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Fine Structure in the Optical-Absorption Edge of Silicon

C. Anagnostopoulos and G. Sadasiv
Department of Electrical Engineering, University of Rhode Island, Kingston, Rhode Island 02881

(Received 11 August 1972)

Details of the structure in the indirect optical-absorption edge of silicon were studied by measuring the
dependence of the photocurrent in p-n junctions on the energy of the incident photons. The measuremets
were made at room and higher temperatures for photon energies 0.75 & h v & 1.08 eV. The sensitivity of the
method enabled high-resolution measurements in the absorption tail. At room temperature, thresholds were
found at ~0.91, 0.99, and 1.026 eV. The derivative of the response showed extensive fine structure in this
tail. The TO- and LO-phonon-assisted transitions to the ground and excited state of the exciton, previously

reported in the phonon emission region, were seen here with phonon absorption occurring around 1.054 and
1.065 eV. There was additional structure of unknown origin in this region.

I. INTRODUCTION

The optical-absorption spectrum near the in-
direct band gap of silicon was measured by Mac-
farlane, McLean, Quarrington, and Roberts~
(MMQR). The absorption arises from indirect al-
lowed transitions with momentum being conserved
by the emission or absorption of a phonon. The
electron-hole pairs created may either be un-
bound or exist as excitons with binding energy e(n),
where n denotes the nth exciton level. The theory
for the spectral dependence of the absorption coef-
ficient n for such transitions was developed by
Elliott. A summary of the theory and an analysis
of the experimental results can be found in the ex-
tensive review by McLean. '

The agreement between theory and experiment
was, in general, excellent, but there were a few
discrepancies. The experimentally determined
value of 5. 5 meV for e(1) —e(2) led to an estimate
of -7 meV for the exciton Rydberg, whereas the
value calculated from theory by McLean and Lou-
don4 was 14 meV. Another discrepancy involved
the absence of any contribution from the longitudi-
nal optical (LO) and longitudinal acoustic (LA) pho-
nons, although transitions aided by these phonons
are allowed. Finally, the experimental results
showed absorption at photon energies lower than
the minimum threshold energy for one-phonon-
aided transitions. The value of 0, in this absorp-
tion tail was very small and could not be accurate-
ly determined from the transmission technique
used by MMQR.

Dean et al. measured absorption and lumines-
cence at low temperatures and obtained results in
substantial agreement with MMQR. The higher
resolution had enabled them to see additional
structure near the thresholds which they attributed
to splitting of the ground state of the exciton by
valley-orbit interactions. Recently, Shaklee and
Nahory~ presented results from wavelength-deriv-
ative-type experiments which indicated that the

energy separation between the ground and first ex-
cited state of the exciton was 11.0+0. 2 meV, and
the binding energy of the exciton was 14.7 +0.4
meV. In addition, they pointed out theoretical
reasons that preclude valley-orbit splitting of the
exciton ground state. They identified the additional
structure near the threshold for absorption of a
photon with the emission of a transverse optical
(TO) phonon as due to LO-phonon-assisted transi-
tions. These results were later confirmed by
Evangelisti et al. in low-temperature electroab-
sorption measurements. ~

In this work we have investigated the dependence
of the photocurrent generated in silicon p-n junc-
tions on the energy of the incident photons. The
ratio of the photocurrent to light intensity was
measured and corrected to give the response R for
constant photon flux. R was taken to be propor-
tional to the absorption coefficient z, which is true
as long as the incident light is weakly absorbed.
This point is discussed further in Sec. II. The
sensitivity of the present method arises from the
fact that n is directly related to the measured
photocurrent, whereas in transmission or reflec-
tion experiments it is related to the small differ-
ence between two large measured quantities. The
method proved particularly useful for measuring
accurately the absorption tail. Measurements
were also made in the To-phonon-absorption re-
gion, i.e., where the absorption of a photon is ac-
companied by the absorption of a TO phonon.

