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PHYSICAL REVIE%' A VOLUME 31, NUMBER 2 FEBRUARY 1985

Nonperiodic flow in the numerical integration of a nonlinear differential equation
of fluid dynamics

Edmund X. DeJesus and Charles Kaufman
Department ofPhysics, University ofRhode Island, Kingston, Rhode Island 0288I

(Received 20 April 1984)

Viscous incompressible fluid flow along a flat plate is modeled. by the Navier-Stokes equations
with appropriate boundary conditions. A series solution is assumed and a set of three nonlinear or-
dinary differential equations is derived by truncating the series. The Reynolds number appears in
these three equations as a parameter. These equations are solved by numerical integration. We
show that these solutions exhibit qualitatively different behavior for different values of the Reynolds
number of the fluid. The various modes include an asymptotic approach to a time-independent
state, laminar (periodic) flow, and turbulence. We give several computer-generated pictures of the
various modes.

I. INTRODUCTION

The Orr-Sommerfeld equation- provides the classic
route for the determination of boundary layer stability of
fiuid flow along a flat plate. ' More recently, chaotic
solutions to differential equations have become a tantaliz-
ing possibility for the mathematical description of tur-
bulent flow. Here we report on some results of calcu-
lations which combine aspects of both approaches. We
derive a nonlinear partial differential equation to approxi-
mate flow along a flat plate. From this equation we
determine a set of three ordinary nonlinear differential
equations, and demonstrate that solutions to these equa-
tions exhibit both regular and chaotic behavior. We
present also some details of this behavior.

II. PROCEDURE

A. Derivation of equations

We begin with the Navier-Stokes equation for viscous
flow. ' Written in terms of the vorticity, these are

dn, a'n, DU, gp a U,
p =p + E'&Jk +pQI —p kg,Dt BxIBx~ Dt Bxj. Bx(

We further assume the flow field Uk to be a basic flow,
U& (x2 ), with a perturbation of u ~ (x ~,x2, t) and

u2(x~, x2, t}, i.e.,

Ul ——Ul+u(,

U3 ——0.
Consider Eq. (2) with k =3:

(3b)

(3c)

Dn, a'n, aU,
p Dt P 8 3 +p (4)

aU,
Q3 ———e; 3 c}x

a(U, +u, ) au,
+

Bx2 Bx l

BQl

Bx2

BUl

Bx2

Using Eq. (3c), U3 —0 and the second term on the right-
hand side of Eq. (4) is zero. We evaluate 03 in terms of
the basic flow and perturbative flow as

where Qk is kth component of vorticity, t is time, p is ab-
solute viscosity, xI is the lth space coordinate, Uk is the
kth component of the flow velocity, 8 is the divergence of
the flow velocity, and k is 1,2,3.

We assume the fluid incompressible, so that the second
term on the right-hand side of (1) is zero; also, 8, the
divergence of the flow velocity, is zero and the fourth
term on the right-hand side of (1) is zero. We retain

Dn,
P Dt ="ax,ax, P ax,=p +pQ~

OU,
Q3 =�co-

3Bx

where

BQ2
C03 =

BXl

BQl

Bx2

With &3 «om Eq. (5), U3 ——0, and with some rearrange-
ment, Eq. (4) is
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a — a a+(Ui+ui) . +u2 co3
at Bx) ax2

V'e —U V'q+U e„+~V4q
at ax ~~ "

p

a a 'aU,
+(Ui+ui) +u2

ai' ax i axe axe

Q)=
BX2

(Sa)

Q2=-
BX)

(8b)

= ~v'~, —~v'
p p ax2

Recall that Ui —= Ui(x2), so that derivatives of Ui with
respect to t or x~ are zero. We rearrange the resultant
equation:

aoi3 aco3 acoi aco3 a Ui
+U, +u, +u, —u,al' Bxi axi ax2 ax&

=~v'~, —~ a Ui

p p axe

We now introduce a stream function 'P=q'(x&, x2, t) to
represent the pertufbative terms, such that

BX
V'%+ U,„,=0 .

