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ABSTRACT 

Protein-tyrosine kinases (PTKs) play essential roles in the cell signaling pathways 

of eukaryotes. However, since their discovery, PTKs have also been linked to cancer 

and it is now known that many of these enzymes actively promote oncogenic cell 

signal transduction in unregulated forms. Therefore, there has been a concerted 

effort on the part of researchers to identify the PTKs that potentiate such pathways, 

characterize their regulatory properties, and develop strategies to selectively disrupt 

these key elements of oncogenic signaling. Following this strategy, work described in 

this dissertation first focuses on the characterization of a relatively unstudied PTK, 

known as SRMS, which may be linked to cancer. To accomplish this, a novel strategy 

was developed to purify active SRMS, which can also be used to purify other PTKs for 

in vitro biochemical studies.  Additionally, the purified SRMS was shown to activate 

upon autophosphorylation of the activation loop tyrosine, representing the first 

known regulatory mechanism of SRMS. The second focus of this dissertation was to 

develop a novel strategy for the design of selective PTK inhibitors. Using dasatinib, an 

established small-molecule inhibitor, a series of carboxyester-linked derivatives were 

synthesized and evaluated against a panel of PTKs. The biochemical data obtained 

presents a library of compounds with modified specificity toward individual PTKs. 

Thus, this strategy represents a break-through in the development of new, more 

selective PTK inhibitors for use as medicinal drug lead compounds. 
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INTRODUCTION 

 

Protein kinases and signal transduction 

In the last century, scientific inquiry into the biochemical and molecular 

mechanisms of carcinogenesis has led to many great advances in modern medicine’s 

treatment of cancer and has profoundly enhanced our knowledge and understanding 

of life at the cellular level. The application of the scientific method to tumor biology 

was in its infancy at the beginning of the twentieth-century, a time when very little 

was known about cancer’s causes and effective treatment strategies were not 

available. However, in 1911, the Rous Sarcoma Virus (RSV) was discovered to induce 

tumor formation in chickens by Peyton Rous.
1
 Combined with the elucidation of the 

genetic code, Rous provided oncology researchers with a system to investigate the 

basic components and genetic elements of signal transduction and cellular 

transformation via kinases. Rous was recognized for this seminal achievement with 

the 1968 Nobel Prize in medicine.  

 

Kinases as oncogenes 

In the middle of the last century, oncologists began questioning the infection, 

or vector-driven, model of carcinogenesis and a new model began to emerge. It was 

postulated that the onset and progression of cancer might be controlled through the 

transformation of proto-oncogenes to oncogenes. Proto-oncogenes are genes that 

have the capacity to promote cancer development through their encoded proteins 
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and enzymes when they are activated by over-expression or mutation.
2
 The precise 

mechanisms by which proto-oncogenes develop into oncogenes remains somewhat 

controversial to this day, but almost certainly involves the accumulation of harmful 

genetic mutations due to chance and environmental stressors.
3
 Following a decade of 

research into oncogenes, the first oncogene was discovered within the RSV genome.  

This oncogene was found to be v-src, a viral version of a normal cellular gene 

of vertebrates, called c-src.
4,5

 This proto-oncogene is now known to be present in 

virtually all metazoan organisms and plays an essential role in cell signaling. Soon 

after its discovery, the protein product encoded by the src gene was found to belong 

to a group of enzymes called protein kinases, capable of adding a phosphate group 

onto the amino acid residues of cellular protein. Furthermore, Src represented a new 

form of kinase, distinct in its ability to phosphorylate tyrosine side-chains of its 

substrates, rather than serine or threonine.
6
  

The isolation of the first oncogene was a long-awaited and significant 

milestone in its own right. However, the origins and nature of this particular 

oncogene, v-src, spawned an entire new field of research focused on understanding 

the role of tyrosine phosphorylation in tumor progression and normal cell physiology. 

The 1989 Nobel Prize in Medicine was awarded to Bishop and Varmus for their work 

revealing v-src’s cellular origins. The discovery of protein-tyrosine kinases (PTKs) like 

Src allowed Tony Hunter and numerous other pioneers in this new field, to discover 

dozens of other oncogenes and proto-oncogenes.
7
 Today, many of the known 
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oncogenes are kinases of some type and many others are directly influenced or 

closely associated with kinase phosphorylation networks. 

 

Functional significance of kinases 

Approaching the turn of the century, the basic mechanisms governing 

reversible protein phosphorylation by serine/threonine kinases (STKs) had also been 

uncovered. Work that began in the 1950’s by Edmond Fischer and Edwin Krebs, who 

won the 1992 Nobel Prize for their contributions, was joined by new STK and PTK 

research that revealed the nature of protein kinases as major regulators of cellular 

signaling by way of protein phosphorylation in eukaryotes. Upon completion of the 

Human Genome Project, 473 human kinases had been discovered, largely through 

sequencing analysis.
8
  Protein phosphorylation by these enzymes mediates signal 

transduction and intracellular communication that controls cellular processes 

including growth, development, division, replication, transcription, differentiation, 

metabolism, apoptosis, homeostasis, motility, and structural rearrangements.
9,10

 

Despite layers of redundancy and a system of fail-safes, disruption of these pathways 

is known to occur, frequently driven by oncogenic kinases, which can result in cancer 

and a host of other diseases.
11

  

Due to their central role in governing both normal and pathological states, 

protein kinases have long been considered primary targets for developing novel 

therapeutic drugs, particularly PTKs like Src.
2,11,12

 Great advances have been made by 

targeting some of the unique functional roles and structural features that distinguish 
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PTKs from other off-target proteins and enzymes, leading to improved drug 

specificity and reduced side-effects.
13

 Further advances in developing targeted 

therapeutics will likely rely more heavily on an enhanced understanding of the 

differences and commonalities that exist between individual protein kinases.  
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Protein-tyrosine kinases (PTKs) 

All protein kinases phosphorylate proteins on a select group of amino acid 

side-chains: serine, threonine, or tyrosine. Each of these amino acids possesses a 

hydroxyl group that serves as the basis for attachment of the γ-phosphate from ATP. 

Although other amino acids are known to be modified by kinases, serine, threonine, 

and tyrosine phosphorylation are by far the most common and best understood.
14

  

Phosphorylation is a post-translational modification, meaning that it occurs 

after the protein has been made. As with many other post-translational 

modifications, phosphorylation is a structural modification that often elicits a 

conformational change within the protein. In many instances, dramatic protein 

folding rearrangements can occur in a protein substrate, precipitating major 

functional and regulatory changes. In the classic example of glycogen phosphorylase, 

phosphorylation results in substantial rearrangements which lead to the activation of 

the enzyme.
15

 However, phosphorylation can also have an inhibitory effect on certain 

enzymes like isocitrate dehydrogenase and Src.
16,17

 Other enzymes, such as the 

protein-tyrosine kinase Src, can be regulated by more than one phosphorylation 

event to enable modulation of enzymatic activity via several distinct conformations.
18

  

Importantly, protein phosphorylation is chemically reversible, but stable 

enough under normal physiological conditions to ensure lasting signal fidelity. To 

turn this signal “off”, cells employ another set of enzymes called phosphatases, which 

have phosphoprotein-specific catalytic ability to dephosphorylate select amino acids. 

There are three distinct groups of enzymes that have evolved to counter protein 
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kinase activity in this manner. Phosphatases like PP1, belonging to the protein 

phosphatase Mg
2+

 / Mn
2+

 -dependent (PPM) family, and PP2C, of the phosphoprotein 

phosphatase (PPP) family, are specific to serine/threonine dephosphorylation. 

However, the independently evolved protein-tyrosine phosphatase (PTP) family of 

enzymes (e.g. PTP1B) is responsible for the vast majority of phosphatase activity 

toward phosphotyrosine-containing proteins and peptides.
19

 

In addition to the structure-function effects upon the substrate, 

phosphorylation often serves as a “tag” that can be recognized, or bound, to recruit 

other proteins, enzymes, and substrates of the kinase signaling pathway. To this end, 

many proteins and enzymes, including kinases, have evolved discrete domains that 

specialize in recognition of phosphorylated stretches of peptide sequence. For 

example, the Src Homology 2 (SH2), 14-3-3, and phosphotyrosine-binding (PTB) 

domains are crucial components of signaling, for their specificity toward tyrosine-

phosphorylated peptides.
20

 The ability of these domains to facilitate interaction with 

phosphopeptides has enabled kinases and phosphatases to develop the highly 

elaborate cell signaling networks that are necessary for eukaryotic organisms.
10,21

 

Eukaryotic protein kinases can be broadly grouped into two categories, STKs 

and PTKs, based upon their substrate preferences. Protein-tyrosine kinases differ in 

that they strictly phosphorylate specific tyrosine residues, not serine or threonine. 

Combined with the phosphotyrosine-specific binding domains and protein-tyrosine 

phosphatases, PTKs have evolved independently from STKs to delicately balance the 

kinase signaling networks of all metazoan life.
22,23
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Defining characteristics of PTKs 

PTKs diverged from STKs over half a billion years ago, just prior to the 

evolution of multicellularity in the metazoan lineage.
24

 PTKs represent one of about 

eight uniquely metazoan families of enzymes and likely played a key role in the 

evolution of multicellularity by providing cells with a new signaling mechanism that 

would be less disruptive to the essential STK pathways, already present.
23

 The 

protein substrates of PTKs are frequently targets for modification by STKs and other 

signaling enzymes, too. In this manner, serine/threonine and tyrosine 

phosphorylation networks, collectively known as the kinome, are an integral 

component of a vast network of cell signaling.  

While there are no clear-cut roles or pathways that can be used to 

categorically distinguish the PKs from one another, there are some generalizations 

that can be made from the perceived influence or importance of either on certain 

cellular functions. STKs, like the cyclin-dependent kinases, are often thought of as the 

central regulators of the cell cycle, while PTKs generally appear to exert the most 

control over the development and differentiation of cells in response to stimuli, 

exemplified by the numerous growth factor receptor kinases. PTKs account for less 

than 1% of the total protein phosphorylation of the cell, despite having generally 

higher enzymatic turnover. Thus, PTKs appear to be much more tightly regulated, 

compared to STKs.  

It has been proposed that the aromatic component of phosphotyrosine may 

have provided a better target for the evolution of the large number of 
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phosphospecific intermolecular interactions that are necessary for evolving a tightly 

regulated signal transduction pathway, largely mediated by SH2 domains and 

protein-tyrosine phosphatases (PTPs). Together, PTKs, PTPs, and SH2 domains 

function in concert using a ‘write-read-erase’ system that is both rapid and dynamic. 

Through this context, one can begin to understand the unique nature of PTKs as 

dynamic regulators of cell signaling and as obvious targets of investigation for basic 

and clinical research.
8,9,13

 

Structural and biochemical studies of the kinase domains of these two groups 

support the separate classification of STKs and PTKs.
8,25

 The catalytic loop regions of 

STKs frequently possess a lysine residue, such as the catalytic loop YRDLKPEN 

sequence found in PKA. However, PTKs share an sequence containing arginine (e.g. 

HRDLAARN in IRK, and numerous others) that is highly conserved. This catalytic loop, 

in conjunction with several other residues of the kinase catalytic domain, is largely 

responsible for the differences in amino acid preference observed between STKs and 

PTKs.
26

 Yet, comparisons also reveal a significant level of conservation concerning the 

folding of the kinase domain and the molecular basis of PK catalysis within the active 

site. 

 

Structure and domain architecture of PTKs 

While STKs and PTKs share a great deal of homology, the relative conservation 

of regulatory domains/features of PTKs and the distinct pathways in which they 

operate suggest that PTKs merit investigation as a distinct family of enzymes, 
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independent from STKs. PTK catalytic domains are found to exist in about a hundred 

different human proteins. There are two main classes of protein-tyrosine kinases: 

receptor (trans-membrane) and non-receptor (cytosolic).  

Receptor PTKs (RTKs) possess extracellular and trans-membrane domains, at 

the N-terminus, and at least one catalytic domain that resides within the cytoplasm, 

but in close proximity to the membrane. Currently identified, there are 

approximately 20 distinct families of RTKs. There are several RTKs that are prominent 

figures in cell signaling, including members of the fibroblast, epidermal, vascular 

endothelial, and insulin-like growth factor receptor (FGFR, EGFR, VEGFR, and IGFR) 

families. RTKs are responsible for the recognition and initiation of many different 

types of signaling molecules. Both large and small proteins, as well as several small 

molecules of native and foreign origins have been found to bind the extracellular 

domains of RTKs to initiate signaling cascades. Frequently, binding of the extracellular 

RTK substrate induces dimerization of the receptor which, in turn, promotes 

activation of the kinase by way of trans-phosphorylation. The active kinase will then 

proceed to phosphorylate one or more downstream proteins and enzymes, often 

amplifying the signal.  

Many times, the RTKs will activate other PTKs, including non-receptor PTKs 

(nrPTKs) which do not exclusively associate with the cell membrane. The nrPTKs are 

often referred to as cytosolic, but this label fails to convey the dynamic localization 

patterns of these important enzymes. In fact, nrPTKs are frequently found in transit 
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between various cellular locations and organelles, such as the plasma membrane and 

the nucleus. 

The domain architecture of nrPTKs is fairly variable, but most contain at least 

one Src homology 2 (SH2) domain to facilitate interaction with RTKs and other 

phosphorylated proteins. SH2 domains contain approximately 100 amino acids and 

bind to phosphorylated tyrosine containing peptides. SH2 domains are frequently 

responsible for localization to RTKs and other enzymes that have been activated by 

tyrosine phosphorylation. Aside from this prototypical function, SH2 domains also 

can play critical roles in the catalytic regulation of the enzymes to which they are 

tethered. Frequently, the SH2 domains of kinases are found just upstream of the 

catalytic domain. 

Another prototypical nrPTKs domain is the Src homology (SH3) domain, which 

specializes in recognition of proline-rich peptide sequences. SH3 domains are roughly 

60 amino acids long. Like SH2 domains, they can contribute greatly to localization 

and regulation of kinases or other SH3 domain containing proteins. In nrPTKs, the 

SH3 domain is positioned near the N-terminus, just before the SH2 domain. This SH3-

SH2-kinase domain architecture is a common feature to the majority of nrPTKs and is 

exemplified by the Src, Abelson murine leukemia viral oncogene homolog 1 (Abl), C-

terminal Src Kinase (Csk), Fyn related kinase (FRK), and Tec families of protein-

tyrosine kinases. 

In addition to the aforementioned SH3 and SH2 domains, over two dozen 

different types of accessory protein sequences and domains can be found alongside 
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PTK catalytic domains, at either the N- or C-terminal regions of the kinases.  Many of 

these domains are found to contribute to the regulation of the kinase domain, by 

way of intramolecular and intermolecular interactions. Such interactions modulate 

the kinase activity by stabilizing or destabilizing the active and inactive conformations 

of the catalytic domain. Furthermore, accessory protein domains frequently 

determine or influence sub-cellular localization and recruitment of PTK substrates 

through direct and indirect molecular complexes. 
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Figure 1. The Conserved SH3-SH2-Kinase Domain Architecture of nrPTKs 
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Figure 2. Non-receptor protein-tyrosine kinases 
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Model kinases of interest 

The large number and diversity of PTKs, including non-receptor PTKs, presents 

a daunting challenge to researchers attempting to understand the signaling dynamics 

of cells. In order to narrow the focus of research, PTKs have been subdivided and 

grouped according to their structural similarities. Besides possessing a high degree of 

sequence homology, there is a clear pattern of conservation regarding accessory 

domains and other known regulatory features within each of these families. The 

observed characteristics of a single, model kinase can be used to infer similar 

functionality to other related enzymes that share the necessary structural 

components.  

