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ABSTRACT

Presented within this dissertation is the evolutidrthe research leading to the
selection of small, low power architectural solagoto the University of Rhode
Island’s (URI) Neural Machine Interface (NMI) algbim. The NMI is designed to
provide volitional control of an artificial limb fotransfemoral amputees. The NMI
algorithm is based on neuromuscular-mechanicabiugiait phase dependent, non-
linear support vector machine (SVM) classificatiasRI's NMI algorithm utilizes
electromyography to detect direct commands fromhtman brain to the residual
thigh muscles in conjunction with mechanical signalerived from loadcell to
determine the user’s intended locomotion mode.

Of utmost importance is the classification accuyagce any misclassification
can cause the user to stumble, possibly leadisgrious injury or death. Furthermore,
of importance is the development of a small and pwer architectural solution,
such that it can be included within the confineshef artificial limb. URI has tackled
both these challenges, leading to its mobile CéRracessing Unit (CPU) solution.
The mobile CPU solution was the first solution wathfficient processing throughput
to execute the NMI at 20ms window increments. Thed to a steady state
classification accuracy of 99.94%, during real-tinesting, with an able bodied
subject. This testing included a total of 14000Cetistclassifications, and is currently
URI's only, 20ms window increment, state of the agorithmic and architectural

solution to undergo real time human subject testimg) evaluation.



In contrast to URI's NMI algorithm, other state thfe art algorithms provide
volitional control through either echo control ooledy thru intrinsic mechanical
feedback. In echo control, sensors are placed nitie sound leg to determine the
intended locomotion mode. In most cases these menypically communicate
wirelessly with the artificial limb to provide thieedback necessary for volitional
control. This approach is disadvantaged in the fhat it requires that sensors be
instrumented on the sound limb, the user must avegd with the sound limb, and
the wireless communications may possibly be jamnt&grent algorithms based
solely on intrinsic mechanical feedback, have b&smwn to provide high accuracy,
but have had difficulty dealing with more than tsimultaneous dynamic locomotion
modes (e.g. - walk, stair up, stair down, rampara ramp down).

Clearly URI's NMI solution has advantages over ottate of the art powered
lower limb prosthetic control algorithms. It proesl volitional control without the
need to instrument the sound limb, without the nefedireless communications, can
easily detect at least seven simultaneous locomatiodes, provides smooth and
highly responsive locomotion transition detectiard adoes so with high accuracy.
This accuracy can be attributed to the use of meuscular-mechanical fusion, SVM
detection and 20ms window analysis increments. $JRdmall, low power,
architectural solutions are leading the way towdnigkly accurate volitional artificial
leg control of powered prosthetic devices, theremgking a bionic leg a feasible

reality in the near future.
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PREFACE
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"Promise of a Low Power Mobile CPU Based Embeddgste®n in Artificial Leg
Control,” published irthe proceedings of the 34th Annual Internationahfécence of
the IEEE Engineering in Medicine and Biology Soci@&@MBC ‘12) San Diego, CA,
2012. pp. 5250-5253.

Manuscript 2:

Robert Hernandez and John Faella, “Towards Poliny &uidelines for the
Selection of Computational Engines," publishedhi@ proceedings of the 7th Annual
IEEE Systems Conference (SysCon,’@8)ando, FL, 2013. pp. 88-95.

Manuscript 3:

Robert Hernandez, Jason Kane, Fan Zhang, Xiaordramg, and He Huang,
“Towards Ubiquitous Mobile-Computing-Based ArtifatiLeg Control,” submitted to
IEEE Transactions on Mobile Computing
Manuscript 4:

Robert Hernandez, Qing Yang, He Huang, Fan Zhary Xaaorong Zhang,
"Design and Implementation of a Low Power MobilelCBased Embedded System
for Artificial Leg Control,” publishedin the proceedings of the 35th Annual
International Conference of the IEEE EngineeringMedicine and Biology Society

(EMBC ‘13) Osaka, Japan, 2013. pp. 5769-5772.
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This dissertation is concluded and suggestions wsthdr development of the
Neural Machine Interface algorithm and hardwarédigecture are provided in Chapter

5.
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Abstract

This paper presents the design and implementatica low power embedded
system using mobile processor technology (Inteh#{tb 2530 Processor) specifically
tailored for a neural-machine interface (NMI) fortifecial limbs. This embedded
system effectively performs our previously develbpdMI algorithm based on
neuromuscular-mechanical fusion and phase-depenpiiern classification. The
analysis shows that NMI embedded system can maétimge constraints with high
accuracies for recognizing the user’s locomotiordeadOur implementation utilizes
the mobile processor efficiently to allow a powensumption of 2.2 watts and low
CPU utilization (less than 4.3%) while executing ttomplex NMI algorithm. Our
experiments have shown that the highly optimizepgr@yram implementation on the
embedded system has superb advantages over exB@hgmplementations on
MATLAB. The study results suggest that mobile-CPaséd embedded system is

promising for implementing advanced control for goed lower limb prostheses.



1.1 Introduction

A neural-machine interface (NMI) based on neuromlasemechanical fusion [1]
and phase-dependent pattern recognition (PR) girafg] has been successfully
developed in our research group to identify uséeni for volitional control of
powered lower limb prostheses. Embedded implementaif this complex NMI
algorithm for real-time operation is essential flower limb prostheses, but is
challenging due to the rigorous system requiremétitst, the prosthesis control must
be accurate and responsive to enable lower limbutaep to perform different tasks
safely and intuitively. In addition, the prosthesientrol system must perform
continuously for 6-8 hours daily without interrupti Finally, the system must be
easily integrated into the prosthetic limb. Thesguirements demand the embedded
system to be computational powerful, low power, amall in size.

In our previous study, Field Programmable Gate ygi@&PGAs) have been used
as the embedded system to implement our designetlviNi¥d Linear Discriminant
Analysis (LDA)-based classifiers [3]. The prototypgemonstrated promising
performance for real-time NMI implementation. Altigh extremely effective, FPGAs
pose many challenges during the design stage, asclanguage syntax, design
environment, and toolsets [4]. Another concern witle use of FPGAs is its
requirement of special purpose hardware designfalndcation giving rise to high
cost. For example, a Support Vector Machine (SVEBdu classifier improved the
accuracy of NMI for intent recognition compared UtbDA [1]. However, hardware

programming the complex SVM algorithm on a FPGAclwmllenging and time



consuming. These difficulties limit our capability further optimize and develop the
NMI for neural control of powered lower limb prostes.

With the wide availability of commodity off-the-slidhardware such as Personal
Computers (PCs), an efficient and cost-effectivg whimplementing our NMI is to
develop an NMI program specifically tailored to Bu€ommercial of the Shelf
(COTS) hardware. Existing PC implementations of 8MiM-based NMI algorithms,
however, are mainly based on MATLAB giving risehigh overheads and poor real-
time performance. Our objective here is to devedof program realizing our NMI
algorithm on a commodity PC that is portable arsd émough.

One alternative to FPGA and regular CPU is a moBGiRJ. Mobile CPUs are
low cost, low power and much smaller devices thegular CPUs (as shown in Fig.
1.1 [5]). In addition, they have the capability fwovide the flexible design
environment as a PC/CPU combination. However, tmeputational power of mobile
CPUs, such as the Intel Atothz530, is relatively low [6, 7]. Therefore, in thsgudy,

we are interested to investigate whether or notodile CPU can execute a highly

Figure 1.1. Intel Atorl mobile CPU size compared to a United States peany (
United States penny is approximately 19.05 millengin diameter)
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computational intensive algorithm, such as our phdeppendent, SVM-based NMI for
powered lower limb prostheses.
This paper makes the following contributions:

e Design and implementation of a NMI for artifici@gs based on mobile
processors;

e Design and implementation of a highly optimizedp#&sed, embedded
application tailored to execute a phase-dependektl Mith SVM
classifiers;

e A performance analysis that evaluates the potenfiahobile processors
for embedded implementation of a NMI for neural tcohof powered

lower limb prosthesis.

1.2 System Design

1.2.1 HardwareArchitecture

To provide viable use capability of a NMI, the Nkust be small, dissipate low
power, and be fast enough to execute the clagsificalgorithm in real-time. To meet
these requirements, the AxiomTek eBOX530-820-FLlefssm embedded hardware
with the Intel Atom™ Processor 530 (512K cache, 1.6 GHz) was choserTg
Intel Atom™ Processor Z530 provided the highest performancklawest power
dissipation of Hyper-Threading capable mobile CPWkich is ideal for thermally
constrained and fanless embedded applications (), The Hyper-Threading
technology allows the operating system and the Ndpplication to execute

simultaneously on two Hyper-Threads as they wouldveo physical processors [11].



This minimizes the impacts of the OS execution loa teal time embedded NMI

application.

1.2.2 SoftwareArchitecture

C was chosen as the software language in our dbedguse of its superior
performance for real-time embedded applications18R To enhance the system
performance, several programming techniques wered um the design and
implementation of the application. First, dynamiemory management is one of the
most expensive operations in C applications [16}ictv may cost 30% of the total
execution time for the heap intensive C applicaifit6]. To avoid this problem, the
various data structures within the software weréndd statically with pre-defined
maximum sizes. Secondly, to increase the religbiit the application, the data
structures were placed in the application’s datgrst, not in the application’s stack
[17], to help avoid stack overflows. Other perfonmo@a enhancements implemented
included loop unwinding [18] and inline functionpansion [19]. Loop unwinding is
an efficient means to increase the utilization gfepnes and helps eliminate loop
overhead [18]. Inline function expansion replacdsrection call with the body of the
function, which reduces the overhead associated aviunction call during program
execution [19].

The designed Neuromuscular-Mechanical fusion PRrdéhgn, utilizes SVM
classification. The open source library LIBSVM [20Jas used and specifically
tailored to our embedded NMI application for raat¢ SVM classification. LIBSVM
was also utilized in our previous MATLAB implemetitsn, which served as a

baseline for accuracy determination of the embedgbpdication.



1.3 Pattern Recognition Algorithm

The previously developed NMI identifies the usdésomotion mode based on
electromyographic (EMG) signals recorded from tlesidual thigh muscles and
mechanical forces/moments signals recorded froratpetic pylon. These EMG and
mechanical data are segmented by the sliding aralysdows. Features are extracted
from the raw EMG and mechanical data in each arsalysxdow and fused into one
feature vector. This feature vector is sent to aspkdependent pattern classifier for
determination of user intent. The phase-dependeattenn classifier consists of
multiple sub-classifiers for individual defined g@hases and a gait phase detector
that identifies current gait phase and switches dbesponding sub-classifier on.

Detailed description of this previously designed Ndgn be found in [1] and [2].

1.3.1 FeatureExtraction

In this study, four time-domain (TD) features (thean absolute value, the
number of zero crossings, the waveform length,thechumber of slope sign changes)
were extracted from EMG signals in each analysisidav. For mechanical
measurements, the mean, minimum, and maximum vatueach analysis window
were extracted as the features. More detailed nmdtion can be found in [1]. The
length of sliding analysis window and window inceamh were 150ms and 50ms,
respectively.

The features and increments were chosen to matchprvious MATLAB
implementations [21], thereby providing a baselimean accuracy comparison with

the newly designed embedded application.



1.3.2 Phase Dependent Pattern Recognition

To accurately determine user intent, SVM utiliziagRadial Basis Function
(RBF) kernel [21] was utilized. The SVM gamma paesen of 0.015 was used.

In the designed phase-dependent classifier, fobrckassifiers were defined
corresponding to the following four gait phasestiahdouble limb stance (phase 1),
single limb stance (phase 2), terminal double Istdnce (phase 3), and swing (phase
4) [21]. The gait phase detector detects thesephaites based on the vertical Ground
Reaction Force (GRF). In order to build the paramsein the classifiers, training
procedure must be conducted on a training datalseing training, the output of
phase detector is used to label the training datl the corresponding gait phase.
Each classifier is trained only with the data pemit for its gait phase. When testing
the classification, the gait phase detector detgmwhich classifier is responsible for
the determination of user intent. The algorithmatadflow of the phase-dependent

pattern recognition is shown in Fig. 1.2.

