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Abstract

Introduction: We propose a minimum data set framework for the acquisition and

analysis of retinal images for the development of retinal Alzheimer’s disease (AD)

biomarkers. Our goal is to describemethodology thatwill increase concordance across

laboratories, so that the broader research community is able to cross-validate findings

in parallel, accumulate large databases with normative data across the cognitive aging

spectrum, and progress the application of this technology from the discovery stage to

the validation stage in the search for sensitive and specific retinal biomarkers in AD.
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Methods: The proposed minimum data set framework is based on the Atlas of Retinal

Imaging Study (ARIAS), an ongoing, longitudinal, multi-site observational cohort study.

However, the ARIAS protocol has been edited and refined with the expertise of all co-

authors, representing 16 institutions, and research groups from three countries, as a

first step to address a pressing need identified by experts in neuroscience, neurology,

optometry, and ophthalmology at the Retinal Imaging in Alzheimer’s Disease (RIAD)

conference, convened by the Alzheimer’s Association and held in Washington, DC, in

May 2019.

Results:Our framework delineates specific imaging protocols andmethods of analysis

for imaging structural changes in retinal neuronal layers, with optional add-on proce-

dures of fundus autofluorescence to examine beta-amyloid accumulation and optical

coherence tomography angiography to examine AD-related changes in the retinal vas-

culature.

Discussion: This minimum data set represents a first step toward the standardization

of retinal imaging data acquisition and analysis in cognitive aging and AD. A standard-

ized approach is essential to move from discovery to validation, and to examine which

retinal AD biomarkers may be more sensitive and specific for the different stages of

the disease severity spectrum. This approach has worked for other biomarkers in the

AD field, such asmagnetic resonance imaging; amyloid positron emission tomography;

and, more recently, blood proteomics. Potential context of use for retinal AD biomark-

ers is discussed.

1 INTRODUCTION

In the current volume of Alzheimer’s & Dementia, Snyder et al.1

present the proceedings of an international conference hosted

by the Alzheimer’s Association in Washington, DC, in May 2019,

which brought together experts in Alzheimer’s disease (AD) with

leading clinicians and researchers in optometry, ophthalmology, and

neuro-ophthalmology for a 2-day summit entitled “Retinal Imaging

in Alzheimer’s Disease.” The focus of this meeting was to promote

collaborative efforts between AD researchers and retinal specialists in

pursuit of the discovery and validation of retinal AD risk biomarkers.

Because the retina is an extension of the central nervous system, the

development and validation of such biomarkers would allow for a

non-invasive, inexpensive, and relatively rapid method for the routine

screening of AD risk and progression in large populations of older

adults.2 Given the lack of preventative or disease-modifying therapies

for AD, and the fact that the majority of adults over the age of 40 see

an eye care professional intermittently for preventive eye health and

vision examinations, correction of refractive error (including pres-

byopia), and/or ongoing monitoring of ocular abnormalities, retinal

screening could serve as a cost-effective, widely accessible method

to address a major public health need. This first-ever international

conference on retinal imaging in AD identified several key action items

or next steps to move retinal AD biomarker research from its current

position in the discovery phase to the validation phase. Perhaps the

most critical of these is the need for at least initial agreement on

basic standards for data acquisition and analyses, to allow increased

opportunities for data sharing across research groups. This will

allow researchers in the field to compare imaging data across study

cohorts, and eventually would lead to the creation of awidely available

comparative reference database, along the lines of the Alzheimer’s

Disease Neuroimaging Initiative (ADNI3–5) and the Australian Imaging

Biomarkers and Lifestyle Study (AIBL6) among other large-scale

longitudinal observational trials. These landmark studies have led to

massive improvements in how we acquire and interpret neuroimaging

and biofluids markers for the disease.