In this manner, implicit models can be created to help piece together a view 

of the larger signaling dynamic of the cell and provide the insight necessary for future 

investigation and further refinement of our understanding. The Src, Abl, Csk, FRK, 

and Tec enzymes often serve as model kinases, representing their respective family 

member nrPTKs. Studying the structural and functional differences between these 

kinases has proven to be instrumental in understanding how nrPTKs help to govern 

cell signaling. 

 Src was the first PTK discovered and, therefore, rapidly became one of the 

best studied enzymes. Src and other Src family kinases (SFKs) are best known as 

major components to many growth factor signaling pathways, often directly 

interacting with growth factor receptors. Through various receptors, SFKs help to 

regulate growth, differentiation, migration, survival, and numerous other processes 
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in tissues throughout the body. Abnormally elevated SFK activity levels are closely 

associated with oncogenesis in humans, particularly in certain types of colon cancers, 

melanoma, leukemia, and lymphoma.  

Similarly, Abl family kinases (AFKs) are best known for their potential to cause 

cancer. Philadelphia chromosome positive ALL and CML is a direct result of oncogenic 

Abl. However, like Src and other proto-oncogenic PTKs, Abl also contributes to 

normal cell signaling pathways such as growth, survival, and the DNA-damage 

response.
27

 Abl family kinases are most notably distinct from SFKs due to their N-

terminal Tec homology (TH) domain and Pleckstrin homology (PH) domain and large 

C-terminal region which contain numerous accessory domains governing kinase 

localization and function. Within the C-terminal region, Abl contains three nuclear 

localization signals and a nuclear export signal, which is suggestive of the tight, highly 

dynamic regulation of this PTK.
27

 

Aside from their roles in malignancy, PTKs can also play major parts in tumor 

suppression. Csk and its relatives are known tumor suppressors. These PTKs 

phosphorylate other kinases, particularly the SFKs, rendering them inactive. In fact, 

the Csk family of enzymes appears to have evolved almost exclusively to negatively 

regulate SFKs, keeping their signals in check and preventing oncogenic signaling. 

Inactivation of SFKs by Csk is perhaps the best understood mechanism of nrPTK 

regulation. Study of this interaction has greatly enhanced understanding of PTK 

substrate specificity. 
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After the SFKs, the Tec family of kinases (TFKs) is the largest group of nrPTKs. 

Expressed primarily in hematopoietic cells, such as T cells, TFKs play vital roles in the 

signaling of the immune response and lymphocyte development. This kinase family 

appears uniquely regulated and contains various N-terminal domains such as proline-

rich regions, TH domain, and/or PH domains. Operating downstream of antigen 

receptors, Tec family kinases often become activated through SFK-mediated tyrosine 

phosphorylation.
28

 Aside from normal cellular function, the role of these kinases in 

human disease is much less clear at this time. 

The last of the nrPTK groupings is the FRK family kinases (FFKs). Little is known 

about these kinases, which have only recently been revealed to be distinct from SFKs. 

While there does appear to be some overlapping substrate specificity with SFKs, 

several novel interactions have also been reported. Importantly, FFKs appear to 

possess the capacity to operate as both tumor suppressors and oncogenes, 

depending on the cellular context.
29

 However, the mechanisms by which FFKs 

maintain such a dynamic is currently unknown. The FFKs are discussed in further 

detail later in this review.  

PTKs share a common mechanism of catalysis, yet each of these nrPTK 

families has evolved to perform unique functions within the cellular environment. 

Many kinases are co-expressed within a given cell and yet each achieves very 

different patterns of phosphorylation. This can only be possible if the regulation of 

their enzymatic capabilities is finely tuned to suit the evolved genetic program. How 

each of these related kinase families co-evolved to maintain such a dynamic is not 
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completely understood. Therefore, much research has focused on identifying the 

unknown features that are responsible for each kinase’s unique activity profile.  
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PTK enzyme catalysis 

In order to understand the differences between PTKs, it is essential to identify 

commonalities that may exist. Structural and biochemical studies of many kinases 

have revealed a great deal about the essential catalytic ability of these enzymes. By 

comparing the relative catalytic abilities and structural differences between kinase 

families, several key components of PTK regulation are now well understood. 

PTK catalytic domains consist of two distinct lobes, hinged together to form 

the catalytic cleft.
30

 Most of the N-terminal residues of the catalytic domain form the 

ATP-binding lobe, while many of the C-terminal residues are contained within the 

lobe commonly referred to as the substrate binding lobe.
30

 Each of these sub-

domains is a misnomer, however, since both domains play crucial roles in binding 

ATP and other substrates of the kinase. In the active conformation(s), the PTK must 

simultaneously bind both of its substrates, peptide and ATP, within the active site.
31

  

As ATP and the tyrosine containing peptide each bind, ATP hydrolysis and 

transfer of the γ-phosphate occur independent of an intermediate step. Catalysis is 

greatly enhanced in the presence of normal physiological concentrations of several 

divalent metal cations, frequently Mn
2+

 or Mg
2+

, which can bind dynamically to the 

catalytic cleft of the enzyme.
32

 While PTKs accomplish substrate phosphorylation 

with a wide range of efficiency, their catalytic mechanisms are virtually identical. This 

is reflected quite clearly by the high degree of conservation observed within multiple 

sequence alignments of the PTK catalytic domains (Figure 3), particularly within the 

active site. 
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The specific amino acids that surround the tyrosine residue of the substrate 

are known to have dramatic effects on overall catalytic efficiency. However, there is 

no clear pattern of preference that is shared between all PTKs, with regard to the 

specific sequence of amino acids adjacent to the target tyrosine of known substrates. 

This means that a small tyrosine containing peptide that is a great substrate for one 

PTK will not necessarily be phosphorylated by a different PTK, even if both enzymes 

are determined to be equally active toward a common substrate. For example, Src 

and Csk are both able to phosphorylate the generic substrate PolyE4Y quite well, yet 

Csk is unable to phosphorylate known Src substrates such as Cortactin. Likewise, Src 

shows no significant activity toward its own C-terminal tail tyrosine, a known 

substrate for Csk.
33

 

In addition to the variability of efficiency stemming from local sequence 

preferences, enhanced catalytic efficiency can also be achieved through more distally 

located interactions. In such cases, the local sequence appears to play only a minor or 

secondary role as other, more remote docking sites facilitate interaction, or substrate 

recognition. One such case is the docking interaction of Src to Csk. In order for Csk to 

phosphorylate the C-terminal tail tyrosine, to inactivate the enzyme, a stretch of 

amino acids from Csk’s substrate binding lobe, RSRGRS, is an essential part of the 

recognition of Src. This region, well outside the catalytic cleft, is necessary to achieve 

phosphorylation and inactivation of Src via Csk.
33
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Figure 3. Sequence alignment of selected model nrPTKs. 
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SRMS 

As more is uncovered about each kinase, our model of the elaborate network of 

PTK signaling within the cell is improved. When researchers began focusing more 

closely upon the distinct members of the Src family kinases, it became apparent that 

several of these kinases were relative outliers in terms of their genetic, structural, 

and functional differences. These outliers were re-classified into a new family of 

nrPTKs and the true nature of these enzymes continues to be a focus of research, at 

present. The human members of the FRK family of non-receptor PTKs (FFKs) initially 

appeared to share identical accessory domain architecture with SFKs. However, 

closer inspection has revealed many elements that are crucial to the functional 

regulation of SFKs appear to be absent or markedly distinct within the FFKs. 

 

FRK family kinases 

FRK, also known as RAK, has been found in human liver, kidney, mammary, 

and epithelial tissues and appears to play roles in cell growth, differentiation, 

apoptosis, and proliferation.
29

 Like all FFKs, FRK does not appear to localize to the cell 

membrane in the same manner as SFKs, due to a lack of a functional N-terminal 

myristoylation domain. However, FRK does contain a functional nuclear localization 

signal within its SH2 domain.
34

 The enzymatic regulation of FRK is thought to 

resemble that of SFKs, due to the presence of conserved tyrosine residues within 

both the activation loop and C-terminal tail regions. 
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Found on chromosome 6 q21-22.3, FRK is reported to be amplified in several 

colon cancers
34

 and many mammary tumors
35

, suggesting its potential as an 

oncogene. In contrast, this region is also frequently deleted in several breast 

cancers
36

 and appears to activate PTEN, a known tumor suppressor.
29

 PTEN has been 

found to be a direct substrate of FRK, and phosphorylation of PTEN by FRK prevents 

PTEN degradation.
37

 PTEN, in turn, inhibits the function of AKT, and therefore, the 

phosphoinositol-3-kinase/AKT growth, proliferation, survival, and metabolism 

pathways.  

Brk is also known to play an inhibitory role in this pathway, through direct 

interaction with AKT.
38

 Brk, sometimes also referred to as PTK6 or PTK70, is the 

second member of the loosely-related FFKs. Brk shares 44% amino acid identity with 

FRK.
29

 For comparison, Src and Abl share 41% identity, despite being grouped into 

different families.
27

 Brk also appears to share the components necessary for Src-like 

regulation. Brk is located on chromosome 20 q13.3-13.4 of humans and has been 

implicated in apoptosis, differentiation, and cell migration.
29

 Primarily expressed in 

differentiating intestine and skin cells, Brk is also amplified in several breast cancers, 

with and without the neighboring HER2 oncogene.
39

  

Thus, like FRK, Brk has been found to both promote and suppress the 

oncogenic potential of specific tissues. Together, this suggests that the FRK family 

kinases are dynamically regulated in a tissue and context-specific manner. FRK and 

Brk appear to share some functional overlap with each other, as demonstrated by 

their common influence on the AKT signaling pathway. However, a great deal is still 
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unknown of these two FFK members. SRMS is the last human PTK member of the FRK 

family, and even less is known of this enzyme. 

SRMS is located approximately 1 kb downstream from Brk, likely arising from 

an ancient duplication event. Additionally, the exon structure of all three human FFKs 

is nearly identical. Despite these similarities, the primary structure of SRMS appears 

to be quite dissimilar in several important ways. Specifically, sequence analysis 

indicates that SRMS lacks a C-terminal tail tyrosine and it is unclear whether its SH3 

domain is functional. Beyond some limited expression data and brief mentions within 

the context of other studies, very little is known about SRMS. 

 

Significance of SRMS 

Within the understudied FRK family of nrPTKs, SRMS is the least well 

characterized. This enzyme was discovered from various tissues of mice in 1994, and 

has since been found to be expressed in rats and humans, as well.
8,40

 Beyond its 

discovery, no published data currently exists to describe the purification, potential 

function, or regulation of this enzyme. However, metadata available from high-

throughput assays of normal and experimental tissue samples supports the 

ubiquitous pattern of expression described in these early reports.  

The wild-type catalytic domain of SRMS has been purified from insect cells 

and is commercially available through several companies. Several reports have 

utilized such sources of SRMS, but due to low intrinsic activity toward the chosen 

substrates, it is unclear whether this form of SRMS is suitable for in depth studies. 
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Without any viable means of generating the necessary constructs for full in vitro 

biochemical study, SRMS has gone virtually unstudied. Yet, each of its most closely 

related kinases have been implicated in major signaling pathways of cancer cells and 

tissues. Additionally, SRMS offers a unique chance to study regulatory mechanisms of 

kinases because it does not appear to contain the key regulatory structural features 

found in many model kinases.  
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Regulation of PTKs 

Although the primary function of PTKs is to propagate cellular signals via 

tyrosine phosphorylation, these enzymes are often substrates, themselves, of 

upstream PTKs. Many tyrosine kinases are known to be regulated by numerous post-

translational modifications, particularly via tyrosine phosphorylation. In fact, 

phosphorylation by other kinases and dephosphorylation by phosphatases appears to 

be a primary regulatory mechanism of PTK activity. In some cases, patterns of 

phosphorylation appear to have a greater impact on overall kinase activity than even 

large-scale changes in expression could produce. Thus, there are a few conserved 

mechanisms of PTK regulation by phosphorylation that must be considered. 

 

Activation of PTKs by autophosphorylation 

Most PTKs contain a flexible peptide loop region within the substrate binding 

lobe that harbors a tyrosine residue. This amino acid, upon phosphorylation, often 

activates the kinase by stabilizing the active conformation. Therefore, this region of 

the catalytic domain has come to be known as the activation loop. Many kinases 

possess the ability to phosphorylate this position in trans fashion, and is referred to 

as autophosphorylation. Many PTKs that are regulated by autophosphorylation, 

including the Src family kinases, have been shown to be activated many fold 

following phosphorylation, with profound cellular consequences.  

Besides Src and its closest relatives, Abl is also capable of 

autophosphorylation within the activation loop, leading to activation in vitro.
41

 Thus, 
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phosphorylation of the activation loop serves as an important molecular marker of 

potential PTK activity for both Src and Abl. Some kinases are unable to 

autophosphorylate their activation loop tyrosine. For example, activation loop 

phosphorylation increases Tec family kinase activity. However, these kinases do not 

appear to self-phosphorylate.
28

 Other PTKs like Csk contain no activation loop 

tyrosine residue at all. Thus, the role that activation loop phosphorylation or 

autophosphorylation has in PTK regulation appears to be a major mechanism of 

regulation that has been differentially conserved by non-receptor PTKs. 

 

Inactivation of PTKs 

Phosphorylation is also known to inactivate kinases. In the classic example, 

the Src family kinases may be phosphorylated at an alternative regulatory position on 

a short, conserved peptide “tail” that contains a tyrosine residue, just following the 

C-terminal portion of the catalytic domain. This C-terminal tail is exclusively 

phosphorylated by Csk.
17

 Upon phosphorylation of the tail tyrosine by Csk, Src 

undergoes a dramatic conformational rearrangement, leading to an inhibited 

conformation. In crystal structures of this inactive form of the kinase, the SH2 

domain of Src is bound to the C-terminal tail phosphotyrosine in what is known as 

the “tail-bite” conformation.
30

  

The phosphorylation of the activation loop and C-terminal tail are two 

opposing mechanisms and are perhaps the two best understood modes of nrPTK 

regulation. Although many PTKs possess an activation loop tyrosine, and therefore 
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the capacity to be regulated by autophosphorylation, relatively few mechanisms of 

inactivation have been confirmed for PTKs beyond the Src family tail-bite 

conformation. However, C-terminal tail phosphorylation may not be required for 

some kinases to achieve similar inhibited forms.   