. EMG channel #1 3
EMG signals Feature Extraction
: m
Wi _ o
3 3 -
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Figure 1.2. Phase-dependent PR algorithmic data flo
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1.3.3 SoftwarelImplementation

To implement the Neuromuscular-Mechanical FusionthFee applications were
developed. The first application accepts offlin taaining data, performs the EMG
and mechanical feature extraction, fuses and tbemalizes the features into vectors.
The feature vectors are then separated into thmiregponding gait phases and
provided to the training application. The first apgtion is also responsible for
generating the normalization parameters requirethbyPR to normalize the testing
data, when determining user intent. The secondiagan accepts the four sets of
training vectors and generates four SVM models, moédel for each gait phase. The
third application accepts raw offline testing dakes, four gait phase SVM models, and
the normalization parameters. The application eidr&MG and mechanical features
from the raw testing data. The features are theseduand normalized, with the
provided normalization parameters, into a vectanalfy, the application determines
the current gait phase, and forwards the test veoctdhe respective phase based
classifier for determination of user intent. Tldtware implementation data flow is

shown in Fig. 1.3.

1.4 Performance Evaluation

This study was conducted with approval of Instdnél Review Board (IRB) at
the University of Rhode Island and informed consanthe subject. The evaluation
was performed offline on the data collected frommae subject with a transfemoral
amputation. The collected data included the EMg§bas from the subject’s residual
thigh muscles and mechanical forces/moments mehdwea 6 degree-of-freedom

load cell mounted on the prosthetic pylon. The rwoed residual muscles included
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Figure 1.3. Software implementation data flow
the rectus femoris (RF), vastus lateralis (VL),tuasmedialis (VM), biceps femoris
long head (BFL), semitendinosus (SEM), biceps fesnshort head (BFS), and
adductor magnus (ADM). The recognition accuracyNddI by using the designed
embedded system was compared with the resultsistirex PC implementations on
MATLAB. In addition, the timing and processor loadiof the application’s execution
on the embedded hardware were evaluated. A powasuoaption comparison
between similar proposed NMI embedded systems hisdembedded system was

provided.

1.4.1 Recognition Accuracy of NMI

The offline data was composed of seven differeass#s: level-ground walking,
ramp ascent, ramp descent, stair ascent, stairewlgssitting, and standing. The
comparison of recognition accuracies of the NMIusng the designed embedded
system and existing PC implementations on MATLAB provided in Table 1.1. This

study utilized a slightly different value for thamma parameter required by the SVM
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Table 1.1. MATLAB and embedded software classifaratccuracies

PHASE 1 97.74% 98.33%
PHASE 2 96.72% 98.82%
PHASE 3 98.63% 98.67%
PHASE 4 95.18% 95.66%

classifiers. The different gamma value was shownptovide a slightly higher
accuracy during testing. This is noticeable in toenparison results, whereby the
embedded application slightly outperformed the MAB_model in PR accuracies.
Both the MATLAB results and the embedded applicatiad lower Phase 4
(swing) accuracies. Two explanations for this reavt provided in [22]. The first is
that there is little force/moment data present ryrthe swing phase from the
prosthetic pylon [22]. The second explanation istesl to the swing phase being
longer than any of the other three phases, leattingrger variations in the EMG

features [22].

1.4.2 Execution Timing and Processor L oading on the Embedded Hardware
This previously designed NMI algorithm was executeche Intel Atom" based

embedded hardware and the performance results exaeated. A total of 3555
predictions were produced by the Intelom’t” based embedded hardware. For
the purpose of this evaluation, the prediction tiwik be defined as the total time to
execute feature extraction, normalization, gaitgghdetection and classification for a
single analysis window. The mean prediction times Wa8455 milliseconds with a
standard deviation of 0.1044 milliseconds. The waase prediction executed in

2.1265 milliseconds. These results clearly show tiia embedded system is capable

11



of real-time implementation at 50ms and 20ms windiegvements. If the embedded
system is combined with a highly responsive DatajuAgition (DAQ) system to
provide the EMG and mechanical data, even a windwrement of 10ms may be
feasible. At the 10ms window increment, the integfdao the DAQ and the DAQ
system drivers will become of the utmost importance

Because there is additional loading on the CPUxexate the data logging for
post analysis, the CPU loading provided by the &gy system may be inaccurate.
Therefore the mean and maximum value of CPU loadvag calculated by (1.1)

which were 1.691% and 4.253% respectively.

Prediction Time

CPU Loading = * 100 (1.1)

Window Increment (50ms)

1.4.3 Power Consumption Comparison

Previous studies have utilized Field Programmaldge@rrays (FPGA) and PCs
for similar NMI applications [23]. The reported pemconsumption for the FPGA was
3.499 watts and the AMD Turion 64x2 CPU within [23]n utilize up to 35 watts
[23]. The Intel Atomi™ Z530 Processor utilized in this embedded systesigde
dissipates 2.2 watts [9]. The Intel AtSthCPU'’s power dissipation is less than one-

fifteenth that of the CPU and less than two thivak tof the FPGA.

15 Conclusions

This paper presented the design and implementatioa mobile CPU based
embedded system for a NMI for artificial leg comtréhe performance evaluation
showed that the highly optimized C-based embedggdication combined with the

mobile-CPU-based embedded hardware, can easily reaktime constraints. The
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performance evaluation also shows that there idoss in classification accuracy,
when compared with the MATLAB model [21]. In fathere is a slight increase due
to the use of a different SVM gamma parameter. [{athe CPU utilized for this

embedded system dissipated less power than otlstensy designed for similar
applications. Future work to be performed incluaesrfacing the embedded system
to a DAQ to create a real-time capable system asting the system on lower limb

amputees.
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Abstract

Much research has been performed that concentoatgsroviding processing
throughput enhancements to existing algorithms. yMsaystems have performance
requirements that constrain their volume and/or ggoeonsumption. For volume and
power consumption constrained systems, throughpanat be the only decision
factor when selecting a computational engine. Talpstudies can aid in the selection
of computational engines that meet the throughegtirements of a system, but may
be of little help with respect to the volume, powed thermal constraints. This paper
takes a different approach to help provide a dffieperspective on the constrained
design problem. The research performed in this ipapwhasizes the cost due to the
power, size and Non-Recurring Engineering (NRE)tad various computational
engines. The computational engines researchedsm#per are: Central Processing
Unit (CPU), mobile CPU, Digital Signal ProcessorS@®), and mobile Graphics
Processing Unit (GPU). The various architectures ampared against each other
with respect to throughput, power, size and NREscoBhe authors hope that the
process outlined in this paper may serve as a lgesguideline for other Systems
Engineers to perform similar Analysis of Alternasv of computational engines.
Furthermore, the authors hope that the methods fmethe relative performance
evaluations will serve as a starting point to hsl@ape policy in the selection of

computational engines for future designs.
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2.1 Introduction

When performing an Analysis of Alternatives (AoAQrfthe selection of the
computational engine of a system, attention neede tpaid to the system constraints.
Much research has been performed that concentm@egroviding processing
throughput enhancements to existing algorithms2[13, 4], but many systems have
performance requirements that constrain their velumnd/or power consumption.
Studies such as [1, 2, 3, 4] can aid in the s@eaf computational engines that meet
the throughput requirements of a system, but magfbitle help with respect to the
volume, power and thermal constraints. If the landns of the chosen architecture are
not well understood beforehand, the results camxpensive and time consuming.
Furthermore, if the benefits of each computatiogagine are not well understood
beforehand, an inferior or inappropriate architextmay be chosen. This results in
reduced system capability, thereby limiting therent and future software algorithms
that can be implemented. Therefore, it is impdrtarunderstand the limitations and
benefits of existing hardware architectures andvige the best system design
alternatives based on each system’s specific pedoce requirements and
constraints. This research is a direct result ab timitiative and provides a
methodology for performing AoAs of existing compugechitectures for use in future
Naval Systems. The intent is that this research ssye as guidelines and enable
system engineers to choose the most approprigtéeuture for use in their particular
system. The primary focus will be providing guidels for systems that are
constrained, such as volume constrained, powertreomsd, or both power and

volume constrained. The guidelines will be usefaf System engineers whose
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applications are unconstrained, but the primaryusoof this paper will be the
constrained design analysis. The viable architestuanalyzed in this study are:
Central Processing Unit (CPU), mobile CPU, Digiggnal Processor (DSP), and
mobile Graphics Processing Unit (GPU).

To help systems engineers and designers choosgphepriate architectures, this
study provides the following contributions:

e Data on the software development Non-Recurring ig®ging cost (NRE)
for the DSP and GPU architectures for porting frer@-based application
to aid in producing accurate NRE estimates andddis;

e Architecture based performance assessments rdiatpdwer utilization,
space utilization and SWaP (space, wattage andmpazhce) [5] to aid in
meeting system performance requirements and camtstra

e Architecture specific overhead, such as GPU Kefurattion overhead, to

better understand the complexity and limitationthefarchitectures.

A candidate algorithm has been chosen that perfosigsal processing on
multiple raw data streams and utilizes Support ded¥lachine (SVM) based
classification [6, 7]. The candidate algorithm wetsosen for its similarity with
processing requirements for many naval systemsetisag/the research’s applicability
to the Wounded Warrior Program. This particularodtym is a Neural Machine
Interface (NMI) for volitional control of poweredwer limb prostheses. A NMI
application is both volume and power constrainedt, #lso requires a significant
amount of processing throughput, which poses méajlenges [8]. To develop the

candidate algorithm, the MATLAB model utilized i®][and [7] was ported to an
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ANSI C baseline and its accuracy verified agaihg MATLAB model. The first
candidate architecture to undergo a performancéuaan was the mobile CPU,
because of its direct applicability to the NMI'snstraints (i.e. - high performance
utilizing a small and low power device). The penfiance results for the mobile CPU
based NMI were published in [8]. This paper prosidee additional performance
results for a CPU, DSP, and mobile GPU. Furthermibrprovides an architecture
performance comparison of all four architecturégreby providing the basis of an
AoA for the selection of hardware architectures.

The paper is organized as follows. The next seqii@sents the Neural Machine
Interface Algorithm. Sections Ill, IV and V presewmur implementation and
performance for the various architectures (i.eomputational engines). Sections VI,
VIl and VIII provide our constrained performanceakiations. We conclude our paper

in Section IX.

2.2 Neural-Machine Interface

This NMI utilizes a pattern recognition (PR) algom that identifies user
locomotion intent based on seven (7) electromydycafEMG) signals acquired from
leg muscles and six (6) mechanical forces/momeatis @cquired from a 6 degrees-of-
freedom (DOF) load cell mounted on the prosthegwick. Time domain based
features are extracted from this data and providésMVM-based gait phase classifiers
for determination of user intent. A brief descmyptiof the NMI PR algorithm is

provided below, a detailed description is availablg] and [7].
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2.2.1 Support Vector Machine Classification

SVM is a supervised learning classification techeigvhereby the selection of
the features utilized for training and detectioredily relate to classification accuracy
and burden placed on the computational engine§9YM supports the use of non-
linear kernel functions [9], such as the RadialiB&anction (RBF), which provides
the capability to better match the distributiortlod feature sets. The chosen algorithm
utilizes SVM with an RBF kernel function to provids user intent classification. The
features were chosen to provide high accuracy amdmize the burden on the

computational engine [10].

2.2.2 FeatureExtraction

In this study, four time-domain (TD) features (theean absolute value, the
number of zero crossings, the waveform length,thechumber of slope sign changes)
were extracted from EMG signals in each analysisdewv [10]. For mechanical data
the mean, minimum, and maximum values in each aisalyindow were extracted as

the features.

