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ABSTRACT

Given a finite connected planar graph G with s finite faces, we define the

cycle-intersection matrix, C(G) = (cij) to be a symmetric matrix of size s × s

where cii is the length of the cycle which bounds finite face i, and cij is the

negative of the number of common edges in the cycles bounding faces i and j for

i 6= j. We will show that detC(G) equals the number of spanning trees in G.

As an application, we compute the number of spanning trees of grid graphs via

Chebychev polynomials. In addition, we show an interesting connection between

the determinant of C(G) to the Fibonacci sequence when G is a triangulation of

an n-gon by non-overlapping diagonals.

We also apply methods from graph theory to the field of postsecondary math-

ematics education. We describe here a remediation program designed to help

calculus students fill in the gaps in their precalculus knowledge. This program

has provided us with a way to strengthen the quantitative skills of our students

without requiring a separate course. The data collected are analyzed here and

suggestions for program improvement are made.
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CHAPTER 1

The Cycle Intersection Matrix and Applications to Planar Graphs

1.1 Introduction

Spanning trees are important substructures of a graph which are studied be-

cause of their simplicity and their relevance to various fields. In particular, the

number of spanning trees in a graph is an interesting invariant. The problem of

counting the number of spanning trees in a graph has been studied widely and has

applications in computer science and network design. There exist various methods

of finding this number, most of which rely on a matrix associated with the graph.

Here, we will introduce a new matrix, called the Cycle Intersection matrix, and

provide a new method to compute the tree number. We will see that this new

method is more in line with Temperley’s tree number formula than with the well-

known Matrix-Tree theorem. Further, this new method reveals remarkably elegant

results when applied to certain classes of planar graphs.

1.2 Background

The graphs we consider are finite, connected, and planar, meaning they consist

of finitely many edges and vertices in a single component and can be drawn in the

plane without crossing edges. We can assume that these graphs are simple so that

there is at most one edge between every pair of vertices. Since our main focus is the

number of spanning trees, we will also assume there are no loops. A tree is a graph

which contains no cycles and a spanning tree is a subgraph of a graph G which

uses all vertices of G. The number of spanning trees in a graph G is called the

tree number, and will be denoted κ(G). Spanning trees are sparse graphs, meaning

they contain few edges. Because of this feature, they are used in many applications

including computer networks, transportation routes, and water supply networks.
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Example 1. The bold edges denote a spanning tree:

There are eight spanning trees in the graph from Example 1, as shown below.

Figure 1. The eight spanning trees of the graph in Example 1.

When we draw a planar graph, we break up the plane into bounded regions,

or faces. We consider the unbounded area outside of the graph to be a face and

refer to it as the infinite face. For a planar graph, G, the dual is obtained by

placing a vertex in each face of G and connecting two vertices each time their

corresponding faces share an edge. We will use G∗ to denote the dual of a planar

graph G. Although this will be an important tool for us, we will also make use of

the weak dual, denoted G∗, which is constructed the same way as the dual graph,

but without placing a vertex in the infinite face.
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Example 2. The graph G and its dual and weak dual (dashed edges).

G G∗ G∗

1.2.1 Tree Number

Counting the number of spanning trees, or the tree number, in a graph is

an important research area in combinatorics. The problem of calculating the tree

number for a graph has been studied widely and has many applications in network

analysis. In 1854, Gustav Kirkhoff showed that the number of spanning trees in

a graph is equal to any cofactor of the Laplacian matrix of that graph [1]. Other

methods for computing this number include use of the deletion-contraction for-

mula [2] and Temperley’s tree number formula [3]. More recently, in 1981, Bange,

Barkauskas, and Slater [4] computed the number of spanning trees in triangula-

tions using a reduction formula that makes use of the deletion-contraction formula.

However, this method results in computing spanning trees of multiple graphs, some

of which contain multiple edges. Here we will explore a new method of calculating

this number using elementary ideas from linear algebra, which we will see is more

straightforward than previous methods.

1.2.2 Tools for Computing the Tree Number

One of the main tools for computing κ(G) is the Matrix-Tree theorem, pro-

posed by Kirkhoff in 1854 [1]. This theorem relies on the Laplacian matrix, defined

below.
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Definition 1. The adjacency matrix, A(G), of a graph G on n vertices is the n×n

matrix given by

aij =


1 if vi is adjacent to vj

0 if not.

Notice that the adjacency matrix is a symmetric matrix whose rows and

columns are indexed by the vertices of G. This matrix keeps track of the ad-

jacencies among vertices and gives a complete description of the graph. Another

important matrix related to a graph is the diagonal matrix, D(G). The rows

and columns are also indexed by the vertices of G and its entries are given by

dii = deg vi and dij = 0 for i 6= j. This matrix simply keeps track of the degree of

each vertex. The n×n matrix L(G) = D(G)−A(G) is called the Laplacian matrix

of the graph G. An important property of L(G) is that the sum of the entries in

each row or column is zero, and hence, the matrix is not invertible. The theorem

below is Kirkhoff’s famous Matrix-Tree theorem.

Theorem 1. The number of spanning trees of a graph is equal to any cofactor of

its Laplacian matrix.

Hence, if we denote by L0(G) the (n−1)×(n−1) submatrix of L(G) obtained

by removing an arbitrary row i and column i, the Matrix-Tree theorem implies that

detL0(G) = κ(G). (1)

For the purpose of this work, we will always assume L0(G) is obtained from

G by removing the last row and column, and we will refer to L0(G) as the reduced

Laplacian of G.

An analog of the Matrix-Tree theorem is Temperley’s formula for κ(G) [3]. We

define the augmented Laplacian as L(G) = L(G) + J where J is the n× n matrix
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whose entries are all 1. One reason we are interested in the augmented Laplacian

matrix is that when G is connected, L(G) is invertible, unlike the Laplacian matrix.

Temperley’s formula states that

n2κ(G) = detL(G). (2)

The next example illustrates the difference between the Matrix-Tree theorem

and Temperley’s formula in computing κ(G) in the case of a complete graph.

Example 3. We consider the complete graph on 5 vertices and compute κ(G) in

two ways.

G =

A(G) =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 D(G) =


4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 4



L(G) =


4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4



By the Matrix-Tree theorem, κ(G) = detL0(G) =

∣∣∣∣∣∣∣∣
4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

∣∣∣∣∣∣∣∣ = 125
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In comparison, Temperley’s formula is easier to work with in this case, since

L(G) =


5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5



so it is a quick calculation that κ(G) =
detL(G)

n2
= 125.

In addition to the methods described above, one can also compute the number

of spanning trees via the deletion-contraction formula [2]. This formula gives us a

way to recursively compute the tree number by computing it for smaller graphs.

Let G − e denote the deletion of an arbitrary edge e from a graph and let G/e

denote the contraction of edge e, which is obtained by identifying the two endpoints

of e. The deletion-contraction formula tells us that

κ(G) = κ(G− e) + κ(G/e).

Although this formula allows us to compute the number of spanning trees in

a graph with one less edge and one less vertex, it is not as efficient as the other

methods discussed above.

Another tool for calculating κ(G) was given by Kook in 2011 [5]. We define the

combinatorial Green’s function, G of a graph G to be the inverse of the augmented

Laplacian of G. That is, G(G) = L(G)−1. Suppose that the endpoints of an edge

e are the distinct vertices a and b. Then, with (gij) as the entries in G, we have

gaa + gbb − gab − gba =
κ(G/e)

κ(G)
. (3)

This result has applications in computing the resistance between two arbitrary

nodes in a finite resistor network.

6



In the next section, we will propose a method for calculating κ(G) using

the Cycle Intersection matrix, which we will see is more in line with Temperley’s

formula since it does not require the deletion of rows and columns as in the Matrix-

Tree theorem.

1.3 Cycle Intersection Matrix

Here, we introduce a new matrix and use it to calculate tree numbers for two

families of graphs known as grid graphs and triangulations.

1.3.1 Preliminaries

This section consists of basic definitions and results concerning the Cycle

Intersection matrix. We will show that the determinant of this matrix counts the

number of spanning trees in a graph. Let [n] denote the set {1, 2, .., n}. For a

finite, connected, planar graph G, we create the Cycle Intersection matrix by first

orienting the boundary of each finite face counterclockwise. Although the results

below are independent of this orientation, it creates uniformity in the graph and

imposes an advantageous structure on the matrix.