P
(10)

We wish to render Eq. (10) dimensionless. We make
the assumption that fiow is restricted (in the y direction)
to a boundary layer of thickness 5.' We further assume
that the fice-stream velocity is Uo. With these assump-
tions we obtain the dimensionless equation

at ax '" ax
V'%+U V'0 +U +—V"4

where R =p5Uo/p is identified as the Reynolds number.
(Note that by neglecting terms noriliriear in 4 and assum-
ing U„„~ vanishes, Eq. (11) can be truncated. Assuming
that 4 is of the form +=/(y)exp[ia(x ct)] in t—his trun-
cated equation then yields the Orr-Sommerfeld equation.
Equation (11) is implicit in the standard derivation of the
Orr-Sommerfeld equation, but does not explicitly appear
in standard references on the subject. )

toi —V %. ——
Using Eqs. (8) in Eq. (7) gives

a'Ua V2%, U
a 72%, 1

a&

(Sc)
1. Choosing the stream function 4

It is difficult to choose a stream function, %(x,y, t),
which preserves the nonlinear character of Eq. (11). After
eXamining many possibilities, we have chosen

—ls 4 BV a &2+ a+ a

p ax2 ax i axi ax2

p a Ui

P BX2
(9)

84=%(x,y, t) = ——cos( ly) — cos(kx)
I2 k

sin(ly)sin(kx),
2C

k +I (12)

To simplify the form of Eq. (9) we make the following
substitutions: x for xi, y for xz, U for Ui, U~„ for
a Ui/ax2, U~~~ for a Ui/ax2, 4„ for aV/axi, 4„ for
a+/ax 2. This~simplification gives

where A =A (t), 8 =8(t), C =C(t), and k, l are positive
real constants. This choice was suggested by a stream
function used by Lorenz in his paper "Maximum Simpli-
fication of the Dynamic Equations. "'

Using Eq. (12) in Eq. (11) gives

I2 (k'+ l')—& «s(iy) ——A cos(ly) —& cos(kx) — 8 cos(kx) —2C sin(ly)sin(kx) —2
A R

C sin(ly)sin(kx)

+AS k —I 13,.

I 3

sin(kx)sin(ly)+28C cos(ly) —BC cos(iy)cosi(kx)k(k'+l') k(k2+i2)

—k3
+2AC

2 2 cos(kx) —2&C cos(kx)cos (ly)+ Ukb sin(kx)l(k +l )

+ U„„—sin(kx) —2kCUsin(ly)sin(kx) —U Csin(ly)cos(kx)+ —U' =0 .1

"k'+i' 3PP

(13)
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2. Choosing the flow fgnction U

The flow function U is a function of y only. The boundary conditions of flow along a flat plate suggest that U should
be small for y near zero. Also, U should approach Uo as y approaches the boundary layer thickness, 5. (This latter re-
striction can be achieved through the use of a multiplicative constant. ) These restrictions still allow considerable free-
dom in choosing U. We chose (and justify our choice in the Appendix)

Uyy
——

sin(ly)
(14)

It is our intention to keep only those terms of Eq. (13) that are like the terms appearing in )Ii, Eq. (12), "namely, mul-
tiples of cos(ly), cos(kx), and sin(ly)sin(kx). Therefore we make the trigonometric substitutions 1 —sin (kx) for cos (kx)
and 1 —sin (ly) for cos (ly) in Eq. (13). We also substitute Fq. (14) in Eq. (13), noting that U and U„„will give rise to
terms that will not be kept. The resulting equation is

12 21 k —2k
cos( ly) —A ——A +BC

k (k2+ l') +cos(kx) B—— B +AC8 l(k +l )

—C 2

k +l
(k'+ l2) (k' —i2)

+sin(ly)sin(kx) —2C —2
kl

C+AB — =0 . (15)

A +BC
k (k'+12)

(16a)

In Eq. (15), the terms cos(ly), cos(kx), and
sin(ly)sin(kx) are linearly independent, so that the coeffi-
cients of these terms must separately equal zero. ' This
yields

B. Numerica1 integration of equations (Ref. 6).

Given An, B„,Cn we compute A;,8;,C;:

A; =d1An +d28„Cn,

8; =e18n+e2An C„+e3C

C, =f,c„+f,A„B„.