2.2.3 Phase Dependent Pattern Recognition

The user’'s human locomotion is separated into fyait phases: initial double
limb stance, single limb stance, terminal doubfeblistance, and swing [11]. Four
separate detectors are trained, each with the fdata a single corresponding gait
phase. Data features are extracted from the raw BN{mechanical signals during a
sliding analysis window and fused into a singletdea vector. A gait phase detector
identifies the current gait phase in real-time,estl the corresponding gait sub-
classifier, and forwards the feature vector to ¢lassifier for final determination of
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user intent. In this study, a sliding analysis vawdof 150ms with a window

increment of 50ms was utilized.

2.24 Performance Evaluation of the NM|

The performance evaluation of the NMI on the vasi@rchitectures will be
directly related to the average prediction achiewsdthe architectures. For the
purposes of the various evaluations, the predictime will be defined as the total
time to execute: feature extraction, normalizatiaggit phase detection and

classification for a single analysis window.

2.3 CPU and Mobile CPU I mplementation and Perfor mance

The CPU and mobile CPU implementations were diyetihsed on the C
language implementation of the research performe{B]. In [8], the goal was to
create a NMI capable of meeting real-time constsawhile executing on low power
architectures. To help the lower power architectuneeet real-time constraints,
various common performance enhancements technigges implemented. These
enhancements included reduced dynamic memory mareagd12], loop unwinding
[13], and inline function expansion [14] among othélhe NMI's average prediction
time, during execution on an Intel Atom Z530, wa84@ms. The Intel Atom Z530
CPU has a form factor of 13mm x 14mm and has amaxi power utilization of 2.2
watts [15].

The current NMI CPU implementation was written &ixé advantage of single
core hyper threaded [16] CPUs and is, thereforecapable of taking full advantage
of multi-core CPU architectures such as Intel'saitd i7 CPUs. The closest CPU

comparison to the execution on the Atom Z530 we daadlable was the Intel E7500
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Core 2 Duo. Similarly to the previous study, théelrE7500 allowed the Operating
System (OS) to execute on one core, while the Ndtates on the second core. This
helps minimize the impacts of the OS on the NMle NMI’'s average prediction time
during execution on an Intel E7500, was 0.605m® [Mtel E7500 CPU has a form

factor of 37.5mm x 37.5mm and has a maximum powkzation of 65 watts [17].

24 DSP Implementation and Performance

The DSP implementation began with the mobile CP&bfbwvare baseline. The C
baseline was modified and optimized to work witd 8pectrum Digital TMS3206713
board that utilizes a Texas Instruments TMS3206DE® [18] at a clock speed of
225MHz. The development board was programmed inCtlgrogramming language
using the provided Code Composer Studio integrdés@lopment environment.

For a professional with prior C programming expeces but no prior experience
using Code Composer Studio, it took about 1 weeaketoa non-optimized program to
match the mobile CPU version’s execution time acchieacy. An additional 2 weeks
of time was required to optimize the applicatiomegach its maximum potential.

One optimization performed was to reduce the nunolbdaranches required by
the program. The TMS320C6713 does not have anwy fof branch prediction.
Instead, each branch function results in 5 stadtrafpons being inserted into the
pipeline [19]. When possible, the instances of erb#t statements were merged into a
single if statement, thus reducing the number @nbines required for the same
operation. The number of conditional loops wasuced by combining multiple
operations into a single loop whenever possibldiis Blso reduced the number of

branches that occur within the program.
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The most effective optimization was the activatimfi L2 cache. The
TMS3206713 development board does not have L2 cacheated by default [20].
Instead only a small L1 cache is used. Sincextexmal memory accesses are slow, it
is beneficial to activate the L2 cache as longhes d@pplication execution does not
result in a large number of cache misses. The smmuof the L2 also requires the
remapping of some internal memory to be configuederve as the cache. In this
case neither of these two issues were a factothenohclusion of L2 cache provided a
major performance boost. This change requireddalitianal two lines of code to be
added to the program. The first instruction camfes the board to use L2 cache, and
the second instruction can be used to control ittee & the L2 cache. In this case it
was found that the largest performance was achietesh with the largest possible
L2 cache. For the TMS320C6713 development boadatgest possible L2 cache
size is 64KB [20].

The optimized version of the DSP implementationultesl in an average time of
11.35ms per prediction with a standard deviatio2.@B6ms. The feature extraction
required an average of 6.887ms with a standardatewniof 838us. The classification
required an average of 4.472ms with a standard atlemi of 1.778ms. The
TMS3206713 DSP has a form factor of 27mm x 27mmfasia power utilization of

approximately 1 watt [18].

25 Mobile GPU I mplementation and Perfor mance
The mobile GPU implementation began with the moiRU software baseline.
The C baseline was modified and optimized to takeaatage of the Nvidia GeForce

GT 540m architecture. The GPU utilized in thisdstis located within a Dell XPS
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laptop with an Intel i7-2720QM CPU. The GeForce 640m has 96 Compute
Unified Device Architecture (CUDA) cores divided upto 2 separate streaming
multiprocessors and runs at a clock speed of 1.3(ZHE The development of the
application was performed in a Microsoft Visual @tu integrated development
environment which provides CUDA programming capapil

One immediate difference in the GPU architecturesu® the DSP and CPU
architectures is that the GPU is more of a highbyimized and parallelized co-
processor to the CPU than it is a standalone a&athite. Therefore, the GPU incurs
the additional power and space overhead of the @Pdévice it communicates with.
Because the CPU power and form factor can vary,amalyses will not take into
consideration this additional overhead. It is repwended that this implementation
specific overhead be accounted for by the systemgineer, while performing the
analyses within this paper. Another disadvantagehef GPU is the time of the
overhead required to launch a GPU kernel functibhe CPU needs to communicate
with the GPU in order to setup and run a CUDA kkfoaction. There is a certain
amount of overhead time required to perform thiecpss. If the kernel launch
overhead begins to approach or exceeds the ackeasluion time of the kernel
function then it can become a detriment to thel texecution time of the program.
Therefore, if one has a kernel function that pen®liittle to no calculations, attention
needs to be paid to how time is spent in actuatedeiunction execution versus the
kernel launch overhead. In some cases it may be mdvantageous to execute the
less calculation intensive functions on the CPleraby eliminating the need for

kernel function overhead. In the case of our im@etation of the gait phase detection
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and tallying of SVM vote, it was beneficial to exée these on the CPU versus the
GPU. For this system, it was found that an aved@s of overhead time is required
per GPU kernel launch. Our GPU implementation zédi nine (9) GPU kernel
functions per prediction; therefore a total of 27aes prediction is attributed to kernel
function overhead.

One important concept in GPU programming is theceph of organizing
execution paths into grids, blocks, threads, anghsvaWhen starting a kernel function
the CPU specifies several parameters. The masnpers used are the number of
threads per block, the number of blocks, and thebar of grids of blocks. In this
case there was only one grid, since we were usisiggle GPU board. Threads are
grouped into blocks. Threads in the same blockstere data and be synchronized
whereas threads of different blocks cannot. Anoihgortant concept is warps.
Threads are grouped into sets of 32 threads knawvaaps. Threads in the same
warp are intrinsically synchronized and are schediubgether. When writing GPU
code it is important to keep threads of the same vi@lowing the same execution
path to prevent divergent warps. When threadhefsame warp execute different
code the warp is said to be divergent and the tipesmare executed in a serialized
fashion, thus missing the potential parallelismerdtl by the GPU. More detailed
information on CUDA programming, grids, blocks,alds and warps can be found in
[22].

Our CUDA program begins its execution on the CPUJ @ren the CPU initiates
kernel functions that execute on the GPU. In tase the program begins by copying

the raw EMG and load cell data to the GPU to be&l ukging its execution. For each
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analysis window, the phase detection is performedhe CPU. Nine GPU kernel

functions are used to perform the needed steps tlier feature extraction,

normalization, and to determine the one versus3W#! classifier votes. The votes
are then copied from the GPU to the CPU where the&abone versus one SVM votes
are tallied to determine the user intent for theegiwindow.

This NMI algorithm allows for a large amount of pbelization. The GPU'’s
massively parallel architecture provides the cdpgbio take advantage of this
opportunity. As shown by Amdahl's Law [23], the ragarallelization that can be
found in an application, the greater the increasthé performance of the application
on a parallel architecture such as a GPU. To tdkardgage of the principles defined
by Amdahl’'s Law we examined the NMI algorithm foreey possible opportunity to
exploit parallelism. The DC offset for each of tbeannels can be calculated and
removed in parallel. Each of the 46 features tiegid to be extracted from the channel
data can be calculated in parallel. Similarly, #pproximately 200 to 400 SVM
support vector dot products can be performed illgdhy and the 21 one versus one
SVM classifiers that use the SVM dot product valoas be performed in parallel.

The parallelization was further increased by unlig the parallel reduction
method [24, 25] to parallelize the necessary workdlculate the values. The parallel
reduction method uses many threads to processassdat For example, when finding
the sum of a data set each thread will be usenhdatlie sum of two values in the data
set. After the first stage, half of the threadd have partial sums. Then half of the
threads with the partial sums add their resultantigd sums to that of one of the other

threads. This process continues until one threddsithe sum of the entire data set.
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In this way the sum is found in the most efficievay to maximize the parallelism
provided by the GPU [24, 25].

Fig. 2.1 shows the NMI algorithm’s GPU implemerdati data flow, and the
workload separation between the CPU and GPU aothies. In Fig. 2.1, the
portions of the algorithm allocated to the GPU ariated by kernel functions
launched by the CPU to perform the calculationsesk kernel functions are launched
with a set amount of blocks and threads per blockrder to best take advantage of
the architecture of this particular GPU. For otogram we utilized a block size of 96
threads. This provided enough threads to accomphsh given task.

For the six EMG channels, the DC offset first mbe removed. This is done by

calculating the mean of each channel and subtgad¢he mean from each of the
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values. The mean of each channel is calculatéaeifirst GPU kernel function. This
function finds the means for all channels including mechanical channels as this is a
feature required from the mechanical channels.e@sd kernel function is then used
to subtract the mean from the EMG channels.

For the feature extraction, 96 threads per bloekused to calculate the features
needed for a channel. Each block is responsibleextracting the features for 1
channel. Therefore 13 blocks are required, sewerthk EMG channels and six for
the mechanical features. All the features are talled using the reduction method.
The third kernel function is used for the extractiof the EMG features. In this
function each thread reads in a single data vatma & single EMG channel and then
extracts all four EMG features for this data pdudlculates the absolute value of the
current data point, calculates the waveform lemgtthe current data point relative to
the prior data point, determines if the currentadapint is representative of a zero
crossing, and determines if the current data p@inepresentative of a slope sign
change). Once these factors are known, the valaesthen be combined together
using parallel reduction as previously describetil wone thread holds the feature
values for the current window increment. The meats channels do not have to
wait for the DC offset to be subtracted from thd¢adso the features from these
channels can begin to be extracted immediatelyentie EMG channels are still
waiting. There is no need for a separate kernattfan to calculate the mean of the
mechanical channels as that is handled by the &amel function that calculates the
mean of each channel in order to remove the DCebffiom each of the EMG

channels. The fourth kernel function is used ttramt the mechanical features and
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also utilizes the reduction method to increase ljghisan. Each thread reads in one
value from the current window. It then comparas ttalue to the value in one other
thread to determine which is the minimum and whgthe maximum. This process
continues until there are only two threads remarahwhich point the min and max
for the entire data set can be found. The fiftmkefunction saves the features by
loading them into an array to be processed by tter|steps in the GPU

implementation of the algorithm.

A sixth kernel function is utilized to calculateettsVM dot products and also
utilizes the reduction method. Each block is alteda96 threads. Each block of 96
threads is segmented into three warps of 32 thrdzaish warp calculated the value
for one SVM dot product; hence the three warpsaacoulate 3 SVM dot products in
parallel. There are a total of 46 features in €8I support vector and test vector,
therefore 46 products and 45 sums are requirecedoh dot product. Each warp
performs the following steps:

Step 1. The 32 threads in the warp calculateitee32 products.

Step 2. The first 14 threads in the warp calcuthte final 14 products and
sums them with their prior 14 products, resultinghe first 14 partial
sums.