Here, we propose a framework for a “minimum data set” for use

in retinal imaging and signal processing across laboratories, based on

our collective experience and an exhaustive decision-making process

that led to the design of a current multi-site longitudinal observational

trial, led by two of us (P.J.S. and S.S.), the Atlas of Retinal Imaging in

Alzheimer’s Study (ARIAS) that launched recruitment of participants

in January 2020. We began with this protocol, and sought input

from international experts in this area (all co-authors) to reach a

consensus on a recommendedminimumdata set. Our aim is to propose

reproducible methods that can be used across laboratories to aggre-

gate data, cross-validate findings, and accelerate the development

of sensitive and specific retinal biomarkers for the early detection

of Alzheimer’s pathologic change. Although we are well aware that

the field is not yet ready to reach a consensus on methods, and that
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site-specific differences in the actual optical coherence tomography

(OCT) measurements of retinal markers exist due to proprietary

differences in manufacturing technologies and processing software.

While this cannot be solved with the suggestion of this framework,

we are hopeful that publishing this methodology serves as a first step

toward finding common approaches that will improve our ability to

harmonize data and to cross-validate results across research centers

dedicated to the discovery and validation of retinal biomarkers of AD.

1.1 A proposed framework for a minimum data
set in AD biomarker research: spectral domain
optical coherence tomography (SD-OCT) image
collection and processing

We propose a framework that encompasses structural SD-OCT imag-

ing of the optic disc and the macula, to capture volume and thick-

ness changes of the peripapillary retinal nerve fiber layer (pRNFL),

macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL),

inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform

layer (OPL), outer nuclear layer (ONL), inner and outer photorecep-

tor segments (IS and OS), and the retinal pigment epithelium (RPE).

Because structural changes in the retina in AD have been robustly sup-

ported by the growing literature on this topic over the past decade2

and all SD-OCT devices support structural retinal imaging, we pro-

pose this as a core image acquisition and processing framework. We

also propose some additional image acquisition and processing tech-

niques: fundus autofluorescence imaging to examine protein changes

andOCT-angiography (OCT-A) of the retinal microvasculature.

As noted above, these methods are being used in the ARIAS trial

that is following a large cohort (N = 330) longitudinally for 5 years at

three sites in Florida and Rhode Island (NCT# = 03862222). In addi-

tion to an extensive retinal imaging protocol, ARIAS will also collect

genetic, cognitive, sleep, gait, functional, pupillometry, contrast sensi-

tivity, brain imaging (amyloid positron emission tomography [PET] and

magnetic resonance imaging [MRI], for a subset of participants), and

blood proteomics data. After completion of data collection and initial

analyses, we plan to make this database publicly available as a refer-

ence for other researchers, patterned after the data-sharing approach

pioneered by ADNI.

1.2 Instrumental variability across centers
and research groups

Multiple instrument manufacturers including, but not limited to, Zeiss,

Heidelberg Engineering, Topcon, and Optovue, are all producing very

high-quality SD-OCT imaging systems that are in wide clinical and

research use worldwide. Although each of these systems produce very

similar-looking and high-quality images, technical specifications do

vary across these devices that lead to important differences in optics,

in-plane resolution, the ability to map point-to-point over successive

exams, and many other instrumental differences. Moreover, even

RESEARCH INCONTEXT

1. Systematic review: The Alzheimer’s Association, in part-

nership with this journal, hosted a first-ever international

think-tank meeting on the topic of retinal imaging in

Alzheimer’s disease (AD) in May 2019, attended by 90

experts from nine countries 1 One of the key recommen-

dations from the conferencewas to develop consensus on

an initial “minimum data set approach” for future studies,

to allow enhanced potential to compare, and/or to coa-

lesce, data collected acrossmultiple laboratories and clin-

ics.

2. Interpretation: This initial attempt at outlining a mini-

mum data set, retinal imaging studies in AD, is based on

a large trial that is currently in progress; but that proto-

col has now been edited and refined with the expertise of

all co-authors, representing 16 institutions, and research

groups from three countries.