Definition 2. Suppose G is a finite planar graph with s finite faces R1, . . . , Rs.

Denote the cycle bounding face Ri by Ci for i ∈ [s]. Let E(Ci) denote the set of

edges in cycle i. We define the cycle-intersection matrix of G, denoted C(G) by

cii = |E(Ci)|, and cij = −|E(Ci) ∩ E(Cj)| for i 6= j.

It is clear that C(G) is a symmetric matrix whose rows and columns are

indexed by the cycles in G. The diagonal entries in the matrix keep track of the

length of the cycle bounding each finite face, while the off-diagonal entries keep

track of the number of edges two cycles have in common. This matrix is typically

smaller than the Laplacian matrix and it is also invertible.

7



Example 4. A graph and its cycle intersection matrix

G = 1

2

4

3

R1 R2 C(G) =

(
3 −1
−1 3

)

In comparison, the Laplacian matrix for the graph in Example 4 is of size

4× 4.

Lemma 2. For a connected planar graph G, κ(G) = κ(G∗).

The proof of this lemma can be found in Exercise 5.23 [6]. Essentially, if T is

a spanning tree in G, then the complement of the edges dual to T form a spanning

tree in G∗. The main tool of this work is the following theorem, which connects

C(G) and κ(G).

Theorem 3. For G planar, detC(G) = κ(G).

Proof. Suppose that G has s finite faces, labeled R1, R2, ..., Rs, and that the infinite

face is labeled Rs+1. As in the definition of C(G), let Ci be the boundary of cycle

i for i ∈ [s]. Consider the dual graph, G∗ of G. We can construct the degree and

adjacency matrices of G∗ in the usual way, and denote these by D(G∗) and A(G∗).

Then, L(G∗) is the Laplacian matrix of G∗, and is of size (s + 1) × (s + 1). By

construction, each vertex vi in G∗ has one edge for each edge in the face Ri of G,

so d∗ii = |E(Ci)| for i ∈ [s]. Further, two vertices vi and vj in G∗ are adjacent when

their corresponding faces in G share an edge, so a∗ij = a∗ji = |E(Ci) ∩ E(Cj)| for

i, j ∈ [s]. Since L(G∗) = D(G∗)−A(G∗), this is precisely the definition of C(G), so

we have that C(G) = L0(G
∗). Now, taking determinants and applying Equation

1 and Lemma 2, we have

8



detC(G) = detL0(G
∗) = κ(G∗) = κ(G).

Theorem 3 tells us that we can calculate the tree number of a planar graph by

simply calculating the determinant of its Cycle Intersection matrix. For instance,

we can easily see that in Example 4, κ(G) = 8, which we observed in Figure 1.

We can extend Theorem 3 to any graph by using an acyclic augmentation.

An acyclic augmentation of G is the acyclic 2-dimensional cell complex, G̃ whose

1-skeleton is G.

Example 5. An acyclic augmentation of a graph G:

G = G̃ = τ1 τ2

For a finite planar graph, G̃ can be obtained by adding one 2-cell for each

finite face of G. Since the combinatorial Laplacian in dimension 2 is the Cycle

Intersection matrix, detC(G) = κ(G) for a general graph G (see Proposition 7 (3)

[7]).

In the upcoming sections, we will use Theorem 3 to calculate the tree number

for certain classes of graphs.

1.3.2 Grid Graphs

In this section, let G = Gm,n denote the m × n grid graph, which is the

cartesian product of the path graphs on m and n edges. This graph can easily be

viewed as an m×n grid of squares. Although the tree number is independent of the

labeling of the faces in the graph, labeling the finite faces by Ri for 1 ≤ i ≤ mn in

9



numerical order, from left to right, beginning at the top row results in a beneficial

block structure in C(G), as seen in Example 6 below.

Example 6. G = G3,2 and its cycle intersection matrix:

G =

R1 R2 R3

R4 R5 R6

C(G) =


4 −1 0 −1 0 0
−1 4 −1 0 −1 0

0 −1 4 0 0 −1
−1 0 0 4 −1 0

0 −1 0 −1 4 −1
0 0 −1 0 −1 4



Note that C(G) is of order mn×mn and, with this labeling, is a block tridi-

agonal matrix consisting of n2 blocks, each of size m × m. This block structure

allows us to decompose C(G) nicely using the Kronecker product.

Definition 3. The Kronecker product, A⊗B, of matrices A = (aij) and B = (bij)

is the block matrix whose (i, j)-th block is aijB.

Example 7. The Kronecker product of two 2× 2 matrices is computed as follows:

(
a11 a12
a21 a22

)
⊗
(

b11 b12
b21 b22

)
=

 a11

(
b11 b12
b21 b22

)
a12

(
b11 b12
b21 b22

)
a21

(
b11 b12
b21 b22

)
a22

(
b11 b12
b21 b22

)


An important property of the Kronecker product is the identity

(A⊗B)(C ⊗D) = AC ⊗BD . (4)

Let In be the identity matrix of order n× n. Lemma 4 will be useful for our

main result regarding grid graphs. Its proof can be found in [8].

10



Lemma 4. Let A and B be symmetric matrices of order m × m and n × n,

respectively. If {λi | i ∈ [m]} and {µj | j ∈ [n]} are the eigenvalues of A and B,

respectively, the eigenvalues of A⊗ In + Im ⊗B are {λi + µj | i ∈ [m], j ∈ [n]}.

Using Definition 3, we can decompose C(G) into a sum of sparse matrices,

each with a desirable structure.

Lemma 5. Let Un denote the n× n tridiagonal matrix with 1’s on the upper and

lower diagonals and 0’s elsewhere. Then, the following identity holds for C(G):

C(G) = 4Imn − (In ⊗ Um + Un ⊗ Im) .

Proof. Since every finite face of G is a square, all diagonal entries in C(G) are 4,

which gives us the first term 4Imn. Two finite faces intersect in at most one edge

in G, and all are oriented counterclockwise, so all other entries in C(G) are 0 or

-1.

We can regard G as a collection n rows of m squares. There are two types of

adjacencies among squares: one among the squares of a given row, and the other

between the squares of row i and those of row i+ 1 for 1 ≤ i < n. Note that there

is no adjacency between row i and row j if |i− j| ≥ 2.

The first type of adjacencies is given by In ⊗Um in the decomposition, which

consists of n blocks of Um on the main diagonal and 0 elsewhere. For each i ∈ [n],

the i-th block in In ⊗ Um keeps track of adjacencies among the squares of row i.

The second type of adjacencies is given by Un⊗ Im in the decomposition, which is

a block tridiagonal matrix with blocks of Im on the upper and lower diagonals and

0 elsewhere. For each 1 ≤ i < n, the (i, i+ 1)-th block (also the (i+ 1, i)-th block)

in Un ⊗ Im represents the adjacencies between the squares of row i and those of

row i+ 1.

11



Example 8. With G = G3,2 as in Example 6, we have

C(G) = 4I6 −
(
U3 0
0 U3

)
−
(

0 I3
I3 0

)
.

We now have our main result for the number of spanning trees in the m× n

grid graph.

Theorem 6. The number of spanning trees of Gm,n is given by

κ(Gm,n) =
∏

(i,j)∈[m]×[n]

4 sin2
( iπ

2(m+ 1)

)
+ 4 sin2

( jπ

2(n+ 1)

)
.

Proof. Note that Un is the adjacency matrix of the path graph Pn with n vertices.

It is well known that the eigenvalues of Un are Un(x
2
), where Un(x) denotes the

Chebyshev polynomial of the second kind [9]. Hence, the eigenvalues of Un are

λi = 2 cos(iπ/(n+ 1)) for 1 ≤ k ≤ n and the eigenvalues of C(G) are

4− 2 cos(iπ/(m+ 1))− 2 cos(jπ/(n+ 1))

for all i ∈ [m] and j ∈ [n] by Lemma 4 and Lemma 5. The result follows from the

half-angle formula for the sine function.

We can extend the result above to a more general grid graph. Let G = Gm,n,p,q

be the grid graph made up of m squares in the vertical direction and n squares in

the horizontal direction where each square has p edges on its vertical sides and q

edges on its horizontal sides, as in Example 9 below.