Step 3. The 32 terms (18 remaining products ahgattial sums) are reduced

into 16 partial sums.

Step 4. The remaining 16 partial sums are reduted partial sums.
Step 5. The remaining 8 partial sums are redutteddi partial sums.
Step 6. The remaining 4 partial sums are redutted? partial sums.
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Step 7. The remaining 2 partial sums are summddaoome the final sum.

We allocated a single SVM dot product to a war@»®fthreads to minimize
warp divergence and synchronization issues. Hatis from the same warp follow
different execution paths then the threads are &aidiverge. In the case that the
threads diverge, they are executed in a serialidashnd thus do not take best
advantage of the parallel processing provided ley@#®U. The other advantage of
using a warp to calculate a single SVM dot prodsichat there is no need to call any
thread synchronization functions because the tlreald a warp are naturally
synchronized.

An eighth kernel function is executed at the samme tas the SVM dot products
are being calculated. This function does some gsarg setup prior to the SVM
classification. In this function some requiredightes are initialized to be used in the
classification. The ninth kernel function perforntise one versus one SVM
classification. The 21 classifiers are executechgusdl blocks of 96 threads each.
Each of the classifications is again done usin@ldrreduction. This produces the
21 votes that are copied back to the CPU in oml¢alty the final vote and determine
the user intent for the current window.

This implementation takes advantage of the parabdlire of the GPU while at
the same time avoiding one of its biggest disachga’, the need to copy data back
and forth between the GPU and the CPU [22]. Whi method outlined above the
program only requires one memory copy between thiJ Gnd the CPU per

prediction. This is done by keeping as much ofdhta as possible on the GPU and
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only copying data to the CPU at the very end ofeligtion. Fig. 2.2 shows the GPU
program flow for this implementation.

About a month and a half of work performed by af@ssional with prior C
experience and no prior CUDA experience was reduite produce a GPU
implementation that matched the accuracy of the @RiJementation. An additional
month and a half was required to produce code ¢batd match and exceed the
prediction speed accomplished by the CPU implentienta In the final optimized
version of the GPU code, the program required arame 0.193ms per prediction

with a standard deviation of 21us. An average Ipfswith a standard deviation of
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0.2us was required for the feature extraction afyds7with a standard deviation of
18us for the classification. The GeForce GT 540nU@®RBs a form factor of 29mm x

29mm and has a maximum power utilization of 35 svgt6, 27].

2.6 Mobile GPU Implementation and Perfor mance

This analysis will compare the computational perfance of the architectures
relative to their respective power utilization. Wiecommend that this analysis be
performed for systems that are constrained to ¢gendthin a limited power or
thermal range. This performance requirement is lysumposed when the lower
power utilization will allow the device to operdte a longer period, there is a limited
method to dissipate thermal energy, or the systasahlimited power source. Some
examples might be satellites, electric passenghickes, and electric autonomous
vehicles.

For a computational performance measure we wilizatthe number of floating
point operations per second (FLOPS). The powezatibn will be measured in watts.
Of interest is the performance of each architegerreits respective power utilization,
therefore (2.1) can be used to provide the relgieréormance of each architecture for
our NMI algorithm. We intentionally utilized the re@ NMI algorithm for all the
architectures to ensure that the number of flogbioigt operations per prediction, the
numerator in (2.1) below, is the same for all amdtures implementations. Therefore
to maximize the performance of any given architextue must minimize the product
of the prediction time and power utilization. Corsady, the architecture whose
product of the prediction time and power utilizatiis the largest will be the worst

performing architecture for this analysis. For thisalysis, the Intel E7500 CPU
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architecture exhibited the worst performance witbrediction time of 0.605ms and a
maximum power utilization of 65 watts. To providecamparison between all the
architectures we will take a ratio of each archiuez's performance achieved by (2.1)
relative to the worst performer (CPU). By comparthg architectures to the worst

performer we can then provide a performance rdtizing (2.2).

Floating Point Operations For Each Prediction

Perf =
(Seconds For Each Prediction)«(Watts)

2.1)

(CPU Prediction Time) «(CPU Watts)

Ratio =
(Architecture Prediction Time)«(Architecture Watts)

2.2)

Table 2.1 provides the results of the power comstthanalysis. As can be seen,
the Atom mobile CPU provided the highest perforngamvehich was 21 times that of
the CPU. Although the mobile CPU provided the hgihgerformance, it does not
automatically make it the best architecture choitke system performance

requirements need to be examined prior to makiingah selection. This applies for all

Table 2.1. Power Constrained Performance Results

Computational| Average Power Performance
Engine Prediction| Consumption  Ratio
Time
CPU Core 2 | 0.605ms 65 watts 1X
Duo E7500
DSP 11.35ms 1 watt 3.5X
TMS320C6713
Mobile GPU | 0.193ms| 35 watts 5.8X
GeForce 540m
Mobile CPU | 0.846ms| 2.2 watts 21X
Atom Z530
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of the analyses performed in this paper. For examior an NMI, the less power
utilized the longer a patient is able to use thasgiresis without the need for changing
and/or replacing the power cell. All of the archttees tested met the requirement for
a 50ms prediction time. Since the DSP’s power conpdion is lower than that of the
mobile CPU, it may be the better choice. Alternaliry since the prosthetic device we
are targeting requires updates every 10ms, the igo&r the NMI to perform a
prediction every 10ms. Based on a 10ms predicimoa,tthe mobile CPU becomes the
better choice. Furthermore, the mobile CPU provigidditional expansion capability
to augment the existing NMI algorithm to provideuat leg control and EMG signal
anomaly detection in future design iterations.

It is important to note that these results are tfoe phase dependent NMI
algorithm and that a different algorithm will prdiba result in different performance
and rankings for the architectures. To ensure ateuesults, it is recommended that
the actual target algorithm, actual architecturevgroutilizations during algorithm
execution, and actual architecture sizes be utilibeperform this and all of the other
analyses in this paper. To provide an example of tmperform these analyses, we
have only taken into account the computational magind utilized the manufacturers’

maximum advertised power consumption.

2.7 Volume Constrained Analysis
This analysis will compare the computational perfance of the architectures
relative to the surface area that each would etibn a circuit board assembly. We

recommend that this analysis be performed for systgesigns that are constrained to
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operate within a small volume. Some applicatiorsd tan be volume constrained are
networked surveillance cameras, digital photo frauared home automation devices.
For a computational performance measure, we wllzetthe number of floating

point operations per second. Of interest is theprdational performance of each of
the architectures relative to its surface areawmpsion, therefore (2.3) can be used to
provide a measure of the relative performance ol @ the architectures for our NMI
algorithm. Similarly to the power constrained asaythe NMI algorithm utilized the
same number of floating point operations per ptesh¢ therefore, to maximize the
performance of any given architecture, we must mize the product of the prediction
time and architecture surface area. Converselyatblitecture whose product of the
prediction time and surface area is the largestheithe worst performing architecture
for this analysis. For this analysis, the Texastriments TMS320C6713 DSP
architecture exhibited the worst performance witbrediction time of 11.35ms and a
package dimension of 27mm by 27mm. To provide ap=omeon between all the
architectures we will take a ratio of each architee's performance as determined by
(2.3) relative to the worst performer (DSP). By gamng the architectures to the

worst performer we can then provide a performaate utilizing (2.4).

Floating Point Operations For Each Prediction
Perf2 = £ P k. (2.3)
(Seconds For Each Prediction)(Area)
. (DSP Prediction Time)*(DSP Area
Ratio2 = ¢ ) (2.4)

(Architecture Prediction Time)*(Architecture Area)
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Table 2.2 provides the results of the power coimstthanalysis. As can be seen,
the mobile CPU provided the highest performancachvivas 53.7 times that of the
DSP. Again, the mobile CPU architecture appearsb¢o the best alternative.
Furthermore, being the smallest architecture chdeerthis AoA, the mobile CPU

provides a viable solution for mounting the finak@yn into the prosthesis.

2.8 Volume and Power Constrained Analysis

This analysis will compare the computational perfance of the architectures
using SWaP. We will examine the architectures’ cotagonal performance relative
to their respective surface areas and power consomsp We recommend that this
analysis be performed for systems designs that bexth volume and power
constrained. Some applications that are both p@mdrvolume constrained are cell
phones, tablets and neural-machine interfaces.

For a computational performance measure, we wllzaetthe number of floating
point operations per second. Of interest is the mdational performance of each

architecture relative to its surface area and pawsesumption, therefore (2.5) can be

Table 2.2Volume Constrained Performance Results

Computational| Average | Surface | Performance
Engine Prediction| Area Ratio
Time
DSP 11.35ms| 27mm X 1X
TMS320C6713 27mm
CPU 0.605ms| 37.5mm 9.7X
Core 2 Duo X
E7500 37.5mm
Mobile GPU | 0.193ms| 29mm 51X
GeForce 540m X29mm
Mobile CPU | 0.846ms| 13mm X 53.7X
Atom Z530 14mm
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used to provide the relative performance of eachitacture for our NMI algorithm.
Similarly to the prior constrained analyses, the INAlgorithm utilized the same
number of floating point operations per predictidherefore, to maximize the
performance of any given architecture, we must mize the product of the prediction
time with the architecture surface area and powmrtsemption. Conversely, the
architecture whose product of the prediction tinsrface area and power
consumption is the largest will be the worst perfimg architecture for this analysis.
For this analysis, the Intel E7500 CPU architecexhibited the worst performance
with a prediction time of 0.605ms, a package dinensf 37.5mm by 37.5mm and a
power consumption of 65watts. To provide a comparisetween all the architectures
we will take a ratio of each architecture’s perfamoe as measured by (2.5) relative to
the worst performer (CPU). By comparing the ardtitees to the worst performer we

can then provide a performance ratio utilizing J2.6

Floating Point Operations For Each Prediction

Perf3 =
(Seconds For Each Prediction)«(Area)*(Watts)

(2.5)

(CPU Prediction Time)*(CPU Area)+(CPU Watts)
(Arch Prediction Time)«(Arch Area)*(Arch Watts)

Ratio3 = (2.6)

Table 2.3 provides the results of the SWaP analysiscan be seen, the mobile
CPU provided the highest performance, which was figfes that of the CPU.
Similarly to the prior constrained performance gses, it is important that the results
from the SWaP performance evaluations are usedmunction with the system

performance requirements prior to making a finahdecture selection. Based on the
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Table 2.3. SWaP Performance Results

Computational| Average Surface Power | SwWaP
Engine Prediction Area Ratio
Time
CPU Core 2Dua 0.605ms | 37.5mm x 65 1X
E7500 37.5mm watts
DSP 11.35ms 27mm X lwatt | 6.7X
TMS320C6713 27mm
Mobile GPU 0.193ms 29mm X 35 9.7X
GeForce 540m 29mm watts
Mobile CPU 0.846ms 13mm x 2.2 163X
Atom Z530 14mm watts

three constrained analyses and the future perfaenagguirements of the NMI, the

mobile CPU architecture appears to be the besttemie

2.9 Conclusions

This paper presented a methodology of performingsitained AoAs for the
selection of computational engines for future systéesigns. Various analyses were
utilized to evaluate power, volume and both powatume performance constraints.
Guidance was provided on when to use each anapsisiow to combine the results
of the analyses with performance requirements twige the appropriate computer
architecture selection for future system designrRENvas provided for the DSP and
mobile GPU architectures to aid in properly plagnsuch an analysis. As can be seen
by the three man-month effort to port and optinttze NMI for use in a mobile GPU
architecture, such analysis can be time consummgexpensive. We hope that the
processes and analyses presented will help otsézreg engineers perform their own
AoAs for their system. Furthermore, we hope that tiethods used for the relative
performance evaluations will serve as a startingtptmo help shape policy in the
selection of computational engines for future desig
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Our future research includes the development ofirnate variants of the phase-
dependent NMI algorithm, using various programmiteghniques. We plan to
compare the performance of multi-core processaush sas the Intel i5 and i7
architectures, to that of the mobile CPU, CPU, ¥p mobile GPU architectures.
Although the size and power consumption of theshitactures may exclude them
from candidacy for an NMI, the additional resultsl wrovide a more complete AoA.
Furthermore, the parallel capability of the multre processors should provide a

better comparison relative to the parallel GPU igeckure.
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Abstract

