = ±σ̃jQRem.

(3.14)

The result QLem+1 = ±ũj and QRem = ±ṽj follows from the SVD of Bm+1,m (3.10)

and that the singular vectors of non-degenerate singular values are unique up to

sign difference [3].

66

Calling Algorithm 3.2 with Bm+1,m and µ = σ̃2
m returns the upper Hes-

senberg orthogonal matrices QL = [QLm ,±ũm] ∈ R(m+1)×(m+1) where QLm =

[qL1 , . . . , qLm] ∈ R(m+1)×m, QR =
[
QRm−1 ,±ṽm

]
∈ Rm×m where QRm−1 =[

qR1 , . . . , qRm−1

]
∈ Rm×(m−1), and the lower bidiagonal matrix,

B+
m+1,m =

 B+

m,m−1

 0

0 ±σ̃m

 ∈ R(m+1)×m. (3.15)

The singular values of B+
m,m−1 are

0 < σ̃1 < σ̃2 < . . . < σ̃m−1 (3.16)

and the SVD of B+
m,m−1 is

B+
m,m−1Q

T
Rm−1

Ṽm−1 = QT
Lm
Ũm−1Σ̃m−1

B+T
m,m−1Q

T
Lm
Ũm−1 = QT

Rm−1
Ṽm−1Σ̃m−1.

(3.17)

Calling Algorithm 3.2 with B+
m,m−1 and µ = σ̃2

m−1 returns the upper Hessen-

berg orthogonal matrices Q+
Lm

=
[
Q+
Lm−1

,±QT
Lm−1

ũm−1

]
∈ Rm×m where Q+

Lm−1
=[

q+
L1
, . . . , q+

Lm−1

]
∈ Rm×(m−1), Q+

Rm−1
=
[
Q+
Rm−2

,±QT
Rm−1

ṽm−1

]
∈ R(m−1)×(m−1)

where Q+
Rm−2

=
[
q+
R1
, . . . , q+

Rm−2

]
∈ R(m−1)×(m−2) and the lower bidiagonal matrix,

B++
m,m−1 =

 B++

m−1,m−2

 0

0 ±σ̃m−1

 ∈ Rm×(m−1). (3.18)

Since columns of QRm−1 are orthonormal and ṽm−1 ∈ R
(
QRm−1

)
we have

QRm−1Q
T
Rm−1

ṽm−1 = ṽm−1. Likewise QLm−1Q
T
Lm−1

ũm−1 = ũm−1. Therefore,(
QL

[
Q+
Lm

0
0 1

])T
Bm+1,m QR

[
Q+
Rm−1

0

0 1

]
=

 B++
m−1,m−2

 0
±σ̃m−1

0 ±σ̃m

(3.19)

67

where

QR

[
Q+
Rm−1

0

0 1

]
=
[
q++
R1
, . . . , q++

Rm−2
, ṽm−1, ṽm

]
(3.20)

and

QL

[
Q+
Lm

0
0 1

]
=
[
q++
L1
, . . . , q++

Lm−1
, ũm−1, ũm

]
. (3.21)

The matrices (3.20) and (3.21) are no longer upper Hessenberg, they have an

additional nonzero sub-diagonal below the diagonal, increasing the lower band

width to 2.

Repeating the process we can use Algorithm 3.2 to apply multiple shifts. After

applying the largest p = m − k harmonic Ritz values
(
σ̃2
m, . . . , σ̃

2
k+1

)
as shifts we

have

QT
LBm+1,mQR =

 B+
k+1,k

 0
±σ̃k+1

. . .

0 ±σ̃m

(3.22)

where

QR = [QRk
, ṽk+1, . . . , ṽm]

QL =
[
QLk+1

, ũk+1, . . . , ũm
]
.

(3.23)

The matrices (3.23) now have a lower band width equal to p. Using the process

outlined in Section 3.2.1 with (3.22) and (3.23) we have analogous to (3.8) a k-step

GK bidiagonalization,

ATW+
k+1 = P+

k B
+T
k+1,k + α+

k+1p
+
k+1e

T
k+1

AP+
k = W+

k+1B
+
k+1,k

(3.24)

where W+
k+1 = Wm+1QLk+1

, P+
k = PmQRk

, B+
k+1,k = QT

Lk+1
Bm+1,mQRk

,

p+
k+1 =

(αm+1qLm+1,k+1
)

|αm+1qLm+1,k+1
|
pm+1 (3.25)

68

and α+
k+1 = |αm+1qLm+1,k+1

|. Using the vectors p+
k+1, w

+
k+1 the (k + 1)st vector of

W+
k+1, and the scalar α+

k+1 the k-step GK bidiagonalization decomposition (3.24)

can be extended to anm-step GK bidiagonalization decomposition (3.3) by starting

at step 4 of Algorithm 3.1 and continuing for p more iterations.

We remark again that the importance of using harmonic Ritz values as shifts

is the connection with the LSQR method described in Section 3.3 where zeroing

out the diagonal elements of B+
m+1,m cf. (3.15, 3.18, 3.19, 3.22) is essential for

restarting the LSQR method.

3.2.3 Adaptive shift strategy

In order to help speed up convergence to the smallest singular triplets and

ultimately speed up our implicitly restarted LSQR algorithm, we developed an

adaptive shift strategy. It was first observed in [30] that if a shift µk+1 that is

numerically close to σ2
k is used in the implicitly restarted GK bidiagonalization

method, then the component along the k-th left singular vector can be greatly

damped in

w+
1 =

m∏
i=k+1

(
AAT − µiI

)
w1. (3.26)

This can cause the resulting spaces W+
k+1 and V +

k (3.24) to contain poor approx-

imations to the left and right singular vector corresponding to σk, respectively.

When using an implicitly restarted GK bidiagonalization to solve for a PSVD of

A, a heuristic was proposed in [30] to require that the relative gap between the

approximating value σ̃2
k and all shifts µi, defined by

relgapki =
(σ̃2

k − ek)− µi
σ̃2
k

(3.27)

where ek is the error bound on σ̃2
k, be greater than 10−3. In the context of [30], the

shifts considered to be too close, i.e the “bad shifts”, were simply replaced by zero

shifts. This strategy was adapted and applied in [16, 17] in which harmonic and

69

refined harmonic Ritz values were used as shifts for computing some of the smallest

and largest singular triplets. When searching for the smallest singular triplets,

the “bad shifts” were replaced with the largest among all shift. In either case,

through observation and numerical experiment, this improved the convergence of

the smallest singular triplets. When implicitly restarting the GK bidiagonalization

in combination with the LSQR algorithm, we cannot replace a “bad shift” by

the largest among all shifts,. i.e. our combined routine does not allow repeated

shifts. This would destroy the required Hessenberg structure of QR and QL in the

equations given in Section 2. We also cannot use a zero shift, this would remove

the null vector ũm+1 of Bm+1,m from the space, see Section 3.3 for details. In our

case, we are not just concerned with a finding approximations to the k smallest

singular triplets of A, but rather to find a solution to the LS problem. Instead of

applying p shifts, we therefore opt to dynamically change the number of shifts to

apply in order to have the best approximations to a set of singular triplets in our

updated spaces W+
k+1 and V +

k (3.24). That is, we look for the largest gap between

certain σ̃s and only apply shifts up to the gap.

Our heuristic is based on two properties; that the harmonic Ritz singular value

approximation σ̃i to σi is such that σi ≤ σ̃i [31] and the interlace property of the

harmonic Ritz and Ritz values [28]. Using these properties lead us to examine the

gaps between consecutive harmonic Ritz singular value approximations σ̃. If σ̃i is

very near to σ̃i+1 (and hence σi is possibly very near to σi+1) then components of

the updated starting vector in the direction of ui from (3.1) may be greatly damped

by applying σ̃2
i+1 = θ̂i+1 as a shift, which is undesired. To minimize the possibility

of this happening, our heuristic method fixes a small value j and searches the

interval
[
θ̂k+1−j, . . . , θ̂k+1, . . . , θ̂k+1+j

]
around θ̂k+1 for the largest gap between any

70

two consecutive harmonic Ritz values. That is, an index kj is chosen such that

max
k+1−j≤kj≤k+j

∣∣∣θ̂kj+1
− θ̂kj

∣∣∣ (3.28)

and k is replaced with kj where the number of shifts in the implicitly restarted GK

bidiagonalization is set to p = m− kj. Through numerical observation, a suitable

choice for j is typically between 2 and 6. Choosing j too large can have a dramatic

negative effect on the convergence rate. See Table 6.2 in Section 3.6 for numerical

results on different values of j, and the improved convergence rates obtained when

using this adaptive shifting strategy.

3.3 Implicitly restarted LSQR

In this section we describe our implicitly restarted LSQR method, Algorithm

3.4, which is a combination of a restarted LSQR method with the implicitly

restarted GK bidiagonalization method described in Section 3.2. Algorithm 3.3

outlines a single step of a restarted LSQR method that we will need. A first

call to Algorithm 3.3 with an initial approximate solution of the LS problem x0,

r0 = b− Ax0 and w1 = r0 will produced the same output xm and rm as the Paige

and Saunders [2] routine. However, in order to call Algorithm 3.3 again after

we use the implicitly restarted formulas of Section 3.2 to reduce the m-step GK

bidiagonalization (3.3) to a k-step GK bidiagonalization (3.24) we need to have

rm ∈ R
(
W+
k+1

)
. If rm 6∈ R

(
W+
k+1

)
then we are using a Krylov subspace that does

not contain the residual vector. This would require an approximation of rm from

the Krylov subspace, which can severally slow down or produce no convergence.

However, it was shown in [1] that if we have an m-step GK bidiagonalization

(3.3) and compute xm from LSQR equations, i.e. steps 2 and 3 of Algorithm 3.3

then rm = γWm+1ũm+1, where ũm+1 is the null vector (3.10), of Bm+1,m and γ ∈ R.

Using the implicitly restarted formulas of Section 3.2 with an application of the

p largest harmonic Ritz values as shifts we obtain a k-step GK bidiagonalization

71

decomposition (3.24) with W+
k+1 = Wm+1QLk+1

. Equation (3.23) shows that we

must have ũm+1 ∈ R
(
QLk+1

)
and hence rm = W+

k+1fk+1 for some vector fk+1 ∈

Rk+1, i.e. rm ∈ R
(
W+
k+1

)
.

Algorithm 3.3. Restarted LSQR step

Input: k-step GK bidiagonalization (3.24) or (3.31) or the k-step factorization

(3.30) where rk ∈ R
(
W+
k+1

)
,

p = m− k : number of additional bidiagonalization steps,

xk ∈ Rn : approximation to LS problem.

Output: m-step GK bidiagonalization (3.3),

xm ∈ Rn : approximation to LS problem,

rm ∈ R` : residual vector.

1. Apply p = m− k additional steps of Algorithm 3.1 to obtain an

m-step GK bidiagonalization (3.3)

2. Solve min
ym∈Rm

∥∥∥∥[fk+1

0

]
−Bm+1,mym

∥∥∥∥ for ym

where rk = Wm+1

[
fk+1

0

]
for some fk+1 ∈ Rk+1

3. Set xm = xk + Pmym

4. rm = rk −Wm+1Bm+1,mym

The residual and approximate solution to the LS problem can be updated

during step 1 of Algorithm 3.3, i.e. during the GK bidiagonalization Algorithm

3.1. The MATLAB code irlsqr used for numerical examples in Section 6 which

implements Algorithm 3.4 updates the LSQR approximation and residual during

72

GK bidiagonalization steps. Below is our algorithm that outlines the main routine

of this paper.

Algorithm 3.4. Implicitly Restarted LSQR (IRLSQR)

Input: A ∈ R`×n or functions for evaluating products with A and AT ,

x0 ∈ Rn: Initial approximate solution to LS problem,

r0 = b− Ax0 ∈ R` : initial residual vector,

m : maximum size of GK bidiagonalization decomposition,

p : number of shifts to apply,

j : integer used to adjust number of shifts (3.28),

δ : tolerance for accepting an approximate solution.

Output: xm : approximate solution to the LS problem (3.1),

rm = b− Axm ∈ R` : residual vector.

1. Set w1 = r0 and k = 0.

2. Call Algorithm 3.3 to obtain m-step GK bidiagonalization

ATWm+1 = PmB
T
m+1,m + αm+1pm+1e

T
m+1

APm = Wm+1Bm+1,m

and solution xm and residual rm.

3. If ‖AT rm‖/‖AT r0‖ < δ then exit.

4. Compute the m harmonic Ritz values, (3.11).

5. Adjust the number of shifts p using user input j and (3.28).

6. Apply the largest p harmonic Ritz values as shifts to obtain the

73

k-step GK bidiagonalization (3.24),

ATW+
k+1 = P+

k B
+T
k+1,k + α+

k+1p
+
k+1e

T
k+1

AP+
k = W+

k+1B
+
k+1,k

7. Set xk = xm and rk = rm and goto 2.

We remark that computation of ‖AT rm‖/‖AT r0‖ in line 3 can be done effi-

ciently using the formula in [32]. The applications of the implicit shifts of the

harmonic Ritz values in Step 6 of Algorithm 3.4 with the buglehasing algorithm

3.2 does not always yield the required structure of B+
m+1,m, i.e. α+

m = 0. For

small values of m we do get α+
m ≈ 0, however for modest values, m ≈ 100, we get

α+
m 6= 0. Therefore, we developed an alternate method for applying the shifts that

is discussed in the next section.

3.4 Harmonic bidiagonal method

The bulgechasing algorithm applies a shift implicitly to the bidiagonal matrix

Bm+1,m while outputting two orthogonal upper Hessenberg matrices QR and QL,

such that B+
m+1,m = QT

LBm+1,mQR. For the success of our method we need the

output matrices QR and QL to be upper Hessenberg with the last columns as

singular vectors and α+
m of B+

m+1,m cf. (3.15, 3.18, 3.19, 3.22) zero. However, in

finite precision arithmetic Algorithm 3.2 (and the upper bidiagonal form of the

algorithm) is prone to round off errors and the diagonal element α+
m of B+

m+1,m is

not always zero, cf. Table 4.1 and [33] for a discussion. If the diagonal entry α+
m

of B+
m+1,m is nonzero, then by Theorem 3.1 we did not shift by a harmonic Ritz

value σ̃2
j and hence, rm 6∈ R

(
W+
k+1

)
cf. the discussion in Section 3.3.

Other implicitly restarted methods [34, 32, 16, 17, 18], that apply shifts im-

plicitly can overcome the issue of a nonzero α+
m by incorporating α+

m into equation

(3.6). This strategy does not work in our method. Alternatively, the bulgechasing

74

algorithm 3.2 can be called repeatedly with the same shift until α+
m becomes small.

This process destroys the required upper Hessenberg structure of QR and QL and

often requires many calls for a single shift. To overcome this difficulty and force

the desired (i.e. required) structure for this paper, we developed a method, Algo-

rithm 3.5, for implicitly applying the harmonic Ritz values as shifts that utilizes

the singular values and vectors of Bm+1,m.

Algorithm 3.5 takes advantage of the known structure of the orthogonal ma-

trices QL and QR. That is, in exact arithmetic, the application of p = m − k

harmonic Ritz values
(
σ̃2
m, . . . , σ̃

2
k+1

)
with Algorithm 3.2 yields banded upper Hes-

senberg matrices (3.22)-(3.23),

QL =
[
QLk+1

, ũk+1, . . . , ũm
]
,

QR = [QRk
, ṽk+1, . . . , ṽm]

(3.29)

with p sub-diagonals below the diagonal. The first vector, qL1 ∈ QLk+1
has, at most,

the first p + 1 entries nonzero and is orthogonal to the p vectors {ũk+1, . . . , ũm}.