Example 9. G2,2,2,3

G2,2,2,3 =

12



Now, pUn is the n × n tridiagonal matrix with p on the upper and lower

diagonals and 0 elsewhere. The following lemma is a generalization of Lemma 5,

and gives the decomposition of the matrix for this more general case.

Lemma 7. The following identity holds for C(G):

C(G) = (2p+ 2q)Imn − (In ⊗ pUm + qUn ⊗ Im) .

The proof of this lemma is essentially the same as the proof of Lemma 5, and

thus will be omitted. The next theorem is a generalization of Theorem 6. Its proof

is similar to the proof of Theorem 6, and will also be omitted.

Theorem 8. The number of spanning trees of Gm,n,p,q is given by

κ(Gm,n,p,q) =
∏

(i,j)∈[m]×[n]

4p sin2

(
iπ

2(m+ 1)

)
+ 4q sin2

(
jπ

2(n+ 1)

)
.

From the number of spanning trees in the grid graph Gmn we have a formula

for the spanning tree entropy [10], used by physicists, given by

lim
n,m→∞

1

nm
lnκ(Gn,m).

1.3.3 Triangulations

The next class of graphs we will examine are the triangulations of regular

n-gons. We will see that their tree number has an interesting connection to the

Fibonacci sequence, given by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2. A direct

consequence of this definition is the relation

Fn+2 + Fn−2 = 3Fn. (5)
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We define a triangulation of a regular n-gon as a partition of the figure into

non-overlapping triangles using diagonals. Any triangulation of a regular n-gon

has n − 2 triangles and a triangle is said to be interior if none of its sides lie on

the original n-gon.
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Example 10. Two triangulations of an octagon, along with their weak duals:

This example shows two different triangulations of an octagon, one with no

interior triangles and the other with exactly one interior triangle. The weak dual

is useful here so that we can easily keep track of the configuration of triangles.

In this section, let G = Gn denote a triangulation of a regular n-gon. We

explore the number of spanning trees of such graphs using the Cycle Intersection

matrix. We denote by Tn the tridiagonal matrix with −1 on the subdiagonal and

superdiagonal, and 3 on the main diagonal. For a triangulation with no interior

triangles, the weak dual graph is the path on n− 2 vertices, so C(G) = Tn−2. This

matrix will also appear as blocks in C(G) for triangulations with interior triangles.

The fan on n vertices is a special case of a triangulation with no interior triangles

[4], and it has been shown that detTn = F2(n+1), [11]. Since Tn is tridiagonal, its

determinant satisfies a recurrence relation, as seen in the next lemma. Recall that

|Tn| denotes the determinant of the matrix Tn.

Lemma 9. |Tn| = 3|Tn−1| − |Tn−2|.

Proof. We compute the determinant across the first row:

|Tn| =

∣∣∣∣∣∣∣∣∣
3 −1 0 0 . . .
−1 3 −1 0 . . .
0 −1 3 −1 . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣
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= 3|Tn−1|+

∣∣∣∣∣∣∣∣∣
−1 −1 0 . . . 0
0
... Tn−2

0

∣∣∣∣∣∣∣∣∣
= 3|Tn−1| − |Tn−2|

This recurrence relation along with Equation 5 yields the following result.

Theorem 10. Let G = Gn denote a triangulation of a regular n-gon with no

interior triangles. Then, κ(G) = F2(n−1).

Proof. We will proceed by induction on n. G3 is a triangle, hence C(G3) = (3)

and since F4 = 3, the result holds. Now,

|Tn| = 3|Tn−1| − |Tn−2|

= 3F2n−4 − F2n−6

= F2n−2.

In the next two sections, we will see that the Cycle Intersection matrix is not

quite tridiagonal for triangulations with interior triangles. However, the structure

of the matrix lends itself nicely to the use of Laplace’s expansion theorem. This

theorem allows us to calculate the determinant using multiple rows and columns

(see [12] for details).

Theorem 11. Let A be an n × n matrix. Let A(i1i2...ik|j1j2...jk) denote the

k×k submatrix of A consisting of the intersection of rows i1, i2, ..., ik and columns

j1, j2, ..., jk. Let M(i1i2...ik|j1j2...jk) denote the submatrix which is complement
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to A(i1i2...ik|j1j2...jk). That is, M(i1i2...ik|j1j2...jk) is formed by deleting rows

i1, i2, ..., ik and columns j1, j2, ..., jk from A. Define

A = (−1)i1+i2+...+ik+j1+j2+...+jkM(i1i2...ik|j1j2...jk).

Then, for every fixed set of row indices 1 ≤ i1 < i2 < ... < ik ≤ n,

det(A) =
∑

1≤j1<j2<...<jk≤n

detA(i1i2...ik|j1j2...jk) detA(i1i2...ik|j1j2...jk)

Essentially, this expansion is performed by first choosing a fixed number k ∈

[n]. Then we find a set of k columns from the first k rows and its complement

in the remaining n− k rows, and multiply the determinants of these submatrices.

We do this for every set of k columns, and sum as in the theorem. This expansion

will be particularly useful in calculating the determinant of C(G) because of the

structure of the matrix. An example of its use will follow Theorem 14.

1.3.4 Triangulations: One Interior Triangle

We now consider triangulations of regular n-gons with exactly one interior

triangle. Note that such graphs are only possible with n ≥ 6 and that the number

of distinct triangulations of this form is the number of 3 partitions of n−3. In 1981,

an equivalent result to Lemma 13 below was shown using a reduction formula that

makes use of the deletion-contraction formula [4]. However, this method results

in computing spanning trees of multiple graphs, some of which contain multiple

edges. The results here depend only on the configuration of the graph and a

function, T (n), defined below.

Suppose that for such a triangulation, there are u, v, and w triangles on the

three sides of the interior triangle, respectively. Consider the general shape of the

triangulated graph G as in Figure 2.

17



a c

bV W

U

Figure 2. Layout of G

Label the vertices of the interior triangle a, b, and c. Let U, V and W be the

subgraphs of G that lie on either side of the interior triangle, so that ab ∈ V ,

bc ∈ W , and ac ∈ U . In order to impose an advantageous structure on the matrix,

we label the triangles starting with the top triangle in U , labeling down toward the

interior triangle (but not labeling the interior triangle), then labeling the remaining

triangles in order from V through the interior triangle to W . With this labeling,

C(G) has the structure:

C(G) =


Tu

−1

−1 Tv+w+1


We define T (n) = F2(n+1) so that T (0) = 1, T (1) = 3, T (2) = 8, and so
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on. Notice that this function simply keeps track of the even indexed Fibonacci

numbers. We will use this function in a symmetric expression for the number of

spanning trees in a triangulation with one interior triangle. Here, we will make

use of Laplace’s expansion theorem.

Lemma 12. For integers m and n, T (m+ n) = T (m)T (n)− T (m− 1)T (n− 1).

Proof. Regard T (n) as the determinant of the tridiagonal matrix Tn. We compute

T (m+n) using Laplace’s expansion theorem. Let T = Tm+n be the (m+n)×(m+n)

tridiagonal matrix. Suppose that m ≥ 2 and let k = m. That is, when computing

the determinant, we will choose a set of m columns from the first m rows of T . For

j > m + 1, column cj in the first m rows is a zero column. Similarly, for j < m,

column cj in the bottom n rows is a zero column. Thus, to contribute a nonzero

term to the determinant, we must choose the first m− 1 columns from the first m

rows and then we may choose either column m or column m+ 1 from these rows.

Counting only the submatrices with nonzero determinant, we have

det(T ) = detT (1, 2, ...,m|1, 2, ...,m)T (1, 2, ...,m|1, 2, ...,m)

+ detT (1, 2, ...,m|1, 2, ...,m− 1,m+ 1)T (1, 2, ...,m|1, 2, ...,m− 1,m+ 1)

In terms of the matrix, this gives us

|Tm||Tn| −

∣∣∣∣∣∣∣∣∣∣

0
Tm−1 0

...

0
0 0 . . . −1 −1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
−1 −1 0 . . . 0
0
... Tn−1

0

∣∣∣∣∣∣∣∣∣
Note that the sign of T (1, 2, ...,m|1, 2, ...,m) is (−1)2(1+2+...+m), which is al-

ways positive, and the sign on T (1, 2, ...,m|1, 2, ...,m−1,m+1) is (−1)2(1+2+...+m)+1,
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which is negative. Further, computing the determinants of the last two matrices

by expanding down the columns with only one -1, we have T (m − 1)T (n − 1).