(18)

(k +I ) C AB
k l

2kl

Equations (16) ean also be written as

A =d1A +d28C+d38,

8=e18+e2AC+e3C,

C=flC+f2AB+f3A,
where

I2
d1= ——,dz=R'

k
e1 ———,e2 ——

—(k +1 )f1= R

2l
k (k'+ I') d3 ——0,

—2k —2km

l (k'+ l2) k'+ l2

k —l
f2 —— , f3 ——0.

2kl

8+AC 2 2 +C
~ —k2 —2k —2km

I (k'+ l') k'+ l2
(16b)

(16c)

(17a)

(17b)

(17c)

A(n+1) ——An+ A; At,

8(n+1) Bn +Bi~t ~

C(n+1) ——C„+C;At .

(19)

Now we compute A '; (A(„+,),B(„+,),C(„+1)),
Bi (A(n+l)~ B(n+1)~ C( +nl))~ Ci (A(n+1)&B(n+1)~ (n+1))

A i d1A(n+1)+d28(n+1)C(n+1) ~

8 j —e18(n+ 1) +e2A (n +1)C(n +1)+e3 C(n +1) ~

C i =f1 C(n+1) +f2A(n+1)B(n+1) ~

LaStly We COmpute the neW pOint An+1, 8n+1, Cn+1.

(20)

A„+1——A„+ (A;+A; ),
2

B„+1 B„+ (B;+B,' ), ——
2

(21)

From A;,8;,C; and the time interval ht we can com-
pute the midpoint A(n+1), 8(n+1),C(n+1).

Equations (17) are the equations we integrated numerical-
ly.

The approximations leading to these equations have
been severe, and much of the content of Eq. (11) may have
been lost thereby. We do not expect Eqs. (17) to describe
real flow to high precision. However, the nonlinearity
and dependence on Reynolds number do remain, and we
proceed to numerically integrate these equations, with an
eye more toward qualitative than quantitative description
of real flow.

C„+1——C„+ (C;+Ci') .
2

Equations (18)—(21) are the algorithm we used to numeri-
cally integrate Eqs. (17).

To preserve the physical validity of the flow character-
ized by Eqs. (17), some care must be taken in choosing
values for the constants k, 1, and m. From Schlicting's
discussion of a turbulent boundary layer we use the
empirical result that the minimum wavelength of the dis-
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0.1

A, B,C

C

B

0.0

-G. l I I I I I I I I I I I I

5 xlO IO xl0
time

FIG.' 1. A, B,C, vs time for R =10. Time interval between
points shown is 40 units.

In addition, we impose the further restriction that k ~ I
so that f2&0 in Eqs. (17). As a result, analysis of the
eigenvalues of Eqs. (17) is simplified. Lastly our choice,
and justification, of the flow'function U require I «1
and n ~ —l.

For our study we chose k =0.62, E =0.07,I = —0.064. We used 3=0.01, 8=0.01, C=0.01 as the
initial point of the integration; ht was 1.

We used double-precision advanced BASIC on the IBM
Personal Computer for calculations and graphic results.
We also used double-precision FORTRAN on the Universi-
ty of Rhode Island NAS 7000N mainframe computer for
calculations and graphic results.