In the case of Abl, found in PDB entry 1OPK, the auto-inhibited enzyme 

reveals a conformation that is surprisingly similar to Src’s tail-bite form.
42

 Even 

though Abl lacks a C-terminal tail tyrosine, the myristoylation domain of its N-

terminus appears to facilitate the necessary interactions between the SH2 and 

catalytic domains to inhibit the enzyme.
27

  Additional modes of negative regulation 

have been proposed for other families of nrPTKs that lack a conserved C-terminal 

tyrosine, as well. 
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Figure 4. Regulation of Src Family Kinases 
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In vitro characterization of kinases  

Much of what is known today of the function and regulation of kinases has been 

pieced together from the careful analysis of in vitro biochemical data. Purifying 

proteins and enzymes from in vivo tissue samples is frequently possible, but this 

approach is often quite limiting to researchers. Yields obtained from living or cultured 

sources are typically low and mutational analysis is difficult. Therefore, recombinant 

protein expression systems are often favored for obtaining and purifying sufficient 

amounts of active enzyme for use in biochemical assays. However, purification of 

active kinases from recombinant expression and purification strategies has proven 

relatively difficult, historically. 

 

Systems of expression and purification 

PTKs are most commonly expressed within two different hosts for high yield 

production of active, recombinant enzyme: insect cells and E. coli. Insect cells 

generally are able to produce the highest yields, yet growth time and cost are two 

major downsides for many studies. This system is expensive and particularly difficult 

to rapidly generate many different constructs of a single enzyme for mutational 

analysis. E. coli, however, is both rapid and inexpensive.
43

 Moreover, numerous 

advancements have been made toward improving the overall yield of enzyme 

produced from bacterial expression, through optimization of growth media.
44

 Thus, 

heterologous expression of kinases within E. coli is generally a preferred means of 

producing active enzyme for in vitro characterization.
45

 Despite the numerous 
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advantages offered from recombinant expression systems, there are several 

potential pitfalls that may prevent the purification of active kinase from these 

systems.  

 

Major obstacles to expression and purification of PTKs from E. coli 

Prokaryotes, such as E. coli, have not evolved to tolerate high levels of 

tyrosine phosphorylation. Therefore, high level expression of kinases frequently 

becomes toxic to the bacteria and greatly diminishes overall yield and/or reliability of 

the enzyme obtained. In such cases, several strategies have been employed to 

successfully counteract the toxicity of recombinant PTK expression: reducing “leaky” 

expression and co-expression alongside a recombinant protein-tyrosine phosphatase 

(PTP). Many strategies exist to reduce leaky expression and improve inducible 

promoter control,
46

 but many appear insufficient for recombinant expression of 

select PTKs. However, co-expression of PTKs alongside PTPs, such as PTP1b, has 

alleviated toxicity of PTKs in a number of bacterial systems.
45,47,48

 Phosphatase co-

expression systems have been successfully employed to produce important Src and 

Tec family kinases, as well as several receptor PTKs of clinical interest. 

Besides toxicity concerns, proper protein folding and solubility are also 

particularly difficult to achieve with some PTKs expressed in bacterial systems. 

Solving such problems in expression and purification is perhaps the largest, most 

difficult task for kinase researchers, currently. Frequently, PTK folding and solubility 

can be improved by expressing these enzymes as fusion proteins to common affinity 
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chromatography tags, such as glutathione S-transferase (GST) and maltose binding 

protein (MBP).
49

 Also, due to the relatively rare use of certain codons within 

prokaryotes, codon optimization and/or co-expression of genes that elevate levels of 

specific amino-acyl tRNAs have also proven quite effective to improve solubility of 

heterologous proteins.
50

 Several E. coli strains have been developed to circumvent 

rare codon usage and these commercially available expression hosts have proven 

quite successful. 

Despite affinity tag and codon usage optimization, many PTKs remain difficult 

to purify in sufficient quantities due to improper folding and/or poor solubility. To 

address this issue, several E. coli expression systems have been supplemented with 

additional genes to produce various chaperone proteins. These proteins serve to 

guide protein folding and re-folding and are frequently used for expression of PTKs 

and many non-PTK enzymes, as well.
51,52

 The GroES and GroEL proteins that make up 

the GroESL chaperone complex are among the most frequently used in the 

recombinant expression of PTKs.  

GroEL is a member of the Hsp60 family of protein chaperones, found in 

eukaryotic mitochondria and prokaryotes such as E. coli.
51

 GroEL may independently 

aid in the folding and solubility of proteins, but commonly associates with the much 

smaller GroES. GroEL associates independently into a grand molecular cylinder, 

consisting of two heptameric GroEL rings. Seven GroES members also self-assemble 

to form molecular “caps” to the GroEL cylinder, trapping the improperly folded 

protein within, and ATP hydrolysis serves to power protein re-folding by the 
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macromolecular assembly.
53

 A major drawback to GroESL overexpression systems is 

the tendency of GroEL to co-elute with recombinant protein of interest, requiring 

further purification steps.
48,54

 Despite this potential complication, GroESL and other 

chaperones have proven quite successful in obtaining soluble, active kinases. 

Each of these strategies to alleviate toxicity and improve solubility and folding 

of PTKs in recombinant expression systems has proven successful in producing high 

yields of active kinase. Often, several or all of the discussed strategies are employed 

to achieve adequate expression and purification of nrPTKs. Despite all the PTKs 

purified successfully, no universal expression system currently exists. Since 

researching the biochemical nature of a given kinase is frequently plagued by one or 

more of these issues, there remains great interest in optimizing existing strategies 

and developing new methods for the expression and purification of PTKs. 
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PTKs as therapeutic drug targets 

 Inactivation of kinases is an important objective for the treatment of many 

diseases. Under-regulated or overly stimulated kinase activity can lead to disastrous 

consequences for the affected cell, tissue, and the entire body. In the case of many 

cancers, in particular, such kinases cause or drive the cell changes necessary for 

proliferation and metastasis. Therefore, for over two decades, a great deal of interest 

has been paid to the development of safe, effective kinase inhibitors for the 

treatment of various afflictions. However, often times it is unclear which kinases to 

target to achieve effective therapeutic strategies. 

In addition to those previously discovered kinases, the completion of the 

human genome project allowed for the identification and classification of all PTKs 

within the human kinome. Through analysis of the structure and expression, these 

PTKs have been grouped and labeled as members of various families. However, it 

may be important to note that such distinctions are frequently made without the 

proper empirical data to conclusively differentiate the cellular function and/or 

regulation of separate PTK families. Thus, identifying the PTKs that directly influence 

a given pathology can become quite difficult, and the literature is full of evidence 

that is seemingly contradictory, greatly confounding the efforts to choose an 

appropriate PTK target for design of novel therapeutics.  

Another hurdle to the development of kinase inhibitors has been generating 

proper specificity toward the errant kinase, or kinases, in order to refrain from 

damaging normal processes of the target tissues. Within the last ten years, major 
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breakthroughs have enabled the therapeutic targeting of PTKs and, in some cases, 

eliminated the need for highly toxic and non-specific radiation and chemotherapeutic 

treatments. By harnessing the power of small molecule PTK inhibitors, anticancer 

treatments have made significant progress in targeting PTKs that drive cancer. 

 

Small molecule PTK inhibitors 

 In some acute lymphoblastic and chronic myeloid leukemia patients, a specific 

genetic defect called the Philadelphia chromosome (Ph
+
) results in the expression of 

an unregulated form of the PTK, Abl. This errant kinase is actually a fusion protein 

which consists of a truncated form of the BCR protein that replaces portions of the N-

terminal regulatory domain of the Abl kinase (BCR-Abl). Without this region, 

autoinhibition of Abl is greatly impaired, leading to the reprogramming of the cell 

signaling network and, ultimately, leukemia. Thus, BCR-Abl represents one of the 

best, clear-cut examples of a PTK drug target. 

In 2004, Bristol-Myers Squibb announced the discovery of Gleevec, or 

imatinib, as the first small molecule compound to effectively target BCR-Abl and treat 

Ph
+
 patients. Prior to the introduction of imatinib, Ph

+
 patients suffered intolerable 

treatment regiments and incredibly high mortality rates. Imatinib and several other 

drugs with similar mechanisms of action have now been approved for various 

pathologies, greatly enhancing patient outcomes through targeted disruption of 

PTKs. Guided by the successes of imatinib, the investigation of new and improved 

PTK inhibitors has been and continues to be of great interest. 
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Generating PTK specificity 

The structure of imatinib and the other small molecule PTK inhibitors are 

often quite dissimilar, yet each inhibits BCR-Abl by binding to the ATP-binding cleft of 

the kinase. This high affinity interaction disrupts the recruitment of substrate and/or 

reduces catalytic activity. The precise region of the catalytic cleft that each inhibitor 

may occupy is somewhat variable, from compound to compound. However, within 

this small cleft, there are a limited number of residues and/or motifs that may 

significantly contribute toward generating the type of high affinity interaction that a 

PTK inhibitor requires. Because of this, a simple mutation in BCR-Abl can result in 

resistance to multiple inhibitors.
12

  

Additionally, since the active sites of many kinases are generally well 

conserved, it is often difficult to generate novel compounds that exclusively disrupt 

the target kinase. For example, while imatinib can inhibit Abl at sub-micromolar 

concentrations, it has also been demonstrated that similar concentrations can 

disrupt off-target kinases, such as KIT, Lck, and PDGFR.
55,56

 Later generation drugs 

targeting BCR-Abl, such as dasatinib (Sprycel) and nilotinib (Tasigna), also inhibit 

several known off-target kinases. In addition to these kinases, it has been proposed 

that any of the over 2,000 other nucleotide-dependent enzymes that are found in 

humans could be potential targets, due to similarities they share with the active sites 

of PTKs.
12

 Through examination of primary sequence alignments that compare 

various nrPTKs, it is clear that those regions responsible for interacting with most of 

the approved and investigational drugs are among the better conserved portions of 
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kinases. However, there are other regions that show great variation and may provide 

better targets for new drugs aimed to improve the specificity of PTK inhibition. 

 

Drug resistance and toxicity 

 It is widely believed that most patients undergoing treatment with kinase 

inhibitors will eventually develop resistance. Drug resistance arises from several 

possible events that commonly occur during the progression of tumorgenesis, 

because cancerous cells are frequently in a state of constant genetic flux. Deletions, 

amplifications, translocations, and mutations are not only causes of cancer, but also 

drivers of its progression and a means to acquire drug resistance. Many mutations 

have been found in cancer cells that disrupt inhibitor binding. Because of this, second 

generation kinase inhibitors have been developed, such as dasatinib, which are able 

to bind despite many of these common mutations.
57

  

However, even dasatinib, one of the best second generation drugs, fails 

eventually due to the accumulation of certain additional mutations. For example, the 

mutation of amino acids at positions homologous to a threonine in Abl (T315I), KIT 

(T670I), and EGFR (T790M), all confer clinical resistance to imatinib. This residue 

(known as the gatekeeper) is one of a handful of mutations that can destroy the 

effectiveness of dasatinib and all other second-generation kinase inhibitors as well.
56

  

Examination of the crystal structures of kinases, in complex with these 

compounds, reveals that the gatekeeper residue resides in the ATP-binding cleft of 

the kinases and forms a hydrogen bond with each of the inhibitors. Without the 
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gatekeeper-inhibitor interaction, these mutant kinases are much less energetically 

suited to bind the therapeutic compounds and often require concentrations of 

several orders of magnitude greater to achieve inhibition. Often, these dosages prove 

to be toxic to patients and would result in significant side effects or even death. 

The problem of toxicity may seem to exacerbate the issues of resistance; 

however, it is important to note that toxicity can contribute to the development of 

drug resistance, in the first place. Imatinib was originally reported as an inhibitor of 

the Abl kinase domain, but has since been confirmed to target numerous other 

kinases at clinical, and even subclinical, concentrations. No kinase inhibitor has been 

experimentally shown to target a single, clinically relevant kinase without 

simultaneously inhibiting other “off-target” kinases. While kinase inhibitors have 

undoubtedly proven to be a major advancement in the specificity of chemotherapy, 

clinical doses must still be tempered to alleviate the toxic side effects that are 

caused, in part, by the inhibitors’ lack of specificity. With such lower doses, there is a 

greater risk of the cancer progressing and developing resistance before complete 

eradication of the diseased tissues’ cells.
12

 Therefore, there is currently great interest 

in the development of novel compounds with enhanced specificity toward PTKs to 

help alleviate the major problems of toxicity and resistance. 
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Focus of this thesis 

 The experimental data, results, and discussion of work derived from this 

thesis focuses on two distinct projects, yet each are aimed at identifying specific 

elements of PTKs that may serve to regulate the enzymatic activity of these highly 

important and influential enzymes. The first of these projects centers on the hitherto 

understudied kinase, SRMS, and should provide the first major clues to its function 

regulation and role within the kinome. The second project involves several different 

model PTKs and explores the potential to generate improved kinase specificity from a 

novel approach to small molecule PTK inhibitor design. 

 

Investigating SRMS as a unique PTK model 

 Upon its discovery in 1994, the SRMS kinase was erroneously labeled as a Src 

family member PTK. Twenty years later, there are few studies that report any 

empirical data on the enzyme’s attributes or provide any evidence of a cellular 

function. Thus, the work described in this thesis began by developing an affordable, 

adaptable, and reproducible system of expression and purification of the active 

enzyme. The purification techniques developed for the isolation of SRMS are also 

broadly applicable to other PTKs of clinical interest, representing a significant 

technical achievement. Specifically, the developed methods described provide a 

novel way to remove a common contaminant (GroEL), thereby improving purification 

of PTK samples. Based upon this work, the project was then able to reveal the first 
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major regulatory mechanism known to govern this enzyme’s activity and highlight 

several other potential avenues for further investigation of this understudied PTK. 

 

Developing novel PTK inhibitors   

The second aim of this thesis explores a novel strategy for augmenting 

existing small molecule inhibitors with a small library of select compounds. The goal 

of this strategy is to extend the binding pocket of the inhibitors, in hopes of reaching 

highly variable regions outside of the conserved ATP-binding cleft, thereby 

generating enhanced specificity. The synthesis strategy that was employed in this 

study was based on work performed by several other groups. In their studies, existing 

inhibitors were used for the attachment of chemical adducts that were presumed to 

protrude from the ATP-binding pocket. While the compounds derived by these 

groups were used for affinity capture purposes, the focus of the current study was to 

ascertain the feasibility of adapting this method to drug discovery, using the high 

affinity inhibitor dasatinib as a model. 
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Abstract:   

Although recombinant expression in bacterial cells offers a convenient and 

rapid way for producing proteins and enzymes for biochemical and structural 

characterization, the expression and purification of each kinase often presents its 

own challenges. Protein-tyrosine kinase SRMS belongs to the Brk family of kinases. 