The vector qL1 can be easily constructed by finding a vector of length p+ 1 that is

orthogonal to the first p+ 1 entries of each vector in {ũk+1, . . . , ũm} and replacing

the first p + 1 entries of qL1 with that vector. The process can be repeated to

find the second vector qL2 ∈ QLk+1
, by finding a vector of length p + 2 that is

orthogonal to first p+ 2 entries of each vector in {qL1 , ũk+1, . . . , ũm} and replacing

the first p + 2 entries of qL2 with that vector. The matrix QR is constructed in

the same manner. The matrices QL and QR are constructed to be orthogonal

banded upper Hessenberg matrices, and B+
m+1,m = QT

LBm+1,mQR will have each

α+
i = 0 for i = k + 1 to m. However, the lower bidiagonal structure of B+

m+1,m

may be compromised. It may happen that for some (or many) values of i, the

first p + i entries of the columns of [ũk+1, . . . , ũm] (and [ṽk+1, . . . , ṽm]) may form

a rank deficient matrix, and hence steps 3 and 6 of Algorithm 3.5 may return

75

Table 3.1. The numerical value of |α+
m| from B+

m+1,m after computing an m-step
GK bidiagonalization (3.5) for the matrix [35] ILLC1850 ∈ R1850×712 and calling
Algorithms 3.2 and 3.5 to apply the largest harmonic Ritz value as a shift. The
computation time is not reported since it is considered negligible in the overall
method.

m Method of Implicit Shift |α+
m| ‖qLm+1 − um‖ ‖qRm − vm‖

20 Algorithm 3.2 2.3e-11 2.2e-11 2.6e-11
20 Algorithm 3.5 1.1e-19 0 0

40 Algorithm 3.2 7.7e-10 1.1e-4 6.4e-5
40 Algorithm 3.5 3.6e-17 0 0

80 Algorithm 3.2 1.41 1.52 1.61
80 Algorithm 3.5 2.7e-17 0 0

120 Algorithm 3.2 1.1e-6 1.4 1.4
120 Algorithm 3.5 1.8e-16 0 0

multiple vectors that satisfy the above criteria. The matrices QL, QR, and B+
m+1,m,

however, will have the required structure for our method and since QL and QR

are orthogonal transformations, the singular values of the updated B+
m+1,m (not

necessarily bidiagonal) matrix obtained from Algorithm 3.5 will be the same as

the bidiagonal matrix which would have been obtained from Algorithm 3.2.

After using Algorithm 3.5 to apply the shifts we have the following k-step

factorization

ATW+
k+1 = P+

k B
+T
k+1,k + α+

k+1p
+
k+1e

T
k+1

AP+
k = W+

k+1B
+
k+1,k

(3.30)

which is similar to (3.24) except that B+
k+1,k may not be lower bidiagonal. Algo-

rithm 3.4 can be successfully used with equation (3.30) by applying the shifts in

step 6 of Algorithm 3.4 via Algorithm 3.5.

The k-step GK bidiagonalization decomposition (3.24) can be recaptured by

returning B+
k+1,k to lower bidiagonal form via orthogonal transformations with a

rowwise Householder method starting with the last row, see e.g. [36, 37]. Using

76

rowwise Householder transformations starting with the last row, creates orthogonal

matrices Q̆L ∈ R(k+1)×(k+1) and Q̆R ∈ Rk×k such that B̆k+1,k = Q̆T
LB

+
k+1,kQ̆R is

lower bidiagonal where

Q̆L =

[
? 0
0 1

]
.

Letting P̆k = P+
k Q̆R and W̆k+1 = W+

k+1Q̆L, we can recover a k-step GK bidiago-

nalization decomposition

AT W̆k+1 = P̆kB̆
T
k+1,k + α+

k+1p
+
k+1e

T
k+1

AP̆k = W̆k+1B̆k+1,k

(3.31)

where B̆k+1,k is lower bidiagonal. MATLAB code irlsqr used for numerical exam-

ples in Section 6 which implements Algorithm 3.4 can be used with either structure

(3.30) and (3.31). The authors notice no numerical differences.

Algorithm 3.5. Harmonic bidiagonal method

Input: [ũk+1, ũk+2, . . . , ũm] ∈ R(m+1)×p : left singular vectors of Bm+1,m (3.10),

[ṽk+1, ṽk+2, . . . , ṽm] ∈ Rm×p : right singular vectors of Bm+1,m (3.10).

Output: QL ∈ R(m+1)×(m+1) : banded orthogonal upper Hessenberg,

QR ∈ Rm×m : banded orthogonal upper Hessenberg,

B+
m+1,m = QT

LBm+1,mQR ∈ R(m+1)×m : updated matrix.

1. Set QLk+1
:= [] and QRk+1

:= []

2. for i = 1 : k + 1

3. Find a vector qLi
∈ Rp+i orthogonal to the first p+ i rows of each

column of
[
QLk+1

, ũk+1, ũk+2, . . . , ũm
]
.

77

4. Set QLk+1
:=

[
QLk+1

,

[
qLi

0

]]
5. if i ≤ k

6. Find a vector qRi
∈ Rp+i orthogonal to the first p+ i rows of each

column of
[
QRk+1

, ṽk+1, ṽk+2, . . . , ṽm
]
.

7. Set QRk+1
:=

[
QRk+1

,

[
qRi

0

]]
8. endif

9. endfor

10. Set B+
m+1,m = QT

LBm+1,mQR.

Steps 3 and 6 of Algorithm 3.5 can be done several ways, e.g. the

MATLAB command null applied to the transpose of the first p + i rows of[
QLk+1

, ũk+1, ũk+2, . . . , ũm
]
.

3.5 Connection to augmented LSQR

This section shows the parallels between the augmented LSQR algorithm de-

scribed in [1] and the implicitly restarted LSQR algorithm described in this paper.

Both algorithms use a restarted GK bidiagonalization in conjunction with LSQR

to solve the LS problem. The augmented LSQR algorithm of [1] is carried out by

explicitly augmenting the Krylov subspaces (3.2) with the harmonic Ritz vectors

associated with the smallest harmonic Ritz values. We briefly describe the spaces

that result from the augmenting routine and refer the reader to [1] for the full

details.

The harmonic Ritz vector of AAT associated with the harmonic Ritz value θ̂j

is defined as

ûj = Wmgj (3.32)

where gj is the corresponding eigenvector from equation (3.9). Furthermore, it was

78

shown in [1] that the eigenvector gj can also be expressed as,

gj =
[
Im βm+1B

−T
m,mem

]
ũj (3.33)

where ũj is the corresponding left singular vector associated with the singular value

σ̃j from (3.10). Similar to our method for the initial iteration, the augmenting

method in [1] sets w1 = r0 and calls Algorithm 3.2 to obtain the m-step GK

bidiagonalization (3.3). The augmenting restarting step of [1] creates a variant of

the equations (3.24),

AT Ŵk+1 = P̂kB̂
T
k+1,k + (αm+1q̂m+1,k+1) pm+1e

T
m+1

AP̂k = Ŵk+1B̂k+1,k

(3.34)

where Ŵk+1 = Wm+1Q̂, P̂k = PmṼk, B̂k+1,k = Q̂T ŨkΣ̃k and q̂m+1,k+1 is the (m +

1, k + 1) element of Q̂. The matrices Ũk and Ṽk are the left and right singular

vectors of Bm+1,m respectively, associated with the k smallest singular values, and

Σ̃k is the diagonal matrix of the k smallest singular values. The matrix Q̂ is taken

from the QR decomposition of

Q̂R̂ =

[[
ũm+1m+1

Im − ũm+11:m

]
Ũk ũm+1

0

]
(3.35)

where ũm+1m+1
∈ R is the m+ 1 element of the null vector ũm+1 and ũm+11:m

∈ Rm

is the first m elements of the null vector ũm+1. The matrix on the right side of

(3.35) is considered to be full rank and hence R̂ is invertible. We will show that

R(W+
k+1) = R(Ŵk+1) and R(P+

k) = R(P̂k).

Theorem 3.2. Let w1 = r0 and call Algorithm 3.2 to obtain the m-step GK

bidiagonalization (3.3). Then the matrices W+
k+1 and P+

k of (3.24) that are created

by applying the p = m−k largest harmonic Ritz values as shifts, spans respectively,

the same spaces as the matrices Ŵk+1 and P̂k of (3.34), i.e. R(W+
k+1) = R(Ŵk+1),

and R(P+
k) = R(P̂k).

79

Proof. Using the formulas of Section 2 to apply the largest p = m − k harmonic

Ritz value as shifts generates the orthogonal matrices QR = [QRk
, ṽk+1, . . . , ṽm]

and QL =
[
QLk+1

, ũk+1, . . . , ũm
]
, cf. (3.23). Since R(QRk

) = R(Ṽk), P
+
k = PmQRk

and P̂k = PmṼk, we have

R(P+
k) = R(P̂k).

Define Ũk+1:m = [ũk+1, . . . , ũm] and notice that ŨT
k+1:mQLk+1

= 0 and

ŨT
k+1:m

[[
ũm+1m+1

Im − ũm+11:m

]
Ũk ũm+1

0

]
= 0.

Since the matrices of (3.35) are full rank we have N (Q̂T) = N (QT
Lk+1

) and

R(QLk+1
) = R(Q̂). Since W+

k+1 = Wm+1QLk+1
, and Ŵk+1 = Wm+1Q̂, we have

R(W+
k+1) = R(Ŵk+1).

Section 3.3 showed the residual rm of LSQR is in the restarted space W+
k+1

when implicit restarting is applied with the largest p harmonic Ritz values as

shifts, and it is in Ŵk+1 by construction (cf. [1, equation 3.9]). Furthermore,

the restart vector p+
k+1 (3.25) of the implicitly restarted method is a multiple of

pm+1 and extending the k-step GK bidiagonalization methods (3.24) and (3.34)

back to m-step GK bidiagonalization will produce R(W+
m+1) = R(Ŵm+1) and

R(P+
m) = R(P̂m). The process is then repeated.

3.6 Numerical examples

In this section we have some numerical examples to show the performance of

Algorithm 3.4 which is implemented by the Matlab code irlsqr3. The code uses

the following user-specified parameters:

3Code is available at in Appendix B.

80

tol Tolerance for accepting a computed approximate solu-

tion x as a solution to the LS problem (3.1), i.e.

‖AT r‖/‖AT r0‖ ≤tol.

m Maximum number of GK bidiagonal steps.

p Number of shifts to apply.

j Size of interval around θ̂k+1 to find largest gap.

maxit Maximum number of restarts.

reorth12 String deciding whether one or two sided reorthogonalization

is used in Algorithm 3.1.

We compare irlsqr against the lsqr and lsmr algorithms. The latter codes were

adapted to output the norm of the residuals after each bidiagonal step. Further-

more, LSQR was adapted to perform either one or two sided reorthogonalization

against any specified number of previous GK vectors. In order to make a fair com-

parison between the three methods and to keep storage requirements the same with

the GK vectors, LSQR and LSMR will reorthogonalize against only the previous

m vectors. No comparisons were made with ALSQR of [1], since these routines are

mathematically equivalent, see Section 3.5.

All computations were carried out using MATLAB version 7.12.0.0635 R2011a

on a Dell XPS workstation with an Intel Core2 Quad processor and 4 GB of

memory running under the Windows Vista operating system. Machine precision is

2.2·10−16. We present numerical examples with matrices taken from the University

of Florida Sparse Matrix Collection [38] and from the Matrix Market Collection

[39], see Table 6.1. All examples use the initial guess solution as x0 = 0 and r0 = b.

In Table 6.2, we used two matrices ILLC1850 and E30R0000 from the Ma-

trix Market Collection along with the accompanied b vectors ILLC1850 RHS1 and

81

Table 3.2. List of matrices A, properties, and b vectors used in numerical examples.
The first two matrices are taken from the Matrix Market Collection and the last
two are from the University of Florida Sparse Matrix Collection.

Example A ` n nnz b
3.1 ILLC1850 1850 712 8638 ILLC1850 RHS1
3.2 E30R0000 9661 9661 305794 E30R0000 RHS1
3.3 LANDMARK 71952 2704 1146848 rand(71952,1)

3.4 BIG DUAL 30269 30269 89858 A·rand(30269,1)

Table 3.3. Number of matrix vector products with A and AT required to get
‖AT r‖/‖AT r0‖ ≤ 10−12 using different values of j in the gap strategy given in
Section 3.2. The table shows two different choices of p (number of shifts) and sets
m = 100 for the examples with the matrix ILLC1850 and m = 200 for the examples
with the matrix E30R0000. Column j = 0 corresponds to no adjustments.

A p j = 0 j = 3 j = 6 j = 9
ILLC1850 20 3825 3647 3630 3657
ILLC1850 30 3750 3689 3681 3679
E30R0000 30 31753 30953 30153 42223
E30R0000 40 34731 30723 31037 31223

E30R0000 RHS1, respectively to show the results for various values j for the gap

strategy outlined in Section 3.2.3. For all of the numerical examples, we set j equal

to 5.

Example 3.1. We let the matrix A and vector b be ILLC1850 and

ILLC1850 RHS1, respectively. This matrix and b vector are from the LSQ group

of the matrix market which consist of LS problems in surveying. The use of the

matrix is to test iterative solvers, and was one of the matrices used by Paige and

Saunders [2] in the testing of the LSQR algorithm. For this example, b /∈ R(A),

and therefore we only show convergence of the quotient ‖AT r‖/‖AT r0‖. irlsqr is

used with parameters m = 100, p = 30, and reorth12 = 1. We set tol = 1 · 10−12.

Figure 6.1 plots ‖AT r‖/‖AT r0‖ vs. the number of matrix-vector products with A

82

and AT .

0 500 1000 1500 2000 2500 3000 3500 4000
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 illc1850

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
IRLSQR(100,30)

Student Version of MATLAB

Figure 3.1. Example 3.1: A = ILLC1850, b = ILLC1850 RHS1. IRLSQR(100,30)
indicates m = 100 and p = 30. LSMR (reorth) and LSQR (reorth) indicate
reorthogonalization is carried out back m vectors. IRLSQR(100,30) converged at
3,693 matrix-vector products.

Example 3.2. The matrix A and vector b are chosen to be E30R0000 and

E30R0000 RHS1, respectively. The matrix and vector b are from the DRICAV

group of matrices from the matrix market collection. The group consists of

matrices used from modeling 2D fluid flow in a driven cavity, and the main

purpose of matrices from this collection is for testing iterative solvers. The matrix

is nonsymmetric and indefinite. Since the matrix A is square and full rank,

b ∈ R(A) and therefore we show convergence of the quotients ‖AT r‖/‖AT r0‖ and

‖r‖/‖r0‖, see Figure 6.2. irlsqr is used with parameters m = 200, p = 30, and

reorth12 = 2. We used two-sided reorthogonalization since the condition number

of this matrix is approximately 3.47 · 1011. We set tol = 1 · 10−12 and accept an

iterate x as a solution to the LS problem if ‖AT r‖/‖AT r0‖ < 1 · 10−12.

83

0 0.5 1 1.5 2 2.5 3 3.5
x 104

10−12

10−10

10−8

10−6

10−4

10−2

100 e30r0000

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
IRLSQR(200,30)

Student Version of MATLAB

0 0.5 1 1.5 2 2.5 3 3.5
x 104

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 e30r0000

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
IRLSQR(200,30)

Student Version of MATLAB
Figure 3.2. Example 3.2: A = E30R0000, b = E30R0000 RHS1. IRLSQR(200,30)
indicates m = 200 and p = 30. LSMR (reorth) and LSQR (reorth) indicate
reorthogonalization is carried out back 200 vectors. The top graph shows the
convergence of ‖AT r‖/‖AT r0‖ and the bottom graph shows the convergence of
‖r‖/‖r0‖. IRLSQR(200,30) converged at 30,421 matrix-vector products.