This paper presents a rapid prototype approacthéodevelopment of a real-time
capable neural-machine-interface (NMI) for conwbhartificial legs based on mobile
processor technology (Intel Atdfh Z530 Processor.) By effectively exploiting the
architectural features of a mobile embedded CPUinwdemented a decision-making
algorithm, based on neuromuscular-mechanical fusod gait phase-dependent
support vector machines (SVM) classification to e demanding performance
constraints. To demonstrate the feasibility of al-teme mobile computing based
NMI, real-time experiments were performed on aredidied subject with window
increments of 50ms. The experiments showed thamibigile computing based NMI
provided fast and accurate classifications of fowajor human locomotion tasks
(level-ground walking, stair ascent, stair descani standing) and a 46X speedup
over an equivalent MATLAB implementation. The tegtiyielded accuracies of
96.31% with low power consumption. An offline arsb/showed the accuracy could

be increased to 98.87% with minor modificationghi® application.
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3.1 Introduction

In 2005, there were approximately 1.6 million peopi the United States with
some kind of limb loss [1]. By the year 2050, thenber is expected to increase to 3.6
million people [1]. Furthermore, in 2005, lower noss accounted for almost two-
thirds (65.5%) of the 1.6 million [1]. People witbwer-limb amputations typically
favor their intact limb and therefore provide aduial stress upon their intact limb
during everyday activities [2]. It has been spemdahat the additional stress placed
upon their intact limb will lead to degenerativesehses [2]. These statistics clearly
present the increasing need for technology thdabmes as much functionality to the
large and increasing population of lower limb anegst

The recent development of powered artificial legs;h as the Power Knee [3]
and the Vanderbilt University design [4], providesfiive mechanical energy that
helps restore the user’'s locomotion modes [5]. &hdsvices detect the user’s
intended locomotion mode though the use of echdrabor solely though intrinsic
mechanical feedback. In particular, the Power Kj3auitilizes echo control [4] and
requires instrumentation of the sound leg in otdestetect what locomotion mode the
user is currently performing. The system described4] utilizes, solely, intrinsic
mechanical feedback [6]. In contrast, we have dgpexl a Neural Machine Interface
based on neuromuscular-mechanical fusion [7] ands@ldependent pattern
recognition (PR) strategy [8]. Our strategy does$ meguire instrumentation of the
sound leg and has been shown to provide higheracgthan the classifiers utilizing
only electromyographic (EMG) data or only mechahitza [9]. Our PR strategy can

be implemented utilizing either Support Vector Maels (SVM) or Linear
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Discriminant Analysis (LDA) classifiers. The select of a Support Vector Machines
(SVM) classifier provided improved prediction acacy performance of our PR
strategy when compared to a Linear Discriminant Iysia (LDA) classifier [7];
therefore for this study we will utilize an SVM-leakclassifier.

In order to make our PR strategy a feasible realéydeveloped a Cyber Physical
System (CPS), designed to test our Neural-Machiterface (NMI). This CPS is a
unique and complex system consisting of biomederajjineering components, a
mechanical prosthesis, as well as computer softaadehardware. Our objective here
is to integrate various components in such a coxgystem in an optimal way using a
system engineering approach. The important paramébat we aim to optimize
include mainly 1) real-time performance to providst control of prosthesis; 2) high
accuracy of locomotion prediction; 3) low power somption; and 4) small size
wearable by leg amputees.

With these objectives in mind, we investigated caroial off-the-shelf (COTS)
computing devices and chose one ubiquitous mololapating system, the Intel
AtomTM Z530. It is low power (2.2 watts [10]), lowost, and a portable mobile
computer that meets our NMI performance requiremeur preliminary study [11]
showed that a mobile processor based NMI had gresise in control of artificial
legs [11]. The primary objective of this paperasdetermine the viability of mobile
technology as a possible architectural solutionufs in our 50ms window increment
NMI. We chose to utilize 50ms window increments tms study to provide a
comparison with our existing MATLAB implementation&dditionally we wish to

determine if the Intel Atom based design will alléav further expansion of our NMI

46



algorithm to perform electromyographic (EMG) anoyndetection and perform the

prosthesis leg control by sending control signalselol on our PR strategy at 10ms
intervals, it is desirable to quantitatively evdkidhe mobile technology’'s reserve
capability while executing our 50ms window incremisivI.

Existing solutions for prosthesis control have b@aplemented on MATLAB
that cannot satisfy real-time requirements runrongthe mobile computing device.
We have developed an entire software implementatiamur SVM-based PR strategy
in C to run on the mobile computer. It turns owttthorting the software to the mobile
computer present several challenges to meet ous.gbae first challenge is the time
constraint of the NMI to deliver correct controlction in real time. Straight forward
implementation is far from satisfactory. We therefg@roposed several innovative
techniques to exploit the inherent architecturatdees, which are described in
detailed in Section 2. Another challenge is low powonsumption. We proposed
implementation techniques that can lower CPU reguénts so that power
consumption is kept minimal.

To meet our research objectives, we designed avelajed a real time software
interface to a data acquisition system (DAQ) prondcthe capability to acquire real-
time EMG, mechanical force and moment data fromdmusubjects, with no data loss
or lag. This newly developed NMI was combined witiMeasurement Computing
USB-1616HS-BNC DAQ [12] to facilitate the colleatiof the real-time EMG and 6
degrees-of-freedom (DOF) mechanical data. Thisl fiiel design was utilized to
execute and test the real-time performance of txais@ dependent SVM based PR

algorithm utilizing 50ms window increments on areabodied human subject.
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This paper makes the following contributions:

e Design and implementation of a real-time capabll Ntilizing 50ms
window increments for artificial leg control basaa a mobile processor;

e Design and implementation of a highly optimized gyreon for a phase-
dependent NMI with SVM classifiers tailored spezafly to the mobile
processor utilizing 50ms window increments;

e A comparison between our new C based NMI embedgdptication and
our equivalent MATLAB based NMI that shows the ended C
application provides a 46X speedup;

e A real time experiment that evaluates the potentisé of mobile
processors for a 50ms window increment embeddedemgntation for
neural control of powered lower limb prosthesis;

e An analysis that shows the future algorithm expamsiapability of this
mobile based NMI implementation.

This paper is organized as follows. Next sectia@sents an expanded description
of our previously published offline system desiddi][ Sections 3 and 4 present our
previously published pattern recognition algorithand offline performance
evaluation. Sections 5, 6, 7, and 8 present ouryndesigned and developed 50ms
window increment real-time system design, softwianplementation, experimental
protocol and performance evaluation. Section 9gmssrecommended updates to our
new real-time algorithm and updated performanceetgtion. We conclude our paper

in Section 10.

48



3.2 Offline Study System Design

3.2.1 HardwareArchitecture

To provide viable capability of prosthesis contrthe NMI must be small,
dissipate low power, and be fast enough to exdbatelassification algorithm in real-
time. One possible candidate chosen to meet tleegerements is the Intel AtomTM
Processor 7530 (512K cache, 1.6 GHz) single coréJ QB)]. The AxiomTek
eBOX530-820-FL [13] fanless embedded hardware whssen as the COTS
prototype architecture to test the viability of ttibel AtomTM Processor. The Intel
AtomTM Processor Z530 provided the highest perforoea and lowest power
dissipation of available hyper-threading capablebieoCPUs, which is ideal for
thermally constrained and fanless embedded apipisat[10, 14]. The Hyper-
Threading technology provides the capability fog thperating system and the NMI
application to execute simultaneously on their diyper-Threads providing similar
capability to that of executing on two physical ggssors, when only a single
processor is utilized [15]. This helps to minimibe impacts of the OS execution on

the real time embedded NMI application.

3.2.2 SoftwareArchitecture

We have developed the entire SVM-based NMI apptinain C because of its
superior performance for real-time embedded apydica [16-19]. To enhance the
system performance, several programming technigueee used in the design and
implementation of the application. For example,awc memory management is one
of the most expensive operations in C applicat[@0% In fact, it has been shown that

heap intensive C applications, on the average sp@8fl of the execution time in
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dynamic memory management [20]. To avoid executiome spent on dynamic
memory management, the various data structuresnwikie software were defined
utilizing arrays with pre-defined maximum sizes. iharease the reliability of the
application and help avoid any stack overflows, dla¢a structures were defined as
“static.” Static variables are placed in an appiaas data segment, not in the
application’s stack [21], hence avoiding stack @wers, push/pop penalties and
increases the applications reliability. Other perfance enhancements implemented
were loop unwinding [22] and inline function expams[23]. Loop unwinding is an
efficient means to increase the utilization of fiipes and helps eliminate loop
overhead [22]. For example, if the number of tiradeop will execute is known prior
to the body of the loop and the control code caddy@icated, thereby eliminating the
loop overhead [22] and mitigating any pipelineIstdlue to branch hazards [24]. The
feature extraction code is one computationallynsiee area where loop unwinding
was utilized. The feature extraction code was lyighpetitive and the number of raw
data channels and features per channel were knbeadaof time, which made it an
excellent candidate for loop unwinding. A simpleasple of loop unwinding is
shown in Fig. 3.1, whereby all the j variable comgizns and the need for branch
prediction to determine when the | loop has consglere eliminated via loop
unwinding. Upon further examination of Fig. 3.1¢#@n be seen that the i loop can also
be unwound. Since variable i iterates a total o0 iBnes (window length), the
resultant code would become unmanageable. Theretoreengineering tradeoff
between performance and software maintainabilidytte the decision to not unwind

the i loop code. For our PR algorithm, the loop aond code’s execution time was
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Original Code:

for(=0;]<7;j++)

{
for(i = 0;i < WindowLength;i++)
{

}
CH_Mean([j] /= WindowLength;

}

CH_Mean([j] += *(channels[j] + i +as8t_index);

Unwound Code:

for (i = 0;i < WindowLength;i++)

{
CH_Mean|[0] += *(channels[0] + i + startdex);
CH_Mean[1] += *(channels[1] + i + stadrtdex);
CH_Mean|[2] += *(channels[2] + i + startdex);
CH_Mean[3] += *(channels[3] + i + stadrtdex);
CH_Mean[4] += *(channels[4] + i + startdex);
CH_Mean[5] += *(channels[5] + i + stadrtdex);
CH_Mean[6] += *(channels[6] + i + startdex);

}

CH_Mean[0] /= WindowLength;

CH_Mean[1] /= WindowLength;

CH_Mean[2] /= WindowLength;

CH_Mean[3] /= WindowLength;

CH_Mean[4] /= WindowLength;

CH_Mean[5] /= WindowLength;

CH_Mean[6] /= WindowLength;

Figure 3.1. Simple example of loop unwinding tocoédte channel means

approximately 10% faster than the original codesthresults were with the compiler

speed optimization enabled for both the original #tie unwound code.

Inline function expansion replaces a function eath the body of the function
[23]. This reduces the overhead associated withurection call during program
execution [23]. Because the keyword inline onlywesras a hint to compilers and not

all compilers support the inline keyword [23], torther reduce overhead the total

number of function calls were kept to a minimum.

51




The Neuromuscular-Mechanical fusion PR algorithnilizes SVM for its
classification. Our prior studies based on the shlm@romuscular-Mechanical fusion
PR recognition utilized the MATLAB release versiai LIBSVM [25], which
provided high accuracy. Analysis of the LIBSVM soeirshowed that it could be
possible to modify the libraries for real-time u3éerefore, the open source library
LIBSVM was used and specifically tailored to ourlesdded NMI application for
real-time SVM classification. This was beneficiahcg, in addition to its high
accuracy, it also allowed LIBSVM to serve as a basdor accuracy determination of

the embedded application.