The results can be summarized as follows: (i)
At room temperature there are three prominent
thresholds in the absorption tail. The first, which
is not too well defined, occurs at 0. 91 eV, the sec-
ond at 0. 99 eV, and the third at 1.026 eV. The
latter two were observed by MMQR. The first lies
beyond their range of measurement.

(ii) The dependence of n on the photon energy
following the latter two thresholds is not in agree-
ment with that found by MMQR. This is due to the
fact that there are a number of other lesser thresh-
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olds present.
(iii) In the region from 1.015 to 1.045 eV the re-

sults are accurate enough to permit numerical dif-
ferentiation of the data to get the derivative of the
response. The derivative plots show fine structure
which has not previously been seen.

(iv) The threshold energies and temperature de-
pendence of e suggest that two- and three-phonon
processes give rise to the absorption tail. The
fine structure indicates that the phonons participat-
ing are not just from the I' point and b, symmetry
direction of the Brillouin zone, but from throughout
the zone.

(v) In the TO-phonon-absorption region our ex-
periments show that there is more structure in the
absorption coefficient than accounted for by the
theory. Furthermore, it is evident from our data
that the fine structure, in the region following TO-
phonon-aided transitions to the ground state of the
exciton, has been the source of disagreement in
previous determinations of c(1) —e(2). The value
of c(l) —z(2) we find is in excellent agreement with
that found by Shaklee and Nahory.

(vi) Finally, participation of LO phonons in the
absorption process, first recognized by them in
the region of phonon emission, is further confirmed
in these experiments in the region of phonon ab-
sorption.

II. EXPERIMENTAL DETAILS

Commercially available large-area silicon p-i-n
photodiodes and epitaxial n-on-p wafers were used.
The n epitaxial layer was either phosphorous or
arsenic doped, and its thickness was approximate-
ly 15 p, . The substrate was always boron doped and
its thickness was of the order of 250 p, . The re-
sistivities of the epitaxial layer and the substrate
mere the same in each sample and ranged in value
between 1 and 10 0 cm for different wafers. The
measurements were made with the samples at
room temperature and at higher temperatures.

A tungsten lamp, a, chopper, and a double-grating
monochromator with a, spectral bandwidth of 0. 5
nm were used to provide a chopped light beam. A
beam splitter was used at the exit slit to irradiate
the sample and a reference thermopile. The volt-
age developed across a load resistor connected
across the sample was measured with one lock-in
amplifier and the output from the thermopile on a
second lock-in amplifier. The ratio of the outputs
from the two lock-in amplifiers was measured with
a ratiometer and recorded. This reading was mul-
tiplied by 1/X to give R, the response at different
wavelengths for constant photon flux. The illumi-
nation level was kept low enough that the photocur-
rent varied linearly with light intensity. R is then
proportional to the total number of electron-hole
pairs created mithin an effective collection region

near the junction.
The reasons for taking R to be proportional to cy

are as follows: In traversing a distance l the light
is attenuated from intensity Io to I (1), where I(f)
=Ioe '. In the region of interest a is less than 1
cm, and with wafer thickness of 250 p, , we have
ol«1. Hence Io-I(l) =Io nl, and the light ab-
sorbed in the effective collection region is propor-
tional to n. We assume the quantum efficiency to
be independent of photon energy. This assumption
is substantiated by the photoconductive measure-
ments made on germanium by Moss and Hawkins.
They found that in the absorption tail their calcu-
lated absorption coefficient from photoconductive
measurements was identical to that obtained by
Macfarlane et al. from transmission measure-
ments. In the present work the fact that the re-
sponse is proportional to the number of photons
absorbed in the effective collection region and is in-
dependent of diode parameters was experimentally
verified by shining the light through either surface
of the wafer. Despite the large asymmetry of the
junction depth relative to the sample surfaces, the
response obtained was identical. There were five
room-temperature measurements of the response
in the region from 1.015 to 1.045 eV. These in-
cluded the p-i-n diode and several different epitaxi-
al wafers. All runs gave results which were the
same to within a multiplying factor.