84

Example 3.3. The matrix A is chosen to be LANDMARK of the Pereyra

group from the University of Florida Sparse Matrix Collection. It comes from a LS

problem. The matrix LANDMARK does not have a corresponding b vector, hence

we chose it to be random with the MATLAB command rand(71952,1). The

rank of the matrix A is 2671 and we do not assume b ∈ R(A), therefore we only

show convergence of the quotient ‖AT r‖/‖AT r0‖, see Figure 6.3. irlsqr is used

with parameters m = 250, p = 35, and reorth12 = 1. Setting tol = 1 · 10−10, an

iterate x is accepted as a solution to the LS problem if ‖AT r‖/‖AT r0‖ < 1 · 10−10.

0 0.5 1 1.5 2 2.5 3
x 104

10−12

10−10

10−8

10−6

10−4

10−2

100 landmark

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
IRLSQR(250,35)

Student Version of MATLAB

Figure 3.3. Example 3.3: A = LANDMARK and b = rand(71952,1). IRL-
SQR(250,35) indicates m = 250 and p = 35. LSMR (reorth) and LSQR (reorth)
indicate reorthogonalization is carried out back 250 vectors. The graph shows
the convergence of ‖AT r‖/‖AT r0‖. IRLSQR(250,35) converged at 29,185 matrix-
vector products.

Example 3.4. The matrix A is chosen to be BIG DUAL of the AG-Monien

group from the University of Florida Sparse Matrix Collection. The matrix is

85

from a 2D finite element problem. The matrix BIG DUAL does not have a

corresponding b vector. The rank of the matrix is 30,239 (not full rank), we choose

the vector b to be A·rand(30269,1) so that b ∈ R(A). We plot the quotients

‖AT r‖/‖AT r0‖ and ‖r‖/‖r0‖, see Figure 6.4. irlsqr is used with parameters

m = 300, p = 45, and reorth12 = 1. Setting tol = 1 · 10−14, an iterate x is

accepted as a solution to the LS problem if ‖AT r‖/‖AT r0‖ < 1 · 10−14.

3.7 Conclusion

We have presented a new implicitly restarted LSQR algorithm for the solving

the LS problem. Theoretical results show the restarting to be equivalent to the

augmented LSQR algorithm of [1], however, much simpler to implement. The gap

strategy and ease of implementation of this method make it desirable. Numerical

examples show the method is competitive with pre-existing methods.

List of References

[1] J. Baglama, L. Reichel, and D. Richmond, “An augmented LSQR method,”
Numerical Algorithms, vol. 64, no. 2, pp. 263–293, 2013.

[2] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equa-
tions and sparse least squares,” ACM Transactions on Mathematical Software,
vol. 8, no. 1, pp. 43–71, 1982.

[3] Å. Björck, Numerical methods for least squares problems. Siam, 1996.

[4] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems,” SIAM Journal on scientific
and statistical computing, vol. 7, no. 3, pp. 856–869, 1986.

[5] A. H. Baker, E. R. Jessup, and T. Manteuffel, “A technique for accelerating
the convergence of restarted GMRES,” SIAM Journal on Matrix Analysis and
Applications, vol. 26, no. 4, pp. 962–984, 2005.

[6] I. Zavorin, D. P. O’Leary, and H. Elman, “Complete stagnation of GMRES,”
Linear Algebra and its Applications, vol. 367, pp. 165–183, 2003.

86

0 1 2 3 4 5 6 7
x 104

10−15

10−10

10−5

100 big_dual

matrix−vector products with A and AT

||AT r||
||AT r0 ||

LSQR (reorth)
LSMR (reorth)
IRLSQR(300,45)

Student Version of MATLAB

0 1 2 3 4 5 6 7
x 104

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 big_dual

matrix−vector products with A and AT

||r||
||r0||

LSQR (reorth)
LSMR (reorth)
IRLSQR(300,45)

Student Version of MATLAB

Figure 3.4. Example 3.4: A = BIG DUAL and b = A· rand(30269,1). IRL-
SQR(300,45) indicates m = 300 and p = 45. LSMR (reorth) and LSQR (reorth)
indicate reorthogonalization is carried out back 300 vectors. The top graph shows
the convergence of ‖AT r‖/‖AT r0‖ and the bottom graph shows the convergence of
‖r‖/‖r0‖. IRLSQR(300,45) converged at 62,961 matrix-vector products.

[7] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel, “Adaptively precondi-

87

tioned GMRES algorithms,” SIAM Journal on Scientific Computing, vol. 20,
no. 1, pp. 243–269, 1998.

[8] M. Benzi, “Preconditioning techniques for large linear systems: a survey,”
Journal of Computational Physics, vol. 182, no. 2, pp. 418–477, 2002.

[9] T. Ito and K. Hayami, “Preconditioned GMRES methods for least squares
problems,” NII Technical Report, NII-2004-006E, National Institute of Infor-
matics, Tokyo, Japan, Tech. Rep., 2004.

[10] R. B. Morgan, “A restarted GMRES method augmented with eigenvectors,”
SIAM Journal on Matrix Analysis and Applications, vol. 16, no. 4, pp. 1154–
1171, 1995.

[11] R. B. Morgan, “Implicitly restarted GMRES and Arnoldi methods for non-
symmetric systems of equations,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 21, no. 4, pp. 1112–1135, 2000.

[12] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[13] D. C.-L. Fong and M. Saunders, “LSMR: An iterative algorithm for sparse
least-squares problems,” SIAM Journal on Scientific Computing, vol. 33,
no. 5, pp. 2950–2971, 2011.

[14] J. Baglama and L. Reichel, “Augmented implicitly restarted Lanczos bidiag-
onalization methods,” SIAM Journal on Scientific Computing, vol. 27, no. 1,
pp. 19–42, 2005.

[15] J. Baglama and L. Reichel, “Restarted block Lanczos bidiagonalization meth-
ods,” Numerical Algorithms, vol. 43, no. 3, pp. 251–272, 2006.

[16] Z. Jia and D. Niu, “An implicitly restarted refined bidiagonalization Lanczos
method for computing a partial singular value decomposition,” SIAM journal
on matrix analysis and applications, vol. 25, no. 1, pp. 246–265, 2003.

[17] Z. Jia and D. Niu, “A refined harmonic Lanczos bidiagonalization method and
an implicitly restarted algorithm for computing the smallest singular triplets
of large matrices,” SIAM Journal on Scientific Computing, vol. 32, no. 2, pp.
714–744, 2010.

[18] E. Kokiopoulou, C. Bekas, and E. Gallopoulos, “Computing smallest singular
triplets with implicitly restarted Lanczos bidiagonalization,” Applied numer-
ical mathematics, vol. 49, no. 1, pp. 39–61, 2004.

[19] M. Benzi and M. Tuma, “A robust preconditioner with low memory require-
ments for large sparse least squares problems,” SIAM Journal on Scientific
Computing, vol. 25, no. 2, pp. 499–512, 2003.

88

[20] Å. Björck and J. Yuan, “Preconditioners for least squares problems by LU
factorization,” Electronic Transactions on Numerical Analysis, vol. 8, pp. 26–
35, 1999.

[21] S. Karimi, D. K. Salkuyeh, and F. Toutounian, “A preconditioner for the
LSQR algorithm,” Journal of Applied Mathematics and Informatics, vol. 26,
no. 1-2, pp. 213–222, 2008.

[22] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse
of a matrix,” Journal of the Society for Industrial & Applied Mathematics,
Series B: Numerical Analysis, vol. 2, no. 2, pp. 205–224, 1965.

[23] Å. Björck, E. Grimme, and P. Van Dooren, “An implicit shift bidiagonaliza-
tion algorithm for ill-posed systems,” BIT Numerical Mathematics, vol. 34,
no. 4, pp. 510–534, 1994.

[24] R. M. Larsen, “Lanczos bidiagonalization with partial reorthogonalization,”
DAIMI Report Series, vol. 27, no. 537, 1998.

[25] H. D. Simon and H. Zha, “Low-rank matrix approximation using the Lanc-
zos bidiagonalization process with applications,” SIAM Journal on Scientific
Computing, vol. 21, no. 6, pp. 2257–2274, 2000.

[26] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins
University Press, 2012, vol. 3.

[27] R. B. Morgan, “Computing interior eigenvalues of large matrices,” Linear
Algebra and its Applications, vol. 154, pp. 289–309, 1991.

[28] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, “Approximate solutions
and eigenvalue bounds from Krylov subspaces,” Numerical linear algebra with
applications, vol. 2, no. 2, pp. 115–133, 1995.

[29] B. N. Parlett, The symmetric eigenvalue problem. SIAM, 1980, vol. 7.

[30] R. M. Larsen, “Combining implicit restarts and partial reorthogonalization in
Lanczos bidiagonalization,” Program in Scientific Computing and Computa-
tional Mathematics, Stanford University, 2001.

[31] M. E. Hochstenbach, “Harmonic and refined extraction methods for the sin-
gular value problem, with applications in least squares problems,” BIT Nu-
merical Mathematics, vol. 44, no. 4, pp. 721–754, 2004.

[32] Z. Jia, “Some properties of LSQR for large sparse linear least squares prob-
lems,” Journal of Systems Science and Complexity, vol. 23, no. 4, pp. 815–821,
2010.

89

[33] D. S. Watkins, The matrix eigenvalue problem: GR and Krylov subspace meth-
ods. Siam, 2007.

[34] J. Baglama and L. Reichel, “An implicitly restarted block Lanczos bidiago-
nalization method using Leja shifts,” BIT Numerical Mathematics, vol. 53,
no. 2, pp. 285–310, 2013.

[35] I. S. Duff, R. G. Grimes, and J. G. Lewis, “Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I),” Report RAL-92-086, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon, UK, Tech. Rep., 1992.

[36] G. Stewart, “A Krylov–Schur algorithm for large eigenproblems,” SIAM Jour-
nal on Matrix Analysis and Applications, vol. 23, no. 3, pp. 601–614, 2002.

[37] M. Stoll, “A Krylov–Schur approach to the truncated svd,” Linear Algebra
and its Applications, vol. 436, no. 8, pp. 2795–2806, 2012.

[38] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,”
ACM Transactions on Mathematical Software, vol. 38, no. 1, p. 1, 2011.

[39] R. F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, and J. Dongarra,
“Matrix Market: a web resource for test matrix collections,,” in Quality of
Numerical Software, 1996, pp. 125–137.

90

CHAPTER 4

Conclusions

Results of this dissertation have increased the existing body of knowledge of

algorithms for obtaining fast and accurate solutions to large-scale least-squares

problems. This dissertation puts an emphasis on solvers which provide fast and

accurate solutions to ill-conditioned least-squares problems, which are the most dif-

ficult class of least-squares problems to solve. Furthermore, the solvers proposed

remain effective in providing solutions to well-conditioned least-squares problems.

The augmented LSQR method of Chapter 2 uses initial iterations to compute

harmonic Ritz vector approximations to the singular vectors that are associated

with the smallest singular values. These vectors are used for augmenting the Krylov

subspaces while simultaneously computing improved solutions to the least-squares

problem. Once sufficient harmonic Ritz vector approximations are found, the vec-

tors are kept fixed and a nonrestarted LSQR method can be run on the augmented

Krylov subspaces.

The implicitly restarted LSQR method of Chapter 3 is theoretically equiv-

alent to the augmented LSQR method of Chapter 2, however, much simpler to

implement. Some of the largest harmonic Ritz values are used as implicit shifts

in a restarted Golub-Kahan bidiagonalization to improve the Krylov subspaces.

The gap strategy proposed further improves the convergence rates, and the ease

of implementation of this method make it desirable. Theoretical and computed

results show these methods offer improved convergence rates over existing methods

over a wide variety of test problems.

91

APPENDIX A

Speculative discussion

The augmented LSQR method of Chapter 2 and the implicitly restarted LSQR

method of Chapter 3 may be viewed as a form of preconditioning. The precondi-

tioning, however, is not done in the usual way where a preconditioning matrix is

created and applied to the problem, but instead, as a type of adaptive precondi-

tioning, where the use of augmenting vectors or implicit shifts are applied to the

problem. It was shown in Theorem 3.2 that the methods of Chapter 2 and Chapter

3 are theoretically equivalent, and this appendix provides preliminary results on

the existence of a preconditioner, that when applied in the standard way, produces

comparable results to the augmented and implicitly restarted LSQR methods. This

appendix is organized as follows: Section A.1 reviews how a right preconditioner

can be applied in the context of LSQR, Section A.2 provides the details on the

creation of a candidate preconditioner that is comparable to the methods of Chap-

ter 2 and Chapter 3, and Section A.3 shows the comparison between the Krylov

subspaces generated by a right preconditioned LSQR algorithm using the precon-

ditioner of Section A.2 and the augmented LSQR method of Section 2.2. Notation

from Chapter 2 will be used throughout this appendix.

A.1 Right preconditioned LSQR

Given an LS problem of the form (1.1) and an invertible matrix M ∈ Rn×n,

the right preconditioned LS problem is constructed as

min
x∈Rn

∥∥b− AM−1(Mx)
∥∥ . (A.1)

92

Using the LSQR algorithm to obtain the solution to a right preconditioned LS

problem is straightforward. Choosing an initial guess solution, x0, a starting vector

q1 = b− AM−1Mx0 = b− Ax0 = r0

is computed, and applying Algorithm 2.1 with input matrix AM−1, starting vector

q1 and number of bidiagonal steps m, the matrices Bm+1,m, Pm, and Qm+1 are

output with corresponding GK bidiagonal equations

(
AM−1

)T
Qm+1 = PmB

T
m+1,m + αmpm+1e

T
m+1(

AM−1
)
Pm = Qm+1Bm+1,m.

(A.2)

The matrices Qm and Pm form orthonormal bases for the Krylov subspaces

Km
((
AM−1

) (
AM−1

)T
, q1

)
Km

((
AM−1

)T (
AM−1

)
, p1

)
,

(A.3)

respectively. Using the LSQR formulas to obtain the solution to the right precon-

ditioned LS problem, it follows that Mxm is a linear combination of the columns

of Pm, that is, Mxm = Pmym for ym ∈ Rm. The solution to the original LS

problem, xm, can be easily obtained as xm = M−1Pmym. Therefore, the right

preconditioned LSQR algorithm is obtained by slightly modifying Algorithm 2.2,

in which line 17 is changed to xk+1 := xk +M−1P(1:k+1)y and line 37 is changed to

xj := xj−1 + (φj/pj)M
−1w.

A.2 Creation of a suitable preconditioner

There are many approaches to creating preconditioners that can be applied

to solve LS problems, see Section 2.2 and references therein for examples. The

preconditioners that most closely resemble the results from this dissertation, and

the ones that we use as a basis for our construction, are the ones proposed in [1]

and [2]. In [1], a right preconditioner is created, which when applied to a square

93

matrix A, moves the eigenvalues to improve convergence of the GMRES algorithm

for solving linear systems. Similarly, in [2] a left preconditioner is created from

spectral information gathered by the Arnoldi process in conjunction with restarting

the GMRES algorithm for solving linear systems. The method worked to determine

an invariant subspace of a square matrix A associated with eigenvalues close to

the origin, and move them so that a higher rate of convergence could be achieved.