3.3 Pattern Recognition Algorithm

The previously developed NMI identifies the usdésomotion mode based on
electromyographic (EMG) signals recorded from tlsidual thigh muscles and
mechanical forces/moments signals recorded fromtpetic pylon. These EMG and
mechanical data are segmented by the sliding asalysdows. Features are extracted
from the raw EMG and mechanical data in each amsalysxdow and fused into one
feature vector. This feature vector is sent to aspkdependent pattern classifier for
determination of user intent. The phase-dependettenn classifier consists of
multiple sub-classifiers for individual defined gg@hases and a gait phase detector
that identifies current gait phase and switches dbesponding sub-classifier on.

Detailed description of this previously designed Ndgn be found in [7] and [8].

3.3.1 FeatureExtraction
In this study, four time-domain (TD) features (theean absolute value, the

number of zero crossings, the waveform length,taachumber of slope sign changes)
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were extracted from EMG signals in each analysisidawv. For mechanical
measurements, the mean, minimum, and maximum vatueach analysis window
were extracted as the features. More detailed nmtion can be found in [7]. The
length of sliding analysis window and window inceamh were 150ms and 50ms,
respectively.

The features and increments were chosen to matchpvious MATLAB
implementations [26], thereby providing a basefimean accuracy comparison with

the newly designed embedded application.

3.3.2 Phase Dependent Pattern Recognition

To accurately determine user intent, an SVM badadsification architecture
utilizing a Radial Basis Function (RBF) kernel aad SVM gamma parameter of
0.015 was employed [7, 8]. The phase-dependersifitasis composed of four sub-
classifiers corresponding to one of the followigif gait phases: initial double limb
stance (phase 1), single limb stance (phase 2)jrial double limb stance (phase 3),
and swing (phase 4) [26]. Throughout this papesiusive of the figures, we utilize
the following gait phase definitions: 1 - InitialoDble Limb Stance, 2 - Single Limb
Stance, 3 - Terminal Double Limb Stance and 4 n§wrhe gait phase detector uses
the real-time vertical Ground Reaction Force (GRFyletermine the gait phases. In
order to build the SVM sub-classifier models, aniray procedure is conducted on all
the acquired training data sets. During trainingggh the output of the phase detector
is used to label the training data with its cormgping gait phase. Each sub-classifier
is trained only with the data pertinent for itstgalnase. During the real-time testing

phase, the gait phase detector determines whickclaabifier is responsible for the
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determination of user intent. The gait phase det&ctietermination is used to select
the appropriate sub-classifier to act upon theufeavector composed of fused EMG
and mechanical data. The algorithmic data flow lné phase-dependent pattern

recognition is shown in Fig. 1.2.

3.3.3 Softwarelmplementation

To implement the Neuromuscular-Mechanical Fusion tRRee applications were
developed. The first application accepts offline/ taaining data, performs the EMG
and mechanical feature extraction, fuses and tbemailizes the features into vectors.
The feature vectors are then separated into thmiregponding gait phases and
provided to the training application. The first apgtion is also responsible for
generating the normalization parameters requirethbyPR to normalize the testing
data, when determining user intent. The secondicgtigin accepts the four sets of
training vectors and generates four SVM models, mpdel for each gait phase. The
third application accepts raw offline testing dakes four gait phase SVM models, and
the normalization parameters. The application eidr&MG and mechanical features
from the raw testing data. The features are theseduand normalized, with the
provided normalization parameters, into a vectamalfy, the application determines
the current gait phase, and forwards the test vectdhe respective phase based
classifier for determination of user intent.  Thdflime analysis software

implementation data flow is shown in Fig. 1.3.

3.4 Offline Performance Evaluation
All experiments performed in this study were cortddowith the approval of the

Institutional Review Board (IRB) at the Universiof Rhode Island and with the
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informed consent of the subject. The evaluation pagormed offline on the data
collected from a male subject with a transfemorapatation. The collected data
included the EMG signals from the subject’s residhagh muscles and mechanical
forcessimoments measured by a 6 degree-of-freedad kell mounted on the
prosthetic pylon. The monitored residual muscleguised the rectus femoris (RF),
vastus lateralis (VL), vastus medialis (VM), bicepsmoris long head (BFL),

semitendinosus (SEM), biceps femoris short headSjBRand adductor magnus
(ADM). The recognition accuracy of NMI by using thesigned embedded system
was compared with the results of existing PC im@etations on MATLAB. In

addition, the timing and processor loading of thmpli@ation’s execution on the
embedded hardware were evaluated. A power consompmdmparison between

similar proposed NMI embedded systems and this dadzkesystem was provided.

3.4.1 Recognition Accuracy of NM|I

The offline data was composed of seven differeassgs: level-ground walking
(W), ramp ascent, ramp descent, stair ascent (St&j); descent (SD), sitting, and
standing (ST). The comparison of recognition actiesaof the NMI by using the
designed embedded system and existing PC impletrmgaon MATLAB are
provided in Table 1.1. This study utilized a slighdifferent value for the gamma
parameter required by the SVM classifiers. Theedéiit gamma value was shown to
provide a slightly higher accuracy during testimbis is noticeable in the comparison
results, whereby the embedded application slighilperformed the MATLAB model

in PR accuracies.
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Both the MATLAB results and the embedded applicatitad lower Phase 4
(swing) accuracies. Two explanations for this reavé provided in [8]. The first is
that there is little force/moment data present rdurthe swing phase from the
prosthetic pylon [8]. The second explanation iated to the swing phase being longer

than any of the other three phases, leading tetargriations in the EMG features [8].

3.4.2 Execution Timing and Processor L oading on the Embedded Hardware

This previously designed NMI algorithm was executeche Intel Atom" based
embedded hardware and the performance results exareated. A total of 3555
predictions were produced by the Intelom’t” based embedded hardware. For
the purpose of this evaluation, the prediction tiwik be defined as the total time to
execute feature extraction, normalization, gaitgghdetection and classification for a
single analysis window. The mean prediction times Wa8455 milliseconds with a
standard deviation of 0.1044 milliseconds. The waase prediction executed in
2.1265 milliseconds. These results clearly show tive embedded system is capable
of real-time implementation at 50ms and 20ms windiegvements. If the embedded
system is combined with a highly responsive DatajuAgition (DAQ) system to
provide the EMG and mechanical data, even a windmrement of 10ms may be
feasible. At the 10ms window increment, the integfao the DAQ and the DAQ
system drivers will become of the utmost importance

Because there is additional loading on the CPUxtex@te the data logging for
post analysis, the CPU loading provided by the afjpgey system may be inaccurate.
Therefore the mean and maximum value of the CPUingavas calculated by (3.1) to

be 1.691% and 4.253% respectively.
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CPU Loading = —cdictionTime__ 49 (3.1)

Window Increment (50ms)

3.4.3 Power Consumption Comparison

Previous studies have utilized Field Programmaldee@rrays (FPGA) and PCs
for similar NMI applications [27]. The reported pemconsumption for the FPGA was
3.499 watts and the AMD Turion 64x2 CPU within [2Z4n utilize up to 35 watts
[27]. The Intel Atomi™ Z530 Processor utilized in this embedded systesigde
dissipates 2.2 watts maximum [10]. The Intel AIBhCPU’s power dissipation is less

than one-fifteenth that of the AMD CPU and lessthao thirds that of the FPGA.

3.5 Real-Time Capable System Design

Based on the offline performance and the resulisuofAnalysis of Alternatives
(AoA) [28], it was decided to continue using theidmTek eBOX530-820-FL fanless
embedded hardware with the Intel AtBfnProcessor Z530 (512K cache, 1.6 GHz) as
our COTS mobile computing system. During the souwetection of a DAQ to
combine with the AxiomTek embedded hardware, it wlaar that the vast majority of
COTS DAQ devices with the capability to meet ousige requirements (16 analog
input channels and simultaneous sampling or a ainghpability) only provided
drivers for the Windows and Linux operating systefiitsee NMI design needs to meet
real-time constraints and therefore the use of @-Riene Operating System (RTOS)
is preferable. An RTOS performs its functions, untthg external events in a specified
amount of time [29]. Windows and Linux are gengnalpose operating systems (OSs)
and do not meet the criteria of an RTOS. Therefasea compromise, it was decided

to utilize a general purpose operating system Wl understanding that RTOS
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options were available for both Windows and Linuxplementations, such as
Windows Compact Embedded (WIinCE) [30] and Real-Tlomux (RT Linux) [31].
Furthermore, it would be expected that if real-ticenstraints can be met with a
general purpose OS, then porting the design toEBd3Rwould provide better system
response and make the design more deterministie. détision to go with the
Windows OS vs. Linux was based on the experiencefamiliarity of the research
team with the Microsoft Visual Studio product. Thaniliarity would facilitate the
rapid design, implementation and debugging of tleégtype COTS solution.

For our COTS prototype, Measurement Computing's AU6BHS-BNC DAQ
was chosen to interface with the AxiomTek eBOX520-&L fanless embedded
hardware to provide the real-time EMG and loaddsta necessary to make our
neuromuscular-mechanical fusion SVM NMI a feasibality. The Measurement
Computing device met all our performance requireierovided a C-library interface
that was capable of interfacing with our prior endbed software design, and was
easily interfaced to the AxiomTek embedded hardwaae a universal serial bus

(USB) port.

3.6 Real-Time Capable Software I mplementation

All of the initial software architectural and imphentation decisions made in our
design, such as the use of the C programming laygguaop unrolling and inline
function expansion were utilized within the reahdéi implementation. In addition a
few other techniques were incorporated to augmedtpovide further performance

enhancement.
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3.6.1 SoftwareArchitecture

The use of a general purpose OS in this prototgségd iteration raised concerns
with the embedded software’s capability to meet tieae constraints. Therefore, to
further reduce the impact of the OS on the embedgtication, the priorities of the
application and thread were increased to a read tmitical status. In a Microsoft
Windows OS, this is accomplished by setting the omiyi class to
REALTIME_PRIORITY_CLASS and the thread priority to
THREAD_PRIORITY_TIME_CRITICAL [32].

The real-time software implementation required @dataw data, phase data, and
classification data be logged to allow for perfonoa evaluations. To minimize the
impacts of the real-time data logging on the apion, a statically allocated and
statically defined Random Access Memory (RAM) bufigas implemented that
stored all the raw EMG, mechanical, classification application performance data.
The RAM buffer eliminated the need to write to therd drive during time critical
operations. Furthermore, it took advantage of tB&R superior speed for storage.
The real-time data logging for each classificaticas performed after all time-critical
functions were completed (i.e., at the end of eadelsification). Lastly, The RAM
buffer's contents were written to the hard drive post analysis after the experiment
was completed, by which point no further time catifunctions were being executed.

Re-implementing the our software optimizations ahd newly incorporated
additional enhancements, resulted in an embeddadaton specifically designed to
minimize pipeline stalls, minimize OS impacts, miige cost of memory allocation,

minimize the impacts of real-time data logging aadte advantage of the Intel
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Atom™ 7530 Processor hardware architecture. These eahwmts provided the

basis for the performance introduced by this embddgpplication.

3.6.2 Real-Time Software | mplementation

To implement the real-time Phase-Dependent PR ittigor four applications
were required. Where previously the offline stisdglata was read in via a file, the
real-time study requires a new application to beettged to interface with the DAQ
and capture real-time training data. The featurdraeion & normalization
application, as well as the SVM training applicatr@emained unchanged. Finally, the
Neuromuscular-Mechanical Fusion PR application teade modified to acquire real
time data testing from the DAQ. The training daég@tare application acquires data
for all of the various human locomotion tasks, sggtes the data into each
locomotion class, and allows for multiple trialsezch locomotion task. The real-time
PR application is used during the real-time tesgihgse. The real-time PR application
extracts EMG and mechanical features from the estirtg data acquired in real-time
from the DAQ. Similarly to the offline method, tHeatures are then fused and
normalized with the provided normalization paramgetand formed into a vector.
Finally, the application determines the current gaiase, and forwards the test vector
to the respective phase based classifier for datatran of user intent. The software

implementation data flow is shown in Fig. 3.2.