Thus, T (m+ n) = det(T ) = T (m)T (n)− T (m− 1)T (n− 1).

Using this function, we have a formula for the number of spanning trees in a

triangulation with exactly one interior triangle.

Lemma 13. κ(G) = T (u)T (v + w + 1)− T (u− 1)T (v)T (w)

Proof. The proof of this lemma is essentially the same as the proof of Lemma 12

above, but with k = u in Laplace’s expansion theorem.

The main theorem below gives a symmetric expression for the number of span-

ning trees in a triangulation with one interior triangle. Note that this expression

is equivalent to Lemma 13.

Theorem 14. κ(G) = T (1)T (u)T (v)T (w) − T (u − 1)T (v)T (w) − T (u)T (v −

1)T (w)− T (u)T (v)T (w − 1)

We provide two proofs of this theorem, an algebraic proof using the lemmas

above and a bijective proof.

Proof. Using Lemma 13 and repeated use of the identity in Lemma 12, we have

κ(G) = T (u)T (v + w + 1)− T (u− 1)T (v)T (w)

= T (u)(T (w)T (v + 1)− T (w − 1)T (v))− T (u− 1)T (v)T (w)

= T (u)T (w)(T (v)T (1)− T (v − 1)T (0))− T (w− 1)T (u)T (v)− T (u− 1)T (v)T (w)

= T (1)T (u)T (v)T (w)−T (v−1)T (u)T (w)−T (v)T (w−1)T (u)−T (u−1)T (v)T (w)

We now prove Theorem 14 bijectively.
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Proof. (Bijective Proof) We will show that κ(G)+T (v−1)T (w)T (u)+T (v)T (w−

1)T (u) + T (v)T (w)T (u − 1) = 3T (v)T (w)T (u). Since U, V , and W each have no

interior triangles, T (u), T (v), and T (w) are the number of spanning trees in U, V ,

and W , respectively. Now, we create a set of three trees by choosing one from

each of U, V , and W . For each set of this type, choose one tree to be special by

marking the unique path between the two vertices from the interior triangle (either

the path from a to b, b to c, or a to c). Let X = {(p,B1, B2, B3)} where B1, B2, B3

are spanning trees in U, V and W , respectively, and p is the unique path in B1 or

B2 or B3 from a to b, b to c, or a to c, respectively. Hence, 3T (v)T (w)T (u) =| X |.

Let T be a spanning tree in G. In T , there must be exactly one pair from

{a, b, c} which does not belong to a path inside that pairs subgraph (U, V , or W ),

otherwise T would include a cycle. Without loss of generality, suppose that this

pair is b, c. For our first bijection, we map T to T + bc. Note that T + bc ∈ X and

is one of the elements with marked path of length 1. Thus, the spanning trees of

G are in bijective correspondence with the trees in X with marked path length 1.

Next we will consider the subgraph U . Denote the vertex different from a

but adjacent to c in U by d. If c has other neighbors in U besides a and d, then

switch the labels on a and c. Let G′ be the graph obtained from G by removing

edge cd. Now, G′ contains subgraphs U ′, V,W , where U ′ has u − 1 triangles

and no interior triangles. Create a spanning tree, T ′ from G′ by combining

spanning trees from U ′, V , and W . By construction, T ′ contains no path in

U ′ from a to c. Now, let M be the path-marked tree created from T ′ + cd by

marking the unique path from a to c. Note that this path has length greater than

one. Hence, the trees counted by T (u − 1)T (v)T (w) are in bijective correspon-

dence with the trees in X with marked path from a to c of length greater than one.
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The remaining bijections are constructed in a similar fashion for the terms

T (v − 1)T (w)T (u) and T (v)T (w − 1)T (u).

As an example, we will compute κ(G) where G is a triangulation of an octagon

with one interior triangle with v = 1 and w = u = 2.

Example 11. Below we have the triangulation along with its weak dual graph.

G =

1

2

43 5 6

C(G) =


3 −1 0 0 0 0
−1 3 0 −1 0 0
0 0 3 −1 0 0
0 −1 −1 3 −1 0
0 0 0 −1 3 −1
0 0 0 0 −1 3



Notice that C(G) is almost a tridiagonal matrix. We will use Laplace’s expan-

sion on the first two columns, that is, we choose 2 columns from the first 2 rows.

The sparsity of the matrix forces us to choose column 1 from the first two rows

and then we may choose column 2 or column 4. All other choices result in a zero

determinant, so the expansion is as follows:
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detC(G) =| T2 || T4 | −
∣∣∣∣ 3 0
−1 −1

∣∣∣∣
∣∣∣∣∣∣∣∣

0 3 0 0
−1 −1 −1 0
0 0 3 −1
0 0 −1 3

∣∣∣∣∣∣∣∣
= 8(55)− 3(3)(8)

= F6F10 − F4F4F6

= 378

We emphasize that the elegance of this result lies not in the final number but

in the representation of that number by the Fibonacci sequence, which appears

with the use of Laplace’s expansion theorem.

1.3.5 Triangulations: Two Interior Triangles

The case where a triangulation contains two interior triangles is a bit more

complicated than with one interior triangle, but the above method works fairly

well. The key to using the method above is to have a labeling of the triangles

(i.e. a labeling of the vertices of the weak dual) that gives rise to a matrix with a

desirable structure for using Laplace’s expansion theorem. We focus here on the

case where the two interior triangles are adjacent, that is, they share an edge. In

this case, the weak dual can be thought of as two path graphs connected by a new

edge. The most effective way to label the vertices of the weak dual is to label each

path in sequential order, as shown in Example 12.

Example 12. An octagon with two interior triangles and the labeling of its weak

dual:

1

23 5 6

4
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The next figure shows the general layout of G and the labeling of its weak

dual. Suppose that there are u, v, w and x triangles on the sides of the two interior

triangles and let U, V,W and X be the subgraphs of triangles on these sides. We

label one side of the weak dual at a time, just as we did in Example 12.

U

XW

V

1

2

v

v+1v + w + 1

v + w + 2

v + w + u+ 2 n− 2

Figure 3. Labeling in the case of two adjacent interior triangles.

Theorem 15. For a triangulation of a regular n− gon with two adjacent interior

triangles as in Figure 3, κ(G) = T (v + w + 1)T (u+ x+ 1)− T (w)T (x)T (u)T (v).

Proof. This proof is essentially the same as the proof of Lemma 12, but with

k = v + w + 1 in Laplace’s expansion theorem.

24



1.4 Conclusions

Although there are many tools for calculating the number of spanning trees

in a graph, the method we have described here has the advantage of being more

straightforward and elegant. This method extends the collection of tools avail-

able for computing the tree number, and as we saw above, reveals particularly

interesting results for certain classes of graphs.

Since the elegance of the results on the triangulations lies not in the final

number but in the decomposition of that number, methods for continuing this

work should be chosen with this idea in mind. We believe that the method used

in Sections 1.3.4 and 1.3.5 is not the most efficient for triangulations with more

than two adjacent interior triangles, since Laplace’s expansion theorem is effective

given a certain labeling of the triangles. However, methods such as those used by

Modabish and Marraki in [13] which compute the tree number by first breaking the

graph into smaller pieces, may be useful here. It may be practical to break up these

triangulations into smaller triangulated n-gons with fewer interior triangles and use

the results above along with the results in [13]. Further, there are many recurrence

relations on the Fibonacci numbers which may also be useful for triangulations.

There are other classes of graphs which may yield interesting results using the

methods here. For instance, we may consider “grid” graphs which are made up of

triangles or pentagons rather than squares. These other grid graphs may reveal

interesting numbers when the above methods are applied.
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CHAPTER 2

Postsecondary Mathematics Education

2.1 Introduction

In this chapter, we address our work in postsecondary mathematics education.

In the Fall of 2012, we began a remediation and assessment program for our calculus

course in order to address the problem of underprepared students.

2.2 Problem: Underprepared Students

Many high school students in the United States are graduating with deficien-

cies in mathematics and are unable to successfully complete a first year calculus

course [1]. An inadequate background in mathematics puts students in a position

where they need remediation in order to succeed in STEM (science, technology,

engineering and mathematics) disciplines. As a result, these students are more

likely to leave a STEM major and less likely to complete any degree than those

who have the necessary background [2]. Research highlights that a strong STEM-

educated workforce is not only vital to the nation’s economic integrity, but also

to the nations security [3], raising concern over high rates of attrition in STEM

disciplines. Since calculus is considered a gateway course to the sciences, it is cru-

cial that students have the proper background to succeed, and that those who do

succeed are able to retain and apply their knowledge in subsequent courses.