The other members of this kinase family, FRK and Brk, have been shown to regulate 

cell proliferation and survival, and are associated with cancer development. Yet, 

biochemically, this family has not been extensively characterized. Here we report a 

procedure for the bacterial expression and purification of SRMS. To overcome the 

toxicity of SRMS expression, the kinase is co-expressed with the catalytic domain of 

protein-tyrosine phosphatase 1B (PTP1B). To help overexpressed SRMS fold into the 

active enzyme, GroES and GroEL chaperones were also co-expressed. However, 

GroEL binds tightly to SRMS, resulting in extensive GroEL contamination in purified 

SRMS. The tight binding between SRMS and GroEL is disrupted by a novel washing 

procedure that includes KCl, ATP-Mg complex, and casein. The purified enzyme is 

activated by extensive autophosphorylation in the activation loop, and treatment 

with a protein tyrosine phosphatase, or mutation of the activation loop Tyr, results in 

the inactivation of SRMS. Several purified enzyme constructs and mutant forms of 

this kinase were kinetically characterized, yielding regulatory insight. 

Keywords: protein-tyrosine kinase SRMS; GroEL; chaperone; casein; dasatinib; 

autophosphorylation  
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Introduction: 

SRMS, short for Src-related kinase lacking C-terminal regulatory tyrosine and 

N-terminal myristoylation sites, was originally identified in mice and rats as a novel 

protein-tyrosine kinase (PTK).[1, 2] Alternatively known as Srm or PTK70, the gene 

encoding this kinase is also present in humans, located on human chromosome 

20q13.3.[3, 4] A double deletion of the mouse SRMS gene showed no readily 

apparent defects.[1] However, this gene is located on a segment of the chromosome 

that is known to be frequently amplified in breast cancers and other pathologies.[5-

8] Analysis of SRMS mRNA transcripts indicates a ubiquitous expression profile that is 

especially strong in the skin, as well as regions of the brain, liver, lungs, testes, and 

gastrointestinal tract.[1, 2]  

SRMS and its closest homologs, Brk and Frk, are the only members of the Brk 

family in humans and other mammals. This group was formerly considered part of 

the Src Family Kinases (SFKs), on account of their protein sequence homology and 

common domain architecture. However, conserved exon/intron organization 

supports their distinction from SFKs as a related, but unique, family of kinases.[6] The 

functional and biochemical nature of SFKs has been extensively characterized for 

their importance in cancer biology. Like the SFKs, the oncogenic potential of Brk and 

Frk has been clearly established.[6, 9] However, this role has yet to be reconciled 

with evidence suggesting that each of these two BFK members can operate as a 

tumor suppressor in certain contexts.[10, 11] Through ongoing functional and 

biochemical studies of Brk and Frk, our understanding of this unique kinase family 
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continues to evolve. Yet, how SRMS, the remaining BFK member, relates to Brk and 

Frk is unknown. Since its discovery, no published studies have focused on SRMS, 

despite its broad expression profile and implicit association with oncogenesis. 

SFKs are regulated by two main mechanisms: autophosphorylation of the 

activation loop on Y416 and C-terminal tail phosphorylation on Y527 (using chicken 

Src numbering). SFKs become activated by Y416 autophosphorylation and inhibited 

by Y527 phosphorylation. These opposing regulatory features work in concert to 

achieve proper kinase activity.[12] SRMS and the rest of the Brk family possess an 

activation loop Tyr (Y395 of SRMS) but the surrounding sequence varies significantly 

amongst each BFK member and bears little resemblance to SFKs. Moreover, BFKs lack 

significant features that are required for tail Tyr phosphorylation in SFKs and SRMS 

does not possess a C-terminal tail Tyr at all. Given these apparent differences with 

SFKs, it is unclear how either of these known regulatory mechanisms contributes to 

activity in BFKs, especially SRMS. 

We sought to express and purify SRMS for biochemical characterization. 

Recombinant expression in E. coli is often convenient for the in vitro analysis of PTKs 

because it is rapid and relatively inexpensive; but it is not without its challenges. In 

the expression and purification of SRMS, we circumvented problems of toxicity and 

solubility by co-expressing a protein-tyrosine phosphatase and GroES/GroEL 

chaperone proteins, respectively. Tight binding between SRMS and GroEL was 

dissolved by new washing procedures with ATP-Mg complex and casein. To validate 

this system, we generated various wild-type and mutant kinase constructs for in vitro 
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assays. The biochemical data obtained from this initial characterization of SRMS 

demonstrates that this kinase is activated by autophosphorylation, providing insight 

into the regulation of this poorly understood protein-tyrosine kinase family. Thus, 

this system offers a convenient and reliable means to derive active SRMS that is 

suitable for biochemical studies of regulation and is likely adaptable to many other 

protein-tyrosine kinases. Furthermore, the unique washing procedure presented 

provides a useful tool for the removal of co-purifying GroEL, a common obstacle to 

the purification of a wide variety of proteins. 
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Table 1. 
Components of the bacterial expression system for SRMS purification.

a

 
Plasmid Product Resistance Function 

pGEX4T1-SRMS
b

 GST-SRMS fusion 

protein 
ampicillin Target kinase with an 

affinity-tag 

pCDF-MBP-PTP1B MBP-PTP1B fusion 

protein 
streptomycin PTP 1B to reduce toxicity 

of heterologous PTKs 

pREP4-GroESL GroES and GroEL kanamycin Chaperones to increase 

solubility of target kinase 

pRIL argU, ileY, and leuW 

tRNAs 
chloramphenicol Rare tRNAs to enhance 

SRMS translation 
a
 Escherichia coli BL21(DE3) was used as the host strain. 

b
 Full-length (FL), catalytic domain (Cata), and unique domain-deletion (D60) forms of 

SRMS were used. 
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Materials and Methods: 

Reagents and chemicals 

 Consumables and culture media, or media components, were purchased from 

Fisher Scientific. Dasatinib was purchased as free base from LC laboratories, the PY20 

anti-phosphotyrosine antibody was purchased from Santa Cruz. , and 
32

P-labeled ATP 

was from Perkin-Elmer. All other chemical reagents were purchased from Sigma-

Aldrich. 

 

Molecular cloning and recombinant expression of SRMS 

The full-length, Δ60 (removing unique domain), and the catalytic domain 

forms of rat SRMS (NCBI: NM_001011961) were cloned from commercially available, 

plasmid-encoded cDNA using custom primers. Digestion and ligation with the pGEX-

4T-1 plasmid was followed by transformation to our host strain. DNA sequencing 

results confirmed that SRMS was properly inserted along the reading frame of the N-

terminal GST affinity tag (Figure 1). Custom primers were used in site-directed 

mutagenesis of WT to Y395F (activation loop Tyr to Phe) using standard QuikChange 

(Agilent) protocols and confirmed via sequencing. The host strain of E. coli 

BL21(DE3)-RIL was previously transfected with separate plasmids encoding PTP1B 

phosphatase and GroES/GroEL chaperone proteins to reduce kinase toxicity and 

promote solubility of the recombinant kinase (Table 1). Previously, this host has 

proven successful for the rapid production of highly purified recombinant PTKs.[13, 

14] 
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Figure 1. 
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Figure 1 – Expression vector design and cloning. SRMS cDNA was PCR amplified from 

rat cDNA using custom primers to incorporate the sites necessary for restriction 

digestion and cloning. SRMS was successfully cloned for inducible expression and 

purification as GST-fusion proteins from the following constructs: pGEX-4T-1-

SRMSΔ60, A, does not contain the N-terminal Unique domain (first 60 residues) but 

contains all other coding regions including the SH3, SH2, and catalytic domains; 

pGEX-4T-1-SRMScata, B, contains the catalytic domain of SRMS and the gene’s native 

3’ un-translated region (3’UTR). pGEX-4T-1-SRMS-FL was also cloned but did not yield 

significant quantities of the full-length enzyme. The unique restriction enzyme cut 

sites outside of the coding regions are shown (boxed), indicating their cut sites within 

the vector. 
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Bacterial culturing was performed while shaking at 250 rpm in 37˚C LB media 

containing the appropriate antibiotics. Freshly plated colonies were used to grow 

overnight cultures and, in the morning, these were diluted at least 50-fold into 

500mL of pre-warmed media in two 1-liter flasks. For optimal culture and induction, 

we employed the auto-induction method, described by Studier. [15] In this method, 

cultures are grown shaking at 37˚C until an OD600 of 1.0-2.0 was reached, transferred 

to room temperature, and then grown for about 24 hours, until the growth 

plateaued (typically OD600 = ~14). Cells were harvested at 4˚C by centrifuging the 

culture at 9,000 x g for 6 minutes. Cell pellets were then frozen at -20˚C overnight or 

stored less than a week prior to purification of the expressed SRMS. 

 

Optimized protein purification procedure 

Cell pellets were thawed and resuspended on ice in 1/10 original culture 

volume of pre-chilled PBS lysis buffer, consisting of 80 mM phosphate, 600 mM NaCl, 

0.1% β-mercaptoethanol, 1 mM EDTA, and 0.01% triton X-100 at pH of 7.3. These 

high phosphate and salt concentrations were found to drastically improve GST-SRMS 

solubility. Following resuspension, lysozyme was added to a concentration of 0.1 

mg/mL and incubated on ice for 10-20 minutes, prior to sonication. While on ice, 

lysates were sonicated in four 30-second increments between setting 3 and 4. 

Lysates were cleared by centrifugation at 22,000 x g for 10 min in 4°C. After reserving 

a small sample for later analysis, the supernatant was then incubated with ~1mL of 

pre-swollen GSH-agarose bead (Sigma) while shaking at 4˚C. After one hour, the 
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lysate suspension was passed through an empty chromatography column and a 

sample of the flow-through was collected and preserved for later analysis. Washing 

of the column was carried out at 4˚C using 50 mL of wash buffer A (80mM phosphate, 

600mM NaCl, 0.1% β-mercaptoethanol, pH of 7.3) and then followed by 40 mL of 

wash buffer B (50 mM Tris, 0.1% β-mercaptoethanol, pH of 7.3).  

To remove GroEL, supplementary wash buffers were used. The AMK wash 

buffer was freshly prepared to contain 5mM disodium ATP, 10mM MgCl2, 150mM 

KCl, 0.1% β-mercaptoethanol, and 50mM Tris at a pH of 7.3. For most effective GroEL 

washing, our optimized procedure utilizes AMK washing buffer + casein. 50mg/mL 

lyophilized casein was prepared as a stock solution of 1M NaOH by intermittently 

vortexing at room temperature and then diluted 100-fold in the AMK washing buffer 

and pH adjusted to 7.3 with HCl for a final concentration of 0.5mg/mL. GroEL was 

removed from the column by re-suspending the resin with AMK + casein, incubating 

for 5-10 minutes (just long enough for the bead to re-settle), and then allowing the 

wash to pass through the column. This step was repeated every 10-15mL’s of 

washing solution to effectively release GroEL with just 50mL of AMK/Casein buffer. 

The SRMS-bound agarose was then rinsed with a final volume of 50mM Tris (pH 8) + 

0.1% β-mercaptoethanol to remove lingering washing buffer components, and GST-

SRMS was eluted in the same buffer, plus 10mM reduced glutathione. Protein 

concentration was quantified via Bradford assay according to a standard BSA curve 

prior to storage at -20˚C as diluted 40% glycerol working stocks.  
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SDS-PAGE and Western Blotting 

Protein purity was assessed by SDS-PAGE and Coomassie staining. Samples 

were mixed with one-third volume Laemmli sample buffer containing 2.5% β-

mercaptoethanol, heated for 10 min at 95˚C, and centrifuged at >13,000 rpm on a 

table-top centrifuge for 30 seconds prior to loading. Except where noted, SDS-PAGE 

was carried out using Bio-Rad Criterion XT 4-12% polyacrylamide Bis-Tris pre-cast gels 

with MOPS running buffer accompanied by pre-stained Precision-Plus Kaleidoscope 

molecular weight standards. Gels were resolved for 45-60 minutes at a constant 

200V before Coomassie staining for 30 minutes. Following de-staining and 

equilibration in water, gels were imaged and analyzed with the Bio-Rad GelDoc 

system.  

For western analysis, samples were first subjected to SDS-PAGE, as described 

above. Gels were equilibrated in transfer buffer and then blotted onto methanol-

activated polyvinylidene difluoride (PVDF) membranes for one hour at 25V using a 

semi-dry transfer apparatus. Proper quantitation of the samples was confirmed by 

Coomassie staining a duplicate gel or Ponceau S treatment of the membrane. 

Thorough and even transfer of the samples to the PVDF membrane was visually 

verified from the spent protein gel. Membranes were immediately blocked in TBST 

containing 5% non-fat milk for one hour at room temperature and then rinsed with 

TBST. The membranes were immunoblotted with mouse monoclonal anti-

phosphotyrosine IgG (PY20, Santa Cruz) and HRP-conjugated mouse IgG antiserum, 

with washing in TBST in between the primary and secondary antibody treatments. 
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Blots were examined after 5 minutes treatment with ECL+ substrate (GE Healthcare) 

by exposure to film.   

 

Kinase Assays 

All kinase assays were carried according to previously published protocols. 

Duplicate 40µL samples, each containing the appropriate enzyme/sample 

concentration and 1mg/mL polyE4Y substrate, were prepared in kinase buffer (75mM 

EPPS, pH 8.0 + 5% glycerol + 0.005% Triton X-100) prior to the assay. Reactions were 

initiated by addition of 10µL ATP-Mg cocktail for a final concentration of 200μM 

ATP/[γ-32P]-ATP and 12 mM MgCl2. The specific activity (usually between 750 and 

1,500 dpm/pmol) of each assay’s reactions was kept constant. All reactions were 

incubated at 30˚C for 20 min, then 35 µL of each reaction was spotted onto 1- x 2-cm 

strips of filter paper, which were then washed in 5% trichloroacetic acid (65˚C, 

constant stirring). The 
32

P incorporation into PolyE4Y was quantified using a Beckman 

Coulter LS-6500.[16]  

For kinase assays designed to determine the Km, the reactions were setup as 

described above except the concentration of ATP in each reaction was varied (but 

not the specific activity). To determine inhibitor IC50’s, dasatinib was dissolved in 10% 

DMSO, diluted in series, and included within the kinase reactions. For kinetic analysis 

of turnover, Km, and IC50 determination, each kinase assay was performed in 

duplicate and repeated at least three times. All calculations and data treatment of 
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assay results, including double reciprocal plots and linear regression analysis, was 

carried out in Microsoft Excel. 
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Results and Discussion: 

Recombinant expression system for SRMS 

Currently, the only published reports of SRMS enzymatic activity utilize 

commercially produced wild-type catalytic domain from insect cell expression 

systems. As we aim to characterize SRMS regulation, we opted to develop a bacterial 

expression system that would enable efficient mutational analysis. To this end, we 

cloned the coding sequence of SRMS into the multiple cloning site of pGEX-4T-1 to 

express the kinase as a fusion protein of GST-SRMS (Figure 1). However, there are 

several challenges to expressing and purifying protein-tyrosine kinases from a 

bacterial system.  