3. Future directions: We hope that this set of recom-

mendations will be considered by, improved, further

refined, and adopted by additional research groups and

by the new Professional Interest Area (PIA) group of the

Alzheimer’s Association International Society toAdvance

Alzheimer’s Research and Treatment (ISTAART) that has

just recently been launched as another major recommen-

dation from the "Retinal Imaging inAD" conference refer-

enced above.1

within the same company and SD-OCT system, periodic improve-

ments in their signal processing software packages result in subtle

differences in segmentation algorithms, possibly creating an additional

source of instrumental variability between labs and between patient

visits. It is beyond the scope of this article to recommend how such

sources of instrumental error should be addressed when coalescing

data across labs, or even within the same center over time. However,

we firmly believe that potential between-center main effect differ-

ences for vendor/imaging systems need to be thoroughly explored,

with multiple research groups working cooperatively, to both collect

and then share data sets that can be at least partially merged for

statistical analyses, or at least used to derive mathematical equations

for conversions between instruments, as has been done previously for

diabetic retinopathy.7

We are of the opinion that appropriate adjustments will be

identified to allow data obtained on one manufacturer’s system to

be compared reliably to the same type of data obtained on other

systems–and this work stream would clearly advance more rapidly

with the cooperation of the manufacturers themselves. In the protocol

we describe below, we have chosen to use the same Heidelberg

Engineering, Inc. (Heidelberg, Germany) SPECTRALIS 2 OCT system

at all three clinical sites. Hence, many of the specifications described
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below are specific to this particular vendor. We offer this as an exam-

ple, and would encourage centers relying on imaging systems from

other vendors to match the protocol below to accelerate the work of

understanding these potential instrument differences.

We also acknowledge that several investigators in academia and

industry aredevelopingnovel experimental technologies andengineer-

ing advances that may supersede some or all of the imaging technolo-

gies that we currently rely on, in terms of sensitivity and specificity for

ADriskbiomarkers (cf. Liu et al.8 Yapet al.,9 andBraaf et al.10).Here,we

focus on current widely available clinical tools that can be deployed by

point-of-care clinicians for validation of retinal biomarkers in the near-

term future.

1.3 Quality control and quality assurance

Theveracity of biomarker research, of any type, is utterly dependenton

study subject selection and ensuring consistent assurance and quality

control (QA/QC), across clinical sites, across technicians and research

staff who are collecting data, and across time for within-subjects

longitudinal studies. This important set of issues also lies beyond the

scope of this article, but the ability to trust any of the retinal imaging

biomarkers that we describe below is nonetheless dependent on study

designs that effectively ensure proper QA/QC of the data obtained.

1.4 Structural imaging protocol

TheSD-OCTprocedures outlinedbeloware currently beingperformed

using the SPECTRALIS HRA + OCT hardware and the Eye Explorer

(HEYEX) version 1.10.4.0 (Heidelberg Engineering, Heidelberg,

Germany) software with structural, angiographic, autofluorescence,

and widefield imaging capabilities. For centers using a Heidelberg

SPECTRALIS, the targeted signal quality value of the structural and

angiographic images should be at least 20 for the purpose of quality

control for image analysis, and an automatic real time (ART) value of at

least 7. Prior to imaging, wherever possible, all participants should be

dilated with two drops of tropicamide (Mydriacil 1%) per eye. There is

a 15-minute wait time from drop instillation to image acquisition. We

recommend completing all imaging procedures for both the right and

the left eye. Doing so allows for the inclusion of research participants

who have pathology in a single eye, and provides a margin of error if

the image quality is less than optimal for a single eye.

A common approach in retinal imaging research is to rely on a

random assignment for each subject enrolled in a given study, to

choose either the right eye (oculus dexter, OD) or left eye (oculus sinister,

OS) for data analyses. In practice, the decision to use data from OD

versus OS is dependent on the image quality for each eye, participant

cooperation during the scanning process, and the presence or absence

of ocular pathologies (in each eye) that might adversely impact the

quality of the SD-OCTmeasurements. In Table 1, we provide a listing of

ocular and retinal pathologies that, if of sufficient severity so as to limit

the quality of imaging data, would result in choosing one eye over the

other (or, in the presence of substantial bilateral ocular disease, would

exclude a participant from the study altogether). In at least some cases,

ophthalmic evaluation is necessary to evaluate the disease severity

and to develop reproducible inclusion and exclusion criteria.