The monochromator which was used in the ex-
periments had a linear wavelength scale. Where
extreme accuracy was required the data points
were taken by manual setting of this scale. The
derivative spectrum was obtained by taking the dif-
ference between the responses at wavelengths sep-
arated by 1 nm. This gave AR/b, A. rather than
bR/b, kv, but for small ranges of X one is propor-
tional to the other. The value of 1 nm for 4X mas
chosen for highest resolution consistent with dis-
crimination against noise.

A number of steps were taken to make sure of
the genuineness of the structure seen in the deriv-
ative plots. The correctness and linearity of the
monochromator scale were checked by measuring
persistent lines and doublets in atomic spectra.
The accuracy and reproducibility of the settings
was found to be better than 0. 02 nm. Effects due
to the grating and beam splitter were eliminated
by using a near-infrared transmitting filter and
polarizer in front of the entrance slit of the mono-
chromator. This was verified by repeating the ex-
periments with a second thermopile or a Ge photo-
diode in place of the sample. In neither case was
any structure observed. The use of several dif-
ferent samples has already been mentioned. Fin-
ally, the samples were heated and measurements
made at temperatures 10 to 50'C above room tem-
perature. Large changes in the shape of the ab-
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sorption curve are not expected for such small
temperature changes and, since the energy gap
decreases with temperature, all genuine structures
should appear displaced to longer wavelengths.
All structures discussed in Sec. III showed this ex-
pected behavior. Incidentally, there was no struc-
ture found that was caused by the system.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Absorption Tail

The method was uSeful for photon energies be-
low 1.077 eV. At higher energies a and R are no
longer linearly related because of the large value
of +, and the large background results in loss of
sensitivity. The only information beyond 1.077 eV
that was obtained was the energy at which onset of
transitions to the ground state of the exciton oc-
curred with the simultaneous emission of a TO
phonon. This threshold gave an easily identifiable
peak in the bR/hZ vs-X curve,-and occurred at
1.1692 eV. The peak due to the onset of transi-
tions to the ground state of the exciton involving the
simultaneous absorption of a TO phonon was easily
established and occurred at 1.0538 eV. The av-
erage of these two energies gives the room-tem-
perature (296 K) exciton indirect gap, i. e., the en-
ergy gap minus the exciton binding energy, as
1.1115+0.0005 eV. Half of the spacing between the
two peaks gives the TO-phonon energy to be 57. 7
+ 0. 5 meV. These values are in excellent agree-
ment with previous results.

A semilogarithmic plot of the response against
photon energy in the region of the absorption tail
is shown in Fig. 1. There is a measurable re-
sponse at 0.775 eV, and it increases by about an
order of magnitude on going to 0. 90 eV. Not much
can be said about the shape of the curve in this
region, as the signal was too small to be mea-
sured accurately. The signal was just above the
noise level at the low-energy end and was deter-
mined with about 6%%uo accuracy at 0. 90 eV.

Towards higher energies the response rises
sharply, with clearly observable thresholds at
0. 91 and 0. 99 eV. Various simple expressions
were tried for describing the response between
these two thresholds. The formula

R=4. 9+1.09x+ 0. 56e',

with x= p(hv —hvo), p=67 eV ~, and hvo= 0. 925 eV,
gave a good fit to the data in the region 0.925-
0. 983 eV. According to this formula the response
is an exponential superimposed on a background
consisting of a constant and a linear term. The
data in this region at T = 331 K were fitted by

R=10.8+2. 30x+ 1.20e",

where P was again 67 eV, and hvo was 0. 916 eV.
The shift of 9 meV in hvo is in agreement with the
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FIG. 1. Photoresponse of silicon p-n junctions in the
absorption tail. For reference the arrow points to the
TO-phonon-absorption threshold.

+ h (hv -1.021)' U(hv -1.021), (8)

where hv is measured in eV, a and 5 are con-
stants, and U is the unit step function. This im-
plies that the absorption rises as the square of the
energy from thresholds at 0. 989 and 1.021 eV. In
trying to fit such an expression to our measure-

change in the energy gap due to the rise in tem-
perature. The latter was measured from the shift
of the TO absorption peak and was 9 meV. It is
of interest to note that the raising of the tempera-
ture increased the response by a factor of about
2. 15, as is evident from Eqs. (1) and (2).