Some PTKs are toxic to bacterial hosts because they tend to phosphorylate 

many native proteins.  Co-expression of a protein tyrosine phosphatase, such as 

PTP1B, often helps to overcome this problem.[17, 18]  Additionally, expression in 

bacteria may cause recombinant enzymes to fold incorrectly, leading to insolubility 

and limiting activity.  This problem is frequently alleviated by the co-expression of 

chaperone proteins, such as GroES/GroEL. Finally, the frequency of codon usage 

varies substantially from human to bacteria and this is thought to have negative 

influence on the total yield of target proteins. A PTK with many codons that are rarely 

used in bacteria may not be well expressed due to insufficient host production of 

certain aminoacyl-tRNA.  

To mitigate this problem, host strains are often complemented with plasmids, 

such as pRIL, which elevate rare tRNA for Arg, Ile, and Leu, to greatly enhance 
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expression.[19] With these considerations in mind, we co-expressed SRMS with 

PTP1B, GroES/EL, and Arg/Ile/Leu tRNAs to increase the quantity and quality of the 

recombinant enzyme produced by the E. coli BL21(DE3) host strain. The components 

of this system are detailed in Table 1, and similar expression strategies have been 

used in the past for SFKs, as well as other kinases.[13, 14] 

 

Purification of active SRMS 

Our initial attempts using this system relied on traditional IPTG induction and 

GST affinity purification. This, however, resulted in low yields and the co-purification 

of significant amounts of the chaperone GroEL alongside the kinase in the eluted 

fractions. We then switched to an auto-induction protocol, proven to increase the 

yield of many recombinant proteins.[15] Using this method greatly enhanced the 

apparent solubility and yield of SRMS; however, the chaperone impurity remained 

problematic, despite extensive washing (over 200 mL of wash buffers A and B). 

Co-purification of chaperones is a common phenomenon and often occurs 

despite optimization of induction and purification conditions. In these instances, 

dissociation of the complex is most often readily achieved by introducing ATP-Mg
2+

 

and/or denatured protein to various steps in the purification. The ATP-Mg
2+

 is 

thought to induce conformational changes of the chaperone, promoting the release 

of bound protein. However, published literature lacks a procedure that is suitable for 

all PTKs. 
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In the purification of ITK, a Tec family kinase, the Andreotti lab, encountered a 

similar problem. They found that adding potassium (150 mM KCl) to a solution of 

ATP-Mg
2+

 (AMK washing buffer) effectively released enough of the bound GroEL to 

attain sufficient ITK purity.[18] We adapted and optimized this protocol for the 

purification of SRMS.  

As seen in Figure 2, GroEL (~60 kD) appears to be the dominate protein within 

the soluble cell lysate, shown in lane 1. A significant portion of GroEL appears to be 

removed during the initial stages of purification, as evidenced by lane 2, which 

contains the unbound lysate column flow-through. Following extensive application of 

wash buffers A and B (200 mL total), until no protein can be detected from the 

column flow-through, the column was stoppered, moved to room temperature, and 

5 mL of AMK solution was used to re-suspend the resin. After 5-10 min incubation, 

the stopper was removed and the first 0.5 mL of the wash buffer flow-through was 

collected for analysis, followed washing with an additional 25 mL AMK buffer. This 

incubation and wash step was repeated six more times. Examining these wash 

fractions (lanes 3 – 9), it is clear that the AMK solution removes a significant amount 

of GroEL that wash buffers A and B were unable to remove. After approximately 200 

mL of AMK wash (lane 9), very little GroEL is cleared from the column. However, 

upon elution of GST-SRMS with 10mM reduced glutathione, lanes 10 – 12, it is clear 

that the AMK wash was only partially effective at removing GroEL and its efficacy 

appears to increase with respect to the volume of buffer applied to the column. 
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Figure 2.
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Figure 2. Purification of GST-SRMS using existing purification procedure. As described 

in the Materials and Methods section, a previously published procedure was adapted 

for our initial attempts to purify SRMS. Proteins from various steps of the purification 

were sampled (20 µL) for separation by SDS-PAGE and stained with Coomassie Blue 

for analysis. Lane 1, soluble cell lysate; lane 2, flow-through from initial loading; lanes 

3 – 9, consecutive washing steps (30 mL each) with AMK buffer; lanes 10 – 12, 

fractions eluted with 10mM GSH elution buffer; lane M, molecular weight markers 

labeled by size (kD). 
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These results lead us to seek out additional wash buffer additives to more 

effectively remove the chaperone protein. Several studies have suggested that 

casein, a common milk protein, can interact with GroEL through hydrophobic 

interactions to promote specific molecular rearrangement and facilitate the 

binding/release of ATP/ADP. Yet, to date, no purification protocol has made use of 

casein as an effective washing reagent.[20-22] In light of these reports, we 

experimented with casein at various points within the standard GST-tag purification 

procedure, including it in the lysis buffer and as a supplement to normal washing 

buffer. Following extensive washing with buffers A and B, wash buffer B + casein was 

applied to the column. A sample of this wash fraction was run in lane 4 of Figure 3A. 

In this lane, little to no GroEL appears to have been cleared from the resin, which 

indicates that either casein in the wash buffer is unable to displace GroEL, or that 

casein in the lysis buffer had prevented the chaperone from ever binding GST-SRMS. 

To investigate further, the residual casein was removed by washing with buffer B 

(lane 5) and then washed with AMK buffer. Since the AMK wash was shown to be 

partially effective at clearing GroEL from the column (see Figure 2), the absence of 

the contaminant from this fraction would indicate that casein is at least partially 

effective at preventing GroEL from binding the column. However, GroEL is clearly 

released by this AMK wash (lane 6) indicating that a significant amount of the 

chaperone remains on the column. From these results, it can be concluded that 

casein, on its own, is ineffective at preventing or disrupting the interactions of GroEL 

with both free and column-bound GST-SRMS. 
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Figure 3. 

 

 

  



68 

 

Figure 3. Optimization of washing to remove GroEL. A. Casein was added to the 

standard lysis and wash buffers (0.5 mg/mL each) and the GST-SRMS purification 

procedure was followed as described in Materials and Methods, stopping short of 

elution. 20 µL samples of each step were taken for analysis by SDS-PAGE and 

Coomassie Blue staining. Lane M, molecular weight markers; lane 1, insoluble cell 

pellet; lane 2, soluble cell lysate; lane 3, flow-through from initial loading; lane 4, 

washing buffer + casein; lane 5, washing buffer; lane 6, AMK washing buffer. B. 

Following thorough AMK washing, GSH-agarose bound by GST-SRMS was divided into 

four different spin columns for wash buffer component optimization, prior to elution 

with 10mM GSH elution buffer. The wash and eluted fractions of each sample were 

then examined via SDS-PAGE and Coomassie Blue staining. Sample 1, washed with 

AMK buffer; sample 2, washed with AMK buffer + 0.5 mg/mL casein; sample 3, 

washed with AMK buffer + 2M urea; sample 4, washed with 2M urea. 
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Hypothesizing that ATP may be required for casein to effectively interact with 

GroEL, we investigated casein’s prospective use in the context of the AMK washing 

buffer procedure. GSH-Agarose resin, bound by GST-SRMS, was washed extensively 

with AMK buffer. 100µL of this pre-washed resin was loaded into spin columns and 

further subjected to washes of the following conditions: 1) AMK, 2) AMK + 0.5 mg/mL 

casein, 3) 2M urea, or 4) 2M urea + AMK. Figure 3B reveals both, proteins that are 

washed off (top) and proteins that remain bound to the column (bottom), following 

these supplementary washes. The sample that was washed with additional AMK 

buffer shows no further GroEL is released by this method (top panel, lane 1). Thus, as 

expected, the corresponding eluted sample contained a significant amount of GroEL 

impurity (bottom panel, lane 1). At the concentration used, urea has been shown to 

mildly destabilize the structure of GroEL and was thus used in an attempt to 

differentially elute it from the column. Unfortunately, the urea washes appeared to 

elute significant amounts of GST-SRMS alongside GroEL (top panel, lanes 3 and 4). 

The AMK + casein wash, however, released a substantial amount of GroEL with little 

to no SRMS loss (top panel, lane 2). As indicated by the eluted fractions (bottom 

panel, lane 2), the combination of casein with AMK buffer appears to preferentially 

remove GroEL to drastically improve the ratio of SRMS to GroEL.  

Based on these results, we have devised an optimized procedure that is 

described in detail within the methods section of this report. In summary, plasmids 

encoding GST-SRMS, GroEL/GroES, and PTP1B were transformed into E. coli 

BL21(DE3)-RIL, grown at 37˚C in liquid culture, and then induced at room 
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temperature via auto-induction. Standard GST affinity purification is then used along 

with a modified washing protocol that uses a novel AMK + casein buffer for removal 

of bound GroEL. GST-SRMS can then be eluted from the column, free of any 

significant impurities. Pooled fractions often contain 2 – 5 mg of active enzyme from 

half a liter of culture, enough for >1,000 assay reactions, without the need for 

additional concentration or re-folding steps. SRMS can be stored in 40% glycerol at -

20˚C for more than a year without significant loss of kinase activity. This strategy was 

used to purify the catalytic domain and Δ60 (SH3-SH2-Kinase), as well as their 

mutants (see Figure 4 and Table 3). 
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Figure 4. 
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Figure 4. Optimized SRMS purification. GST-SRMS was purified as described in the 

Materials and Methods and samples from various points of the purification were 

analyzed by SDS-PAGE and Coomassie staining. A. Wild-type catalytic domain of SRMS 

purification: lane M, molecular weight markers; lane 1, 50µg insoluble cell pellet; lane 

2, 50 µg soluble cell lysate; lane 3 50 µg flow-through lysate; lane 4, 20 µL standard 

wash step; lane 5, 20 µL from AMK wash step; lane 6, 20 µL from final buffer wash 

step; lanes 7-10, 20 µL of the peak eluted fractions (*=SRMS). The peak eluted 

fractions from B. Equimolar amounts (3.5 pmol) of the eluted fractions of GST-SRMS 

purifications were run together on SDS-PAGE for comparison following Coomassie 

Blue staining.  Lane M, molecular weight markers; lane 1, WT catalytic domain; lane 

2, Y395F catalytic domain; lane 3, WT Δ60; lane 4, Y395F Δ60. 
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Table 2. 
Summary of SRMS purification 

Step
 

Total 

protein
a 

(mg) 

Total 

activity
b 

(nmol min
-1

) 

Specific activity 
(nmol min

-1

 mg
-1

) 
Yield

c 
(%) 

Purification
c 

(fold) 

Lysate      1,027            .01           9.29x10
-6            100                 1 

Elution              5.6       16.74           2.99 1,674,000     321,842 
a

 SRMS was purified from 500 mL bacterial culture as described in Materials and 

Methods. 
b

 The SRMS kinase activity was assayed using PolyE
4
Y as the substrate. 

c

 The cell lysate contains significant amounts of PTP1B, a protein tyrosine 

phosphatase. 
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Kinetic characterization of SRMS 

To establish our purification protocol as a viable means of producing active 

enzyme, we characterized the kinase activity of the catalytic domain. Kinetic analysis 

of SRMS was conducted with the generic substrate polyE4Y (heterogeneous peptide 

mixture with a 4:1 ratio of Glu and Tyr) and we determined a kcat of 26 min
-1

 (Table 

3). Enzyme turnover from multiple purifications were in good agreement. As no 

physiological protein substrates have yet been reported for SRMS, a direct 

comparison of catalytic potential is perhaps best judged by its Km of ATP, the 

universal PTK substrate. As determined from the double-reciprocal plot of activity vs. 

ATP concentration (Figure 5) the Km ATP was determined to be 40µM. This value is 

significantly lower than those previously determined for Csk (~150µM) and Src 

(~100µM). Taken together, the kinetic data clearly indicates strong catalytically 

activity of SRMS, thus validating our purification methods. 
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Figure 5. 
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Figure 5. Enzyme kinetics of the purified catalytic domain of SRMS. For K
M

 of ATP 

determination, 2.66 nM of SRMS was assayed with concentrations of 20, 25, 35, 50, 

100, and 200 mM 
32

P labeled ATP using 1 mg/mL PolyE
4
Y as substrate.  
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Table 3. 
Enzymatic activity of purified SRMS 
SRMS

a Turnover
b

 (min
-1

 ± std.dev.) 
Cata WT              26.10 ± 0.62 
Cata Y395F                3.12 ± 0.27 
D60 WT                1.06 ± 0.10 
D60 Y395F                0.26 ± 0.03 
a 

Purified as GST-fusion proteins. 
b

 Using PolyE
4
Y as substrate. 

c

 Y395 corresponds to the activation-loop Tyr. 
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SRMS autophosphorylation 

Most protein-tyrosine kinases are known to autophosphorylate on the Tyr 

residue of their activation loop, and this phosphorylation tends to activate a kinase. 

The specific level of this activation, however, is highly variable from one kinase to 

another and ranges from non-detectable to several hundred-fold. Since little is 

known of BFK regulation, and because the purification procedure for SRMS required 

extensive incubation in the presence of ATP-Mg
2+

, it was important to assess how 

this procedure affected the level of SRMS phosphorylation, and any resulting 

implications for the overall kinase activity.  To fully address this issue, we first 

expressed and purified an SRMS mutant containing a Phe instead of Tyr at the 

autophosphorylation site (Y395F).  Kinase assays from various purifications indicate 

that this mutant form of the catalytic domain displays a kcat of 3 min
-1

, 11.5% of the 

wild-type activity (Table 3). This result suggests the possibility that this form of WT 

SRMS is activated by autophosphorylation, during the purification. However, we 

cannot exclude the possibility that the mutation of the wild-type Tyr to Phe could 

have directly affected the kinase activity. To further clarify this result, we then tested 

how incubation with ATP-Mg
2+

 or a protein tyrosine phosphatase affected the Tyr 

phosphorylation level of SRMS and the Y395F mutant, as well as their corresponding 

kinase activities.  

Shown in Figure 6A, purified WT SRMS catalytic domain (273 µg/mL) was 

incubated with either kinase buffer (negative control), 200 µM ATP and 12 mM Mg
2+

, 

or PTP1B for 0, 20, or 60 minutes. The amount of PTP1B was carefully determined so 
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that, upon dilution for the kinase assay, phosphatase activity was insignificant. To 

further reduce the chances of PTP1B confounding this experiment, each kinase 

reaction was performed under non-reducing conditions which are catalytically 

unfavorable to phosphatases. The protein level in the treated samples was calculated 

based on pre-determined protein concentrations and molecular weights, and 

confirmed by SDS-PAGE and Ponceau S staining (bottom panel). The Tyr 

phosphorylation level in the samples was determined by western blotting with PY20 

anti-phosphotyrosine antibody (middle panel). The kinase activities of the treated 

samples were determined by the kinase activity assay (graphed, top panel). In this 

series of experiments, the control treatment and incubation with ATP-Mg did not 

change SRMS Tyr phosphorylation level, nor the kinase activity. However, incubation 

with PTP1B dramatically decreased Tyr phosphorylation and kinase activity levels. 

These results together indicate that purified SRMS is fully phosphorylated and 

activated. These same experiments were performed using the Y395F form of SRMS.  

