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PHYSICAL REVIEW A VOLUME 35, NUMBER 12 JUNE 15, 1987

Routh-Hurwitz criterion in the examination of eigenvalues of a system
of nonlinear ordinary differential equations

Edmund X. DeJesus
Division ofScience, College of Basic Studies, Boston University, Boston, Massachusetts 02215

Charles Kaufman
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

(Received 27 January 1987j

In stability analysis of nonlinear systems, the character of the eigenvalues of the Jacobian matrix
(i.e., whether the real part is positive, negative, or zero) is needed, while the actual Value of the
eigenvalue is not required. We present a simple algebraic procedure, based on the Routh-Hurwitz
criterion, for determining the character of the eigenvalues without the need for evaluating the eigen-
values explicitly. This procedure is illustrated for a system of nonlinear ordinary differential equa-
tions we have studied previously. This procedure is simple enough to be used in computer code, and,
more importantly, makes the analysis possible even for those cases where the secular equation can-
not be solved.

I. INTRODUCTION

When studying systems of nonlinear ordinary differen-
tial equations, it is often useful to examine the eigenvalues
of the associated linearized system. For example, consider
the system of nonlinear ordinary differential equations
given by

W=H W+G(W),

where W= W(t) is a column n vector, H is an n &&n ma-
trix, and G(W) is a nonlinear vector-valued function.
G(W) is defined such that G(W)/~~W~~ is continuous
and vanishes for W~zero. The stability of solutions to a
system (I) satisfying these conditions can be determined
using the eigenvalues of H

(I) The equilibrium solution W(t) =0 is asymptotically
stable if all the eigenvalues of H have negative real part.

(2) The equilibrium solution W(t):—0 is unstable if at
least one eigenvalue of H has positive rea1 part.

(3) The stability of the equilibrium solution W(t)=—0
cannot be determined from H alone if all the eigenvalues
of H have a real part less than or equal to 0 but at least
one eigenvalue of H has a zero real part.

Thus, we do not really need to know the numerical
values of the eigenvalues: All we need to know is the char-
acter of each eigenvalue. (By character we mean whether
the real part of the eigenvalue is positive, negative, or
zero. } We note also that in practice it may be difficult, or
impossible, to calculate the actual values of the eigen-
values. Finding the values of the eigenvalues is equivalent
to finding the zeros of an nth-degree polynomial. For
n &5 there exists no general procedure for determining
the zeros of an nth-degree polynomial (and, equivalently,
the values of the eigenvalues), except for special cases.

We outline here a simple algebraic procedure for quick-

A =d(A+dqB. C,
B=e&B+eqA C+e3C,

C =f,C+f,A.B,
(2)

where A, B, and C are functions of time t. The functions
A, B, and C are proportional to the amplitudes of the
terms of the truncated Fourier series. In (2),

d) ———I /R, dp ——

e~ ———k /R, eq ——

f, = —(k +l )/R,

2I
k (k'+1')

—2k —2km

l(k +1 ) k +1
k —I

2kl

where k and I are constants related to the wave numbers
of terms of the Fourier series, m is a constant related to
the assumed boundary-layer flow along the plate, and R is
a variable. R is the Reynolds number of the fluid. In our
previous work we used k =0.62, I =0.07, and
m = —0.064, and examined the behavior of system (2) as
we varied R in the range 1 to 40.

ly determining the character of the eigenvalues. The pro-
cedure is based on the Routh-Hurwitz criterion for deter-
mining the character of zeros of an nth-degree polynomi-
al.

We illustrate the procedure by applying it to a system
of nonlinear ordinary differential equations that we have
used previously to model fluid flow within a boundary
layer along a flat plate. Briefly, a truncation of the
Fourier series solution to the Navier-Stokes equations
yields a system of nonlinear ordinary differential equa-
tions:
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II. PROCEDURE

Pp. Ap ——0,

P1.