A first year calculus course is known to be one of the most challenging courses

for college students. Approximately 300,000 college and university students in the

Unites States take an introductory calculus course each fall, and of those, 28% earn

a grade of D,F, or W [4]. These high failure rates have led to a national concern

not only over inadequately prepared students but also over the declining numbers

of students studying a STEM discipline [5].
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Many students enter calculus with weak algebra skills and while some fail,

others may finish the course without ever strengthening those skills. As a result,

these students are more likely to leave a STEM major than those who have the

necessary background [2]. Research has indicated that mathematics plays a promi-

nent role in the attainment of a college degree and that success in mathematics

is a significant factor in career opportunities [1]. With such a large number of

students taking calculus as a foundation for their engineering, physics, chemistry,

and mathematics majors, it is necessary to address this issue.

At the University of Rhode Island, approximately 500 to 900 students enroll

in MTH 141 (Calculus I for STEM majors) each year. Many of these students

continue on to more advanced mathematics courses in preparation for their major

courses. Since 2008, the unproductive rate for MTH 141 (grades of D+, D, F, I,

or NW) has ranged from 31% to 50%. At the same time, the unproductive rate of

students coming out of the precalculus course has ranged from 17% to 39%. This

data suggests that many students are entering calculus underprepared, and as a

result, are not succeeding in the course.

Despite the national concern over underprepared students, little research has

been published on what we can do to help the students who enter mathematics

courses without the prerequisite knowledge. The research that does exist focuses

primarily on the fact that students graduate high school unprepared for college

level mathematics. There is also an emphasis on the importance of placing stu-

dents in the proper courses [6], however, proper placement cannot always be en-

forced. Although URI does have placement exams, they are administered online

and unproctored, and the placement is not strictly enforced. Some students place

into courses for which they are not prepared, and others choose to enroll in a higher

level course than their exam would indicate they are ready for. As a result, many
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students are unsuccessful in a course and must repeat it.

Some research suggests that remedial courses, workshops, and extra class time

are partial solutions to this problem, but these methods can be expensive [7]. It is

important to remediate underprepared students in a feasible way which does not

disrupt the flow or content of the course, and such remediation must be done in a

way that helps weaker students while keeping strong students interested and chal-

lenged [7]. Therefore, this research will address the question: How can we provide

remedial instruction during a calculus course for students who are underprepared

for calculus?

2.3 Literature

The literature contains many definitions of post-secondary mathematical

readiness. Some organizations value high school graduation and GPA, while others

emphasize standardized test scores and college placement exam performance [8].

Conley [9] points out that student attitudes, study skills, and self-awareness also

need to be considered when defining college readiness. In an effort to be more

comprehensive, Conley [9] defines college readiness as “The level of preparation

a student needs to enroll and succeed, without remediation, in a credit-bearing

general education course at a postsecondary institution that offers a baccalaureate

degree” (p. 5). For the purpose of this work, the term mathematical readiness

will mean an individual’s ability to succeed in college level mathematics without

remedial coursework.

In order for students to obtain the background knowledge necessary to suc-

ceed in STEM disciplines, they must first be placed in the proper courses [10].

Students enter universities with varying mathematical backgrounds. Even though

many have taken a precalculus course, the material they learned differs based on

the institution, instructor, and the students knowledge and maturity [6]. Conse-
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quently, proper placement must be based on more than the courses a student has

taken. Many universities use SAT, ACT, or AP scores as a placement tool for first

semester mathematics courses [10]. However, such measures of knowledge may not

be current, as a student may continue to take mathematics courses after taking

these exams, or may have taken the exams in their junior year of high school with

no mathematics courses in their senior year [10]. In an effort to place students

properly, many universities have internal placement exams administered by their

departments.

For universities where placement is not enforceable, a just-in-time approach

to remediation is necessary to help those students who enroll in a course for which

they are underprepared. Postsecondary remediation is a controversial topic for

many reasons. Although it fills the gap in knowledge, some argue that it wastes

tax dollars, lowers academic standards, and devalues the credentials of faculty [11].

Further, it has been shown that remedial courses simply do not work. More than

50% of students entering two-year colleges and 20% entering four year colleges are

placed in remedial courses, while fewer than 1 in 10 graduate from community

colleges within three years and about a third complete a bachelor’s degree in six

years [12]. One nonprofit organization, Complete College America, has worked

with states to improve student success and has done extensive work regarding

remediation. This organization points out that remedial courses may be to blame

for unchanged college completion rates even though enrollment has increased. As

a method of reform, they have proposed enrolling more students in college-level

courses with just-in-time support rather than sending students to remedial courses

[12]. This approach is particularly useful for universities, who typically offer few,

if any, remedial math courses for credit.

Remediation during a course can take on many forms. The mathematics
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department at California State University, Los Angeles, used workshops as an in-

tervention tool to improve calculus success rates [13]. This department experienced

high failure rates in calculus courses which they attributed to students’ inexperi-

ence with problem solving, and lack of class time for instructors to go over the

solutions to practice problems. As a first step, the faculty decided to change from

100 minute lectures two days per week to 50 minute lectures four days per week.

Although the students seemed more motivated with the new schedule, they still

lacked the problem solving skills necessary to succeed [13].

In order to address the issue of high failure rates more fully, the faculty im-

plemented required workshops for calculus students. The workshops met twice a

week, were run by an experienced teaching assistant, and were designed as a way

for students to actively gain problem solving experience [13]. The data collected

indicated that the workshops were successful in lowering the failure rate, and in

particular, indicated that those students with a grade of C in the previous course

were able to pass the next course [13]. The Rochester Institute of Technology

adopted a similar workshop model which increased student success rates by over

16% [7].

While workshops and daily class meetings may be a successful way to remedi-

ate, such methods may be expensive, impractical, or cause scheduling conflicts [7].

In order to address the issue of underprepared students in their calculus sequence,

Clarkson University has implemented a gateway exam to ensure that students

master the necessary background material [14]. This gateway testing program,

called the Calculus Absolutely Basic Competencies (ABCs), consists of not only

a gateway exam but also resources for students who need extra practice. In order

for students to pass calculus with a C or better at Clarkson University, they must

score at least a 90% on the ABCs (with no partial credit; answers are fully right or
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wrong). That is, students who pass the ABCs may earn any grade in the course,

but those who do not pass are unable to earn any grade higher than a D+ [14].

This method guarantees that students who earn a C or better in calculus are truly

prepared to continue in mathematics. The initial exam helped the students identify

weaknesses in background, and then the students were allowed to take the exam as

many times as necessary during the semester. To guide the students who did not

pass, the department offered many resources. Practice exams and solutions were

available to the students, and optional ABCs review sessions were given twice each

semester. Further, in order to help the students see the importance of background

material, ABCs topics were identified during the calculus lectures.

During the first two years of this program, about 60% of the students passed

the exam within three attempts, and about 80% passed within five attempts [14].

Since few students who took the exam more than five times passed, the exam

was only given six times during the third year, which reduced administrative work

and allowed instructors to focus fully on the calculus material after a few weeks

[14]. Clarkson’s program has been expanded to their Calculus I and Calculus

II courses, and improvements have been made such as computer generated exam

questions and the addition of a companion course meeting two hours per week to

help the students who have difficulty passing.

To address the gap in literature, we have adopted a model similar to the

Calculus ABCs model used at Clarkson University (which is also similar to a

model used at West Point) and study the effect of a competency based exam on

student performance.

2.4 The Precalculus Competency Exam

The Precalculus Competency Exam (PCE) was designed as a remediation

tool for Calculus 1 (MTH 141). The purpose of the exam is to identify individual
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students weaknesses and provide them with a way to self-remediate and fill in the

gaps in topic areas that are necessary for success in calculus. We have run this

program every semester since Fall 2012, but the work here is focused on the Spring

2013 semester.

2.4.1 The PCE

The PCE is made up of ten content areas, or competencies, which are necessary

for success in calculus. These competencies are aligned with the content of the

course, and are outlined in Table 1.