For structural OCT imaging, to avoid inter- and intra-subject thick-

nessmeasurementbiasesdue toaxial length,11 wecorrect using amod-

ified Littman’s formula, which is currently in use by several investiga-

tors in this field.12 For sites unable tomeasure axial length, participants

with<or>5.0 diopters native spherical equivalent should be excluded.

Additionally, although regulations surrounding storage of demographic

information vary regionally, nationally, and internationally, we recom-

mend collecting the following demographic variables as a minimum:

age, years of education, race, sex. All of these factors can affect retinal

morphology and/or cognition in AD, andmay be required as covariates

in analyses examining between- or within-subject comparisons.

1.4.1 Structural SD-OCT imaging at optic disc

For research groups relying on the imaging system produced by Hei-

delberg Engineering, the SPECTRALIS HRA + OCT glaucoma imaging

module should be used, centered on the optic disc, consisting of three

concentric circles of diameters3.5, 4.1, and4.7mm.This imagingproto-

col should be completed in high-speed (HS) mode, with 27 B-scans for

each of the three concentric circles and 30 frames averaged per each

B-scan location. Segmentation is completed automatically withHEYEX

software. For centers relyingon systemsproducedbyother companies,

we recommendworking closely with each vendor to match these mea-

surement diameters around the optic disc. Additionally, the automatic

segmentation results may be validated by periodic batches of manual

segmentation.

1.4.2 Outcome variables and analysis

pRNFL thickness is the variable of interest with respect to optic disc

imaging, due to the evidence in the literature indicating changes to

the pRNFL in AD.13,14 Outcome variables include the average pRNFL

thickness (in microns) in the seven standard glaucoma fields centered

on the optic disc (global average [G], temporal [T, 315-45˚], temporal

superior [TS, 45-90˚], temporal inferior [TI, 90-135˚], nasal [N, 135-
225˚], nasal superior [NS, 225-270˚], and nasal inferior [270-315˚]) in
each of the three concentric circles. In addition, a progressionmodel to

assess the longitudinal change in the global pRNFL thickness in each of

the three concentric circles (3.5, 4.1, and 4.7mm) is completed for each

participant. Notably, these fields may differ slightly among commercial

vendors.

1.4.3 Structural SD-OCT imaging at the macula

Our standard protocol uses the preset posterior-pole imaging mod-

ule on the SPECTRALIS, with fixation on the fovea. This protocol
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TABLE 1 List of ocular pathologies that influences choice of either eye or exclusion of participants altogether in the event of a bilateral
condition for the purpose of image analysis

Anterior segment conditions Posterior segment conditions

Dense cataracts (that impede image quality) Age-relatedmacular degeneration

Corneal disease affectingmedia visualization or opacity Diabetic retinopathy

Unusually highmyopia/refractive errors (>or<5.0 diopters) native

spherical equivalent, substantial media opacity, or corneal disease

that may provide accurate visualization of the retinal fundus

Hypertensive retinopathy

Anterior uveitis Other retinal vascular diseases, eg, retinal ischemic changes, central (or

branch) retinal vein occlusion, central (or branch) retinal artery occlusion,

retinal vasculitis

Macular diseases, eg, epiretinal membrane, macular hole, vitreomacular

traction syndrome

Highmyopic eyes associatedwith posterior staphyloma

Glaucoma

Optic nerve disease, eg, optic disc edema, inflammatory, ischemic,

compressive, hereditary, toxic, and nutritional optic neuropathies

Cystoidmacular edema

Substantial media opacity, eg, floaters, asteroid hyalosis, vitreous hemorrhage

History of retinal or macular surgery in the past 6months

Posterior uveitis

History of intravitreal injections

F IGURE 1 A composite diagram showing a 30× 25 degree
spectral domain optical coherence tomography (SD-OCT) grid
centered on themacula with an individual SD-OCT scan through the
fovea (61 B-scans, 123microns between B-scans; A, a segmented
foveal B-scan, with retinal neuronal layers delineated [B], and a 3D
representation of the foveal B-scan in space [C]). T, N, I, represent the
temporal, nasal, and inferior portions of the retina respectively. Figure
by Dr. E Arthur