In generalizing these preconditioners to apply to the LSQR algorithm for solving

LS problems, we choose to apply a right preconditioner in order to guarantee a

nonincreasing residual norm, [1, Proposition 2.1]. We give preliminary results on

generalizing the works of [1] and [2] to create a right preconditoiner for using LSQR

to solve LS problems that is comparable to the other methods of this dissertation.

Assume, similar to Section 2.2, that the SVD of the matrix A is given as

A =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
(A.4)

where the singular values are ordered

0 < σ1 ≤ σ2 ≤ · · · ≤ σn.

Let (U1,Σ1, V1) denote the singular triplets corresponding to the k smallest singular

values. Furthermore, let A be scaled so that σn = 1. Define the matrix

M = V1Σ1V
T
1 + I − V1V

T
1 ,

which has inverse

M−1 = V1Σ
−1
1 V T

1 + I − V1V
T
1 . (A.5)

Applying M−1 as a right preconditioner to the matrix A, and using the facts that

AM−1 = U1V
T
1 + A

(
I − V1V

T
1

)
and V1V

T
1 + V2V

T
2 = I, the SVD of the matrix

AM−1 is obtained as

AM−1 =
[
U1 U2

] [I 0
0 Σ2

] [
V T

1

V T
2

]
. (A.6)

94

From (A.6), it can be seen that the matrix AM−1 has the same left and right

singular vectors as A, however, the k smallest singular values have been moved to

1, i.e.,

σ
(
AM−1

)
= {σk+1, σk+2, . . . , σn, 1, 1, . . . , 1} .

The use of the preconditioner (A.5) effectively improves the condition number of

the problem, that is,

κ
(
AM−1

)
=

σn
σk+1

< κ(A) =
σn
σ1

.

A bound for the residual norms when using right preconditioned LSQR with the

input matrix A and preconditioner M−1 (A.5) can be computed from equation

(2.5), that is, the residual rm = b − Axm associated with the mth iterate, xm,

determined by right preconditioned LSQR with initial approximate solution x0

satisfies

‖rm − r+‖ ≤ 2

(
σn − σk+1

σn + σk+1

)m
‖r0 − r+‖. (A.7)

Using the preconditioner (A.5) will significantly reduce the bound on the residual

norm. Similarly, when using the augmented Krylov subspaces from (2.6), where

the Krylov subspaces are augmented with the k singular vectors corresponding to

the smallest singular values, and applying m steps of LSQR, the bound on the

residual norm is given by Theorem 2.1, and satisfies

‖rm − r+‖ ≤ 2

(
σn − σk+1

σn + σk+1

)m
‖r0 − r+‖. (A.8)

From equations (A.7) and (A.8), it is seen that applying m steps of right pre-

conditioned LSQR with the preconditioner (A.5), and applying m steps of LSQR

using the augmented Krylov subspaces of Section 2.2 offer the same improvement

to the upper bound for the residual norm. This, however, does not prove that the

methods are theoretically equivalent, as the actual norm of the residuals may be

95

better than the bounds given in either case. Further inspection of the underlying

Krylov subspaces are needed to draw any conclusions.

A.3 Comparsion of Krylov subspaces

We compare the solution that is computed by LSQR from the Krylov sub-

spaces in (2.6) and (A.3). For simplicity in our comparison, assume x0 = 0 is

the initial guess and q1 = b is the starting vector in each case. Furthermore, we

compare only the solutions that are obtained after a single iteration of LSQR, that

is, we compare the Krylov subspaces obtained by setting m = k − 1 in (2.6) and

m = 1 in (A.3).

We first investigate the solution obtained from the augmented Krylov sub-

spaces of (2.6). Initially, the starting vector q1 is orthogonalized against the k left

singular vectors corresponding to the k smallest singular values, cf. Example 2.1,

that is, set

qaug1 = q1 − (uT1 q1)u1 − · · · − (uTk q1)uk

The vector qaug1 is then normalized. The vector paug1 is then computed,

paug1 = AT qaug1 ,

and also normalized. Using the SVD relations of A we can write

paug1 = AT q1 − (uT1 q1)σ1v1 − · · · − (uTk q1)σkvk.

The solution, xaugm , chosen by LSQR at this point will be a linear combination

of the vectors v1, v2, . . . , vk and paug1 . The following theorem will determine the

weights given in the linear combination.

Theorem A.1. Let A ∈ R`×n have the SVD (A.4) and let xm minimize ‖b−Ax‖

over the augmented Krylov subspace Km
(
ATA, v1, . . . , vk, p

aug
1

)
, then the weight

corresponding to the vector vi in the solution xm with initial guess x0 = 0, is

ci =
uT

i b

σi
.

96

Proof. xm is chosen to minimize ‖rm‖, therefore xm is chosen as close as possible

to the pseudoinverse solution x+, that is, xm is chosen to minimize ‖xm − x+‖.

The pseudoinverse solution, x+, to an LS problem is given by

x+ =
n∑
i=1

uTi b

σi
vi. (A.9)

Since paug1 is made orthogonal to v1, . . . , vk, cf. Example 2.1, it is some linear

combination of the vectors vk+1, . . . , vn. The solution xm can therefore be written

as some linear combination c1v1 + c2v2 + · · · + ckvk + ck+1p
aug
1 . Since the best

possible solution chosen is the one which is closest to x+, that is, in minimizing∥∥∥∥∥
n∑
i=1

uTi b

σi
vi − (c1v1 + c2v2 + · · ·+ ckvk + ck+1p

aug
1)

∥∥∥∥∥
it can be seen that the weights should be chosen to be ci = uib

σi
.

Using theorem A.1, noting that q1 = b, the solution chosen from the aug-

mented space will be

xaugm =
uT1 q1
σ1

v1 + · · ·+ uTk q1
σk

vk − ck+1p
aug
1

where ck+1 ∈ R.

We now investigate the solution chosen from the right preconditioned LSQR.

Assuming the same initial solution x0 = 0 is chosen, the starting vector is the same

as when using the augment method, that is, q1 = b. There are no previous vectors

in the Krylov subspace to orthogonalize against, so set

qpre1 = q1

and normalize. The next vector, ppre1 , is created as

ppre1 =
(
AM−1

)T
q1 = M−1AT q1,

97

and normalized. Multiplying, using the SVD relations, and simplifying gives

ppre1 = (uT1 q1)v1 + · · ·+ (uTk q1)vk − p
aug
1 .

Since this is the only vector in the space, the solution Mxprem is a linear combination

of it, that is,

Mxprem = c1
(
(uT1 q1)v1 + · · ·+ (uTk q1)vk + paug1

)
for c1 ∈ R. The solution, xprem , is obtained by multiplying both sides of the previous

equation by M−1. Using the SVD properties and simplifying we obtain

xprem = c1

(
uT1 q1
σ1

v1 + · · ·+ uTk q1
σk

vk + paug1

)
.

In comparing the two solutions, although similar, the augmentation case has a

higher degree of freedom than the right preconditioned case. We conclude that

augmenting the Krylov subspaces gives way to a more accurate solution and is

superior than applying this preconditioner. This appendix is only a preliminary

report, further comparisons or tweaking of the proposed preconditioned are re-

quired to make any final conclusions between the methods.

List of References

[1] J. Erhel, K. Burrage, and B. Pohl, “Restarted GMRES preconditioned by
deflation,” Journal of computational and applied mathematics, vol. 69, no. 2,
pp. 303–318, 1996.

[2] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel, “Adaptively precondi-
tioned GMRES algorithms,” SIAM Journal on Scientific Computing, vol. 20,
no. 1, pp. 243–269, 1998.

98

APPENDIX B

MATLAB code

B.1 MATLAB function alsqr.m

1 function [x,flag,Arrnorm] = alsqr(A,b,x,OPTS)

2 % ALSQR is an augmented LSQR method. The augmenting vectors are

3 % harmonic Ritz vectors computed via a Golub−Kahan bidiagonalization

4 % method. The program then runs LSQR on the augmented spaces.

5 % The ALSQR method solves the least−squares problem:

6 %

7 % min | | b − A*x | |

8 % x

9 %

10 % where A is an (m x n) matrix, b an (m x 1) vector, and x is

11 % an (n x 1) vector. b is not assumed to be in span(Col(A)).

12 % | | . | | always denotes the 2 norm.

13 %

14 %−−−

15 %

16 % INPUT OPTIONS:

17 % −−−−−−−−−−−−−−

18 %

19 % I.) [x,FLAG,Arrnorm] = ALSQR(A,b,x)

20 % The first input argument into ... = alsqr(A,b,x)

21 % can be a numeric matrix A or an M−file 'Afunc'.

22 % If the m x n matrix A is a filename then z = Afunc(x,1)

23 % computes z = A*x and z = Afunc(x,2) computes z = A'*x.

24 % The second input is the vector b and third input is the

25 % vector x, an initial approximation to min | | b − A*x | | ,

26 % typically chosen to be 0.

27 %

99

28 % II.) [x,FLAG,Arrnorm] = ALSQR(A,b,x,OPTS)

29 % OPTS is a structure containing input parameters.

30 % The input parameters can be given in any order. The

31 % structure OPTS may contain some or all of the following

32 % input parameters. The string for the input parameters

33 % can contain upper or lower case characters.

34 % alsqr(A,b,x) without the structure OPTS will use all of

35 % the default values for OPTS.

36 %

37 %

38 % INPUT PARAMETER DESCRIPTION

39 %

40 % OPTS.ADJUST Number of vectors to add to the k augmenting

41 % vectors.

42 % DEFAULT VALUE: OPTS.ADJUST = 40

43 %

44 % OPTS.HTOL Tolerance used for convergence of harmonic Ritz

45 % vector approximations to the k smallest singular

46 % triplets in part I. Convergence is determined as

47 % sqrt(| | A'*U − V*S | |ˆ2 + | | A*V − U*S | |ˆ2)

48 % <= HTOL* | |A | |

49 % where V is an orthonormal n x k matrix of

50 % "right" singular vectors, U is an orthonormal

51 % m x k matrix of "left" singular vectors, and S

52 % is a k x k diagonal matrix of singular values.

53 % DEFAULT VALUE: HTOL = 1d−3

54 %

55 % OPTS.K Number of harmonic Ritz vectors to augment the

56 % Krylov subspace with. Setting K = 0 will call

57 % the nonrestarted LSQR method only.

58 % DEFAULT VALUE: K = 20

59 %

100

60 % OPTS.LTOL Tolerance used for stopping rule

61 % | | A'*r | | <= LTOL* | |A'*r 0 | |

62 % DEFAULT VALUE: LTOL = 1d−6

63 %

64 % OPTS.MAXITP Maximum number of iterations in part I.

65 % DEFAULT VALUE: MAXITP = 1000

66 %

67 % OPTS.MAXITL Maximum number of iterations of nonrestarted

68 % LSQR, part II.

69 % DEFAULT VALUE: MAXITL = min(m,n)

70 %

71 % OPTS.M B Size of the GK bidiagonal matrix. The

72 % program may increase M B to ensure certain

73 % requirements are satisfied. A warning message

74 % will be displayed if M B is increased.

75 % DEFAULT VALUE: M B = 120

76 %

77 % OPTS.M REORTH Number of vectors to reorthogonalize back

78 % against in part II, nonrestarted LSQR stage.

79 % Set M REORTH to MAXITL performs

80 % reorthogonalization of all vectors computed.

81 % Does not apply in part I. M REORTH must be set

82 % to be >= M B.

83 % DEFAULT VALUE: M REORTH = M B

84 %

85 % OPTS.REORTH012 Part I restarted LSQR stage: Full

86 % reorthogonalization (one or two sided) is

87 % always performed on the M B vectors during

88 % the restarted stage. Part II

89 % nonrestarted LSQR stage: Either no, one−sided

90 % or two−sided reorthogonalization is performed.

91 % REORTH012 = 0 One−sided reorthogonalization

101

92 % restarted stage (Part I)

93 % and no reorthogonalization for

94 % nonrestarted LSQR stage (Part II).

95 % REORTH012 = 1 One−sided reorthogonalization

96 % restarted stage (Part I)

97 % and one−sided reorthogonalization

98 % for nonrestarted LSQR

99 % stage (Part II).

100 % REORTH012 = 2 Two−sided reorthogonalization

101 % restarted stage (Part I)

102 % and two−sided reorthogonalization

103 % for nonrestarted LSQR stage

104 % (Part II).

105 % REORTH012 = 3 Two−sided reorthogonalization

106 % restarted stage (Part I)

107 % and one−sided reorthogonalization

108 % for nonrestarted LSQR stage

109 % (Part II).

110 % DEFAULT VALUE: REORTH012 = 0

111 %

112 %−−−

113 %

114 % OUTPUT OPTIONS:

115 % −−−−−−−−−−−−−−−

116 %

117 % I.) x = ALSQR(A,b,x,OPTS)

118 % x − An approximate solution of min | | b − A*x | | .

119 %

120 % II.) [x,FLAG,Arrnorm] = ALSQR(A,b,x,OPTS)

121 % x − An approximate solution of min | | b − A*x | | .

122 %

123 % FLAG − Four dimensional array

102

124 % (r = b−A*x and r 0 = b−A*x 0 where x is the current

125 % approximation to min | | b − A*x | | and x 0 is the

126 % initial approximation on input):

127 % FLAG(1) = 1 Stopping rule is satisfied:

128 % | | A'*r | | <= LTOL* | |A'*r 0 | |

129 % = 0 Stopping rule is not satisfied.

130 %

131 % FLAG(2) = The approximate condition number, cond(A),

132 % of the matrix A.

133 %

134 % FLAG(3) = Number of iterations of part I restarted

135 % LSQR.

136 %

137 % FLAG(4) = Number of iterations of part II

138 % nonrestarted LSQR.

139 %

140 % Arrnorm − Three dimensional array such that

141 % Arrnorm(j,1) = | | A'*r | | / | | A'r 0 | |

142 %

143 % Arrnorm(j,2) = | | r | | / | | r 0 | |

144 %

145 % Arrnorm(j,3) = total number of matrix−vector

146 % products with A and A' required to

147 % compute the solution x(j).

148 %

149 %−−

150 %

151 % DATE: 4/20/12

152 % VER: 1.0

153 %

154 % AUTHORS:

155 % James Baglama

103

156 % University of Rhode Island

157 % EMAIL: jbaglama@math.uri.edu

158 %

159 % Lothar Reichel

160 % Kent State University

161 % EMAIL: reichel@math.kent.edu

162 %

163 % Daniel Richmond

164 % University of Rhode Island

165 % EMAIL: dan@math.uri.edu

166 %

167 % REFERENCE:

168 % J. Baglama, L.Reichel, and D. Richmond,

169 % "An augmented LSQR method". Numer. Algorithms, Vol. 64,

170 % Issue 2 (2013), pp. 263−293.

171 %

172 %−−−

173

174 %−−−−−−−−−−−−−−−−−−−−−−−−−−−%

175 % BEGIN: PARSE INPUT VALUES %

176 %−−−−−−−−−−−−−−−−−−−−−−−−−−−%

177

178 % Wrong number of input or output values.

179 if (nargin < 3 | | nargin > 4 | | nargout < 1 ...

180 | | nargout == 2 | | nargout > 3)

181 error('alsqr: Incorrect number of input or output arguments.');

182 end

183

184 % Matrix A can be input as a numeric matrix or as a function handle.

185 if isa(A,'numeric')

186 [m,n] = size(A); Anumeric = true;

187 elseif isa(A,'function handle')

104

188 m = size(b,1); n = size(x,1); Anumeric = false;

189 else

190 error('alsqr: Unknown type for matrix A.');

191 end

192

193 % Set all input options to default values.