Bp ——0, Cp ——0,

1/2
ml 1 m 1 41 (k +1 )~

A1 ——

2k 2 k R(1 —k)

Step A. We change the system (2) so that it resembles
system (1). Specifically, we want S'=—0 to be the equili-
brium solution; also we want to split the system into
linear and nonlinear parts corresponding to the matrix H
and the function G.

(1) Identify the equilibrium points of (2), that is, those
points where A, B, and C are zero. In system (2) there are
five equilibrium points, which we represent as
P;=(A;,B;,C;) for i=0, 1,2, 3,4. These five equilibrium
points are

R C

2(k +1 )k
(k2 12)l/2

—759. . - (3)

for our values of k, l, and m.
(2) Transform system (2) so that 8'—:0 is the equilibri-

um solution. This can be done quite simply as follows:

X=A —A;,
Y=B—B;, for i =0, 1,2, 3,4 .

Z=C —C,

(3) Recast systein (2) in terms of the transformation (4).
This results in a new nonlinear system:

equilibrium points are real, but P1=P3 and P2 =P4. For
R greater than R, all the equilibrium points are real and
distinct. The value of R, can easily be computed by set-
ting the radicand in A1 or A3 equal to zero; thus

k (k'+1')
1 R

1

(k —1 )

(k2 12)1/2A1

2l

1/2 X=d1X+d2Ci Y+d2B;Z+d2 Y.Z,
Y=eqC X+e& Y+(eqA;+e3)Z+ezX. Z,
Z=fqB;X+f~A; Y+fiZ+fpX Y .

(5)

2 2 1~ 2 1~ 2 1

P3..

Comparing system (5) with system (1), we can identify
W=(X, Y Z), G(8') =(dq Y.Z, eqX.Z, fqX. Y) and

d1 d 2' d2B
' 1/2—ml 1 m 1 41 (k +1 )

A +
2k 2 k R(l —k)

H = e2C; e1

f~B; f~A;

e2A;+e3

fi

B3——Bi, C3 —— (k —1 )'
2l

P4.. A4 ——A3) B4 B1, C4 C3

Notice that for R less than a critical value R„only Pp is
real and P1 4 are all complex. For R equal to R, all the

I

as desired. Since system (5) is in the form of system (1),
we could now determine the stability of the equilibrium
solutions by examining the eigenvalues of the matrix H.

Step B. Start determining the eigenvalues of the matrix
H. We do this in the usual way, by setting
det(H —AI) =0. This yields the characteristic equation

O=A3+( —di —ei f,)A~-
+ (d i e

& +d,f, +e,f, elf, A; d,f—,B; dz ez—C; —e3fp
—A j )A,

2 2 2

+(di 3f&A~ d&e&f&+d&e&f&Ai'+d2e&f& +d&e»iC

dqeqfqA;B;C; dq—eqA;B;C; d—qe3fqB;C;) . — (7)

Using the definitions of di, dz, e, , ez, e3, f„fq, and the
possible choices for A;, B;, and C; in Eq. (7) yields

0=~+ ""+"' ~+
R

ml(1 —k )A;

(k +1)
(k —1 )A;

(4k'A, +2ml) .
R (k'+ I') (8)

This is the characteristic equation one would ordinarily
solve to determine the eigenvalues of H. Equation (8) is a
cubic equation in A.. A general solution to the cubic equa-
tion exists, but is very complicated. To obtain a general
solution to (8), we would take the coefficients of the A,

terms and substitute them into the general solution to the
cubic. The result is an extremely complicated equation
which obscures, rather than elucidates, the character of
the eigenvalues as the value of R changes. Recall that we
only desire to know the character of the eigenvalues. We
do not need to solve (8) for 2, .