As seen in Figure 6B, the Y395F mutant displays a much lower level of Tyr 

phosphorylation. Although a low level of phosphorylation suggests at least one 

additional site of autophosphorylation, treatment with PTP1B failed to decrease the 

kinase activity level of Y395F SRMS. Overall, by comparison of the anti-

phosphotyrosine blots and kinase activities from each treatment of the enzymes, it is 

apparent that the kinase activity of SRMS strongly correlates to Tyr395 

phosphorylation level. The WT SRMS kinase activity was reduced from 16.8 min
-1

 

(negative control, 60 min) to approximately 3.2 min
-1

 (60 min, PTP1B treatment). This 
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represents more than five-fold reduction in activity, despite incomplete de-

phosphorylation (as indicated by the western blot) and any autophosphorylation that 

may have occurred during the kinase assay. Altogether, the results seen in Figure 6A 

and B indicate that activation by autophosphorylation of WT SRMS is achieved, 

primarily, through phosphorylation of Tyr 395 in the activation loop. Furthermore, 

these assay results (and several not shown here) suggest that autophosphorylation of 

the activation loop tyrosine results in approximately 5- to 10-fold activation of SRMS 

kinase activity. 
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Figure 6.
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Figure 6. SRMS autophosphorylation of the activation loop Tyr, Y395.  The WT (A) and 

Y395F (B) GST-SRMS catalytic domains were pre-treated with either ATP/Mg
2+

, 

purified PTP1B, or kinase buffer (as a control) for 0, 20, or 60 minutes prior to analysis 

of phosphorylation and activity. To detect phosphorylation, samples were run on SDS-

PAGE before being transferred to PVDF for western blotting with anti-

phosphotyrosine antibody (PY20). Membranes were stained with Ponceau S to 

ensure  even sample loading and transfer. The samples were also analyzed for their 

kinase activity using 
32

P-ATP and PolyE
4
Y (results in bar graphs) for comparison. 

Western analysis of untreated WT and Y395F GST-SRMS Δ60 was also carried out, and 

kinase activity was determined (C). 
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Characterization of Δ60 WT and Y395F SRMS kinase activity toward polyE4Y 

yielded turnovers of 1.06 and 0.26 min
-1

, respectively (Table 3). While substantially 

less active than the catalytic domain, these values suggests a similar pattern of 

activation by autophosphorylation. To examine whether the difference in kinase 

activity between WT and Y395F Δ60 also correlates to phosphorylation levels, we 

blotted the WT and mutant forms as described above. Western blot analysis of Δ60 

with anti-phosphotyrosine antibody, shown in Figure 6C, confirms a substantial 

decrease in phosphorylation of the Y395F SRMS. This is consistent with our results of 

the catalytic domain and suggests this mode of activation by autophosphorylation is 

not intrinsically inhibited by the SH3 or SH2 domain. 

Additionally, this figure once again demonstrates that SRMS can be 

phosphorylated on Tyr residues outside of the activation loop. Whether this 

phosphotyrosine has any impact on the dramatic difference in observed activities of 

the Δ60 and the catalytic domain forms of the enzyme is not apparent from our 

analysis. It is important to note that this study cannot rule out many potential 

artifacts that could interfere with enzymatic stability, stemming from the inclusion of 

the SH3-SH2 domains or lack of the unique domain in the Δ60 SRMS construct. The 

apparent suppression of Δ60 activity is none the less intriguing, especially considering 

that Brk, Frk, the entire Src family, and many other PTKs are negatively regulated by 

intramolecular SH3 and SH2 domain interactions in phosphotyrosine dependent and 

independent mechanisms. However, further investigation is clearly needed to 
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determine whether any of these conserved inhibitory features may be present in 

SRMS. 

 

Dasatinib inhibition of the active and inactive forms of SRMS 

When studying kinases such as SRMS, inhibitors often serve as invaluable 

research tools. Dasatinib is a broad spectrum PTK inhibitor originally developed to 

target the Abl catalytic domain, with broad clinical application to cancer therapies. 

With a sub-nanomolar KD and IC50, dasatinib has been shown bind to the active form 

of Abl.[23] This binding mode has been reaffirmed by several other kinase structures, 

particularly Src, which show comparable affinity to the active conformation. 

Molecular modeling approaches, however, predict that dasatinib should also be able 

to bind the active site. Many publications continuously cite dasatinib’s ability to bind 

both inactive and active conformations, despite contrary structural evidence and 

without any biochemical analysis to support these claims.[24] Because of the 

inherent difficulties of studying this problem with ABL, these controversial claims 

persist and have complicated rational drug design efforts. As dasatinib has been 

shown to bind SRMS with a KD of 13nM, we sought to examine the inhibitor’s 

capacity to discriminate between the enzyme’s active and inactive forms. Also, if this 

analysis confirms the suspected inhibitory effects of dasatinib upon SRMS, it will also 

validate dasatinib’s potential use in the investigation of this understudied kinase. 

The phosphorylation of the activation loop does not always lead to activation 

of a kinase, as many kinases differ in this regard. All kinases have the ability to adopt 



85 

 

an active conformation, independent of activation loop phosphorylation, with 

varying efficiency. In particular, ABL appears to convert between these 

conformations equally well, regardless of autophosphorylation. Because of ABL’s 

inability to become activated in this manner, it is difficult to determine whether 

dasatinib truly binds either form, or just active conformation kinase. As we have 

recently demonstrated the capacity of SRMS to achieve activation via 

autophosphorylation, we subjected both active and inactive forms of the kinase to 

dasatinib treatments while assaying their kinase activities toward PolyE4Y. Our 

analysis results (Figure 7) of the inhibitor toward the catalytic domain of SRMS 

revealed an IC50 value for the Y395F mutant of 10 nM and the active/phosphorylated 

WT was found to be 3.5 nM, about a three-fold difference. This clearly demonstrates 

a preference for the active form, in support of the structural data concerning 

dasatinib. These values also serve to validate the use of dasatinib as potentially 

valuable tool or probe, in addition to phosphorylation levels of Y395, for further in 

vitro characterizations and functional analysis of active SRMS. 

  



86 

 

Figure 7. 
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Figure 7. Dasatinib inhibition of the active and inactive forms of SRMS. The activity 

(turnover, min
-1 

± standard error) of WT and Y395F SRMS catalytic domains were first 

assayed without inhibitor: WT = 29.15 ± 0.28; Y395F = 3.12 ± 0.15. The activity of 

each enzyme was then  measured in the presence of 160, 16, 1.6. 0.16. and 0.016 nM 

dasatinib and graphed as a percentage of the uninhibited activity to determine 

dasatinib’s IC
50 

: (•) WT = 3.5 nM; (Δ) Y395F =  9.0 nM. 
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Abstract 

Kinase inhibitors frequently suffer from a lack of specificity, most likely due to 

the high degree of conservation within their targets’ ATP binding pockets. We 

reasoned that specificity may be developed by extending the inhibitor out from the 

traditional binding pocket to interact with more diverse sites. To test this hypothesis, 

derivatives of dasatinib were synthesized via esterification with one of 25 small 

molecules, thereby increasing the chemical diversity of the kinase inhibitor. Our 

approach generated numerous inhibitory compounds with enhanced kinase 

selectivity. Moreover, several unique characteristics of these inhibitors were 

explored for their potential utility as pro-drugs or research tools. Together, these 

findings highlight the great potential for this novel strategy with broad applications 

for the design and development of kinase-specific inhibitors. 
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Introduction 

 Protein tyrosine kinases (PTKs) are involved in numerous pathologies, 

including many cancers. Subsequently, PTK inhibitors have proven to be invaluable 

research and therapeutic tools. Current PTK inhibitors are mostly ATP analogs and 

are quite limited with regard to their specificity.1 Ideally, such molecules would be 

able to target the aberrant kinases without interfering with normal physiological 

kinase signaling. This problem stems from a lack of structural diversity in the 

ATP/inhibitor binding pocket, similar in all kinases. The potent tyrosine kinase 

inhibitor (TKI) dasatinib (BMS-354825) is a case in point. It binds to the ATP binding 

site of many PTKs and is a potent, broad spectrum PTK inhibitor.2 

 The discovery and development of dasatinib was announced by Bristol-Myers 

Squibb in 2004 as an orally administered anticancer compound.3 In 2006, the 

company was granted tentative FDA approval for dasatinib, via the accelerated 

review process, and began marketing the drug as Sprycel®.4 Initially, approved 

indications for use applied only to adult patients diagnosed with either Philadelphia 

chromosome-positive (Ph+) chronic myeloid leukemia (CML) in the chronic phase, or 

Ph+ acute lymphoblastic leukemia (ALL), who were intolerant or resistant to standard 

imatinib (Gleevec, by Novartis) treatment. In 2010, full approval was granted for the 

treatment of imatinib resistant Ph+ ALL/CML, once further safety and efficacy was 

established. This extended the approved indications to include less developed Ph+ 

CML, still in the accelerated or blast phases.5  
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The Ph+ profile of many ALL/CML cancers is readily observed via standard 

karyotype, as it involves a specific translocation between chromosomes 9 and 22.6 

This chromosomal aberration induces abnormal expression of a BCR-Abl fusion-

protein. The fusion of the two proteins disrupts the normal regulatory mechanisms of 

each. In particular, the loss of the N-terminal domains of Abl removes key 

components of substrate recognition, cellular localization, and catalytic inactivation. 

The truncated kinase is responsible for creating a highly distorted pattern of 

phosphorylation, upsetting normal cell signaling dynamics, and leading to the 

oncogenic progression of ALL or CML. TKIs, such as imatinib and dasatinib, inhibit 

cancer progression by blocking the kinase activities of BCR-Abl and/or other kinases 

that are known to contribute oncogenic signaling, such as Src Family Kinases (SFK).  

Dasatinib inhibits SFKs, BCR-Abl, c-KIT, EphA2, PDGFR-beta kinases with 

nanomolar or sub-nanomolar IC50.5 It has been also crystalized as a bound ligand to 

the Abl, BMX, BTK, EphA4, Lyn, p38alpha, p38MAP, and Src kinases.7-14 The common 

manner in which it binds to each of these kinases, suggests it should be similar for 

many other kinases, too. This may, in part, explain side-effects of the compound at 

clinical dosage. Moreover, the clinical dosage, itself, may be limited by toxicity due to 

off-target kinase inhibition. This can lead to the persistence of cancer in small, drug-

resistant populations and, ultimately relapse of patients who were previously in 

remission. In some patients, mutations arise during the course or treatment, or 

before. In all of these cases, where resistance has developed, alternative therapies 

must be sought. 



96 
 

These problems associated with balancing toxicity with effective dosage are 

not unique to dasatinib. All currently available TKIs are expected to lose effectiveness 

at some point to restart disease progression. From this perspective, it seems obvious 

that greater kinase specificity should be a top priority in the development of novel 

therapeutic inhibitors. However, it seems likely that many kinases share too great a 

degree of similarity to reasonably expect true specificity from ATP analogs, even from 

drugs with the potency of a molecule like dasatinib.  

Outside of the ATP binding cleft of PTKs there are several regions of great 

variability amongst kinases, as demonstrated in Figure 1. Outside of the kinase’s 

active site and lacking a defined binding pocket, these regions have garnered little 

attention as drug targets, on their own. However, by extending inhibitors from the 

ATP binding pocket into nearby variable regions, inhibitors may obtain greater 

capacity for specificity, through new interactions, while maintaining much of their 

affinity via ATP binding cleft interaction. Conveniently, certain PTK inhibitors, 

including dasatinib, bind to the kinase in such a way that a small portion of the 

molecule resides just outside of the ATP binding cleft. It has been demonstrated 

previously that chemical modifications to these drugs can be made to this position to 

facilitate attachment of chromatographic resins for affinity purification.15-17 By 

addition of small molecules to the dasatinib scaffold, it may be possible to extend the 

binding site to include regions of the kinase that are more diverse in order to impart 

greater potential PTK specificity.  
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We sought to evaluate this strategy by linking dasatinib to a series of small 

molecule adducts via esterification reactions.  Following favorable molecular 

modeling results, we employed this technique to build a small library of 26 

compounds (Figure 2).  A diverse panel of non-receptor PTKs (including Csk, Abl, and 

Src) served as a basis for evaluating these compounds in terms of their potency and 

specificity. Several selected compounds were then further explored to reveal some 

unique properties and potential applications of these novel inhibitors. 
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Figure 1.
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Figure 1. Structural elements of inhibition. Dasatinib inhibition of kinase activity is 

mediated by molecular interaction with highly conserved residues from the ATP-

binding cleft of the catalytic domain. (A) The MUSCLE aligned protein sequences from 

the catalytic domains of Abl, Csk, Src, and Lyn illustrate the level of conservation 

throughout various regions of the catalytic domain among these diverse PTKs. The 

darker shaded portions of the alignment indicate greater conservation. The ligand-

bound crystal structure of Lyn (B) demonstrates how dasatinib is docked within the 

catalytic domain. The inhibition of kinase activity is achieved via molecular 

interaction with amino acids of the ATP-binding cleft. These residues are displayed in 

stick form in the structure and also indicated by black arrowheads within the 

alignment. The region of the catalytic domain between the end of α-helix D and the 

beginning of α-helix E is boxed within the alignment and structure to highlight its 

inherent variability and proximity to the dasatinib binding site. 

 

  



100 
 

Figure 2. 
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Figure 2. Dasatinib derivatives. Dasatinib free-base (LC laboratories) was used as a 

scaffold for the attachment of various small molecules. 
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Results 

Modeling 

 In order to establish the theoretical feasibility of binding and rule out any 

obvious steric hindrance, selected dasatinib derivatives were modeled and docked 

into the crystal structure of a PTK. The Lyn kinase (PDB code: 2ZVA) was chosen as it 

is a member of the clinically relevant SFKs.10 2ZVA is a particularly good candidate 

among SFKs because it is nearly complete with few gaps and very good resolution. 

The resolution and completeness of this structure outside of the dasatinib binding 

pocket was essential, given that the additions to the core compound would 

potentially interact with a region outside the traditional binding pocket.  Kinase 

catalytic domains are known to adopt at least two distinct confirmations within 

crystal structures, active or inactive. To ensure that the proper conformation was 

used in docking studies, the structure (already bound by dasatinib) was edited to 

remove the co-crystallized ligand before modeling the compounds. In this manner, 

the parent compound could serve as a reference and control to ensure docking 

parameters were functioning properly. 

We modeled each of the 20 common amino acids, along with addition of 

phosphotyrosine, as carboxyesters of dasatinib to establish the feasibility of our 

approach. This small collection of potential derivatives could be conveniently 

synthesized and represent of a variety of sizes and physical properties, while keeping 

computational cost low (by virtue of few rotatable bonds to calculate). Combining 
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accuracy and ease of use, we chose Autodock Vina to perform our in silico modeling.  

Autodock Vina’s performance in docking has been relatively well established and its 

algorithms require no assumptions to be made concerning the ionization of side-

chains.18, 19  

All of the compounds were docked and the top conformational hits of each 

were scored and ranked by the calculated binding energies that were reported in the 

program’s docking summaries (Figure 3). The reference control, dasatinib, showed 

little deviation from the original crystallized ligand when its coordinates were 

superimposed. Additionally, the core dasatinib portion of each derivative was also 

nearly identical. We calculated a KD of 8.3nM from the binding energy of -10.9 

kcal/mol, which is in good agreement with the experimentally determined value of 

3nM by our later assays. The calculated binding energies of all derivatives are within 

0.9 kcal/mol of the dasatinib control. 