encompasses a macular centered SD-OCT grid of size 30˚× 25˚ (∼8.8
× 7.4 mm) with 61 B-scans across the macula, 123 microns spacing

between B-scans, and 10 frames averaged per each B-scan location

(see Figure 1). The HEYEX software automatically segments and

computes the thickness of all retinal layers. Recent work shows that

this automated software segmentation has excellent agreement

with trained observers in evaluating retinal layer boundaries and

thicknesses in patients with neurodegenerative disease.15 For quality

control purposes, obvious errors in segmentation lines are manually

corrected in all B scans spanning a 6 mm Early Treatment Diabetic

Retinopathy Study (EDTRS) grid. Examples of obvious errors, following

Wong et al.,15 include errors visible on quick inspection due to image

acquisition errors or pathology. Again, similarly high-quality macular

structural imaging may be obtained from all differing types of current

SD-OCT systems that are in use by research centers around the world.

1.4.4 Outcome variables and analysis

Most software to support the OCT systems offered by any major

vendor, including Heidelberg’s HEYEX software, will automatically

compute retinal layer thicknesses (inmicrons) of themRNFL, GCL, IPL,

INL, OPL, ONL, IS andOS, and the RPE. The retinal layer segmentation

algorithm of the HEYEX software has been validated against manual

segmentation previously in neurodegenerative disease.15 Volume

measurements (in mm3) of all the above-mentioned retinal layers

may also be computed. An ETDRS map consisting of three concentric

circles of diameters 1, 3, and 6mm centered on themacula is produced

automatically by the HEYEX software (ETDRS, 1991). The ETDRSmap

is a pseudo-color thickness map providing average retinal thickness

and volume measurements of the above-mentioned retinal layers

for the fovea, inner, and outer retinal regions corresponding to the
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1, 3, and 6 mm diameter circles, respectively, centered on the fovea.

Inner and outer retinal layer thicknesses are considered because

these layers have been indicated to remodel with AD.16–20 The inner

and outer regions are both divided into the superior, inferior, nasal,

and temporal portions, which, when combined with the foveal region

adds up to a retinal thickness map of nine regions (ETDRS, 1991).

The accurate centering of the ETDRS map on the fovea of all study

participants is verified by the retinal photographer to ensure accurate

retinal thickness values of the retinal layers for all nine regions.

In addition to analysis of the ETDRS grid, we analyze an 8 × 8 mm

posterior pole grid centered on the macula. We use Heidelberg’s

HEYEX software with NSite Analytics© to compute the retinal thick-

ness values of all of the retinal layers for the 64 boxes within the 8 ×

8mmposterior pole grid. This provides amore localized analysis of reti-

nal layer thickness across the macula, rather than relying on average

volume and thickness. Software analytics packages designed to work

with imaging systems from other manufacturers will provide very sim-

ilar metrics.

1.5 Additional imaging modalities

While research on structural retinal biomarkers in AD is furthest along

in terms of discovery work, there is an expanding body of literature

elucidating changes in retinal proteinopathies and the retinal vascula-

ture in AD, with the hopes of creating sensitive and specific biomark-

ers to detect AD risk and monitor disease progression. At this point,

it is unknown which retinal biomarker, or combination thereof, will be

useful at each stage of the neurodegenerative continuum. Here, we

list imaging acquisition and analysis procedures for the ARIAS trial to

examine retinal Aβ and retinal vascular changes in cognitively normal

older adults, mild cognitive impairment (MCI) patients, and mild AD

patients.