The response between the second threshold and
the TO absorption region is shown in greater de-
tail in Fig. 2. The top curve is data obtained at
331 K and goes with the upper scale; the bottom
curve is the room-temperature data and goes with
the lower-energy scale. The top scale is shifted
towards lower energy by 9 meV relative to the
bottom scale to offset the change in energy gap
with temperature; the arrow points to the TO ab-
sorption threshold for both the room- and high-
temperature data. In the region from 0. 99 to 1.05
eV, MMQR fitted their room-temperature data
with an expression of the form

n = a(hv —0. 989) U(hv —0. 989)
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FIG. 2. Expanded plot of response vs photon energy in
the region from 0. 96 to 1.06 eV. The upper curve has
been shifted by 9 meV towards lower energies to offset the
decrease in energy gap with temperature.

FIG. 3. Square root of the difference between the
actual photoresponse and the extrapolated low-energy re-
sponse from Eq. (1), plotted against photon energy. The
bottom curves are for different samples at room tempera-
ture. The top curve is for a sample at higher tempera-
ture and has been shifted by 9 meV to facilitate compari-
son with the lower curves. The arrows point to structures
seen in all the curves.

ments, one of the problems was to find the correct
extrapolation of the response at lower energies and
subtract it from the actual data. The mechanism
giving rise to the absorption below 0.98 eV is not
known, and there is some concern about extrapolat-
ing an increasing exponential. For want of a better
procedure it was assumed that the same mecha-
nism continued to operate beyond 0. 98 eV, and the
extrapolated value II,„,was found from Eq. (1).
Figure 3 shows the square root of the difference
between the actual and extrapolated values against
photon energy. The bottom two curves are room-
temperature data for two different samples, the
top curve is for a heated sample. The energy scale
for the heated sample has again been shifted by 9
meV relative to the scale for the room-tempera-
ture data. Between (a) and (b) one can draw ap-
proximate straight lines, with nearly common ori-
gin for the three curves. The threshold thus es-
tablished is 0. 982 eV at room temperature, as
compared to the value of 0. 989 eV found by MAR.
There is a break in the curve at point (b). This oc-
curs at l.0213 eV and coincides with the second

'threshold of EIl. (3).
To a very rough approximation, one can fit the

tail in this region according to the dependence sug-

1.265 I.255
I

WAVELENGTH (p, m)
I.245 l.235

I 8.5

I-
z'

6.5
Vl

K

K

I:2
IS
K

0

K
45 I-

0

2.5

0
I.276 l.266 l.256

WAVELENGTH (p.m)

l.246
0.5

FIG. 4. ~/~X against decreasing wavelength near
the threshold at 0. 990 eV (1.250 p,). The bottom curve
has been shifted by 9 meV towards lower energies. The
peaks for the top curve occur at - 0. 989 and - 0. 994 eV.
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fL
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I.2I8 I.206 l.194

WAVELENGTH (p.m)
I.I82

FIG. 5. ~/&& showing fine structure in the absorp-
tion tail. The points are experimental values; the line
is drawn through features seen consistently in all runs.
The photon energies corresponding to the arrows are
shown in the figure.

gested by MAR. The agreement, however, is
not very good. There are really no straight-line
portions in Fig. 3. There is more structure in the
response than indicated by Eq. (3). The arrows
point to places where a break is apparent in every
one of the curves. The deviations between the ex-
perimental values and the curve calculated to give
the best fit are well beyond the experimental error.

The structure in the response can be seen mere
clearly in the derivative plots. As explained in
Sec. II, it was more convenient for handling the
data to choose X as the independent variable instead
of kv.

In Fig. 4, bR/AAis plotted. against decreasing
wavelength in the vicinity of the threshold at 0. 99
eV. The top curve is the room-temperature data,
and the bottom curve is the data at higher tempera-
ture for the same sample. The scales are offset,
as in the previous figures, to facilitate compari-
son. The similarity of these curves is evident. It
is clear that not one but two peaks are present.
The photon energies corresponding to these peaks
are 0. 989 and 0. 994 eV for the room-temperature
data, and are shifted by 9 meV towards lower en-
ergies at higher temperature.