The favorable binding energies of the docking simulations helped to support 

the notion that small molecules would not likely prohibit dasatinib binding when 

linked via esterification. These adducts were predicted to extend out from the ATP 

binding pocket with little, if any, disturbance to the normal mode of dasatinib 

binding. Furthermore, the favorable increases in calculated affinity in some dockings 

suggested that some small molecules could favorably interact with portions of the 

kinase, outside the ATP binding pocket.  
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Figure 3. 
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Figure 3. Inhibitor screening results. Results of screening of compounds at a fixed 

concentration against each of the panel PTKs. The activity of uninhibited enzyme was 

compared to dasatinib-inhibited enzyme activity to establish a baseline of inhibition. 

Each of the compounds were then compared to dasatinib inhibition for each enzyme. 

Bars above the x-axis show increased potency, while those below indicate a 

decreased capacity to inhibit the kinase, relative to dasatinib. 
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Design and Synthesis 

Encouraged by the docking studies, we derivatized dasatinib by chemical 

esterification with various amino acids (for reasons stated above) using the protocols 

detailed in the methods section. Alongside these compounds, additional derivatives 

were synthesized by esterification with several fatty acids. These particular 

derivatives were chosen to evaluate their potential use as linkers to sites more distal 

to the ATP binding pocket.  From this approach, 25 compounds were successfully 

synthesized and purified including 14 amino acid and 10 fatty acid adducts of 

dasatinib (Compounds 2-25). Compound 26 was later synthesized as a fluorescein-

glycine ester to further demonstrate the utility of such chemical derivatives. 

Synthesis yields were good, overall, ranging from 70-95%. 

 

Compound Screening 

Each of the amino acid and fatty acid inhibitors were screened at a fixed 

concentration against Abl, Csk, and Src PTKs. Their percent inhibition relative to 

dasatinib was then determined. The results of this screening (Figure 3) offered insight 

as to the potency of each adduct, relative to dasatinib.  Moreover, this relative profile 

could be compared between Abl, Csk, and Src kinases. Thus, this screening helped to 

highlight potential patterns of enhanced or diminished inhibition relating to the type 

of adduct.  
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In general, fatty acid-derived compounds dramatically decreased inhibitor 

potency. Of these compounds, only 16 (-C2) inhibited comparably to dasatinib. Each 

of the remaining derivatives achieved less than 60% of dasatinib’s inhibition toward 

each kinase. The screening profile of compound 24 (-C11NH2), when compared to 

that of similarly sized compounds (-C10, -C12, and -C11SC2), suggests that 

hydrophobicity, not size, accounts for much of these inhibitors’ reduced potency. 

Furthermore, losses in potency due to long, hydrophobic chains may be recovered, at 

least in part, by linkage to a polar functional group (like –NH2). 

The amino acid derived compounds showed significantly greater potency over 

fatty acyl derivatives, with the exception of compound 13 (-C).  Compound 15 (-E) 

also displayed a significantly reduced potency when compared to other amino acid 

derivatives. Compound 7 (-R) appeared to be the most potent of the inhibitors tested 

against all three kinases. We scrutinized docking results to identify a plausible 

explanation for this apparent increase in potency. Interestingly, the side-chain 

guanidium group of compound 7 (-R) was predicted to form a hydrogen bond with 

the backbone of the kinase, just outside the ATP binding-cleft. 

The major changes in potency by our derivatives are interesting and perhaps 

informative, but are not the main focus of our study. Since we endeavor to isolate an 

active agent with altered kinase selectivity, the compounds’ variable potency 

between kinases was our greatest concern. Compounds 21 (-C16), 24 (-C11NH2), and 

23 (-C20) showed a significantly decreased capacity to inhibit Abl, as compared to the 
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other kinases. Compound 7 (-R), however, demonstrated its potency gains were 

greatest for Abl. Additionally, compound 16 (-C2) displayed significantly increased 

potency toward Csk when compared to Abl and Src. The screening assay’s sensitivity, 

however, limited the extraction of further selectivity results. 

 

IC50 determination 

The screening, while relatively rapid, is not particularly sensitive and, thus, is 

limited in the task of identifying changes in kinase specificity. We further 

characterized the inhibition of selected compounds via IC50 assays toward each of the 

kinases. First, compound 7 (-R) was chosen because it was one of the best 

compounds screened for each of the kinases in terms of potency and selectivity. We 

then chose compounds 3, 13, and 15 (-A, -C, -E) to use as a basis for comparison and 

to tease out potential differences in selectivity.  For the fatty acid-derived 

compounds, we again chose to compare the most potent compound, 16 (-C2), one 

longer chained derivative (21, -C16), two moderately long-chained compounds (17/-

C8, 18/-C10), and the potential linker compound 24 (-C11NH2) for further 

investigation. 

The results of the IC50 assays, summarized in Table 1, reflect the potency of 

the compounds toward each of the PTKs. As predicted by the screenings, compound 

7 (-R) displayed increased potency against all kinases with an average 37% decrease 

in IC50 compared to dasatinib. The greatest gain in potency was observed for Abl by 
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compound 7 (-R) with an IC50 of 0.45nM as compared to the 0.75nM value for 

dasatinib, representing a 42% decrease. Conversely, compound 13 (-C) was the worst 

performing of the amino acid derivatives with IC50’s ranging from 1.7 - 5.3x higher 

than dasatinib toward our PTK panel. Interestingly, compound 15 (-E) performed 

about as well as compound 3 (-A), despite the latter showing possible signs of greater 

potency in the screenings. 

To garner more quantitative insight into potential gains or losses in enzyme 

selectivity, the IC50 of each compound toward a particular kinase can be compared to 

the IC50 of the same compound for another kinase, in the form of a ratio. For 

example, the IC50 of dasatinib is 7nM for Csk and 0.37nM for Src, giving a C/S ratio of 

18.9, clearly indicating specificity toward Src. When comparing Abl and Src, however, 

a A/S ratio of 2.1 for dasatinib implies that the compound inhibits both kinases in 

rather non-selective fashion. In this manner, ratios greater than 10 or less than 0.1 

reflect IC50‘s that differ by more than an order of magnitude, and the inhibitor is 

generally considered to be selective or specific for the kinase with the lower IC50. 

Comparisons of the specificities for each of the compounds toward Csk shows 

that two compounds, 7 (-R) and 16 (-C2), showed little change in their preference for 

Src (17.6 A/S and 16.7 C/S, respectively).  However, each of the remaining 

compounds increased their preference for Src dramatically with C/S IC50 ratios of 30.0 

or higher. The highest selectivity ratio obtained in our study, 91.4 C/S, was from this 

group and belonged to compound 18 (-C10) with an IC50 for Csk = 3.2µM compared to 
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35nM for Src. This marks a difference of almost two orders of magnitude between 

the IC50 values. Additionally, each of these compounds displayed increased selectivity 

toward Src, as compared with Abl. Of particular note, compound 15 (-E) and 

compound 13 (-C) demonstrated the largest gains (10.2 and 10.3 A/S IC50 ratios). 

These two dasatinib derivatives represent the only bona-fide Src specific inhibitors in 

our dataset, as they possess IC50’s at least an order of magnitude higher for both Abl 

and Csk, and present a significant increase in kinase specificity when compared to 

dasatinib. 
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Table 1. 
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Table 1. Summary of inhibitor potency and selectivity. Selected compounds were 

evaluated against each of the enzymes in our panel. Potency was measured via IC
50

 in 

standard P32 kinase assay with appropriate substrate. Selectivity is represented as 

the ratio of IC
50

 for one enzyme over another. The change in IC50, as compared to 

dasatinib, is calculated and shown in the right-most columns to illustrate how 

potency was effected. 
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Assaying the dynamic nature of dasatinib esters 

Given the profound influence of drug metabolism on inhibitor efficacy, we 

characterized how our synthesis strategy may impart a unique and favorable 

metabolic profile. In vivo, numerous carboxyesterases have been shown to hydrolyze 

ester bonds of compounds (similar to those in the dasatinib derivatives), particularly 

upon circulation to the liver. Mouse microsomal preparations contain relatively high 

concentrations of carboxyesterases and frequently serve as proxies for the liver in 

drug metabolism studies.  In a variation of our kinase assay, select compounds were 

pre-treated with these microsomal preparations prior to assaying for kinase 

inhibition, alongside the untreated compound. If the derivative is a suitable substrate 

for one or more carboxyesterase, the products of the subsequent reaction should 

include the core dasatinib molecule. The assays relied upon the careful consideration 

of proper compound concentration and a significant difference in potency between 

the derivative and dasatinib. Executed properly, the microsomal esterase activity 

toward the compound in question can be monitored as a function of kinase 

inhibition. 

 As the dasatinib derivatives vary substantially in size and chemical properties, 

it is worth noting that stability of the derivative likely fluctuates between 

compounds, according to variations in substrate specificities of carboxyesterases.  

With this dynamic in mind, we chose representative compounds for the assays, 

namely 13 (-C) and 17 (-C8). From the results, summarized in Figure 4, it appears that 
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compound 13 (-C) is remarkably unaffected by carboxyesterases, even after 4 hours 

pre-treatment. The stability of this compound is in sharp contrast to that of 17 (-C8), 

which showed significant changes in inhibition after just 20 minutes pre-treatment. 

After two hours, compound 17 (-C8) inhibited nearly all kinase activity. This 

observation is consistent with adduct hydrolysis by microsomal carboxyesterase and 

recovery of the dasatinib core molecule (which is more than six times as potent). The 

dynamic offered by these esterified derivatives can be quite advantageously applied 

toward engineering a unique drug metabolic profile. 
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Figure 4. 
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Figure 4. Microsomal preparations metabolize dasatinib derivatives. Treatment of 

compounds with mouse microsomal preparations prior to inhibition assays 

demonstrate the differential metabolism of compounds, likely due to desterification 

via carboxyesterases. The time course was done with compounds -C and -C8 at 

800nM against Abl to highlight the differences. At this concentration, each compound 

is expected to have little to no inhibition of Abl as a result of the adduct used at the 

derivatized position of dasatinib. After 2 hours of treatment, compound -C
8
, but not -

C, recovers almost all of its potency, relative to the core compound. 
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Development of a fluorescent dasatinib derivative 

To expand upon the vast potential offered by dasatinib derivatives, we sought 

to construct a fluorescent probe for in vitro characterization of kinases. Tethered to 

dasatinib by a glycine linker, a fluorescein conjugated derivative was synthesized 

(compound 26). The compound was assayed against Src, finding an IC50 of 1nM.  The 

affinity of the dasatinib-fluorescein compound was then measured using a 

fluorescence polarization binding assay.  

In such an assay, polarized light of a specific wavelength is used to excite the 

fluorescein molecule, which in turn emits light at a higher wavelength. The degree to 

which the emitted light is depolarized depends on the free rotation of fluorescein, 

which is inversely correlated with ligand binding. Thus, the binding affinity of a 

fluorescein-ligand conjugate for a given receptor can be measured by recording the 

polarization of light in serial dilution of the receptor and fitting the data to a standard 

ligand binding curve. 

We sought to measure the affinity of our ligand for a form of Src that is 

deficient in kinase activity (kdSrc). This mutant kinase is often able to be purified to 

significantly higher concentrations than active kinase, which adds to the convenience 

of the assay and broadens its potential application (as discussed later). The binding 

curve generated from these assays (shown in Figure 5A) reveals an affinity of 15nM 

toward kdSrc by our fluorescein-dasatinib conjugate (compound 26). This value was 
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higher than expected and may reflect differences between active/inactive kinase 

forms or limitations of the assay’s lowest detection limit. 

To explore the utility of this fluorescent probe, we employed a variation of 

this assay to determine the binding affinity of unlabeled dasatinib via a competitive 

binding assay. In this assay, fixed concentrations of the fluorescent probe and kinase 

were used to produce a high polarization signal. The reactions were then titrated 

with unlabeled dasatinib while recording polarization. The resulting data was 

graphed and curve fitting analysis provided a binding constant of 3nM for dasatinib 

(Figure 5B). 

The results of these fluorescence polarization binding assays with kinase 

deficient substrate are fairly consistent with the IC50’s derived from the radio-ligand 

kinase assays. The difference between the measured affinities of the fluorescent 

probe and dasatinib accurately predict the relative potency of the compounds as 

kinase inhibitors.  Combined with the ease of polarization binding assays, the utility 

of compound 26 (-G-Flu) as a probe for inhibitor development is clear. 
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Figure 5. 
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Figure 5. Polarization binding assays using a fluorescent dasatinib derivative.(A) 

Fluorescence polarization assay of the kinase deficient Src catalytic domain titrated 

against compound -G-Flu (400nM). A Kd of 15nM was determined for the ligand. (B) 

Competitive binding assay of compound -G-Flu (50nM) and dasatinib against the 

kinase deficient Src catalytic domain (125nM) reveals a Kd of 3nM, as measured via 

fluorescence polarization (50mM HEPES, pH 8.0). 
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Discussion and Conclusions  

Library construction 

Based upon the wealth of available structural data and past successes of 

dasatinib modifications for affinity-based interaction studies, we hypothesized that 

the exceptional potency of dasatinib would support its use as a molecular scaffold for 

the synthesis of novel kinase inhibitors with enhanced specificity.  The solved crystal 

structures of dasatinib in complex with several PTK catalytic domains demonstrate 

the common manner in which the inhibitor binds PTK active sites. Particularly 

intriguing to us, is a hydroxyl group of dasatinib that extrudes from the binding 

pocket to the surface of the kinase. In literature, there are numerous examples of 

dasatinib (and other kinase inhibitors, as well) that have been modified at this 

position through the coupling of compounds to agarose resin or other molecules. 

These modifications enabled efficient extraction of PTKs that are potential dasatinib 

targets from various cancer cells and tissues. These affinity-driven applications rely 

upon specific interaction or recognition of kinases, which suggests that the inhibitor 

portions of these compounds retain, at least in part, their ability to bind PTK active 

sites. We reasoned that if large resin attachment does not abolish the affinity of 

dasatinib, then smaller chemical adducts should be well tolerated, too. 

In the present study, we sought to take advantage of this feature of dasatinib 

by attaching a series of small molecules in an effort to impart novel inhibitor 

characteristics. In the spirit of rapid library development, we desired a synthesis 
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strategy that was efficient, convenient, and easily employed to obtain derivatives 

with a wide range of chemical properties. To meet these criteria, we opted for batch 

synthesis directly from dasatinib (free base) by esterification of its hydroxyl group to 

carboxylic acid containing compounds.  

A potential drawback to any derivitization, of course, is the potential 

destruction of key features of the original molecule. During initial development of 

dasatinib by Bristol-Meyers-Squibb, the hydroxyl group was determined to be 

necessary for proper activity of the inhibitor (personal communication with R. Tiwari, 

addition citation?). Upon review of the crystallized ligand, it seems likely that the 

proper binding orientation of the core molecule is stabilized by energetically favoring 

exclusion of the alcohol from the binding pocket. Docking studies of this molecule 

without the hydroxyl group support this idea, as calculated binding energies rise and 

predicted conformation deviates substantially from the known crystal structures. 