Typical integrations were carried out for 5000 time
units, and we estimated the precision of the numerical cal-
culations by studying the effect of reducing the time step
At. After a time 5000 units, 8(5000) for bt =1 differed
from 8(5000) for b,t= —,'o, by about 0.1%.

turbance be about 65, i.e., the wavelength of the distur-
bance is much larger than the thickness of the boundary
layer. In our formulation, k and I play the part of wave
numbers [as in the terms cos(ly), cos(kx), and
sin(ly)sin(kx)] so that we have the restriction:

III. RESULTS

We observed a wide range of qualitative behavior of the
solutions of Eqs. (19) corresponding to a range of values
of R. For R &15.5914, we observed the solutions A, B,C
to oscillate regularly (see Fig. 1), the amplitude of oscilla-
tions decayed, and the solutions A,B,C approached a

0.4 0.4

(b)—

Q, Q
0.0

-0.4 I I I I I I I I I I } I

2.00 2.50 5.OO xl 0+

time

0.4

(c)

-0.4

G.4

I I I

2.00 2.SO

time

3.00 x I 0

(d)

I l I I I I I I I

0.0

2.09 2.59

t ime

I I I

3.09 x)Q+
-0.4

2.00
I I 1 I ( l I I ) I I

2.50 5.00 x l0 4

time

FIG. 2. C vs time for several values of R. Time interval between points shown is 40 units. (a) R=16, 4-cycle; (b) R=22, 8-cycle;
I,
'c) R=23.4, 16-cycle; (d) R=40, chaotic.
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~ 7
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~ ~ ~

~ ~ ~

~ ~
~ ~ ~

~ ~

~ ~
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0.008
0.0 0.05 0.09

0.010
-0.15 0.0 0.16

0.0125 0.0125

0.012

0.012

0.009
-0.15 0.0 0.17

0.010
-0.16 0.0

I

0.16

0.012
(e)

l'

r '1
7l ~ Illllll

7
7

7
7

I
7

0.011
-0.15 0.0 0.15

FICr. 3. A vs C for several values of R. Time interval between points shown is 10 units, except in (e), where it is 2 units.
(a) R=10; (b) R=16, 4-cycle; (c) R=22, 8-cycle; (d) R=23.4, 16-cycle; (e) R=40, chaotic.
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fixed point. For 15.5914&8 &18, the solutions oscillate
regularly [see Fig. 2(a)], the amplitude does not decay, and
the oscillations appear to form a stable 4-cycle (see the
following). For 18 &R &21, the solutions oscillate irregu-
larly, the amplitude does not decay, and the oscillations
appear to be changing from a 4-cycle to an 8-cycle. For
21&R&23, the solutions oscillate regularly [see Fig.
2(b)], the amplitude does not decay, and the oscillations
appear to form a stable 8-cycle (see the following). For
R=23.4, the solutions oscillate regularly [see Fig. 2(c)],
the amplitude does not decay, and the oscillations appear
to form a stable 16-cycle. For R =40, the solutions oscil-
late irregularly [see Fig. 2(d)], the amplitude does not de-

cay, but varies over a wide range, and the oscillations ap-
pear to be chaotic (see the following).

Our judgment as to whether the oscillations are stable
n-cycles or chaotic derives from considerations of two
types of information: the trajectory of the solution in

A,B,C space, and the Poincare section of that trajectory
with a plane, A =const.

Figures 3(a)—3(e) show "three-dimensional" portraits of
the trajectories of the solutions in A;B,C space. Figure

3(a) shows the spiraling decay of the solutions toward a
fixed point for R=10. Figure 3(b) shows that the trajec-
tory for R=16is stable and consists of two lobes. Figure
3(c) shows that the trajectory for R =22 is stable and con-
sists of four lobes. Figure 3(d) shows that the trajectory
for R=23.4 is stable and consists of eight lobes. Figure
3(e) shows that the trajectory for R=40 is not stable and
consists of many lobes of various sizes.