Table 1. PCE Topics

PCE Competency Corresponding Topic In MTH 141
1 - Functions Functions, difference quotient
2 - Factoring and Expanding Limits
3 - Graphing and Quadratics Limits, continuity,integral as area, tangent lines
4 - Radicals and Exponents Simplifying expressions to differentiate
5 - Straight Lines Tangent line approximation
6 - Logarithms Evaluating derivatives
7 - Algebra Solving in implicit differentiation
8 - Inequalities Derivative tests
9 - Trigonometric Functions Parametric equations, related rates
10 - Real Numbers Optimization and modeling, related rates

The original exam (see Appendix A) consists of two questions for each of the

ten competencies, for a total of 20 questions. The questions are open-ended and

graded as correct or incorrect (no partial credit). The students take the original

exam during the second week of class and must score at least 80% in order to pass.

When the exams were graded, the instructor identified the weak areas for each

student. A student who did not pass the original exam was required to pass a mini

test (consisting of two questions, see Appendix B) in each competency that was
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not mastered on the original exam. Opportunities to take these mini tests were

scheduled twice each week. Each student was able to take two different mini tests

per week, for the remainder of the semester, if necessary, to pass all competencies.

Students lost points for each competency they had not passed by the end of the

semester. By breaking up the exam into the mini-tests, students were able focus

on a particular area each week, rather than having to take the entire exam again.

In order to support the students who did not pass the original exam, we offered

a special supplemental instruction session each week. Further, the tutoring center

was equipped with old PCE’s for the students to work on with tutors. Instructors

were also encouraged to point out why the PCE topics are relevant during their

calculus lectures.

We started this program in the Fall of 2012, and the data presented here is

from Spring 2013. Our research and findings have shaped the current program and

its policies.

2.4.2 Research Questions

The following questions are typically in the forefront of scholars minds in

postsecondary mathematics education, and thus, our initial data collection was

motivated by the following:

1. Does student proficiency on PCE improve over time?

2. Among the students who did not pass the original PCE, how does proficiency

on mini tests affect performance on related calculus exam questions? Does

it matter when they demonstrated proficiency?

3. Does the PCE help solidify a student’s foundation and help them as they

move through the calculus sequence and into their STEM major?

4. How can we modify the program to better help the students?
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5. Do the students retain the information learned on the PCE’s?

6. Are students in a particular major or living learning community performing

better than other students?

7. Is there a correlation between PCE performance and a student’s final grade?

In this thesis, we address research questions 1,2,4, and 5.

2.4.3 Data Collection

Student progress was tracked each week in a dynamic spreadsheet which was

used to record which exam each student took in a given week and whether or not

the student passed that exam. Exams were handed back to students at the end of

each week and their scores were also recorded on our online course management

system.

In addition to the weekly PCE data that was collected, we also re-tested the

ten competencies on the final exam. Since the final exam was multiple choice,

this data was easy to gather. This data, which will be discussed later, gave us

an indication of whether or not students retained the material. Further, each

of the three mid term exams in the course contained calculus questions which

required knowledge of some PCE topics. For each of the midterm exams, we

recorded whether or not each student was able to complete the underlying task

of the question. The example below shows an exam question along with the PCE

competency that corresponds to that topic.

Example 13. Exam 2 asked students to find
dy

dx
for 5y−tan(y)+3x = 10x3y2+14.

PCE competency 7 is Algebra. This competency asked students to solve an equation

for a specific variable, if possible, or explain why it is not possible.

35



For this example, we recorded if the student was able to solve for
dy

dx
correctly,

even if they made a differentiation error.

2.4.4 Data Analysis

The analysis here is based on data from the spring semester 2013, in which

there were 286 students enrolled in the course. The first thing we found when we

examined the data was that, by giving the mini tests each week, the students were

able to progress through the competencies fairly well. Table 2 below shows the

number of students who passed each competency on the original exam.

Table 2. Results of Original Exam

PCE Exam # of students who passed % of total students
1 - Functions 89 31
2 - Factoring 194 68
3 - Graphing 77 27
4 - Exponents 55 19
5 - Lines 112 39
6 - Logarithms 134 47
7 - Algebra 81 28
8 - Inequalities 43 15
9 - Trigonometry 81 28
10 - Real Numbers 148 52

The results of the original exam gave us a sense of what the students knew upon

entering the course. One particular reason for concern is that only 31% of the

students mastered the competency on functions, so we may need to address this

issue along with some other competencies at the precalculus level. In comparison,

the next table shows the number of students who mastered each competency by the

end of the semester. We can see that by giving the students multiple opportunities

to take the exams each week, many of them were able to improve. We must keep in
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mind, however, that some students may have dropped the course before completing

all PCE’s.

Table 3. Results by End of Semester

PCE Exam # of students who passed % of total students
1 - Functions 196 69
2 - Factoring 256 90
3 - Graphing 210 73
4 - Exponents 165 58
5 - Lines 206 72
6 - Logarithms 196 69
7 - Algebra 177 62
8 - Inequalities 133 47
9 - Trigonometry 161 56
10 - Real Numbers 216 76

In order to address research question 2, we examined PCE data and related

calculus exam questions. For example, on Exam 1, the students were asked to

calculate lim
x→−2

x2 − 2x− 8

x2 − 4
. Since the students had not yet learned L’Hôpital’s

rule, they must first factor the numerator and denominator and cancel a common

factor. When we graded the exam, we recorded if each student factored correctly

and then we were able to compare this data with whether or not each student

had passed PCE 2 by that time. What we found is that there was a very small

percentage (about 4%) of students who passed PCE 2 but were not able to correctly

answer this question (this is the PO category in Figure 4 below). Hence, we saw

that students who passed this competency by the time of the exam were likely

able to apply their knowledge to the related exam question. The results of this

particular comparison are seen in the Figure 4.
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PO
4%

BW
6%

DNF
28%

EO
30%

B
32%

B (Both) - Factored correctly & PCE 2 passed

EO (Exam Only)- Correct on exam only

BW (Both Wrong) - Incorrect on exam, PCE 2 not passed

PO (PCE Only)- Incorrect on exam, PCE 2 passed

DNF (Did Not Factor) - Student did not attempt to factor

Figure 4. Exam 1 and PCE 2

We were pleased with the percentages in the B category and the PO category,

which indicate success of our program. It is important to keep in mind that some

of the students in the EO category may not have had a chance to try PCE 2

before the exam. In the future, imposing deadlines for students to pass certain

competencies may give us a better sense of this data.

To address research question 5 about whether the students are retaining the

information learned on PCE’s, we re-tested the ten competencies on the final exam.

The final exam was multiple choice and the first ten questions were PCE questions,

one from each competency. In the analysis above, we were concerned with how

many students were successful, but here it is more meaningful to look at how

many students did not retain the material. We asked ourselves the question, “Of

the students who had passed the competency by the end of the semester, how

many of them answered the corresponding final exam question incorrectly?” These

numbers appear in Table 4 and the corresponding final exam questions can be

found in Appendix D. What we found is that most students retained the material,

although there are a few numbers here that are higher than we would like.
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Table 4. Results of Final Exam

PCE # who answered % of students
competency incorrectly taking final
1 - Functions 68 28
2 - Factoring 25 10
3 - Graphing 10 4
4 - Exponents 17 7
5 - Lines 50 20
6 - Logarithms 48 20
7 - Algebra 42 17
8 - Inequalities 40 16
9 - Trigonometry 19 8
10 - Real Numbers 9 4

Again, the first competency is concerning to us, since 28% of the students did

not retain that material. Because of this high percentage on such a vital topic,

we may need to consider having this topic appear on multiple competencies in the

future, so that students are tested on it throughout the semester. It may also be

interesting to track student progress on these topics through subsequent calculus

courses to see if material is retained for a longer period.

2.5 Program Analysis Using Graph Theory

As with any program, it is important for us to reflect on our findings and

modify the PCE’s as appropriate. One question that comes up in this type of

remediation is if we are asking the students to learn two courses worth of material

at once. To avoid overwhelming the students with too many exams or too much

remediation, we can reduce the number of competencies. Further, the program

is costly to run as it is. Each week, we copy, grade, enter scores, and hand back

hundreds of exams which consumes resources and time. In an effort to cut down

on the number of exams students need to take without compromising the original

topics, we examined the ten competencies using graph theory.
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As a measure of difficulty for each competency, we use the total number of

students who passed that competency on the original exam. These numbers were

shown in Table 2. For our purposes, we regard the competencies with more students

passing as the easier competencies. For example, we can see that competencies 2

and 10 were the easiest for students to pass in this particular semester. Note that

the difficulty of exams by this measure is likely to change given a different group

of students.