Figure 5 shows bR/b, A, against decreasing wave-

length in the region from 1.22 to 1.1& p. The
points plotted are the average of five runs with
each run showing essentially the same features,
while averaging eliminated some of the noise.
There are several features with different and well-
defined shapes; the photon energies corresponding
to these features are noted in the figure. It is
worth noting that the step increase denoted by (a)
occurs at l. 0256 eV, which corresponds to point
(c) of Fig. 3. Beyond (h) the derivative is domi-
nated by the TO-phonon peak and its thermal
broadening.

The mechanism giving rise to the absorption tail
and the fine structure is not known. We can rule
out the effects of the electric fields in the space-
charge region, as the diodes gave the same results
with and without applied bias. Extensive studies of
luminescence spectra of pure and doped silicon
samples at low temperatures have been made by
Dean et a/. The structures seen were identified
with levels of excitons bound to neutral impurities,
and multiphonon processes. '~ In the present ex-
periments the impurities are ionized, and the ener-
gy levels due to bound exciton-ionized impurity
complexes in silicon are an open question. " One
might expect these to lie near the localized level
for a single carrier around the impurity. The ob-
served energies of the structure in the present
work do not correlate well with the known levels
introduced by the impurities. In addition, the fact
that As- and P-doped wafers with resistivities
ranging from 1 to 10 0 cm, and the p-i-n photo-
diode, gave identical results suggests that impurity
effects are negligible. Thus although the effect of
the impurities cannot be completely disregarded,
our results are more in accordance with multipho-
non effects as discussed below.

The conduction-band minima in silicon occur in
the [100]direction of the Brillouin zone, with the
magnitude of the wave vector being about 0. 85
times the magnitude at the zone boundary. The op-
tical and acoustic phonons with this wave vector are
the ones involved in the one-phonon-aided transi-
tions; the TO phonon has energy 5V meV and the
TA phonon has energy 18 meV. It is possible to
have two- and higher-order phonon-aided proces-
ses, provided the sum of the wave vectors of the
phonons is equal to the above value. As pointed
out by McLean, 3 transitions are possible with the
simultaneous absorption of the above TA or TO
phonon and an 0 phonon (i.e., a zero-wave-vector
optical phonon). The energy of the 0 phonon is 63
meV. Two-phonon-aided transition thresholds
would be expected at 0. 991 eV (for TQ+Q) and at
1.031 eV (for TA+0); these agree approximately
with the data of Fig. 3. The observed threshold at
0. 911 eV could be attributed tn absorption of three
phonons (0+0+ TQ). The temperature dependence
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of the absorption in the region from 0. &25 to 0. 983
eV is in agreement with this assumption. The
probability of the simultaneous absorption of three
phonons is given by the product of the occupation
numbers n, of each of the phonons, where

(
sa&;I or I)-1

and 0 is Boltzmann's constant. From this the ratio
of the absorption at 331 K to that at 296 K is cal-
culated to be about 2. 17 as compared to the ratio
of 2. 16 between Egs. (1) and (2). Two- and three-
phonon structure has been previously re-
ported. ' ' ' Peaks in modulation, tunneling, and
luminescence experiments were identified with
combinations of TO, TA, 0, and S phonon ener-
gies, where S is the phonon connecting different
conduction-band minima. The detailed nature of
the structure in our results shows that choosing pho-
nons from only some high-symmetry points and
directions is inadequate. Calculations of two-pho-
non effects using a wider sampling of phonons has
been done only for Raman scattering, where the
sum of the momenta of the phonons is zero. The
two-phonon spectra have been observed both in
Raman effect and electron energy loss measure-
ments. ' Calculations along these lines for the ab-
sorption edge might be useful in analyzing the pres-
ent experimental results.