194 adjust = 40; k = 20; htol = 1d−3; ltol = 1d−6; maxitp = 1000;

195 maxitl = min(m,n); m b = 120; m reorth = m b; reorth012 = 0;

196

197 % Get user input options from the structure OPTS.

198 if nargin == 4

199 if ˜isa(OPTS,'struct')

200 error('alsqr:OptionsNotStructure',...

201 'Options argument must be a structure.')

202 end

203 names = fieldnames(OPTS);

204 I = strcmpi('ADJUST',names); I=find(I>0);

205 if ˜isempty(I), adjust = OPTS.(names{I}); end

206 I = strcmpi('K',names);I=find(I>0);

207 if ˜isempty(I), k = OPTS.(names{I}); end

208 I = strcmpi('HTOL',names); I=find(I>0);

209 if ˜isempty(I), htol = OPTS.(names{I}); end

210 I = strcmpi('LTOL',names); I=find(I>0);

211 if ˜isempty(I), ltol = OPTS.(names{I}); end

212 I = strcmpi('MAXITP',names); I=find(I>0);

213 if ˜isempty(I), maxitp = OPTS.(names{I}); end

214 I = strcmpi('MAXITL',names); I=find(I>0);

215 if ˜isempty(I), maxitl = OPTS.(names{I}); end

216 I = strcmpi('M B',names); I=find(I>0);

217 if ˜isempty(I), m b = OPTS.(names{I}); m reorth = m b; end

218 I = strcmpi('M REORTH',names); I=find(I>0);

219 if ˜isempty(I), m reorth = OPTS.(names{I}); end

105

220 if m reorth < m b, error('alsqr: Requires m reorth >= m b'); end

221 I = strcmpi('REORTH012',names); I=find(I>0);

222 if ˜isempty(I), reorth012 = OPTS.(names{I}); end

223 end

224

225 %−−−−−−−−−−−−−−−−−−−−−−−−−%

226 % END: PARSE INPUT VALUES %

227 %−−−−−−−−−−−−−−−−−−−−−−−−−%

228

229 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

230 % BEGIN: SET UP INPUT VARIABLES %

231 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

232

233 % Preallocate memory for all large matrices and vectors.

234 % Resizing will cause an increase in cpu time.

235 if m reorth <= m b+1

236 Q = zeros(m,m b+1);

237 P = zeros(n,m b+1);

238 else

239 Q = zeros(m,m reorth); P = zeros(n,m reorth);

240 end

241 w = zeros(n,1); % Storage vector required for LSQR.

242

243 % Initialize the ouput variable Arrnorm.

244 Arrnorm = [ones(maxitp+maxitl,2) zeros(maxitp+maxitl,1)];

245

246 % Compute the initial residual if x is not zero.

247 % Q(:,1) is the starting vector for the routine.

248 % The matrix−vector product computed here is not counted

249 % in Arrnorm.

250 if nnz(x) ˜= 0

251 if Anumeric

106

252 Q(:,1) = b − A*x;

253 else

254 Q(:,1) = b − A(x,1);

255 end

256 else

257 Q(:,1) = b;

258 end

259

260 % Initialize the output value flag.

261 flag = zeros(1,4);

262

263 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

264 % END: SET UP INPUT VARIABLES %

265 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

266

267 %−−%

268 % BEGIN: DESCRIPTION AND INITIALIZATION OF VARIABLES %

269 %−−%

270

271 alpha = []; % alpha {m+1} in the GK bidiagonalization.

272 B = []; % Bidiagonal matrix.

273 hcount = 0; % Count of converged harmonic Ritz vectors.

274 k org = k; % Holds initial value of k.

275 nrcount = 0; % Count for residual norms.

276 resHarm = []; % Residual norms of harmonic Ritz vectors.

277 piter = 1; % Main loop iteration count for part I.

278 f = []; % Initial right hand side.

279 f last = []; % Last element of the right hand side,

280 % used to compute residual.

281 s = []; % Place holder.

282 Smax = −1; % Holds the maximum value of all

283 % computed singular values of B.

107

284 Smin = Inf; % Holds the minimum value of all

285 % computed singular values of B.

286 S B = []; % Singular values of B.

287 U B = []; % Left singular vectors of B.

288 U old = []; % Place holder of left singular vectors of B

289 % for updating harmonic Ritz vectors.

290 U B last = []; % Holds the last column of U B.

291 V B = []; % Right singular vectors of B.

292 Ar0 = norm(A'*Q(:,1)); % For checking stopping criteria.

293 r0 = norm(Q(:,1)); % Value needed in Arrnorm.

294

295 %−−−%

296 % END: DESCRIPTION AND INITIALIZATION OF VARIABLES %

297 %−−−%

298

299 %−−−%

300 % BEGIN: PART I BUILDING SPACES AND UPDATING SOLUTION %

301 %−−−%

302

303 % Increase the number of desired values by ADJUST to help

304 % speed up convergence. If k = 0 then there is no augmenting and

305 % nonrestarted LSQR is called.

306 if k > 0,

307 k = k + adjust;

308 end

309

310 % Initial call to function augbidiaglsqr.

311 % Set k = 0 (no vectors for augmenting). On exit, if orginal k > 0

312 % we will have B an m b+1 x m b, Q an m x m b+1, P an n x m b+1.

313 if k > 0

314 [alpha,Arrnorm,B,flag,f last,nrcount,P,Q,w,x] = ...

315 augbidiaglsqr(A,Anumeric,Arrnorm,B,f,flag,0,...

108

316 ltol,m b,m b,m,n,nrcount,P,Q,reorth012,w,x,Ar0,r0);

317 end

318

319 % Main iteration loop to build up the spaces.

320 while (piter <= maxitp && ˜flag(1) && k > 0)

321

322 % Compute SVD of the rectangular lower bidiagonal matrix B.

323 % MATLAB orders largest to smallest so we must reorder.

324 % S B: m b+1 x m b, U B: m b+1 x m b+1, V B: m b x m b

325 [U B,S B,V B] = svd(B);

326 U B last = U B(:,m b+1); % Hold last column of U B.

327 U B = U B(:,1:m b); % Reset to economy size for reordering.

328 S B = S B(1:m b,:); % Reset to economy size for reordering.

329

330 % Write the columns in reverse order.

331 U B = U B(:,end:−1:1);

332 S B(:) = S B(end:−1:1);

333 V B = V B(:,end:−1:1);

334

335 % Estimate | | A | | and condition number of A using the largest

336 % and smallest singular values over all iterations.

337 Smax = max(Smax,S B(m b,m b)); Smin = min(Smin,S B(1,1));

338 flag(2) = Smax/Smin; % Approximate condition number of A.

339

340 % Holds the old value of U B that is used to compute new B.

341 U old = U B;

342

343 % Compute the harmonic Ritz vectors.

344 s = −U B last(1:m b,1)/(U B last(m b+1,1));

345 U B = U B(1:m b,:)+s*U B(m b+1,:);

346

347 % Compute QR of U B and the residual vector using MATLAB's

109

348 % internal QR function.

349 [U B,˜] = qr([[U B(:,1:k); zeros(1,k)] [−s; 1]],0);

350

351 % Compute the vector f.

352 f = f last*[−s; 1];

353

354 % Update Q, P and f.

355 Q(:,1:k+1) = Q(:,1:m b+1)*U B;

356 P(:,1:k+1) = [P(:,1:m b)*V B(:,1:k) P(:,m b+1)];

357 f = U B'*f;

358

359 % Reset the counter of converged harmonic Ritz vectors.

360 hcount = 0;

361

362 % Check convergence of harmonic Ritz vectors.

363 for j=1:k org

364 if (sqrt((S B(j,j)ˆ2)*(norm(U old(:,j)−U B(:,j)))ˆ2 + ...

365 (norm(B'*U B(:,j)−S B(j,j)*V B(:,j)))ˆ2 + ...

366 (alpha*U B(m b+1,j))ˆ2) < htol*Smax)

367 hcount = hcount + 1;

368 end

369 end

370

371 % Update B and alpha. MALTAB command TRIL is used to ensure

372 % triangular part of B.

373 B = tril([S B(1:k,1:k)*U old(:,1:k)'*U B;...

374 alpha*U B(m b+1,:)]');

375

376 % Break from part I and continue to nonrestarted lsqr part II

377 % if all harmonic Ritz vectors have converged.

378 if (hcount >= k org | | piter >= maxitp), break; end

379

110

380 % Update iteration count.

381 piter = piter + 1;

382 flag(3) = piter;

383

384 % Call the restarted augmented harmonic method to build

385 % the spaces, approximate the solution, and update the

386 % residual norms. On exit we will have B an m b+1 x m b,

387 % Q an m x m b+1, and P an n x m b+1.

388 [alpha,Arrnorm,B,flag,f last,nrcount,...

389 P,Q,w,x] = augbidiaglsqr(A,Anumeric,Arrnorm,B,f,flag,...

390 k,ltol,m b,m b,m,n,nrcount,P,Q,reorth012,w,x,Ar0,r0);

391

392 end

393

394 %−−−%

395 % END: PART I BUILDING SPACES AND UPDATING SOLUTION %

396 %−−−%

397

398 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

399 % BEGIN: PART II NONRESTARTED LSQR %

400 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

401

402 % Set the number of iterations of nonrestarted LSQR to zero.

403 flag(4) = 0;

404

405 % Reset reorth to be one−sided for nonrestarted LSQR.

406 if reorth012 == 3, reorth012 = 1; end

407

408 % Call the nonrestarted lsqr part of function augbidiaglsqr.

409 if ˜flag(1)

410 [alpha,Arrnorm,B,flag,f last,nrcount,...

411 P,Q,w,x] = augbidiaglsqr(A,Anumeric,Arrnorm,B,f,flag,...

111

412 k,ltol,maxitl,m reorth,m,n,nrcount,P,Q,reorth012,...

413 w,x,Ar0,r0);

414 end

415

416 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

417 % END: PART II NONRESTARTED LSQR %

418 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

419

420 %−−−−−−−−−−−−−−−−−−−−−−−−−%

421 % FUNCTION: AUGBIDIAGLSQR %

422 %−−−−−−−−−−−−−−−−−−−−−−−−−%

423

424 function [alpha,Arrnorm,B,flag,f last,nrcount,...

425 P,Q,w,x] = augbidiaglsqr(A,Anumeric,Arrnorm,B,f,...

426 flag,k,ltol,maxitl,m b,m,n,nrcount,P,Q,reorth012,...

427 w,x,Ar0,r0)

428

429 % Function computes the GK Bidiagonalization and updates LSQR

430 % solution and residual. The function also can continue onto

431 % nonrestarted LSQR.

432 %

433 % INPUT:

434 % A − (m x n) matrix

435 % Anumeric − logic variable indicates whether A is a function

436 % call or numeric variable.

437 % Arrnorm − (3 x 1) array contains the | | A'*r | | , | | r | | and #

438 % of matrix−vector products.

439 % B − (k+1 x k) bidiagonal matrix used in the GK

440 % bidiagonalization.

441 % f − (k+1 x 1) vector right hand side used for

442 % least−squares solution.

443 % k − scalar, number of augmenting vectors.

112

444 % ltol − scalar, tolerance used for convergence of LSQR.

445 % maxitl − scalar, maximum number of iteration for LSQR,

446 % set to m b during part I.

447 % m b − scalar, size of the GK bidiagonalization

448 % and the number of reorthogonalization vectors

449 % during the LSQR stage.

450 % m − scalar, number of rows of A.

451 % n − scalar, number of columns of A.

452 % nrcount − scalar, count used for Arrnorm.

453 % P − (n x k+1) orthogonal matrix used in the GK

454 % bidiagonalization.

455 % Q − (m x k+1) orthogonal matrix used in the GK

456 % bidiagonalization.

457 % reorth012 − scalar indicates no, one, or two sided

458 % reorthogonalization of GK vectors.

459 % w − (n x 1) vector used to update solution x in LSQR.

460 % x − (n x 1) vector the LSQR solution.

461 %

462 % OUTPUT:

463 % alpha − scalar, holds the last diagonal element of B.

464 % Arrnorm − (3 x 1) updated array that contains | | A'*r | | ,

465 % | | r | | , and # of matrix−vector products.

466 % B − (m b+1 x m b) bidiagonal matrix used in the

467 % GK bidiagonalization.

468 % flag − (4 x 1) array holds convegence indicators.

469 % f last − scalar, holds the last element of the right side.

470 % vector f that is used for least−squares solution.

471 % nrcount − scalar, count used for Arrnorm.

472 % P − (n x k+1) orthogonal matrix used in the GK

473 % bidiagonalization.

474 % Q − (m x k+1) orthogonal matrix used in the GK

475 % bidiagonalization.

113

476 % reorth012 − scalar, indicates no, one, or two sided

477 % reorthogonalization.

478 % w − (n x 1) vector used to update solution x in LSQR.

479 % x − (n x 1) vector the LSQR solution.

480 %

481 % Updated: 1/31/2012

482 % Authors: James Baglama and Daniel Richmond

483 %

484 % Function is called directly from alsqr.

485 %

486 % First iteration, set all initial values.

487 if k == 0

488 beta = norm(Q(:,1)); f(1,1) = beta; Q(:,1) = Q(:,1)/beta;

489 if Anumeric

490 P(:,1) = (Q(:,1)'*A)';

491 else

492 P(:,1) = A(Q(:,1),2);

493 end

494 alpha = norm(P(:,1)); P(:,1) = P(:,1)/alpha; B(1,1) = alpha;

495 Arrnorm(1,1) = alpha*beta/Ar0;

496 Arrnorm(1,2) = beta/r0;

497 Arrnorm(1,3) = 1;

498 nrcount = 1;

499 end

500

501 % This part assumes entry is of the following form

502 %

503 % A * P(:,1:k) = Q(:,1:k+1)*B(1:k+1,1:k)

504 % A'* Q(:,1:k+1) = P(:,1:k)*B((1:k+1,1:k)'

505 % +alpha {k+1}*P(:,k+1)*e {k+1}'

506 %

507 % No checks are performed here and the code will produce

114

508 % erroneous results if the above equations do not hold on entry.

509 % Note k = 0 on first iteration.

510

511 % Set the B(k+1,k+1). On input when k > 0, B(k+1,k+1) holds

512 % the alpha value.

513 alpha = B(k+1,k+1);

514

515 % Compute A*P(:,k+1) − alpha (k+1)*Q(:,k+1).

516 if Anumeric

517 Q(:,k+2) = A*P(:,k+1) − Q(:,k+1)*alpha;

518 else

519 Q(:,k+2) = A(P(:,k+1),1) − Q(:,k+1)*alpha;

520 end

521

522 % Reorthogonalization of Q vectors.

523 if (reorth012 >= 2 | | (reorth012 <= 1 && m <= n))

524 for i=1:k+1

525 Q(:,k+2) = Q(:,k+2) − Q(:,i)*(Q(:,i)' * Q(:,k+2));

526 end

527 end

528

529 % Set the B(k+2,k+1) entry beta {k+2}.

530 beta = norm(Q(:,k+2));

531 Q(:,k+2) = Q(:,k+2)/beta;

532 B(k+2,k+1) = beta;

533

534 % Compute A'*Q(:,k+2) − beta {k+2}*P(:,k+1).

535 if Anumeric

536 P(:,k+2) = (Q(:,k+2)'*A)' − P(:,k+1)*beta;

537 else

538 P(:,k+2) = A(Q(:,k+2),2) − P(:,k+1)*beta;

539 end

115

540

541 % Reorthogonalization of P.