Using a graph model, we are able to visualize the relationships among the ten

competencies with regard to student performance. The graph below consists of

ten vertices, one for each competency. An edge exists between two competencies

if at least 20% of the students passed both on the original exam. The edges are

weighted in the following manner: if 20%− 29% of the students passed both, then

the edge weight is 1, if 30% − 34% passed both, then the edge weight is 2, and if

at least 35% passed both, then the edge weight is 3. With the help of the network

software ORA, we were able to visualize the graph from the spreadsheet data.
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Figure 5. PCE Graph

In order to reduce the number of mini tests a student needs to complete,

we would like to combine some competencies into one exam, while keeping the

difficulty of the exams relatively even. To make the decision of which exams to

combine, we examined a special substructure of a graph called a clique.

Definition 4. A clique is a complete subgraph. That is, a clique is a subgraph

where every pair of vertices is adjacent.

Using ORA, we were able to find all of the cliques in the PCE graph. It is fairly

easy to see that there are three cliques of size at least three: {1, 2, 6}, {2, 6, 7}, and
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{2, 5, 6, 10}. This last clique, which we will call C, is particularly revealing. Given

that these four vertices form a clique and that two of the edge weights are three,

these strong ties between the four vertices in C suggest that these competencies

can be combined into one. We will call the mini test consisting of these four

competencies Exam C. From there, we can cut down the number of questions on

this larger exam as appropriate. In order to measure the difficulty of this new

Exam C, we counted how many students passed these competencies, as shown in

the table below.

Table 5. Difficulty of Exam C

Number of Competencies in {2, 5, 6, 10} Passed # of Students
Passed Zero 34

Passed Exactly One 60
Passed Exactly Two 77

Passed Exactly Three 74

We can see from Table 5 that there are 94 students who mastered fewer than

two of these competencies, and therefor really struggled with the topics in PCE’s

2, 5, 6, and 10. Since these four topics are easier than the others, Exam C would

be a good place for these 94 students to start when taking mini tests. We can

compare the numbers above to the difficulty of the other six exams (as shown in

Table 2) and see that there is a relatively even measure of difficulty. A proposed

version of Exam C can be found in Appendix C.

The question arises of why a graph is useful here. Although we can see from

the spreadsheet that topics 2, 5, 6, and 10 were the highest-ranking in terms of

how many students passed, we do not see the strong connection among all four

exams without the graph. Further, the five highest ranking exams do not make
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up a clique, reaffirming that one could not simply look at Table 2 to reveal these

substructures. Hence, running ORA to find the cliques has given us a way to

visualize the relationships among the topics in a new way, which has allowed us to

make a decision regarding the structure of the program.

We also created graphs using students as vertices and edge weights as the

number of common exams two students had passed. These graphs, however were

not particularly revealing. The typical measures of centrality (betweenness, degree,

closeness) and even the cliques only picked up the top students in the class, which

we could easily see using a spreadsheet or a bar graph. Another interesting idea

we considered was whether or not there was any correlation between a student’s

major and PCE performance. The data we were able to gather, however, had many

majors not listed. Perhaps a student survey at the beginning of the semester would

give us a more accurate idea of each student’s major at the time of the course.

2.6 Conclusions

In this work, we described the use of and analyzed the results of a remediation

program for calculus. Here we provide a summary of our findings.

• Does student proficiency on PCE improve over time?

In general, we found that students took advantage of the opportunity to

review topics and take mini tests to improve their understanding.

• Among the students who did not pass the original PCE, how does proficiency

on mini tests affect related calculus exam questions? Does it matter when

they demonstrated proficiency?

Here we examined one PCE topic and its related exam question and found

that only 4% of students who took the exam has previously passed PCE 2

but were unable to apply that knowledge to the calculus question.
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• How can we modify the program to better help the students?

We used a graph to model the PCE program and proposed a way to combine

certain PCE’s in order to cut down on the number of exams a student needs

to take.

• Do the students retain the information learned on the PCE’s?

By testing the PCE topics on the final exam, we were able to see exactly

which topics were retained and which were not. Some further program

changes could include testing certain topics in multiple ways to raise re-

tention rates.

2.7 Future Work

In terms of continuing the PCE program at the University of Rhode Island,

there are a few things we would like to do in the future. First, we need to obtain

permission from the students to use their final grades in our analysis. This was

something that we had not obtained for the set of data analyzed here, and thus

were unable to factor in course grades. Additionally, we would like to see if students

who are living together in on-campus living learning communities are performing

similarly. We would need to collaborate with others on campus to acquire this

information. We would also like to know if a student’s major has any effect on

PCE performance. Although we were able to gather some data about majors,

much of the data was inaccessible. Perhaps a student survey at the beginning of

the semester would be the best way to obtain this information. Since we do have

dynamic data, it would be interesting to view student performance over time to

see the paths the students are taking toward success on PCE’s.

As far as the program itself, policy changes may improve student learning. In

the Fall of 2013, we imposed a policy where failure to pass at least 7 competencies

resulted in a maximum course grade of D+. In addition to a policy such as this,
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it may be beneficial to the students if we require them to pass particular PCE’s

before each exam. This approach may give students a better idea of where they

are with the material and would allow them to drop the course before the deadline,

if necessary. Examining student success on individual questions rather than each

topic as a whole may also provide insight on ways to improve the program.

We would also like to continue to examine the effects of centrality on a net-

work created from this data. In particular, we are interested in Stephenson and

Zelen’s information centrality [15]. This measure of centrality tries to capture the

information that can be transmitted through all paths between two nodes. The

information centrality between nodes i and j is given by Iij =
1

gii + gjj − 2gij
with

gij ∈ L−1(G). Since the number of spanning trees in a network represents the

efficiency of that network, we are concerned with adding one edge to a network in

order to increase κ(G) in a maximal way. This is done by adding an edge between

the pair i, j with the smallest Iij. We can see why this is true by using Equation

3 in Chapter 1 since

Iij =
κ(G)

κ(G/e)
=

κ(G)

∂wij
κ(G)

where ∂wij
κ(G) is the partial derivative with respect to the weight of the edge, of

the complexity polynomial of the network. Hence, Iij is smallest when ∂wij
κ(G) is

largest, which is precisely when the growth rate is largest [16]. Using this idea, we

may be able to further examine how to improve our program.

The techniques used in creating and administering the PCE program would

transfer easily to other programs. On a larger scale, an institution could track

their students through the typical calculus sequence from precalculus through each

semester of calculus by giving a similar exam in each course and tracking student

progress. Using a graph would be particularly useful in a situation like this, where

the data set is large, and may give the researcher a better idea of how their students
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are performing. If a program had the proper flexibility, a tool such as the PCE

could be used as a side-by-side course to strengthen knowledge and study skills. A

model such as this would allow the students to have more direct instruction with

the prerequisite material.

An assessment program such as the PCE would also be a useful way for an

instructor to see what the students know coming into a class. This might be

particularly useful in a new course or an online course, where the instructor may

not know the level of students. Giving an exam similar to the PCE’s would allow

the instructor to decide what concepts to focus on and which ones the majority of

the students already understand.

The administration of the program, data collection, and data analysis provided

us with a positive learning experience on remediation. The methods used here

are applicable to a wide variety of assessment situations, and a combination of

straightforward data analysis and graph modeling can be particularly revealing.

The lessons learned in this study will lead to future improvements to this program

and other assessment tools.
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APPENDIX A

PCE Exam Spring 2013

This first appendix contains the original exam given to the students in the

second week of class.

GENERAL INSTRUCTIONS: Read all instructions carefully.

1. You have 50 minutes to complete the PCE

2. Early departure is authorized. Give your PCE to your instructor when com-

pleted.

3. This exam evaluates the understanding of mathematical concepts which are

fundamental to students’ success in MTH 141. This is a non-technology

exam. No references of any kind may be used.

4. Including this cover page, there are 7 pages to the exam.

5. Show all your work. Each problem will be graded either completely right

or wrong, but showing your work will allow your instructor to provide you

feedback.