1.6 Retinal amyloid beta (Aβ): autofluorescence
imaging

Autofluorescence imaging is available within the Heidelberg SPEC-

TRALIS system to examine the presence of Aβ in the retinal neuronal

layers. We use a 55˚widefield lens to acquire fundus autofluorescence
(FAF) images of the central, superior, and inferior retina of all study

participants using SPECTRALIS confocal scanning laser ophthalo-

moscopy (cSLO). Thewider lens is used to capture a larger surface area

and to search for putative evidence of amyloidosis in the periphery.

If this lens is not available, use of the standard lens is appropriate for

this data, as long as the lens and field of view are specified at the time

of dissemination of results. The composite image is then evaluated

for number and surface area of inclusion bodies suspected to contain

amyloid proteins.21,22 Retinal inclusion bodies have been previously

found in the retina of preclinical AD research participants, with the

number and surface area of these inclusion bodies being moderately

correlated with a standard index of amyloid aggregation on PET brain

imaging.23 In symptomatic AD patients, fundus autofluorescence with

SLO has been used to quantify retinal amyloid in vivo, and confirmed

by autopsy.24–26

1.7 Outcome variables and analysis

We use the Heidelberg Explorer (HE) region finder tool of the HEYEX

software to compute the number count and total surface area of

the inclusion bodies in the autofluorescence images. This tool allows

the operator to place a seed in an area of interest, and the software

automatically computes the boundary of the object. On visual inspec-

tion, the rater has the ability to modify the boundaries as required.

All images are read by two qualified and independent raters, and

we exclude the 360-degree region within 1 disc diameter from the

center of the optic disc and the 360-degree macular region within

1 disc diameter of the foveal center. This is done to avoid including

the area of hypopigmentation around the optic nerve in participants

with zone α or β crescents or peripapillary atrophy and to avoid

inclusion of age-relatedmacular drusen in these two regions. Inclusion

bodies are only counted if they reach 100% consensus ratings in two

independent raters, who are blind to participant information, including

demographics, medical history, and clinical status.

2 RETINAL ANGIOGRAPHIC CHANGES:
OPTICAL COHERENCE TOMOGRAPHY
ANGIOGRAPHY (OCT-A) IMAGING

We collect a macular centered 20˚× 20˚ (6 × 6 mm) OCTA image con-

sisting of 512 B-scans, with 12 micron spacing between B-scans, and

five frames averagedper eachB-scan location for each participant. This

produces the superficial vascular complex (SVC) angiogram, defined

as the composite retinal vascular plexus from the inner limiting mem-

brane to the IPL usingHEYEX software. Although not exactly the same,

similar scan parameters are available onother commercial platforms as

shown in Table 2.

2.1 Outcome variables and analysis

The outcome variables measured from the OCT-A images include

foveal avascular zone (FAZ) size, capillary density, capillary non-

perfusion area, and multifractal properties as measured by the gener-

alized dimension and singularity spectra. All of thesemetrics appear to

be influenced by the presence of AD.27–29

At the present time, there is little broad agreement on how best

to process the highly complex OCT-A imaging data that can now be

easily acquired, as processing technology is still relatively new. There

is a rapidly growing number of published methods for OCT-A signal

analyses and data reporting, and currently little agreement on stan-

dard metrics. MarkVCID represents an ongoing multicenter initiative

to develop consensus methodology for OCTA in the assessment of
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vascular cognitive impairment or dementia. The methodology of this

study will soon be available and will likely aid in the harmonization

of angiography data. Below, we offer one approach that our group is

focusing on, as these methods may be reproduced with relative ease

using widely available software, as described below.

The HEYEX software lasso tool is used to delineate the borders of

the FAZ, to allow for surface area measurement on the SVC image.