Additionally, this polar group’s inclusion probably enhances the solubility or 

bioavailability of hydrophobic dasatinib core molecule. Thus, our derivitization of 

dasatinib, which targets this position for modification, threatens to disturb proper 

binding conformation and solubility-related characteristics. The potency with which 

the derivatives inhibit the PTKs in our panel suggests proper orientation is likely 

achieved by most, if not all compounds.  
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Derivitization alters kinase selectivity 

The structural diversity of target kinases is a central element to this study, as 

we endeavor to identify the different types of inhibitor interactions that confer 

specificity. For this reason, we chose three kinases that represent divergent non-

receptor PTK families, distinct in structure and function. An ideal inhibitor would 

target just one of these kinases through recognition of one or more of its distinct 

structural features, not found in more distantly related PTKs. Therefore, our diverse 

panel of kinases serves to increase our chances of identifying novel compounds that 

more closely resemble an ideal inhibitor. 

 With that idea in mind, it is important to recognize that our kinase inhibitor 

scaffold, dasatinib, already has a built in bias toward certain kinases, particularly the 

Abl and Src families, as compared to others, like Csk. This suggests two things: first, 

that dasatinib recognizes structural elements common to all three kinases, and 

second, that Csk possesses features that limit this interaction. It is, therefore, 

reasonable to assume that complete reversal in this pattern of specificity is unlikely 

to occur without a major change in binding mode. The inhibitor would not only have 

to overcome its previously limited interaction with Csk, but also would have to 

develop some new interaction that is not tolerated by Abl and Src. Therefore, when 

starting from a biased inhibitor, altered selectivity is probably most likely to occur as 

a result of either the elimination or exaggeration of an inherent bias. 
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From this line of reasoning, it makes sense that our library of derivatives 

displays no signs of dramatic reversals in kinase selectivity pattern. All of the 

compounds investigated better inhibit Src than Abl, and Abl was always inhibited 

more than Csk. This apparent limitation aside, our measures of selectivity do change 

dramatically for a number of inhibitors, simply by enhancing a pre-existing bias of 

dasatinib for or against a given kinase. In one of the most dramatic examples, the IC50 

of compound 15 (-E) increased only mildly for Src (+16%) but greatly for Csk (+186%) 

and even more so for Abl (+486%). While other compounds such as 13 (-C) and 18 (-

C10) also possessed significantly altered kinase selectivity, compound 15 (-E) was 

particularly unique for its minimal loss of potency toward Src. 

The changes in kinase inhibitor specificity are quite remarkable considering 

the limited size of the library generated. Compound 15 (-E) demonstrates the ease 

with which dasatinib derivatives can be developed to significantly alter kinase 

selectivity. An IC50 for Src that is more than a magnitude lower than for other kinases 

is certainly quite notable and, we believe, represents a major step in the 

development of truly specific PTK inhibitors. Furthermore, this success can be built 

upon by expanding this strategy to include many new dasatinib derivatives for study 

and comparison to compound 15 (-E). 
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Structural basis of increased selectivity 

The structural variation of PTKs outside the ATP binding pocket is localized to 

a few small areas. One such region is located at the end of α-helix D of the peptide 

binding lobe and extends to α-helix E. Even among closely related PTKs, like the Src 

Family Kinases, a great deal of structural variation exists here. This region has also 

been implicated as a key site of substrate recognition in some kinases.20 

Furthermore, α-helix D is in very close proximity (within a few angstroms) to the 

hydroxyl group of dasatinib.  

One hurdle to developing dasatinib derivatives in this manner has to do with 

the size of the compounds being tethered to the inhibitor. If these are too short or 

too long, they will likely miss the targeted α-helix D. Likewise, bulkier compounds 

threaten to interfere via steric hindrance. One means by which we sought to alleviate 

such concerns was to simulate the binding of potential compounds using molecular 

modeling software. Retrospective analysis of these models, in conjunction with our 

biochemical data and the available crystal structures of Abl, Csk, and Src, offer 

valuable insight into the changes in specificity we observed from our compounds. 

The first and, perhaps, most exciting feature that the models predict is the 

preferred orientation of the compounds that were attached to dasatinib. Despite 

allowance to rotate freely, almost all of the simulated dockings favor interaction with 

the region surrounding α-helix D, rather than the equally proximal ATP binding lobe 



126 
 

of the kinase. Undoubtedly, this orientation better positions the inhibitor for possible 

contact with structural features that are unique to any given kinase.  

For example, two of the three most common hydrogen bonds, uniquely 

formed by dasatinib derivatives, which we observed in the dockings, occur with side-

chain residues of Lyn’s α-helix D (S333 and E335). The corresponding sites of Src 

(G352 and M354) and Csk (S280 and R282) would clearly produce different results, 

while Abl deviates in structure so greatly at this position; it is hard to identify 

cognates. While it is difficult to make any specific claims from molecular docking 

simulations, it seems rather impossible to identify structural features other than α-

helix D that could explain the level of differentiation that we observed, by the kinases 

we examined.   

Key features of α-helix D may also explain the altered selectivity we observed 

of the fatty acid conjugated derivatives. The extreme effects that these molecules 

have on potency are likely due to exclusionary interactions with the polar surface of 

the kinase that surrounds the exit from the inhibitor binding pocket. This can easily 

be seen by coloring the surfaces of the kinases according to hydrophobicity. In Src, 

however, the pattern of hydrophobicity at the end region of α-helix D is such that a 

clear pathway to α-helix E (also fairly hydrophobic) is maintained. This may explain 

the longer-chained fatty acid derivatives’ enhanced capacity to inhibit Src, relative to 

the other kinases.  
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The structural evidence examined thus far suggests that α-helix D offers the 

greatest potential avenue of interaction with the synthesized compounds. The novel 

specificities of the dasatinib derivatives we generated certainly imply unique 

interactions have been formed with the PTKs they inhibit.  While more conclusive 

evidence remains to be collected, it appears highly likely that the modulation of 

kinase-specific inhibition observed in this study is a direct result of novel interactions 

outside the ATP binding pocket, particularly α-helix D. 

 

Implications in drug metabolism 

The ADME characteristics of a given kinase inhibitor are vital to its usefulness 

as a therapeutic tool. How well the drug gets taken into the target cells and how long 

it remains in active form are direct functions of the chemical properties inherent in 

the molecule. Particularly, susceptibility of a drug to the hosts’ metabolic processes is 

a major part of this. The stability assays performed in this study highlight an 

important feature of our dasatinib derivatives.  

Consider the compound 17 (-C8), which displays a low nanomolar IC50 that is 

over an order of magnitude greater than dasatinib. While this study does not address 

bioavailability, we have observed that the compound is readily metabolized to a 

highly active inhibitor by carboxyesterases from the liver. Therefore, if titrated 

properly, this compound may offer considerable value as a pro-drug for the extended 

release of dasatinib.  
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The utility of other derivatives, perhaps not metabolized by carboxyesterases, 

also opens the door for new applications. Compound 13 (-C) for example, is another 

low nanomolar inhibitor that actually displays enhanced specificity for Src compared 

to dasatinib. While overall potency is diminished to some degree, the added 

specificity may provide the proper trade-offs to enable more effective outcomes. 

Perhaps the most interesting feature of this compound, however, is its inability to be 

broken down by the microsomal preparations. The fact that the Cys adduct appears 

to disrupt the inhibitor’s metabolic break-down offers evidence that this strategy 

may be employed to subvert other enzymatic components of a host’s drug 

metabolism, to effectively increase half-life of the compound.  

The broad applications offered by an altered drug metabolic profile are 

numerous and multifaceted. Any derivative, no matter how small the alteration, can 

potentiate major changes. The huge chemical diversity that is possible with the 

strategy we describe here, however, can be rapidly and conveniently applied to 

screen for desired characteristics, without resynthesizing the core dasatinib 

molecule. With these ideas in mind, further investigation of the unique ADME 

features of these compounds and newly synthesized dasatinib derivatives seems 

merited, given the potential therapeutic benefits of increased stability and extended 

release.  
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Fluorogenic dasatinib derivatives 

Compound 26 (-G-Flu) is a dual-purpose inhibitor with broad potential 

applications. As an inhibitor, it can bind to a kinase tightly, while enabling its visible 

detection. This may be particularly useful as a molecular diagnostic tool for imaging. 

Likewise, in vitro techniques may find this compound useful in FACS for monitoring 

kinase expression.  Since this compound is capable of measuring the binding of 

unlabeled inhibitor, it will be especially adaptable to high-throughput kinase inhibitor 

drug discovery.  
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Methods 

Reagents and chemicals 

[γ-32P]-ATP (6,000 Ci mol−1) was purchased from PerkinElmer for kinase assays 

and pre-cast protein gels were bought from BioRad. Dasatinib was obtained as free 

base from LC Laboratories. All reagents used for bacterial culture and protein 

expression were purchased from Fisher. All other chemicals reagents were obtained 

from Sigma. 

 

Molecular Modeling 

Crystal structure 2ZVA of protein-tyrosine kinase Lyn in complex with 

dasatinib (ligand identifier: 1N1) was downloaded from the PDB (www.pdb.org) and 

edited within AutoDockTools in preparation for simulations, according to the 

guidelines provided. In order to accurately reproduce the crystal structure in control 

dockings, the receptor was held rigid and the rotatable bonds (torsions) of the core 

dasatinib structure were frozen with the exception of the C13-N5 and N6-C20 bonds. 

Based on the superimposition of other solved structures, these appear to be the only 

bonds to display any great deviation from kinase-to-kinase. The virtual ligands were 

prepared using Discovery Studio (Dockings were performed with an exhaustiveness 

of 256 within a search space measuring 22x24x28, centered at (11, 90.5, 57.5) x,y,z. 
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Synthesis of Dasatinib Derivatives 

Synthesis and purification of all dasatinib derivatives was carried out by the 

lab of Dr. Keykavous Parang, according to standard protocols. 

 

Protein Expression and Purification 

Enzymes and protein substrate were prepared as previously described.21, 22 

Briefly, vectors for expressing Abl, CrkL, or Csk as GST-fusions and the 6xHis-tagged 

Src catalytic domain (SrcCata) were made and cloned into appropriate E. coli. 

systems. For each, 1-liter LB cultures were grown at 37°C until an OD600 of about 1 

was reached and then induced at RT with 0.4 mM isopropyl β-d-

thiogalactopyranoside while shaking at 250 rpm for 4-6 hours. Cells were harvested 

at 4°C via centrifugation at 7,000 x g. Pellets were either stored at -20°C or 

immediately re-suspended in appropriate lysis buffer: PBS + β-mercaptoethanol, pH 

7.3 for GST-fusions and 50mM HEPES + 200mM NaCl + 10mM imidazole + 0.01% 

triton x-100, pH 8.0 for 6xHis-proteins. Following 4x15sec sonication in 12mL glass 

tubes on ice, lysates were cleared by centrifuge for 10min at 22,000 x g and 

incubated with 1mL agarose resin at 4°C for 1hr. This suspension was then loaded 

into a column, washed with lysis buffer and eluted with either 50mM Tris + 10mM 

GSH, for GST-fusions, or 50mM HEPES + 200mM imidazole to release 6xHis-tagged 

protein. All samples were quantified using standard Bradford assays and analyzed by 

SDS-PAGE/coomassie staining to check purity. 
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Kinase Assays and IC50 Measurements 

Enzyme activity and inhibition was characterized using the following methods, 

adapted from previous work.21, 22 Csk and SrcCata activity levels were measured from 

incubations with polyE4Y (1mg/mL) and CrkL (0.5mg/mL) was used as a substrate for 

Abl. Dasatinib and derivatives were dissolved in 10% DMSO / 90% kinase buffer 

solution (KB10) and diluted in series as needed. In screening assay reactions, multiple 

inhibitors were used at a fixed concentration for relative inhibition comparisons. IC50 

measurement assays, however, had a single inhibitor but each reaction varied in the 

compound’s concentration. In assays requiring pre-treatment, undiluted stocks of the  

inhibitors were incubated at RT with microsomal preparations to a final 

concentration of 12.5ug/mL. 

In each assay, a series of 50µL duplicate reactions were setup at 30°C to 

contain the appropriate inhibitor concentration, substrate, and enzyme in 75mM 

EPPS, pH 8.0 + 200μM [γ-32P]-ATP (~1000 dpm/pmol) + 12 mM MgCl2 + 5% glycerol + 

0.005% Triton X-100. The reactions were stopped after 20min incubation by blotting 

onto filter paper strips prior to precipitation and washing in hot 5% trichloroacetic 

acid. The strips were then sorted and separated into vials of scintillation fluid for 

signal quantification in a Beckman Coulter LS-6500. From these counts, enzyme 

turnover was calculated for each reaction. 
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Binding assays 

To determine the binding of compound 26 (-G-Flu) toward the kinase-

deficient Src catalytic domain (kdSrcCata), fluorescence polarization (FP) binding 

assays were carried out as described previously.23, 24 Specifically, a series of kdSrcCata 

dilutions were made, ranging from 62.5 – 1,000nM (and an additional balnk). Each 

dilution contained 400nM compound 26 (-G-Flu) in 50mM Tris, pH 8.0. FP was then 

detected using a PerkinElmer LS55 Luminescence Spectrophotometer at 25°C. 

Wavelengths utilized were 485 nM for excitation and 530 nM for emission. The net 

change in FP was plotted as a function of kdSrcCata concentration and fit to the 

following equation: FP = FPmax x [kdSrcCata] / (KD + [kdSrcCata]). Where FPmax is 

the maximum polarization value at saturation and KD is the dissociation constant of 

compound 26 (-G-Flu) binding to kdSrcCata. Regression analysis was carried out in 

LabFit software (www.labfit.net). 

 To determine the binding of unlabeled dasatinib, its ability to compete against 

the fluorogenic compound for binding to kdSrcCata was determined by an FP 

competition binding assay.23 This assay setup differs from the above in that each 

tube had a 50nM concentration of compound 26 (-G-Flu), 125nM kdSrcCata (held 

constant), and concentrations of the unlabeled dasatinib from 200 – 1,600nM. The 

competing ligand’s KD was then determined by plotting the FP as a function of the 

increasing concentration of the unlabeled compound and fitting the curve to the 

equation: FP = A x ([kdSrcCata]t x [Probe]t x KD2)/( KD1 x KD2 + KD1  x [Competitor]t + 
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[kdSrcCata]t x KD2), where KD1 is the dissociation constant of compound 26 (-G-Flu), as 

determined above, and KD2 is the dissociation constant of the unlabeled dasatinib. A 

is a conversion factor between the concentration of the probe-kinase complex and 

the FP value. [kdSrcCata]t and [Probe]t were total kinase and compound 26 (-G-Flu) 

concentrations. [Competitor]t is the total concentration of unlabeled, competing 

ligand. 
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