542 if ((reorth012 >= 2) | | (reorth012 <= 1 && m > n))

543 for i=1:k+1

544 P(:,k+2) = P(:,k+2) − P(:,i)*(P(:,i)'*P(:,k+2));

545 end

546 end

547

548 % Set the B(k+2,k+2) entry alpha {k+2}.

549 alpha = norm(P(:,k+2));

550 B(k+2,k+2) = alpha;

551 P(:,k+2) = P(:,k+2)/alpha;

552

553 % We now have the following relationship

554 %

555 % A *P(:,1:k+1) = Q(:,1:k+2)*B(1:k+2,1:k+1)

556 % A'*Q(:,1:k+2) = P(:,1:k+1)*B((1:k+2,1:k+1)'

557 % +alpha {k+2}*P(:,k+2)*e {k+2}'

558 %

559 % Right hand side vector f is given from the previous iteration

560 % and is comuputed in the main loop. Notice that

561 % f is in the range of Q(:,1:k+1) and Q(:,k+2)'f = 0.

562 % We need the right hand side to be k+2 x 1 vector.

563 f(k+2,1) = 0; f last=0;

564

565 % Use MATLAB's internal QR. This gives +− values on the diagonal.

566 [Q B,R B] = qr(B(1:k+2,1:k+1));

567

568 % Setup of transition values for LSQR.

569 rho bar = alpha*Q B(k+2,k+2);

570 theta = alpha*Q B(k+2,k+1);

571

116

572 % Replace f(1:k+2,1) with Q'*f.

573 f = Q B'*f;

574

575 phi bar = f(k+2,1); % Intermediate right hand side value.

576

577 % Compute the solution y of | | f(k+2,1) − B(k+2,k+1)*y | | .

578 y = R B(1:k+1,1:k+1)\f(1:k+1);

579

580 % Update the LSQR solution vector.

581 x = x + P(:,1:k+1)*y;

582

583 % Check the stopping criteria and update Arrnorm

584 nrcount = nrcount + 1;

585 Arrnorm(nrcount,1) = abs(alpha*beta*y(k+1))/Ar0;

586 Arrnorm(nrcount,2) = abs(phi bar)/r0;

587 Arrnorm(nrcount,3) = Arrnorm(nrcount−1,3) + 2;

588 if Arrnorm(nrcount,1) <= ltol

589 flag(1) = 1;

590 Arrnorm = Arrnorm(1:nrcount,1:3);

591 return;

592 end

593

594 % Update w vector

595 w = P(:,k+2) − P(:,1:k+1)*(y/f(k+1,1)*theta);

596

597 % Set up the last vectors to hold the current iteration value

598 % for running the LSQR iteration.

599 P(:,m b+1) = P(:,k+2); Q(:,m b+1) = Q(:,k+2);

600

601 for i = k+2:maxitl

602

603 % Set the next alpha value to the diagonal value B(i,i).

117

604 if i <= m b

605 B(i,i) = alpha;

606 end

607

608 % Compute A*p − alpha*q.

609 if Anumeric

610 Q(:,m b+1) = A*P(:,m b+1) − alpha*Q(:,m b+1);

611 else

612 Q(:,m b+1) = A(P(:,m b+1),1) − alpha*Q(:,m b+1);

613 end

614

615 % Reorthogonalization of Q vectors.

616 if i <= m b

617 if (reorth012 >= 2 | | (reorth012 <= 1 && m <= n))

618 for j=1:i

619 Q(:,m b+1) = Q(:,m b+1) − ...

620 (Q(:,j)'*Q(:,m b+1))*Q(:,j);

621 end

622 elseif(reorth012 >= 2 | | (reorth012 == 1 && m <= n))

623 for j=1:min(i,m b)

624 Q(:,m b+1) = Q(:,m b+1) − ...

625 (Q(:,j)'*Q(:,m b+1))*Q(:,j);

626 end

627 end

628 end

629

630 % Computes beta {i} of the B matrix

631 beta = norm(Q(:,m b+1)); Q(:,m b+1) = Q(:,m b+1)/beta;

632

633 % Set the beta value to B(i+1,i).

634 if i <= m b, B(i+1,i) = beta; end

635

118

636 % Compute A'*q − beta*p.

637 if Anumeric

638 P(:,m b+1) = (Q(:,m b+1)'*A)' − beta*P(:,m b+1);

639 else

640 P(:,m b+1) = A(Q(:,m b+1),2) − beta*P(:,m b+1);

641 end

642

643 % Reorthogonalization of P vectors.

644 if i <= m b

645 if (reorth012 >= 2 | | (reorth012 <= 1 && m > n))

646 for j=1:i

647 P(:,m b+1) = P(:,m b+1) − ...

648 (P(:,j)'*P(:,m b+1))*P(:,j);

649 end

650 elseif(reorth012 >= 2 | | (reorth012 == 1 && m > n))

651 for j=1:min(i,m b)

652 P(:,m b+1) = P(:,m b+1) − ...

653 (P(:,j)'*P(:,m b+1))*P(:,j);

654 end

655 end

656 end

657

658 % Computes alpha {i} of the B matrix

659 alpha = norm(P(:,m b+1));

660 P(:,m b+1) = P(:,m b+1)/alpha;

661

662 % Store only Q(:,1:m b) and P(:,1:m b)

663 % and the matrix B(1:m b+1,1:m b).

664 % Storage of the Q and P vectors is overwritten.

665 % and reorthogonalization occcurs with all k harmonic Ritz

666 % vectors and the last generated m b vectors.

667 if i < m b

119

668 Q(:,i+1) = Q(:,m b+1); P(:,i+1) = P(:,m b+1);

669 elseif m b ˜= maxitl

670 Q(:,mod(i,m b)+1) = Q(:,m b+1);

671 P(:,mod(i,m b)+1) = P(:,m b+1);

672 end

673

674 % Start LSQR solution procedure.

675 rho = pythag(rho bar,beta); c1 = rho bar/rho; s1 = beta/rho;

676

677 % Transform B from lower bidiagonal to upper bidiagonal

678 % matrix R. Super diagonal element in R is theta {i} and

679 % is computed from applying Givens to B. The diagonal value

680 % of R is rho {i} and is given above as two norm

681 % of [rho bar,beta].

682 theta = s1*alpha;

683

684 % Updating the last diagonal element of R.

685 rho bar = −c1*alpha;

686

687 % Updating elements in f (two elements up).

688 phi = c1*phi bar;

689 phi bar = s1*phi bar;

690 f last = −c1*phi bar;

691

692 % Update the solution and work vector.

693 x = x + (phi/rho)*w; w = P(:,m b+1) − (theta/rho)*w;

694

695 % Check the stopping criteria and update Arrnorm.

696 nrcount = nrcount + 1; flag(4) = i;

697 Arrnorm(nrcount,1) = abs(phi bar*rho bar)/Ar0;

698 Arrnorm(nrcount,2) = abs(phi bar)/r0;

699 Arrnorm(nrcount,3) = Arrnorm(nrcount−1,3) + 2;

120

700 if Arrnorm(nrcount,1) <= ltol

701 flag(1) = 1;

702 Arrnorm = Arrnorm(1:nrcount,1:3);

703 return;

704 end

705 end

706

707 %−−−−−−−−−−−−−−−−−−−%

708 % END AUGBIDIAGLSQR %

709 %−−−−−−−−−−−−−−−−−−−%

710

711 %−−−−−−−−−−−−−−−−−−%

712 % FUNCTION: PYTHAG %

713 %−−−−−−−−−−−−−−−−−−%

714

715 function x = pythag(y,z)

716 % PYTHAG Computes sqrt(yˆ2 + zˆ2).

717 %

718 % x = pythag(y,z)

719 %

720 % Returns sqrt(yˆ2 + zˆ2) but is careful to scale to avoid overflow.

721

722 % Christian H. Bischof, Argonne National Laboratory, 03/31/89.

723

724 [m n] = size(y);

725 if m>1 | | n>1

726 y = y(:); z=z(:);

727 rmax = max(abs([y';z']))';

728 id=find(rmax==0);

729 if length(id)>0

730 rmax(id) = 1;

731 x = rmax.*sqrt((y./rmax).ˆ2 + (z./rmax).ˆ2);

121

732 x(id)=0;

733 else

734 x = rmax.*sqrt((y./rmax).ˆ2 + (z./rmax).ˆ2);

735 end

736 x = reshape(x,m,n);

737 else

738 rmax = max(abs([y;z]));

739 if (rmax==0)

740 x = 0;

741 else

742 x = rmax*sqrt((y/rmax)ˆ2 + (z/rmax)ˆ2);

743 end

744 end

B.2 Demo MATLAB script for using alsqr.m

1 % This script is easily modified to run alsqr.m for any matrix A

2 % and vector b from the matrix market collection or Univ. of

3 % Florida Collection. MATLAB function mmread.m is used here.

4 % It will plot the residual curves | | A'r | | / | | A'r 0 | |

5 % and | | r | | / | | r 0 | | against the number of matrix−vector products

6 % on separate figures.

7

8 clear all; close all;

9

10 % Choose matrix and vector b.

11 A = mmread('illc1850.mtx');

12 b = mmread('illc1850 rhs1.mtx');

13

14 % Set the options for alsqr.

15 OPTS.ADJUST = 40;

16 OPTS.K = 20;

17 OPTS.m b = 100;

122

18 OPTS.M REORTH = OPTS.m b;

19 OPTS.REORTH012 = 1;

20 OPTS.LTOL = 1e−12;

21 OPTS.MAXITL = 5000;

22 OPTS.MAXITP = 1000;

23 OPTS.HTOL = 5e−2;

24

25 [x,FLAG,Arrnorm] = alsqr(A,b,zeros(size(A,2),1),OPTS);

26 semilogy(Arrnorm(:,3),Arrnorm(:,1), 'k'); hold on

27

28 title('illc1850');

29 xlabel('matrix−vector products with A and AˆT')

30 ylabel('$\frac { | | AˆTr | | } { | | AˆTr 0 | | } $','interpreter','latex')

31 set(get(gca,'YLabel'),'Rotation',0.0)

32 h legend = legend('ALSQR (100,20)');

33 set(h legend,'FontSize',10);

34

35 % Plot | | r m | | / | | r 0 | | .

36 figure

37

38 semilogy(Arrnorm(:,3),Arrnorm(:,2), 'k'); hold on

39

40 title('illc1850');

41 xlabel('matrix−vector products with A and AˆT')

42 ylabel('$\frac { | | r | | } { | | r 0 | | } $','interpreter','latex')

43 set(get(gca,'YLabel'),'Rotation',0.0)

44 h legend = legend('ALSQR (100,20)');

45 set(h legend,'FontSize',10);

B.3 MATLAB function irlsqr.m

1 function [x,Arrnorm] = irlsqr(A,b,x,OPTS)

2 % IRLSQR is an implictly restarted LSQR method. The solution

123

3 % is computed via an implictly restarted Golub−Kahan (GK)

4 % bidiagonalization method with harmonic Ritz values as shifts.

5 % IRLSQR solves the least−squares problem:

6 %

7 % min | | b − A*x | |

8 % x

9 %

10 % where A is an (m x n) matrix, b an (m x 1) vector, and

11 % x is an (n x 1) vector. b is not assumed to be in span(Col(A)).

12 % | | . | | always denotes the 2 norm.

13

14 %−−−

15 %

16 % INPUT OPTIONS:

17 % −−−−−−−−−−−−−−

18 %

19 % I.) [x,Arrnorm] = IRLSQR(A,b,x)

20 % The first input argument into ... = irlsqr(A,b,x)

21 % is a numeric matrix A. The second input is the vector b

22 % and third input is the vector x, an initial

23 % approximation to min | | b − A*x | | , typically

24 % chosen to be 0.

25 %

26 % [x,Arrnorm] = IRLSQR(A,b,x,OPTS)

27 % OPTS is a structure containing input parameters.

28 % The input parameters can be given in any order.

29 % The structure OPTS may contain some or all of the

30 % following input parameters. The string for the input

31 % parameters can contain upper or lower case characters.

32 % irlsqr(A,b,x) without the structure OPTS will use all

33 % of the default values for OPTS.

34 %

124

35 %

36 % INPUT PARAMETER DESCRIPTION

37 %

38 % OPTS.LTOL Tolerance used for stopping rule.

39 % | | A'*r | | <= LTOL* | |A'*r 0 | |

40 % DEFAULT VALUE: LTOL = 1d−10

41 %

42 % OPTS.MAXITL Maximum number of restarts for IRLSQR.

43 % DEFAULT VALUE: MAXITL = min(m,n).

44 %

45 % OPTS.M B Size of the GK bidiagonal matrix. The program

46 % may increase M B to ensure certain

47 % requirements are satisfied. A warning message

48 % will be displayed if M B is increased.

49 % DEFAULT VALUE: M B = 90

50 %

51 % OPTS.REORTH012 Performs zero, one, or 2−sided

52 % reorthogonalization within the GK vectors.

53 % DEFAULT VALUE: REORTH012 = 1

54 %

55 % OPTS.P Number of shifts to apply.

56 % DEFAULT VALUE: P = 20

57 %

58 % OPTS.GAP VAL apply p +− GAP VAL number of shifts based on

59 % largest gap between harmonic Ritz values.

60 % DEFAULT VALUE: GAP VAL = 0

61 %

62 % OPTS.BIDIAG RED String for returning the matrix B to lower

63 % bidiagonal form after the application of the

64 % shifts. A value of 1 returns B back to

65 % bidiagonal form.

66 % DEFAULT VALUE: BIDIAG RED = 0

125

67 %

68 %−−−

69 %

70 % OUTPUT OPTIONS:

71 % −−−−−−−−−−−−−−−

72 %

73 % I.) x = IRLSQR(A,b,x,OPTS)

74 % Returns only an approximate solution vector

75 % x to min | | b − A*x | | .

76 %

77 % II.) [x,Arrnorm] = IRLSQR(A,b,x,OPTS)

78 % x − An approximate solution of min | | b − A*x | | .

79 %

80 % Arrnorm − Three dimensional array such that

81 % Arrnorm(j,1) = | | A'*(b − A*x j) | | = | | A'*r j | | ,

82 % Arrnorm(j,2) = | | b − A*x j | | = | | r j | | ,

83 % and Arrnorm(j,3) is the total number of

84 % matrix−vector products with A and A' required

85 % to compute the solution x j.

86 %

87 %−−−

88 %

89 % DATE: 10/1/13

90 % VER: 1.0

91 %

92 % AUTHORS:

93 % James Baglama

94 % University of Rhode Island

95 % EMAIL: jbaglama@math.uri.edu

96 %

97 % Daniel Richmond

98 % University of Rhode Island

126

99 % EMAIL: dan@math.uri.edu

100

101 % REFERENCE:

102 % J. Baglama and D. Richmond

103 % "Implictly Restarting the LSQR Algorithm",

104 % Electronic Transaction on Numerical Analysis,

105 % Accepted for publication 2/7/14.

106 %

107 %−−−

108

109 %−−−−−−−−−−−−−−−−−−−−−−−−−−−%

110 % BEGIN: PARSE INPUT VALUES %

111 %−−−−−−−−−−−−−−−−−−−−−−−−−−−%

112

113 % Wrong number of input or output values.

114 if (nargin < 3 | | nargin > 4 | | nargout < 1 | | nargout > 2)

115 error('irlsqr: Incorrect number of input or output arguments');

116 end

117

118 % Matrix A must be input as numeric matrix.