8. TO-Phonon-Absorption Region

It was pointed out in the Introduction that there is
some disagreement in the literature with regard to
the fine structure in the region of TQ-phonon-aided
transitions and its interpretation. The data ob-
tained in the present measurements in this region

are shown in Fig. 6 where hR jb,X has been plotted
against decreasing wavelength. The solid curve in
the figure is drawn through those features that are
seen with the same shape and relative amplitude in
all the results, i.e., different runs on different
samples. At higher temperatures these features
were present, correctly shifted towards lower en-
ergies.

Following the interpretation reported by Shaklee
and Nahory, 8 we identify the peaks at (a) and (b) as
the thresholds for transitions to the ground state of
the exciton with the absorption of a TO and an LO
phonon, respectively. The peaks (d) and (e) cor-
respond to the TO- and LO-phonon-aided transition
to the first excited level of the exciton. The energy
separation between the ground and first excited lev-
el of the exciton is found to be 11.9+0.5 meV. The
energy of the LQ phonon is calculated to be 55. 9
+0. 5 meV. The values for the phonon energies and
exciton levels obtained are in excellent agreement
with the values found by Shaklee and Nahory in the
phonon emission region.

But there is a discrepancy between theory and ex-
periment. From the theory it would be expected
that the derivative of n would have a ——,

' power de-
pendence on the energy from the threshold at (a)
to about 12 meV away; and a —,

' power dependence
on the energy from a threshold 14 meV away from
(a). Clearly this is not what happens. Instead at
(c), about 6. 4 meV away from (a), there is a step
increase in the derivative and, neglecting the fine
structure, there is an almost linear increase
commencing about 10 meV away from (a). This
behavior is in good qualitative agreement with the

I
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1
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I
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I
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f

FIG. 6. Derivative of photo-
current with respect to wave-
length for a silicon p-n junction,
plotted against decreasing A.

The points a,re measured values
of AR/&&; the line is drawn
through the features seen con-
sistently in all runs. The peaks
denoted by long arrows corre-
spond to features seen by pre-
vious investigators. The photon
energies in eV corresponding to
the position of the arrows are
shown in the figure.
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results of MMQR. They interpreted a steplike in-
crease 5. 5 meV away from the TO-phonon peak
as the onset of TO-phonon-aided transitions to the
first excited state of the exciton, and the almost
linear increase in the derivative commencing
about 10 meV away from the TO peak as due to
band transitions. Dean et al. found a step in-
crease about 7. 5 meV from the TO peak with band
transitions commencing about 4. 5 meV after the
step. They also interpreted the step increase as
the onset of TO-phonon-aided transitions to the
first excited state of the exciton. In Fig. 2 pre-
sented by Shaklee and Nahory, the derivative in
the region of TO-phonon emission shows a definite
increase, though not steplike, commencing about 7
meV away from the TO peak. It is clear from
their figure and Fig. 6 of the present work that the
increase is not due to background contributions.
Finally, in electroabsorption~ spectra of Si a
broad negative valley was observed following the
TO peak corresponding to transitions to the ground
state of the exciton.

Shaklee and Nahory's interpretation of the fine
structure is probably the correct one, as it leads
to good agreement between the experimental and

theoretical values of the exciton levels, and gives
the right energies for the peaks in Fig. 6. There
are some features in Fig. 6 which do not corre-
spond to any peaks noted by Shaklee and Nahory.
Some of these, like the structure near (f), could
be due to multiphonon effects. These effects would
be more prominent in the present measurements
which were done at elevated temperatures and in
the phonon absorption region. However, the in-
crease in the derivative 7 meV away from the TO
peak cannot be due to two-phonon effects or im-
purity effects. If it were, it would appear sym-
metrically placed with respect to the exciton in-
direct gap. But, as has been pointed out, it has
been observed on the high-energy side of the TO
peak in all the experiments, at low and high tem-
peratures, and both in the phonon emission and
phonon absorption regions. It thus appears to be
related to the TO peak, and consequently to the
exciton, but at the moment there is no explanation
for it. It is of interest to note that in transmis-
sion-type experiments with GaP a crystal whose
band structure is very similar to Si, anomalous
fine structure was also observed for some of the
phonon-assisted transitions.
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