In the nonmenclature of mappings, a mapping is said to
be an "n-cycle" if it takes n applications of the mapping
to get back to the original point. For instance, a 4-cycle
would consist of four points; point l would map into
point 2, point 2 into point 3, point 3 into point 4, and
point four back into point l. Thus, a 4-cycle takes four
steps to return to the original point. Trajectories such as
those traced by these solutions do not have such a simple
structure. It is useful to take the intersection of this
three-dimensional trajectory with a two-dimensional sur-
face. The resulting set of intersection points is known as
a Poincare section or Poincare map, and gives information
about the periodicity of the trajectory. ""

For the two-dimensional surface we chose the plane

0.17 0.16

{a) {b)

0.0 0.0

-0.15
-0.1 0.0 0.12

-0.15
-0.1

I

0.0 0.1

0.16
0.17

0.0
00

-0.15
-0.1 0.0 0.1 -0.16

-0.07
I

0.0 0.07

FIG. 4. Intersection of the trajectory with the plane 3=0.0116. (a) R=16, 4-cycle, 2X10'&t &5X10; (b) R=22, 8-cycle,2X10 &t &5X10; (c) R=23.5, 16-cycle, 2X10 &t &2X10; (d) R='40, chaotic, 2X10 &t &2X10.
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A =0.0116. As might be expected, each lobe of a trajec-
tory strikes this plane in two points. For 8 =16, the tra-
jectory of two lobes strikes the plane in four points; thus,
R=16 is a 4-cycle [Fig. 4(a)]. For R =22, the trajectory
of four lobes strikes the plane in eight points; thus, R =22
is an 8-cycle [Fig. 4(b)]. For 23.4, the trajectory of eight
lobes strikes the plane in sixteen points; thus, R =23.4 is a
16-cycle [Fig. 4(c)]. For R =40, the many lobes strike the
plane in many points; the trajectory and the intersection
points do not repeat; thus, R =40 is nonperiodic, or chaot-
ic [Fig. 4(d)].

IV. CONCLUSIONS

The simple mathematical model of a fluid dynamical
system gives rise to equations whose numerical solutions
behave in qualitatively different ways. This behavior in-
cludes decay to constant values, regular oscillation, arid
chaos. The authors believe these different behaviors
resemble the flow of fluids under different circumstances,
viz. , fluid motion dissipating due to viscous forces, lami-
nar fluid flow, and turbulent flow.

Moon et a/. have made a similar study of another
equation of fluid dynamics, the Ginzburg-Landau equa-
tion. They find periodic and chaotic regimes as the con-
trol parameter is varied, just as we do. In addition, the
transition to turbulence'in their case seems to proceed via
the "three-frequency scenario" of Newhouse et al. In
other work we will attempt to determine the predicted
fluid velocities and their spectra from the functions
A, B,C, and from there, to determine which, if any, of the
competing paths to chaos' our model chooses.

APPENDIX CHOICE OF FLOW FUNCTION U

The choice of flow function U is crucial to the behavior
of the mathematically modeled dyriamical system. There-
fore, the flow function was chosen mainly for its physical
relevance and for the mathematical advantage it offered.
This advantage was realized in that certain terms are dis=
carded and one term retained as a result of our choice,
namely:

NZ

sin(ly)

We justify our choice as follows. For Ip « 1, sin(Iy) =lp,
so that

m 1
U

Upon integration with respect to y:

Uy — (ln
~ y ~

+C t ) .
yl

Upon second integration with respect to y:

y +y ln
~ y ~

+Cly +C2 ) '
I

According to our boundary conditions

U(y) —+0 asy~O

U(y)~1 as y~1 .
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From the first condition, we deduce that Cz ——0. From
the second, we deduce that Ct ——I+l/m. We also desire
that U reach its maximum value for y & 1. This implies
C& & 0. From the conditions that U(1)= 1 and Ci & 0
and l ~ 0, we deduce that

0)m) —l .
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