3.7 Real-TimeExperimental Protocol
A real-time performance evaluation utilizing a 50misidow increment and an
offline performance evaluation utilizing a 50ms danv increment were performed as

part of the real-time study. The evaluations werdqrmed on the data collected from
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Figure 3.2. Real-time software implementation dima
a male able bodied subject. The collected dataded the EMG signals from the
subject’s thigh muscles and mechanical forces/mtsnereasured by a 6 degree-of-
freedom load cell mounted on the prosthetic pylame monitored muscles included
the sartorius (SAR), rectus femoris (RF), vastugliales (VM), adductor magnus
(ADM), biceps femoris short head (BFS), biceps femdong head (BFL), and
semitendinosus (SEM).

The EMG and mechanical forcessmoments were samated KHz by the
Measurement Computing USB-1616HS-BNC DAQ devices Tker intent decisions
provided by the embedded hardware were routedrvenalog output interface on the
DAQ device. The real-time experiments provided-teaé gait-phase and user intent
decisions to the console screen as a visual cumgduhe training and testing
processes. The 50ms window increment experimeilizedt a window increment of

50ms and a window length of 150ms.
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For all experiments performed in this study, thedation time will be defined as
the total time to execute feature extraction, ndimraton, gait phase detection,

majority vote (if performed) and classification fasingle analysis window.

3.8 Real-Time Performance Evaluation

For this experiment, four tasks (level-ground wadk{W), stair ascent (SA), stair
descent (SD), and standing (ST)) were studied apduced for offline analysis. To
ensure the subject’s safety, the subject was atlawaise hand rails when necessary.
To train the gait-phase classifier, the subject magucted to perform each task for
approximately 10 seconds. Two trials of standintadthree trials of walking data,
three trials of stair descent and three trialstair ascent data were accumulated to
train the classifier. For the real-time performaneealuation, the subject was
instructed to stand and then transition to onéhefdther tasks (S?W, ST>SD and
ST->SA). Seven trials of each mode transition were aotetl, for a total of 21 trials.
To assess the real-time performance of the NMI titheng and processor loading of
the application’s execution on the embedded harelveae provided and the raw
recognition accuracy of the NMI will be evaluatad the following criteria:

Classification Accuracy in the Static States: Hbemperiments in this paper, the
static state is defined as the state where theesubps completed a transition and is
continuously performing the same task (W, SA, SD S3r). The classification
accuracy in the static state is the total numbesoofect classifications observed over
the total number of classifications during theistatate.

The overall raw classification accuracy of the NiMIthe static states for all 21

trials and all tasks (W, SA, SD and ST), when eietwon the Intel Atort! based
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embedded hardware was 96.31%. A total of 5937 cststitate predictions were
produced by the Intel Atdtbased embedded hardware during the 21 trials. The
mean prediction time for all of the predictions fpemed during the 21 trials was
0.7683ms with a standard deviation of 0.0971ms. Wbest case prediction executed
in 2.0192ms.

Due to the fact that there is additional loadingtbe CPU to execute the data
logging for post analysis, the CPU loading providgdthe operating system may be
inaccurate; therefore the mean and maximum valt€PtJ loading were calculated
using Equation (3.1), which were 1.54% and 4.04%peetively. These results show
that the majority of the time, the embedded sofendesign was awaiting new EMG
and Loadcell data from the DAQ, as shown in Fi§. Buring this time the processor
is idle and can be utilized to execute other add#l algorithms to augment our
NMI’s capability.

Although 96.31% accuracy is very good, it fell dhafrthe average 97% accuracy
that was achieved by the MATLAB model in the offlianalysis shown in Table 1.1.
Furthermore, based on the offline analysis, thiplé@mentation was expected to
perform approximately 1% higher than the MATLAB nebdlue to the use of a
different SVM gamma value. Upon further review 86], it became obvious that this
50ms window increment embedded software designndidincorporate a real-time
majority vote method. Upon examination of the raatad it was apparent that a 5-
point majority vote method could have a substargifct on the overall system
accuracy. For example, in Fig. 3.4 we see a rea-tstair ascent trial with 6

misclassifications. We manually post processedtaie ascent data, implementing the
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Figure 3.3. Simplified real-time softwdtowchart and CPU utilization

5-point majority vote, which led to the removal af misclassifications as shown in
Fig. 3.5. The implementation of a majority votergased the accuracy from 97.9% to
100% for this trial. In order to determine if thigs the cause for the discrepancy in

overall accuracy, it was decided to perform animéflanalysis of this algorithm with a

\

majority vote implementation.
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Figure 3.4. Real-time stair ascent trial showingatassification prior to
majority vote implementation

3.9 Modified Real-Time Algorithm Evaluation

The 50ms window increment offline evaluation utlizthe exact data acquired
during the real-time experiment. This allows forauturate comparison between the
original software design and this proposed design.

To perform this evaluation, the initial software smaodified to utilize the raw
DAQ data logged during the real-time testing. Thgoathm was further modified to
provide a five-point majority vote algorithm as[R6]. For this experiment, the same
four tasks (W, SA, SD, and ST) were examined. Stheeintent of this study is to
determine the mobile CPU’s capability to execute BR algorithm, initially it was
determined that examining the Classification Accyrin the Static States should
suffice. However, since slight modification to tlseftware would enable mode

transition performance evaluations that initiatanira standing position and all of the
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Figure 3.5. Stair ascent trial manually post preedswith a 5-point majority vote

showing no misclassifications

raw data was recorded during the real-time triais,were also able to examine the

performance during the three mode transitions¥8, ST>SD and SPSA),

therefore the analysis was performed and the geéalve been included within this

paper. Additionally, included in the offline evatiom is a speedup assessment of the

C based embedded application to the MATLAB basqdiegtion. The performance

of the NMI will be evaluated using the followingteria:

Classification Accuracy in the Static States: Asvously defined in the real-

time 50ms experiment.

The Number of Missed Mode Transitions: For this exkpent, the mode

transition period starts from the beginning of gatiase 2 (single limb stance) and
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terminates at the beginning of gait phase 4 (swiAgnode transition is declared to
have been missed, if no correct transition deci@onade during this defined period.
Mode Transition Prediction Time: The mode transitiprediction time in this
experiment is defined as the amount of time pothe critical timing, during which
the classifier user intent decision has stabiliaad is no longer changing, such that
safe switching of the prosthesis device is madesiptes For this experiment, the
critical timing is defined as the termination oetmode transition (i.e. - just prior to

the start of the swing gait phase).

3.9.1 Speed Up Provided by the C Embedded Application

A self-contained version of the PR embedded apypdicavas built with raw test
data resident within the application itself. Timiagalysis software was added to
verify the performance of the embedded softwardgdeand implementation. To
provide an accurate comparison between the MATLABed NMI and our C based
embedded application, our application was execotedhe MATLAB system for a
determination of average prediction time. The MATB.8ystem is composed of Core
2 Duo E7500 CPU clocked at 2.93 GHz with 3GB of RANM executes the Windows
XP operating system. A total of 1002 classificasiowere performed by the PR
embedded application on the MATLAB system and catga in 472.53ms. This
results in an average of 472 microseconds perifitag®n. The average classification
time of the MATLAB model executed on the same gysteas 21.9ms. Based on this
experiment, the C based embedded application peeval 46X speedup over the

MATLAB model.
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Although this is obviously not an “apples to applesmparison (i.e. - MATLAB
vs. C), this does provide critical information thatuseful to systems engineers; it
allows them to understand what speedup can be\echignd/or expected by simply
porting a MATLAB algorithm to an optimized C-baseplplication. We would like to
have provided a comparison of our PR algorithm thvetoembedded architectures, but

this is our first embedded implementation, therefoo other comparison is available

3.9.2 Recognition Accuracy of NM|I

The overall classification accuracy of the NMI iretstatic states for all 21 trials
and all tasks (W, SA, SD and ST) was 98.87%. Noseusmode transitions were
observed during the defined mode transition peribde mean mode transition
prediction time for S®SA was 871.4ms with a standard deviation of 197.6iTise
mean mode transition prediction time for 8W was 528.6ms with a standard
deviation of 107.5ms. The mean mode transition iptiedi time for SF>SD was
314.3ms with a standard deviation of 94.5ms. Thmlentransition performance
implies that user intent classification during siions can be accurately determined,
on the average, 314.3ms prior to the critical tomamd be used for safe switching and
control of the prosthesis. Representative tria¢picting the user intent classifications
prior and during the SPSD, ST>SA and SPW mode transitions are provided in
Figures 3.6, 3.7, and 3.8, respectively. As casdan in Figs. 3.6 thru 3.8, there were
a few misclassifications during the SW and S SD transitions, but it can be seen
that the transitions were correctly predicted ptothe critical timing and the static

state accuracy was 100% during these three trials.

68



Transition From Standing to Stair Descent

. / 1
-~ F1V

Real-Time User
" Intent Decision:

: Walking
Stand
anding Misclassification
| 'Stair Afs‘cenF > _rl Stair Descent
Misclassification
1 1 1 1 1 1
2 4 6 8 10 12 14

Time (seconds)

Figure 3.6. Offline performance of a standing srslescent trial

Transition From Standing to Stair Ascent
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Figure 3.7. Offline performance of a standing sirshscent trial

This revision to the algorithm provided an additibr2.5% accuracy in static

states, while still meeting all of its other perfance requirements. This clearly
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Figure 3.8. Offline performance of a standing tdkivey trial

showed that the majority vote method is a criticamponent of the algorithm and

must be included in future implementations andipagsion of the algorithm.

3.10 Conclusions

This paper presented the design and implementatioa mobile CPU based
neural machine interface for artificial legs. Thesidined NMI prototype was tested on
an able-bodied subject for classifying multiple rament tasks (level-ground walking,
stair ascent, stair descent and standing) in new-tThe 50ms window increment
experiments achieved 98.87% classification accumacstatic states, while utilizing
less than 4.04% of the Intel AtomTM CPU. Furthereyothe 50ms embedded
application provided a 46X speedup over an equinal@ATLAB implementation.
The experiments showed fast response time for giiedithe mode transitions. Lastly,
this mobile CPU based design utilizes less powan thther systems designed for

similar applications, while still providing near§6% reserve to provide additional
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expansion capability of our NMI. The results denaated the feasibility of a mobile
CPU based real-time NMI for control of artificiads.

Our future work includes utilizing the reserve aapaprovided by this efficient
implementation to provide real-time impedance bdsegdcontrol [33, 34], real-time
EMG motion artifact detection [35, 36], real-tim#E signal trust assessments [35,

36] and the development of a 20ms window increnhévit.
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Abstract

This paper presents the design and implementatioam wew neural-machine-
interface (NMI) for control of artificial legs. Theequirements of high accuracy, real-
time processing, low power consumption, and mabibf the NMI place great
challenges on the computation engine of the sys&ynutilizing the architectural
features of a mobile embedded CPU, we are ablmptement our decision-making
algorithm, based on neuromuscular phase-dependppbg vector machines (SVM),
with exceptional accuracy and processing speediefmonstrate the superiority of our
NMI, real-time experiments were performed on aredidied subject with a 20ms
window increment. The 20ms testing yielded acceaf 99.94% while executing

our algorithm efficiently with less than 11% prosesloads.
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4.1 Introduction

A pattern recognition (PR) strategy based on phaspendent and
neuromuscular-mechanical fusion support vector inash (SVM) has been
successfully developed in our research group tatijeuser intent in real-time to
allow neural control of artificial legs [1, 2]. Tmake this strategy a feasible reality, a
real-time neural machine interface (NMI) that isa#imlow cost, low power and
capable of executing this computationally intensalgorithm needs to be developed.
In our previous study we utilized FPGA technologyreet all of the NMI constraints
with excellent results when executing a linear mismant analysis (LDA) based
classifier [3]. A non-linear SVM based algorithm svahown to provide increased
accuracy over LDA [1], but is much more computadilbnintensive, which increases
the complexity of an FPGA based design. This coriglexposes challenges such as
language syntax, design environments, and tootketsg the design, implementation
and troubleshooting phases of FPGA based systdms [4

Commodity mobile processors, such as the Intel Atbm530, are low power
(2.2 watts [5]), low cost, and portable. Our pradfline study developed a prototype
mobile processor based NMI to execute our compkxalorithm and performed an
offline study [6]. The study showed that a mobil®gessor based NMI had great
promise in control of artificial legs [6]. Howeveim order to meet the special
requirement of high accuracy and real time proogsgailoring our SVM based NMI
software to this mobile PC architecture is deseabhd challenging. We have
developed fully functional software based on theMS®assifier on the mobile PC

with all necessary interfaces for a data acquisitlystem with the capability to
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acquire real-time electromyographic (EMG), mechalniorce and moment data from
human subjects. This newly developed NMI was coedbinvith a Measurement
Computing's USB-1616HS-BNC DAQ [7] to facilitateetlcollection of the real-time
EMG and 6 degrees-of-freedom (DOF) mechanical déte final NMI design was
utilized to execute and test the performance ofpghase dependent SVM based PR
algorithm at a 20ms window increment during reaieti experiments on an able
bodied human subject.
This paper makes the following contributions:
e Design and implementation of a real-time capablel Nt artificial leg
control based on a mobile processor;
e The first NMI embedded system to execute our ph@pendent SVM based
PR algorithm at 20ms window increments;
¢ A real time experiment that evaluates the potenisa& of mobile processors
for real-time embedded implementation for neuraitad of powered lower

limb prosthesis.