After this, we export the SVC images as tiff files into custom pro-

gramming software (Matlab, Mathworks) for further image process-

ing and analysis. First, a vesselness filter is applied to the images30,31

to increase the probability of resolving a vessel at a specific location

in the image when it is actually present versus noise or motion arti-

fact. Next, the Otsu thresholding method32 is applied to the resultant

image to reduce background noise. After the thresholding, we use a

customized program script33 to count the number of pixels designated

as vessels. These thresholding and pixel counting methods are applica-

ble to all OCTA images, regardless of device used for acquisition. The

number of pixels is then converted into mm2 based on the micron-to-

pixel ratio in the x andydirections, as computed from the fiducialmarks

acquired from the HEYEX software. The resultant value in mm2 is the

capillary density in the SVC. To compute the area of non-perfusion, we

subtract the computed capillary density from the known area of the

SVC angiogram (36mm2).

To investigate the fractal properties of the retinal vascular network

in the processed SVC angiogram, all images are analyzed using the

image processing software Image J (Wayne Rasband, National Insti-

tutes of Health in Bethesda,Maryland, USA) together with the FracLac

plugin (A. Karperien—Charles Sturt University, Australia).We compute

the multifractal properties of the retinal vascular plexus in the SVC

using the generalized dimension and singularity spectra.28,29,34,35 Sev-

eral other analysis platforms are available either from other commer-

cial vendors or research groups specializing in angiography analysis.36

Table 2 summarizes the retinal imaging modalities of this frame-

work, techniques for retinal image analysis, and outcome variables for

our suggestedmethodological framework.

3 SUMMARY AND DISCUSSION

Here, we suggest a reproducible methodology to serve as a recom-

mended “minimum data set” for collection and analysis of retinal

images in AD research, in hopes of harmonizing data to generate rapid

discovery andmoving the field toward validating sensitive and specific

retinal biomarkers for AD risk and tomonitor disease progression. This

recommended protocol is offered as a starting point to address one of

the key needs identified by experts from academia, industry, federal

agencies, and regulatoryauthorities at theMay2019Retinal Imaging in

Alzheimer’sDisease Summit, organizedby theAlzheimer’sAssociation.

Our primary focus for the recommendedminimum data set is struc-

tural retinal changes, measured via retinal neuronal layer thickness

and volume and assessed with SD-OCT. This has been extensively

reviewed in the literature,2,37 using common imaging procedures

and techniques in clinical optometry and ophthalmology practice.
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We added additional methodology and outcome measures for the

assessment of retinal amyloid, and retinal angiography. Although

these latter imaging approaches currently require more specialized

equipment that is less widely available, several laboratories are cur-

rently exploring both protein-related and angiographic retinal changes

across the AD spectrum. The techniques used by laboratories in these

areas vary, sometimes considerably, across laboratory groups. Our

hope is this recommended minimum data set represent a first step

toward galvanizing researchers to align protocols for retinal imaging

biomarker research in AD.

To generate this recommended minimum data set, we began with

a protocol developed in consultation with industrial and academic

experts for and currently used in the ARIAS study (PIs: Snyder, Sinoff).

We consulted with national and international experts to expand upon

and modify this protocol, resulting in the above recommended mini-

mum data set for retinal imaging biomarker discovery research in AD.

Our goal is to increase methodological concordance across laborato-

ries, so that the broader research community is able to cross-validate

findings in parallel, accumulate large databases with normative data

across the cognitive aging spectrum, and progress from the discovery

stage to the validation stage in terms of retinal biomarker development

for AD.

Although we believe this framework makes a start at filling an

unmet need in the field, we understand that this is a first step in

working toward reliable methodological harmonization across lab-

oratories, and that many additional steps must be taken to achieve

true methodological concordance across labs in academia, the clinic,

and in industry. We acknowledge that this minimum data set will not

necessarily be applicable across all devices and manufacturers, and

that solving technological and technical variations, even subtle ones

due to software variations in the samedevice,will require co-operation

and data-sharing across federal and regulatory agencies, experts in

academia and industry, and device manufacturers. Some of the soft-

ware described in this minimum data set is not part of the “standard”

Heidelberg software package (NSite Analytics, OCT-A, Widefield

ImagingModule, HE Region Finder tool, see Table 2), and acquisition of

this software incurs additional costs, which may not be feasible for all

research laboratories. One potential strategy to expedite data sharing

is providing access to real raw imagedata,without anypost-processing.