Step C. Use the Routh-Hurwitz criterion to determine
the character of the solutions to (8). We first write our
nth-degree polynomial in the form

0=apkn+a1gn —1+ ' ' +a.k" ~+ +a„

Comparing this form to equation (8), we can identify
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Qo ——1,

Q2=

2(k2+l2)
Q) =

R

ml(l —k )A;

(k'+ l')'
(k —I )A;

(4k A;+2ml) .
R (k'+ l')

(9)

are no changes in sign of the sequence and no positive real
parts of the eigenvalues; and (2) if the fourth term in the
sequence is negative, there will be one sign change in the
sequence and one positive real part of the eigenvalue.

Examining T3/T2 in (11) we see that the factor outside
the parentheses is always positive since A; is always posi-
tive when A; is real. The factor inside the parentheses
can be positive, negative, or zero. We find that this factor
is only zero when

Next we form the numbers Tp, T&, T2, T3 as

Tp ——Qo=1

2(k'+1')k'
(k2 l2)1/2 (12)

2(k'+ l')
T] —Q ] — )R

(10)
Q& Qp

Q3 Q2

4k l(k +1 )=Q (Q2 —Q3Qo =
R

Q] Qp 0

T3 ——Q3 Q2 Q] ——Q3T2 .

0 0 Q3

(More generally, Tk is the determinant of the k X k ma-
trix, MJ. , for k &n. The matrix M;~, is formed using this
rule: if 2i —j &0 or 2i —j &n, then M,z

——0; otherwise,
M~1 ——a2; &.) Next we construct the sequence
Tp, T],T2 /T], T3 /T2 '.

To= &

2(k'+1')
R

2k l
R

T2 /T) ——

(k —1 )A;
T3/T2 ——a3 —— (4k A;+2ml) .

R(k +l )

Once we have constructed this sequence we can determine
the character of the eigenvalues in this way (Routh-
Hurwitz criterion): The number of roots with positive
real parts of a real algebraic equation is equal to the num-
ber of sign changes in the sequence (11) above. [Our Eq.
(8) is a real algebraic equation because a,ll the coefficients
of A, are real. This in turn is true because only real equili-
brium points A;, 8;, and C; are relevant. ]

In (11), with real k and 1 and positive R, it is easy to
see that the first three terms of the sequence are all posi-
tive. Therefore, the Routh-Hurwitz criterion tells us that
(1) if the fourth term in the sequence is also positive, there

which is identical to R, in (3). Stability of the equilibria
can therefore only change at R =R, . Thus we have the
following cases:

Case I: R=R, . Then PI ——P3 and P2 ——P4 and Q3 is
zero, implying that one eigenvalue [root of (8)] is zero, im-
plying the other two eigenvalues [roots of (8)] have nega-
tive real part. So we know the character of the eigen-
values. (By the way, since one eigenvalue is zero in this
case we cannot determine the stability of the nonorigin
equilibrium points. )

Case II: R &R, . In this case the origin is the only real
equilibrium point. The origin is asymptotically stable.

Case III: R &R, . If A;=A& or A;=A2 then Q3 is
positive, so all four terms in the sequence (11) are positive,
so there are no sign changes and so no positive real parts
of eigenvalues. Since Qp ~ 0, all eigenvalues have negative
real parts. Therefore A

&
and A 2 are asymptotically

stable. If A;=A3 or A;=A4 then Q3 is negative, so the
fourth term of the sequence (11) is negative, so there is
one sign change and so one positive real part of eigen-
values. Therefore A3 and A4 are unstable. Again, we
have determined the character of the eigenvalues.

III. CONCLUSIONS

We have seen that we can easily find the character of
the eigenvalues of the matrix of the linearized system as-
sociated with a system of nonlinear ordinary differential
equations. There is a step-by-step procedure which uses
the Routh-Hurwitz criterion in determining the character
of eigenvalues. This procedure would prove useful in any
study which involves examining the eigenvalues of a sys-
tem, especially a nonlinear system. The procedure is sim-
ple enough that it could be adapted to computer codes,
without great loss of performance.

We wish to thank Professor Gerasimos Ladas for a sug-
gestion which led to this study.
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