119 if isa(A,'numeric')

120 [m,n] = size(A);

121 else

122 error('irlsqr: Unknown type for matrix A.');

123 end

124

125 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

126 % BEGIN: PARSE INPUT VARIABLES %

127 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

128

129 % Set all input options to default values.

130 ltol = 1d−10; maxitl = min(m,n); m b = 100; reorth012 = 1;

127

131 p = 20; gap val = 0; bidiag red = 0;

132

133 if nargin == 4

134 if ˜isa(OPTS,'struct')

135 error('irlsqr:OptionsNotStructure',...

136 'Options argument must be a structure.')

137 end

138 names = fieldnames(OPTS);

139 I = strcmpi('LTOL',names); I=find(I>0);

140 if ˜isempty(I), ltol = OPTS.(names{I}); end

141 I = strcmpi('MAXITL',names); I=find(I>0);

142 if ˜isempty(I), maxitl = OPTS.(names{I}); end

143 I = strcmpi('M B',names); I=find(I>0);

144 if ˜isempty(I), m b = OPTS.(names{I}); end

145 I = strcmpi('REORTH012',names); I=find(I>0);

146 if ˜isempty(I), reorth012 = OPTS.(names{I}); end

147 I = strcmpi('P',names); I=find(I>0);

148 if ˜isempty(I), p = OPTS.(names{I}); end

149 I = strcmpi('GAP VAL',names); I=find(I>0);

150 if ˜isempty(I), gap val = OPTS.(names{I}); end

151 I = strcmpi('BIDIAG RED',names); I=find(I>0);

152 if ˜isempty(I), bidiag red = OPTS.(names{I}); end

153 end

154

155 %−−%

156 % BEGIN: DESCRIPTION AND INITIALIZATION OF VARIABLES %

157 %−−%

158

159 rlsqr = []; % Residual of LSQR.

160 alpha = []; % alpha {m+1} in the GK

161 % bidiagonalization.

162 B = []; % Bidiagonal matrix from GK

128

163 % bidiagonalization.

164 Pres = []; % Last vector in P space.

165 f = []; % Initial right hand side.

166 S B = []; % Singular values of B.

167 U B = []; % Left singular vectors of B.

168 V B = []; % Right singular vectors of B.

169 gap = []; % Value used in gap strategy.

170 Q(:,1) = b−A*x; % Starting vector.

171 nrcount = 0; % Variable used to keep track of current

172 % iteration.

173 w = []; % Work vector for LSQR solution procedure.

174 f1 = []; % Used in computation of vector rlsqr.

175 qres = 0; % q {m b+1,k+1} element of Q L used in

176 % restart vector.

177 iter = 1; % counter for main iteration loop.

178 flag = 0; % used for when method has converged.

179 ptemp = 0; % holds the number of shifts after gap

180 %strategy.

181 Ar0 = norm(A'*Q(:,1)); % Used in plotting relative residual.

182 r0 = norm(Q(:,1)); % Used in plotting relative residual.

183

184 %−−%

185 % END: DESCRIPTION AND INITIALIZATION OF VARIABLES %

186 %−−%

187

188 %−−−−−−−−−−−−−−−−−−−−%

189 % BEGIN: MAIN METHOD %

190 %−−−−−−−−−−−−−−−−−−−−%

191

192 % Starting iteration, set all initial values.

193 beta = norm(Q(:,1));

194 f1 = zeros(m b+1,1);

129

195 f(1,1) = beta;

196 f1(1,1) = beta;

197 Q(:,1) = Q(:,1)/beta;

198

199 % Compute first vector in second Krylov space

200 P(:,1) = A'*Q(:,1);

201 alpha = norm(P(:,1));

202 P(:,1) = P(:,1)/alpha;

203 B(1,1) = alpha;

204

205 % Compute initial values for Arrnorm

206 Arrnorm(1,1) = alpha*beta/Ar0; % | | A'r | | / | | A'r 0 | | .

207 Arrnorm(1,2) = beta/r0; % | | r | | / | | r 0 | | .

208 Arrnorm(1,3) = 1;

209 nrcount = 1;

210

211 % Initial call to GK bidiagonalization with K=0.

212 [alpha,Q,P,B,nrcount,x,r0,Ar0,...

213 Arrnorm,flag] = gkbd(A,Q,P,B,0,m b,nrcount,...

214 f,x,r0,Ar0,Arrnorm,ltol,flag,reorth012,m,n);

215

216 while (iter <= maxitl && ˜flag)

217

218 % hold last vector in P space before re−sizing.

219 Pres = P(:,m b+1);

220 P = P(:,1:m b);

221

222 % The following GK equations must be satisfied on exit:

223 % A * P(:,1:m b) = Q(:,1:m b+1)*B(1:m b+1,1:m b)

224 % A'* Q(:,1:m b+1) = P(:,1:m b)*B(1:k+1,1:k)'...

225 % +alpha*P(:,m b+1)*flipud(eye(m b+1,1))

226

130

227 % Compute the residual vector from LSQR.

228 [q,˜] = qr(B);

229 phi bar = flipud(eye(m b+1,1))'*q'*f1;

230 rlsqr = Q*phi bar*q*flipud(eye(m b+1,1));

231

232 % Compute SVD of B to get updated U B, S B, and V B matrices.

233 [U B,S B,V B] = svd(B);

234

235 % Implement gap strategy.

236 gap old = 0;

237 ptemp = p;

238 for i = (p−gap val):(p+gap val)

239 gap = abs(S B(i,i)−S B(i+1,i+1));

240 if gap > gap old

241 gap old = gap;

242 p = i; % Update the number of shifts to apply.

243 end

244 end

245 k = m b−p;

246

247 % Apply p harmonic Ritz values as shifts.

248 [Q L,B,Q R] = hbsQR(B,U B,V B,m b,p);

249

250 % Update P, Q, B matrices and truncate.

251 Q = Q*Q L(:,1:k+1);

252 P = P*Q R(:,1:k);

253 B = B(1:k+1,1:k);

254

255 % B may not be a bidiagonal matrix, can use rowwise Householder

256 % to get back bidiagonal structure

257 if bidiag red == 1

258 [B,Q LB,Q RB] = rowHH(B);

131

259 P = P*Q RB;

260 Q = Q*Q LB';

261 qres = Q L(m b+1,k+1)*Q LB(k+1,k+1);

262 else

263 % Hold value of Q L {m b+1,k+1}.

264 qres = Q L(m b+1,k+1);

265 end

266

267 % The following GK equations must be satisfied after

268 % 'p' shifts have been applied

269 % A * P(:,1:k) = Q(:,1:k+1)*B(1:k+1,1:k)

270 % A'* Q(:,1:k+1) = P(:,1:k)*B(1:k+1,1:k)'...

271 % +qres*alpha*P(:,m b+1)*flipud(eye(k+1,1))'

272

273 % Compute restart vector and next element of B matrix.

274 rk = alpha*qres*Pres;

275 rknorm = norm(rk);

276 P = [P(:,1:k) rk/rknorm];

277 B(k+1,k+1) = rknorm;

278

279 % Create f vector needed for restart in solving for LSQR

280 % solution. rlsqr must be in col(Q) to restart correctly.

281 f = Q'*rlsqr;

282

283 % Need to update f1 for computation of rlsqr after restart.

284 f1 = [f; zeros(p,1)];

285

286 p = ptemp; % Reset value of p to pre−gap value.

287

288 % Call GK bidiagonalization to build up space to size m b.

289 [alpha, Q,P,B,nrcount,x,r0,Ar0,...

290 Arrnorm,flag] = gkbd(A,Q,P,B,k,m b,nrcount,...

132

291 f,x,r0,Ar0,Arrnorm,ltol,flag,reorth012,m,n);

292 end

293

294 %−−−−−−−−−−−−−−−−−−%

295 % END: MAIN METHOD %

296 %−−−−−−−−−−−−−−−−−−%

297

298 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

299 % BEGIN: GK BIDIAGONALIZATION / LSQR %

300 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

301 function [alpha,Q,P,B,nrcount,x,r0,Ar0,...

302 Arrnorm,flag] = gkbd(A,Q,P,B,k,m b,nrcount,...

303 f,x,r0,Ar0,Arrnorm,ltol,flag,reorth012,m,n)

304

305 alpha = B(k+1,k+1);

306

307 % Compute next vector in Q.

308 Q(:,k+2) = A*P(:,k+1)− Q(:,k+1)*alpha;

309

310 % Reorthogonalization of Q vectors.

311 if (reorth012 == 2 | | (reorth012 == 1 && m < n))

312 for j=1:k+1

313 Q(:,k+2) = Q(:,k+2) − Q(:,j)*(Q(:,j)' * Q(:,k+2));

314 end

315 end

316

317 % Computes beta {k+2} of the B(k+2,k+1) matrix.

318 beta = norm(Q(:,k+2));

319 Q(:,k+2) = Q(:,k+2)/beta;

320 B(k+2,k+1) = beta;

321

322 % Compute A'*Q(:,k+2) − beta {k+2}*P(:,k+1).

133

323 P(:,k+2) = (Q(:,k+2)'*A)' − P(:,k+1)*beta;

324

325 % Reorthogonalization of P vectors.

326 if (reorth012 == 2 | | (reorth012 == 1 && m >= n))

327 for j=1:k+1

328 P(:,k+2) = P(:,k+2) − P(:,j)*(P(:,j)'*P(:,k+2));

329 end

330 end

331

332 alpha = norm(P(:,k+2));

333

334 % Needed for applying only 1 shift.

335 if k˜=m b−1

336 B(k+2,k+2) = alpha;

337 end

338 P(:,k+2) = P(:,k+2)/alpha;

339

340 % Update vector f.

341 f(k+2,1) = 0;

342

343 % Use MATLAB's internal QR. This gives +− values on the diagonal.

344 [Q B,R B] = qr(B(1:k+2,1:k+1));

345

346 % Set up transition values for LSQR

347 rho bar = alpha*Q B(k+2,k+2);

348 theta = alpha*Q B(k+2,k+1);

349

350 % Solve | | f(k+2,1) − B(k+2,k+1)*y | | .

351 % Replace B(k+2,k+1) with Q(1:k+2,1:k+2)*R(1:k+2,1:k).

352 % Replace f(k+2,1) with Q'*f.

353 f = Q B'*f;

354 phi bar = f(k+2,1);

134

355

356 % Compute the solution y of | | f(k+2,1) − B(k+2,k+1)*y | | .

357 y = R B(1:k+1,1:k+1)\f(1:k+1);

358

359 % Update the solution vector.

360 x = x + P(:,1:k+1)*y;

361

362 % Compute norms of residuals / check stopping criteria.

363 nrcount = nrcount + 1;

364 Arrnorm(nrcount,1) = abs(alpha*beta*y(k+1))/Ar0;

365 Arrnorm(nrcount,2) = abs(phi bar)/r0;

366 Arrnorm(nrcount,3) = Arrnorm(nrcount−1,3) + 2;

367 if Arrnorm(nrcount,1) <= ltol

368 Arrnorm = Arrnorm(1:nrcount,1:3); flag=1;

369 return;

370 end

371

372 % Update w vector.

373 w = P(:,k+2) − P(:,1:k+1)*(y/f(k+1,1)*theta);

374

375 for i = k+2:m b

376 Q(:,i+1) = A*P(:,i) − alpha*Q(:,i);

377

378 % Reorthogonalization of Q vectors.

379 if ((reorth012 == 2) | | (reorth012 == 1 && m < n))

380 for j=1:i

381 Q(:,i+1) = Q(:,i+1) − Q(:,j)*(Q(:,j)' * Q(:,i+1));

382 end

383 end

384

385 % Normalize the q i vector.

386 beta = norm(Q(:,i+1));

135

387 Q(:,i+1) = Q(:,i+1)/beta;

388

389 % Update the B matrix.

390 B(i+1,i) = beta;

391

392 % Continue the bidiagonalization.

393 P(:,i+1) = A'*Q(:,i+1) − beta*P(:,i);

394

395 % Reorthogonalization of P vectors.

396 if ((reorth012 == 2) | | (reorth012 == 1 && m >= n))

397 for j=1:i

398 P(:,i+1) = P(:,i+1) − P(:,j)*(P(:,j)' * P(:,i+1));

399 end

400 end

401

402 % Update the B matrix.

403 alpha = norm(P(:,i+1));

404 P(:,i+1) = P(:,i+1)/alpha;

405 B(i+1,i+1) = alpha;

406 if i==m b

407 B = B(1:i+1,1:i);

408 end

409

410 % Givens values.

411 rho = pythag(rho bar,beta);

412 c1 = rho bar/rho;

413 s1 = beta/rho;

414 theta = s1*alpha;

415 rho bar = −c1*alpha;

416 phi = c1*phi bar;

417 phi bar = s1*phi bar;

418

136

419 % Update the solution.

420 x = x + (phi/rho)*w; w = P(:,i+1) − (theta/rho)*w;

421

422 % Compute norms of residual / check stopping criteria

423 nrcount = nrcount + 1;

424 Arrnorm(nrcount,1) = abs(phi bar*rho bar)/Ar0;

425 Arrnorm(nrcount,2) = abs(phi bar)/r0;

426 Arrnorm(nrcount,3) = Arrnorm(nrcount−1,3) + 2;

427 if Arrnorm(nrcount,1) <= ltol

428 Arrnorm = Arrnorm(1:nrcount,1:3); flag = 1;

429 return;

430 end

431 end

432

433 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

434 % END: GK BIDIAGONALIZATION / LSQR %

435 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

436

437 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

438 % FUNCTION: HARMONIC BIDIAGONAL METHOD %

439 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

440

441 function [Q L, B plus, Q R] = hbsQR(B,U B,V B,m b,p)

442 % This function computes the orthogonal matrices Q L and Q R

443 % such that B plus = Q L'*B*Q R is the matrix obtained after p

444 % implicit shifts have been performed. B plus may no longer be

445 % lower bidiagonal due to numerical error.

446 %

447 % INPUT:

448 % B − m b+1 x m b lower bidiagonal matrix from GK

449 % bidiagonalization.

450 % U B − matrix of left singular vectors of B.

137

451 % V B − matrix of right singular vectors of B.

452 % m b − size of the matrix B.

453 % p − number of shifts to be applied.

454 %

455 % OUTPUT:

456 % Q L − (m b+1) x (m b+1) orthogonal upper Hessenberg

457 % matrix.

458 % B plus − updated B matrix.

459 % Q R − m b x m b orthogonal upper Hessenberg matrix.

460 %

461

462 % Initialize values.

463 sL = m b+1;

464 sR = m b;

465 Q L = zeros(m b+1); Q R = zeros(m b); Is = p:−1:1;

466

467 % Take QR of the p+1 x p principal submatrix of U B' to get

468 % first column of Q L.

469 [Q,˜] = qr(U B(1:p+1,1:p)); Q L(1:p+1,1) = Q(:,p+1);

470

471 % Continue process to get first m b+1−p columns of Q L.

472 for i = 2:sL−p

473 [Q,˜] = qr([Q L(1:i+p,1:i−1) U B(1:i+p,1:p)]);

474 Q L(1:i+p,i) = Q(:,p+i);

475 end

476

477 % Last p columns of Q L are the first p columns of U B.

478 Q L(:,sL−p+1:sL) = U B(:,Is);

479

480 % Take QR of p+1 x p principal submatrix of V B' to get

481 % first column of Q R.

482 [Q,˜] = qr(V B(1:p+1,1:p)); Q R(1:p+1,1) = Q(:,p+1);

138

483

484 % Continue process to get first m b−p columns of Q R.