Although this would require cooperation of device manufacturers,

working with these data would be helpful in terms of expediting

collaborative efforts and cross-validation in the field. To that end,

there are free image reading platforms available that often produce

comparable results to the vendor software, including Ometto et al.’s

ReLayer38 software and the National Institutes of Health’s Image J

software. SD-OCT images on the SPECTRALIS can be exported as

.tiff files instead of HEYEX software’s standard .E2E files. The .tiff file

formats can be viewed by any non-proprietary image software, such as

Image J, to decouple reliance on proprietary software and pre-/post-

processing. These platforms will help to advance the field toward

sharing raw, unprocessed SD-OCT data and retinal images, especially

in cases in which vendor specific software is not available or not

affordable.

The field will need to address additional methodological barriers

to produce validated, clinically meaningful and applicable biomarkers.

Both AD and cancer have seen success in public–private partnerships,

which can be leveraged for the advancement of retinal biomarker val-

idation in AD. As one example, O’Bryant et al.41 proposed a pathway

for the advancement of plasma biomarkers from discovery to clinic,

including public–private partnerships, which could be applied to reti-

nal biomarkers in the future. Finally,weexpect future retinal biomarker

discovery work in academia tomodify our recommendations for amin-

imum data set framework as the pace and popularity of this work in

AD increases. This framework is notmeant to be exhaustive, but rather

a starting point from which to move forward as a field. For exam-

ple, methodological factors, such as lighting,39,40 may influence reti-

nal morphology. As such, standardization of lighting conditions may

require standardization in the future, although whether this makes a

significant difference in AD measurements remains to be systemati-

cally investigated.

Looking to the future, use of this minimum data set could spur

efficient data accumulation and analysis in the field, including data

examining within subjects, longitudinal change in cognitive aging, and

AD. These data are essential to move from discovery to validation, and

to examine which retinal AD biomarkers may be sensitive and specific

for thedifferent stagesof the cognitive aging continuum.This approach

has been successful in validating other biomarkers for AD, such asMRI,

amyloid PET, and blood proteomics. Moreover, designating an appro-

priate context of use for structural, protein-related, and microvascular

retinal biomarkers will be essential to move the field forward. There

are many potential contexts of use for these biomarkers, including, but

not limited to, point-of-care screening, risk for pre-clinical ADor risk of

progression fromMCI to AD, monitoring, diagnosis, or prognosis. Clin-

ical applicability of these biomarkers will depend on context of use; for

example, structural retinal biomarkers have been studied extensively

in AD patients versus age-matched cognitively normal older adults;

however, investigations of these biomarkers in the preclinical AD

population remains limited. It is essential to determine at which stage

of the cognitive aging continuum these retinal biomarkers are most

reliable and accurate, and how theywouldmost efficiently be deployed

in clinical practice. In the future, retinal imaging could be deployed

as a tool for large-scale screening of cognitively normal older adults.

As a field, our goals should center on precision medicine approaches

for AD diagnosis and monitoring by minimizing clinician burden;

maximizing clinical utility; and identifying individuals at risk for AD for

further specialist evaluation and more invasive, expensive biomarker

testing. Retinal biomarkers could play a pivotal role in large-scale

screening, and serve as a first step in a multi-stage biomarker testing

process, similar to other disease states such as cancer, cardiovascular

disease, and diabetes. It is important to note that to truly validate

retinal imaging as an AD screening tool, we will have to develop

biomarkers that are specific to ADpathology. As health co-morbidities,

specifically cardiovascular disease and diabetes, increase with age, it

is not uncommon for older adults to present with multiple pathologies

that affect the retina. However, aiming for a screening tool with high

negative predictive value that can rule out low-risk older adults,
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will be a valuable first screening stage. Retinal biomarkers have the

potential to limit use of invasive and costly tests, such as brain imaging

and cerebrospinal fluid sampling, and will help to precisely identify

those at high risk for AD when a disease-modifying therapy becomes

available.
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