6. Place your name on every page.
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Name: Section:

PCE

1. Find the domain of

√
x− 3

3x− 15
.

2. Given f(y) = −2y − 5 and g(x) = x− c, find f(x+ h)− 4g(1).

3. Expand and simplify (x− 5y)(2x− y + 7).

4. Factor completely x2 + x− 20.

5. Sketch the graph of the function Q(x) =

{
x2 ;x > −1
−2x− 1 ; x ≤ −1

on the co-

ordinate axes given below.

x

f(x)

−2 2 4

2

4

6

8

10

6. Again, consider the function Q(x) =

{
x2 ;x > −1
−2x− 1 ; x ≤ −1

. On what inter-

val is Q(x) decreasing?
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7. Simplify

(
−3a

4
3 b−2

a2b
1
3

)3

completely, and write your answer without negative

exponents.

8. Transform
−4y

7
√
y − 9)5

from rational and radical form to exponential form

(fractions are only permitted in the exponent of your answer).

9. Write the equation of the line in slope intercept form passing through the

points (−2, 6) and (1, 0).

10. Write the equation in slope intercept form for the line that passes through

(0, 3) and is parallel to the line x− 3y = 7.

11. Evaluate log3(27).

12. Solve 6x+3 = 5 for x. You may leave your answer unsimplified (no calculations

required).

13. If possible, solve −3rs + 2tr = rs3 − 7 for r. If it is not possible, briefly

explain why.
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14. Solve x2 − 7x − 5 = −2 for all possible values of x. You do not need to

simplify your answer.

15. Solve x2 − 6x+ 8 ≤ 0. Give your answer in proper interval notation.

16. Solve
2x− 8

x− 1
≥ 0.

17. Evaluate cos(−π
4

).

18. Find the range of f(x) = −2 sin(4x)− 5.

19. Simplify −4(11− 6) + 42 ÷ 8.

20. How far from the base of a house do you need to place a 13-foot ladder so

that it exactly reaches the top of a 12- foot tall wall?

51



APPENDIX B

One Week of Mini Tests

Each week, a new set of 10 mini tests (one for each competency) is given to

the students who still need to master competencies. This appendix shows one week

of these tests.

MTH 141: PCE Mini-test

Competency 1, Functions

Name: Section: Date:

1. Find the domain of

√
x− 4

5x
.

2. Given f(x) = −4x2 and g(x) = −x+ 7y, find f(y + h)− g(1).

MTH 141: PCE Mini-test

Competency 2, Factoring and Expanding

Name: Section: Date:

1. Expand and simplify (10x− 2)(x− 8).

2. Factor x4 − 49x2 completely.
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MTH 141: PCE Mini-test

Competency 3, Graphing and Quadratics

Name: Section: Date:

1. Draw the graph of the function f(x) = x2 + 4x+ 3 on the coordinate axes

given below.

x

f(x)

−4 −2 2 4

2

4

6

8

10

2. Give the interval(s) on which f(x) is negative.

MTH 141: PCE Mini-test

Competency 4, Radicals and Exponents

Name: Section: Date:

1. Simplify
15m3n−5

45m−1n−3
. Write your answer using only positive exponents.

2. Write
1

7
√

(3xy − 9)2
in exponent form (no radicals permitted).
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MTH 141: PCE Mini-test

Competency 5, Straight Lines

Name: Section: Date:

1. Write the equation in slope intercept form for the line passing through

(1, 0) and (4, 2)

2. Write the equation in slope intercept form for the line parallel to

y − 5x = 9 through the point (0,−7).

MTH 141: PCE Mini-test

Competency 6, Logarithms

Name: Section: Date:

1. Write as a single logarithm by using log rules, and simplify: 3 log7(2y) −

log7(4z)

2. Solve 8 = 32x−4 for x. (No calculations required - you may leave your

answer in log form.)
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MTH 141: PCE Mini-test

Competency 7, Algebra

Name: Section: Date:

1. Solve 4y3x2 dy
dx

+ 2xy4− 3y2 dy
dx

= 2x for dy
dx

in terms of all other variables. If

it is not possible, briefly state why.

2. Solve 2y2xz + xy5 + 10y2z = 2x− 7y for x in terms of all other variables.

If it is not possible, briefly state why.

MTH 141: PCE Mini-test

Competency 8, Inequalities

Name: Section: Date:

1. Solve x2 − 7x+ 12 ≤ 2.

2. Solve
3x− 1

2x+ 4
≥ 1.
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MTH 141: PCE Mini-test

Competency 9, Trigonometric Functions

Name: Section: Date:

1. Evaluate sin(π).

2. Evaluate cos(π).

MTH 141: PCE Mini-test

Competency 10, Real Numbers

Name: Section: Date:

1. Simplify −2(7) + 30÷ 5× 2− 42.

2. An increasingly popular way to move these days is to rent a “pod” that

you pack yourself. Suppose a particular pod’s walls are each 1
2
ft thick, and the

exterior dimensions of this pod are 9ft× 10ft× 11ft. What is the interior volume

of the pod? Be sure to include the correct units in your answer. (Hint: It may

help to draw some pictures.)
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APPENDIX C

Proposed Exam C

This is a proposed mini test C to replace mini tests 2,5,6, and 10.

MTH 141

PCE Mini-test Exam C

Name: Date:

1. Factor x2 + 8x− 33 completely.

2. Suppose f(x) is a linear function with slope −4 which passes through the

point (2, 7). Find f(−3).

3. Write the equation in slope intercept form for the line perpendicular to

2y + 10x = 1 through the point (0, 1).

4. Solve 23+ q
2 = 6 for q. (No calculations required - you may leave your answer

in log form.)

5. The volume of a sphere is given by V = 4
3
πr3 where r is the radius of the

sphere. If the radius is doubled, what happens to the volume? (Hint: It may help

to sketch some pictures.)
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(a) It doubles.

(b) It is halved.

(c) It stays the same.

(d) It is eight times bigger.

(e) It is four times bigger.

(f) None of the above.
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APPENDIX D

Final Exam

We re-tested each competency on the final exam. These ten questions from

the final exam are shown below.

Final Exam Spring 2013

1. If f(x) = x2 and g(x) = x− k, find f(−3)− g(4).

(A) 5 + k

(B) −13 + k

(C) 5− k

(D) −13− k

2. Which of the following gives a complete list of the roots of x3 − 9x?

(A) 0, 3, −3

(B) 0, 3

(C) −3, 3

(D) 3
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3. The graph below is most likely the graph of which of the following functions?

(A) f(x) = x2 + 4

(B) f(x) = −x2 − 4

(C) f(x) = −x2 + 4

(D) f(x) = x2 − 4

4. Simplify completely:

(
−3a1/3b

a2b−1/3

)3

.

(A)
−3b4

a5

(B)
27b4

a5

(C)
b2

27a5

(D)
−27b4

a5
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5. Write the equation of the line perpendicular to 2y − x = −7 that goes

through the point (0, 4).

(A) y = −2x+ 4

(B) y = −2x− 7
2

(C) y = 1
2
x− 7

2

(D) y = 1
2
x+ 4

6. Evaluate: log(1, 000, 000).

(A) (10)1,000,000

(B) 7

(C) 100, 000

(D) 6

7. If possible, solve the equation below for w: w cos(x) + x2 = 1
3
w + wex.

(A)
cos(x)− 1

3
− ex

−x2

(B)
x2

cos(x) + 1
3

+ ex

(C)
−x2

cos(x)− 1
3
− ex

(D) It is not possible to solve for w.
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8. Solve x2 + 2x− 35 ≤ 0.

(A) [−7, 5]

(B) x = −7, x = 5

(C) (−∞,−7] ∪ [5,∞)

(D) (−∞,−7]

9. Which of the following are true?

(I) sin(0) = 0

(II) sin(0) = 1

(III) cos(0) = 0

(IV) cos(0) = 1

(A) II and III

(B) I and IV

(C) II and IV

(D) I and III

10. The gravitational force, F , between two objects is given by F =
Gm1m2

r2
,

where, G is the universal gravitational constant, m1 and m2 are the masses of the

two objects, and r is the distance between the objects. If r is increased while G,

m1, and m2 remain constant, then what happens to the gravitational force?

(A) F increases.

(B) F decreases.

(C) F stays the same.

(D) There is not enough information to determine how or if the gravitational force

will change.
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