485 for i = 2:sR−p

486 [Q,˜] = qr([Q R(1:i+p,1:i−1) V B(1:i+p,1:p)]);

487 Q R(1:i+p,i) = Q(:,i+p);

488 end

489

490 % Last p columns of Q R are the first p columns of V B.

491 Q R(:,sR−p+1:sR) = V B(:,Is);

492

493 % Update B.

494 B plus = Q L'*B*Q R;

495

496 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

497 % END HARMONIC BIDIAGONAL METHOD %

498 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

499

500 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

501 % FUNCTION: ROWWISE HOUSEHOLDER %

502 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

503

504 function [B,U,V] = rowHH(A)

505 % This function produces a lower bidiagonal matrix B

506 % such that B = U A V.

507 % Function adapted from David S. Watkins' uphess.m 03/09/2007.

508 %

509 % INPUT:

510 % A − (m b+1) x m b matrix.

511 %

512 % OUTPUT:

513 % B − (m b+1) x m b lower bidiagonal matrix.

514 % U − Orthogonal (m b+1) x (m b+1) matrix.

139

515 % V − Orthogonal m b x m b matrix.

516

517 [m,n] = size(A);

518 B = A; QL=eye(m); QR=eye(n);

519 U=eye(m); V=eye(n);

520 for k = m:−1:3

521 % Obtain Householder reflector to zero out rows of B.

522 % b*G = alpha*e kˆT

523 [v,beta,˜] = reflector(B(k,1:k−1)');

524 QR(1:k−1,1:k−1) = eye(k−1)−beta*(v*v');

525 V = V*QR;

526 B = B*QR;

527

528 % Obtain Householder reflector to zero out columns of B.

529 [v,beta,˜] = reflector(B(1:k−1,k−1));

530 QL(1:k−1,1:k−1) = eye(k−1)−beta*(v*v');

531 U = QL*U;

532 B = QL*B;

533

534 %Reset matrices.

535 QR = eye(n); QL = eye(m);

536 end

537

538 %−−−−−−−−−−−−−−−−−−−−−−−−−%

539 % END ROWWISE HOUSEHOLDER %

540 %−−−−−−−−−−−−−−−−−−−−−−−−−%

541

542 %−−−−−−−−−−−−−−−−−−−−−%

543 % FUNCTION: REFLECTOR %

544 %−−−−−−−−−−−−−−−−−−−−−%

545

546 function [u,beta,alpha] = reflector(x)

140

547 % This function generates a reflector Q = eye − beta*u*u'

548 % such that Q*x = alpha*e n.

549 % David S. Watkins 03/09/2007.

550

551 m = size(x,1);

552

553 % Rescale x so that x 1 is nonnegative and norm(x) = 1.

554 scale = norm(x);

555 if scale == 0

556 u = x; beta = 0; alpha = 0;

557 else

558 x = x/scale;

559 if x(m) ˜= 0

560 phase = x(m)/abs(x(m));

561 x = x*conj(phase); x(m) = real(x(m));

562 else

563 phase = 1;

564 end

565

566 % Build u and beta.

567 u = x; u(m) = u(m) + 1;

568 beta = 1/u(m);

569

570 % Rescale.

571 alpha = −scale*phase;

572 end

573

574 %−−−−−−−−−−−−−−−%

575 % END REFELCTOR %

576 %−−−−−−−−−−−−−−−%

B.4 Demo MATLAB script for using irlsqr.m

141

1 % This script is easily modified to run irlsqr.m for any matrix A

2 % and vector b from the matrix market collection, or Univ. Florida

3 % Collection. It will plot the residual curves | | A'r | | / | | A'r 0 | |

4 % and | | r | | / | | r 0 | | against the number of matrix−vector products

5 % on separate figures.

6

7 clear all; close all

8

9 %Choose matrix A, vector b, and initial guess x.

10 A = mmread('illc1850.mtx');

11 b = mmread('illc1850 rhs1.mtx');

12 x = zeros(size(A,2),1);

13

14 %set the options.

15 OPTS.P = 30;

16 OPTS.M B = 100;

17 OPTS.GAP VAL = 5;

18 OPTS.BIDIAG RED = 0;

19 OPTS.REORTH012 = 1;

20 OPTS.LTOL = 1e−12;

21 OPTS.MAXITL = 1000;

22

23 [x,Arrnorm] = irlsqr(A,b,x,OPTS);

24 semilogy(Arrnorm(:,3),Arrnorm(:,2),'k'); hold on

25

26 title('illc1850');

27 xlabel('matrix−vector products with A and AˆT')

28 ylabel('$\frac { | | r | | } { | | r 0 | | } $','interpreter','latex')

29 set(get(gca,'YLabel'),'Rotation',0.0)

30 h legend = legend('IRLSQR(100,30)');

31 set(h legend, 'FontSize',8);

32

142

33 % Plot | | r | | / | | r 0 | | .

34 figure

35

36 semilogy(Arrnorm(:,3),Arrnorm(:,1),'k'); hold on

37

38 title('illc1850');

39 xlabel('matrix−vector products with A and AˆT')

40 ylabel('$\frac { | | AˆTr | | } { | | AˆTr 0 | | } $','interpreter','latex')

41 set(get(gca,'YLabel'),'Rotation',0.0)

42 h legend = legend('IRLSQR(100,30)');

43 set(h legend,'FontSize',8);

143

BIBLIOGRAPHY

Baglama, J., Calvetti, D., Golub, G. H., and Reichel, L., “Adaptively precondi-
tioned GMRES algorithms,” SIAM Journal on Scientific Computing, vol. 20,
no. 1, pp. 243–269, 1998.

Baglama, J., Reichel, L., and Richmond, D., “An augmented LSQR method,”
Numerical Algorithms, vol. 64, no. 2, pp. 263–293, 2013.

Baglama, J. and Reichel, L., “Augmented implicitly restarted Lanczos bidiagonal-
ization methods,” SIAM Journal on Scientific Computing, vol. 27, no. 1, pp.
19–42, 2005.

Baglama, J. and Reichel, L., “Restarted block Lanczos bidiagonalization methods,”
Numerical Algorithms, vol. 43, no. 3, pp. 251–272, 2006.

Baglama, J. and Reichel, L., “An implicitly restarted block Lanczos bidiagonaliza-
tion method using Leja shifts,” BIT Numerical Mathematics, vol. 53, no. 2,
pp. 285–310, 2013.

Baker, A. H., Jessup, E. R., and Manteuffel, T., “A technique for accelerating the
convergence of restarted GMRES,” SIAM Journal on Matrix Analysis and
Applications, vol. 26, no. 4, pp. 962–984, 2005.

Baruchel, J., Buffiere, J.-Y., and Maire, E., X-ray tomography in material science.
Hermes Science, 2000.

Benzi, M., “Preconditioning techniques for large linear systems: a survey,” Journal
of Computational Physics, vol. 182, no. 2, pp. 418–477, 2002.

Benzi, M. and Tuma, M., “A robust preconditioner with low memory require-
ments for large sparse least squares problems,” SIAM Journal on Scientific
Computing, vol. 25, no. 2, pp. 499–512, 2003.

Björck, Å. and Yuan, J., “Preconditioners for least squares problems by LU fac-
torization,” Electronic Transactions on Numerical Analysis, vol. 8, pp. 26–35,
1999.

Björck, Å., Numerical methods for least squares problems. Siam, 1996.

Björck, Å., Grimme, E., and Van Dooren, P., “An implicit shift bidiagonalization
algorithm for ill-posed systems,” BIT Numerical Mathematics, vol. 34, no. 4,
pp. 510–534, 1994.

144

Boisvert, R. F., Pozo, R., Remington, K. A., Barrett, R. F., and Dongarra, J.,
“Matrix Market: a web resource for test matrix collections,,” in Quality of
Numerical Software, 1996, pp. 125–137.

Choi, S.-C. T., “Iterative methods for singular linear equations and least-squares
problems,” Ph.D. dissertation, Stanford University, 2006.

Davis, T. A. and Hu, Y., “The University of Florida sparse matrix collection,”
ACM Transactions on Mathematical Software, vol. 38, no. 1, p. 1, 2011.

Duff, I. S., Grimes, R. G., and Lewis, J. G., “Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I),” Report RAL-92-086, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon, UK, Tech. Rep., 1992.

Erhel, J., Burrage, K., and Pohl, B., “Restarted GMRES preconditioned by defla-
tion,” Journal of computational and applied mathematics, vol. 69, no. 2, pp.
303–318, 1996.

Fong, D. C.-L. and Saunders, M., “LSMR: An iterative algorithm for sparse least-
squares problems,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp.
2950–2971, 2011.

Golub, G. and Kahan, W., “Calculating the singular values and pseudo-inverse
of a matrix,” Journal of the Society for Industrial & Applied Mathematics,
Series B: Numerical Analysis, vol. 2, no. 2, pp. 205–224, 1965.

Golub, G. H. and Van Loan, C. F., Matrix computations. Johns Hopkins Univer-
sity Press, 2012, vol. 3.

Hayami, K., Yin, J.-F., and Ito, T., “GMRES methods for least squares problems,”
SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 5, pp. 2400–
2430, 2010.

Hochstenbach, M. E., “Harmonic and refined extraction methods for the singular
value problem, with applications in least squares problems,” BIT Numerical
Mathematics, vol. 44, no. 4, pp. 721–754, 2004.

Ito, T. and Hayami, K., “Preconditioned GMRES methods for least squares prob-
lems,” NII Technical Report, NII-2004-006E, National Institute of Informatics,
Tokyo, Japan, Tech. Rep., 2004.

Jia, Z., “Some properties of LSQR for large sparse linear least squares problems,”
Journal of Systems Science and Complexity, vol. 23, no. 4, pp. 815–821, 2010.

Jia, Z. and Niu, D., “An implicitly restarted refined bidiagonalization Lanczos
method for computing a partial singular value decomposition,” SIAM journal
on matrix analysis and applications, vol. 25, no. 1, pp. 246–265, 2003.

145

Jia, Z. and Niu, D., “A refined harmonic Lanczos bidiagonalization method and
an implicitly restarted algorithm for computing the smallest singular triplets
of large matrices,” SIAM Journal on Scientific Computing, vol. 32, no. 2, pp.
714–744, 2010.

Karimi, S., Salkuyeh, D. K., and Toutounian, F., “A preconditioner for the LSQR
algorithm,” Journal of Applied Mathematics and Informatics, vol. 26, no. 1-2,
pp. 213–222, 2008.

Kokiopoulou, E., Bekas, C., and Gallopoulos, E., “Computing smallest singular
triplets with implicitly restarted Lanczos bidiagonalization,” Applied numer-
ical mathematics, vol. 49, no. 1, pp. 39–61, 2004.

Larsen, R. M., “Lanczos bidiagonalization with partial reorthogonalization,”
DAIMI Report Series, vol. 27, no. 537, 1998.

Larsen, R. M., “Combining implicit restarts and partial reorthogonalization in
Lanczos bidiagonalization,” Program in Scientific Computing and Computa-
tional Mathematics, Stanford University, 2001.

Maire, E., Fazekas, A., Salvo, L., Dendievel, R., Youssef, S., Cloetens, P., and
Letang, J. M., “X-ray tomography applied to the characterization of cellular
materials. Related finite element modeling problems,” Composites Science and
Technology, vol. 63, no. 16, pp. 2431–2443, 2003.

MATLAB, version R2011a. Natick, Massachusetts: The MathWorks Inc., 2011.

Morgan, R. B., “Computing interior eigenvalues of large matrices,” Linear Algebra
and its Applications, vol. 154, pp. 289–309, 1991.

Morgan, R. B., “A restarted GMRES method augmented with eigenvectors,” SIAM
Journal on Matrix Analysis and Applications, vol. 16, no. 4, pp. 1154–1171,
1995.

Morgan, R. B., “Implicitly restarted GMRES and Arnoldi methods for nonsymmet-
ric systems of equations,” SIAM Journal on Matrix Analysis and Applications,
vol. 21, no. 4, pp. 1112–1135, 2000.

Morgan, R. B., “GMRES with deflated restarting,” SIAM Journal on Scientific
Computing, vol. 24, no. 1, pp. 20–37, 2002.

Paige, C. C., Parlett, B. N., and van der Vorst, H. A., “Approximate solutions
and eigenvalue bounds from Krylov subspaces,” Numerical linear algebra with
applications, vol. 2, no. 2, pp. 115–133, 1995.

Paige, C. C., “Bidiagonalization of matrices and solution of linear equations,”
SIAM Journal on Numerical Analysis, vol. 11, no. 1, pp. 197–209, 1974.

146

Paige, C. C. and Saunders, M. A., “LSQR: An algorithm for sparse linear equa-
tions and sparse least squares,” ACM Transactions on Mathematical Software,
vol. 8, no. 1, pp. 43–71, 1982.

Parlett, B. N., The symmetric eigenvalue problem. SIAM, 1980, vol. 7.

Reichel, L. and Ye, Q., “A generalized LSQR algorithm,” Numerical Linear Algebra
with Applications, vol. 15, no. 7, pp. 643–660, 2008.

Saad, Y. and Schultz, M. H., “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM Journal on scientific and
statistical computing, vol. 7, no. 3, pp. 856–869, 1986.

Saad, Y., Iterative methods for sparse linear systems. SIAM, 2003.

Simon, H. D. and Zha, H., “Low-rank matrix approximation using the Lanczos bidi-
agonalization process with applications,” SIAM Journal on Scientific Com-
puting, vol. 21, no. 6, pp. 2257–2274, 2000.

Stewart, G., “A Krylov–Schur algorithm for large eigenproblems,” SIAM Journal
on Matrix Analysis and Applications, vol. 23, no. 3, pp. 601–614, 2002.

Stoll, M., “A Krylov–Schur approach to the truncated svd,” Linear Algebra and
its Applications, vol. 436, no. 8, pp. 2795–2806, 2012.

Watkins, D. S., The matrix eigenvalue problem: GR and Krylov subspace methods.
Siam, 2007.

Zavorin, I., O’Leary, D. P., and Elman, H., “Complete stagnation of GMRES,”
Linear Algebra and its Applications, vol. 367, pp. 165–183, 2003.

Zilkoski, D. B., Richards, J. H., and Young, G. M., “Special report: Results of the
general adjustment of the North American vertical datum of 1988,” Surveying
and Land Information Systems, vol. 52, no. 3, pp. 133–149, 1992.

147

	IMPLICITLY RESTARTED KRYLOV SUBSPACE METHODS FOR LARGE-SCALE LEAST-SQUARES PROBLEMS
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introductory remarks
	Statement of the problem
	Motivation
	Dissertation structure
	List of References

	An augmented LSQR method
	Introduction
	Convergence of LSQR using augmented Krylov subspaces
	A restarted augmented GK bidiagonalization method
	A restarted LSQR method
	An augmented LSQR algorithm
	Rank-deficient LS problems
	Numerical examples
	Conclusion
	List of References

	Implicitly restarting the LSQR algorithm
	Introduction
	Implicitly restarted Golub-Kahan bidiagonalization
	Implicit restart formulas for the GK bidiagonalization
	Implicit restart with harmonic Ritz values as shifts
	Adaptive shift strategy

	Implicitly restarted LSQR
	Harmonic bidiagonal method
	Connection to augmented LSQR
	Numerical examples
	Conclusion
	List of References

	Conclusions
	Speculative discussion
	Right preconditioned LSQR
	Creation of a suitable preconditioner
	Comparsion of Krylov subspaces
	List of References

	MATLAB code
	MATLAB function alsqr.m
	Demo MATLAB script for using alsqr.m
	MATLAB function irlsqr.m
	Demo MATLAB script for using irlsqr.m

	BIBLIOGRAPHY