4.2 Software Design and I mplementation

This study is based on a previously developed Rj@riéhm that identifies the
user’s locomotion mode based on electromyograidQ) signals acquired in real-
time from thigh muscles and mechanical forces/mdmegignals acquired from 6 DOF
load cell mounted on the prosthetic pylon [1,2]neTEMG and mechanical data are
segmented by sliding analysis windows. Featurea deg¢ extracted from raw EMG
and mechanical signals in each analysis windowfased into a single feature vector.

The feature vector is sent to a phase-dependetarpatassifier for determination of
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user intent. The phase-dependent pattern classtigsists of four sub-classifiers, one
for each individually defined gait phase. A gaitapl detector identifies the current
gait phase in real-time and selects the correspgndiub-classifier for final

determination of user intent. A detailed descriptimf this previously designed PR

algorithm can be found in [1] and [2].

4.2.1 FeatureExtraction

In this study, four time-domain (TD) features (theean absolute value, the
number of zero crossings, the waveform length,thechumber of slope sign changes)
were extracted from EMG signals in each analysisdaiv. For mechanical data, the
mean, minimum, and maximum values in each analysidow were extracted as the

features. Further details on the feature extractambe found in [1].

4.2.2 Phase Dependent Pattern Recognition

To accurately determine user intent, an SVM badadsification architecture
utilizing a Radial Basis Function (RBF) kernel aad SVM gamma parameter of
0.015 was used [1, 2]. The phase-dependent ckss#i composed of four sub-
classifiers corresponding to one of the followiogif gait phases: initial double limb
stance (phase 1), single limb stance (phase 2jjriat double limb stance (phase 3),
and swing (phase 4) [8]. Throughout this papedusige of the figures, we utilize the
following gait phase definitions: 1 - Initial DowblLimb Stance, 2 - Single Limb
Stance, 3 - Terminal Double Limb Stance and 4 ng§wi he gait phase detector uses
the real-time vertical Ground Reaction Force (GRF)letermine the gait phases. In
order to build the SVM sub-classifier models, antreg procedure is conducted on all

the acquired training data sets. During trainingggh the output of the phase detector
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is used to label the training data with its cormspng gait phase. Each sub-classifier
is trained only with the data pertinent for itstgalnase. During the real-time testing
phase, the gait phase detector determines whicfclaabifier is responsible for the

determination of user intent. The gait phase det&ctietermination is used to select
the appropriate sub-classifier to act upon theufeavector composed of fused EMG
and mechanical data. The algorithmic data flow lné phase-dependent pattern

recognition is shown in Fig. 1.2.

4.2.3 Software Architecture

We implemented the NMI software as shown in Fig@. ih. the C programming
language. To meet real-time constraints, while etieg on an Atom" CPU, we
implemented various performance enhancements waobsito the program. We took
advantage of reduced dynamic memory managemenid®p, unwinding [10] and
inline function expansion [11].

To minimize the impacts of the real-time data loggion the application, a
statically allocated and statically defined Randaéocess Memory (RAM) buffer was
implemented that stored all the raw EMG, mechanidalksification and application
performance data. The RAM buffer eliminated thednée write to the hard drive
during time critical operations. Furthermore, ibkcadvantage of the RAM’s superior
speed for storage. The real-time data logging &mheclassification was performed
after all time-critical functions were completece(j at the end of each classification).
Lastly, the RAM buffer’s contents were written teethard drive for post analysis after
the experiment was completed, such that no futiher critical functions were being

executed.
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The final result is an embedded application spealify designed to minimize
pipeline stalls, minimize OS impacts, minimize coimemory allocation, minimize
the impacts of real-time data logging and take athge of the Intel AtoY' Z530
Processor hardware architecture. These enhanceprentded the basis for the speed
performance introduced by this embedded application

As in our previous study [5], LIBSVM [12] was chaosas the open source library
to utilize as the open source SVM libraries for @mbedded application. This
decision was based on LIBSVM's proven accuracyoAtee analysis of LIBSVM's

source code showed that it would be possible toifjmdte libraries for real-time use.

4.2.4 Software I mplementation

To implement the Phase-Dependent PR algorithm, fapplications were
developed: a real-time training data capture appba, a feature extraction &
normalization application, a SVM training applicati and a Neuromuscular-
Mechanical Fusion PR application. The real-timentrey data application captures
training data for all the various human locomotiasks. The feature extraction &
normalization application accepts as input the-tiea training data, performs the
EMG and mechanical feature extraction and normidizaand then finally fuses the
features into vectors. The feature vectors are gegrarated into their corresponding
gait phases and provided to the training applicatidhis application is also
responsible for generating the normalization patarseequired by the real-time PR
application to normalize the real-time testing dathen determining user intent. The
SVM training application accepts the four setsrafning vectors and generates four

SVM models, one model for each gait phase. Thetmea PR application is used
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during the real-time testing phase. It acceptspsti raw real-time testing data, the
four gait phase SVM models, and the normalizatianameters. The real-time PR
application extracts EMG and mechanical featuresifthe raw testing data acquired
in real-time. The features are then fused and nlareth with the provided
normalization parameters and formed into a veétiorally, the application determines
the current gait phase, and forwards the test veoctdhe respective phase based
classifier for determination of user intent. Thétware implementation data flow is

shown in Fig. 3.2.

4.3 Experimental Protocol

The AxiomTek eBOX530-820-FL1.6G fanless embeddadvare [13] with an
Intel Atom™ Z530 Processor [5] was chosen for the prototységdeto test real-time
feasibility and capability. To sample the raw EM@lanechanical data in real-time a
Measurement Computing's USB-1616HS-BNC DAQ [7] eystwvas interfaced with
the AxiomTek embedded hardware. The MeasurementpGbing DAQ was chosen
for its accuracy and capability to sample the deith a skew of 1 microsecond in
between channels providing similar performancehtt bf a simultaneous sampling
DAQ system.

A real-time performance evaluation utilizing a 20mmdow increment with a
window length of 160ms was conducted as part of ghudy. This experiment was
conducted with approval of Institutional Review BbgIRB) at the University of
Rhode Island and informed consent of the subjdat. &valuations were performed on
the data collected from a male able bodied subjddte collected data included the

EMG signals from the subject’'s thigh muscles andchmaical forces/moments
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measured by a 6 degree-of-freedom load cell mouatethe prosthetic pylon. The
monitored muscles included the sartorius (SAR)tuefemoris (RF), vastus medialis
(VM), adductor magnus (ADM), biceps femoris sharaitl (BFS), biceps femoris long
head (BFL), and semitendinosus (SEM).

The EMG and mechanical forcessmoments were samated KHz by the
Measurement Computing's USB-1616HS-BNC DAQ devide user intent decisions
provided by the embedded hardware were provide@wianalog output interface on
the DAQ device. The experiment provided real-timmt-ghase and user intent
decisions to the console screen as a visual cumgduhe training and testing
processes.

For all the experiment performed in this study, phediction time will be defined
as the total time to execute feature extractiommaization, gait phase detection,

majority vote and classification for a single arsaywindow.

4.4 Real-Time Performance Evaluation

The 20ms window increment embedded software desaprporated a real-time
ten point majority vote algorithm as in [8] and thkase detector was tuned to the
subject’s locomotion patterns during the real-tinaéning phase.

For this experiment, three tasks (level-ground waKW), stair ascent (SA), and
standing (ST)) and two mode transitions €W and ST>SA) were studied. To
ensure the subject’s safety, the subject was atlawaise hand rails when necessary.
To train the gait-phase classifier, the subject magructed to perform each task for
approximately 10 seconds. Two trials of standintadthree trials of walking data,

and three trials of stair ascent data were accuedl train the classifier. For the

83



real-time performance evaluation, 10 trials of et&$k and mode transitions were
conducted (20 trials total). To assess the reat-fperformance of the NMI, the timing

and processor loading of the application’s execuba the embedded hardware are
provided and the recognition accuracy of the NMIl & evaluated via a comparison

with a similar LDA based NMI and the following panaters:

Classification Accuracy in the Static State: Thettiststate is defined as the state
where the subject has completed a transition agdngnuously performing the same
task (W, SA). The classification accuracy in thatiststate is the total number of
correct classifications observed over the total lbemof classifications observed
during the static state.

The Number of Missed Mode Transitions: The modeditaon period starts from
the beginning of gait phase 2 (single limb stara®) terminates at the beginning of
gait phase 4 (swing). A mode transition is declacetdave been missed, if no correct
transition decision is made during this definedquer

Mode Transition Prediction Time: The mode transitppediction time is defined
and the amount of time prior to the critical timjirduring which the classifier user
intent decision has stabilized and is no longenglry, such that safe switching of the
prosthesis device is made possible. For this expari, the critical timing is defined
as the termination of the mode transition (i.aust jprior to the start of the swing gait

phase).

4.4.1 Recognition Accuracy of NMI and LDA Comparison
The overall classification accuracy of the NMI imetstatic states for all the

predictions performed during the 20 trials irsohe of all tasks (W, SA, and ST) was
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99.94%. No missed mode transitions were observednhgluhe defined mode
transition period. The mean mode transition prealictime for S SA was 658.0ms
with a standard deviation of 155.6ms. The mean malesition prediction time for
ST->W was 534.0ms with a standard deviation of 103.3® mode transition
performance implies that user intent classificatioming transitions can be accurately
determined, on the average, 514ms prior to thécakitiming and be used for safe
switching and control of the prosthesis. Represemtdrials, acquired during real-
time testing, depicting the user intent classifaras prior and during the S¥SA and
ST->W transitions are provided in Fig. 4.1 and Fig., 4e&pectively. As can be seen,

the system is highly accurate and responsive. Eurtbre, it can be seen that the
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Figure 4.1. Real-Time Performance of a Standing/&dking Trial
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Transition From Standing to Stair Ascent
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Figure 4.2. Real-Time performance of a Standin§teor Ascent Trial

transitions were correctly predicted prior to théi@al timing and the static state
accuracy was 100% during these two trials.

In comparison, a LDA based neuromuscular-mechafusabn, phase-dependent
pattern recognition NMI provided 97.41% accuracyha static states [3]. Similarly,
the LDA study was based on the same three taskSANVand ST), utilized the same
window increment of 20ms, the same window lengti@ms, and performed same

number of trials as well.

4.4.2 Execution Timing and Processor Loading on the Embedded Hardware
A total of 14276 predictions were produced hfie Intel Atom based

embedded hardware during the trials. The mean gireditime per trial was 0.721ms
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with a standard deviation of 0.0754ms. The worsteca@rediction executed in
2.124ms.

Due to the fact that there is additional loadingtbe CPU to execute the data
logging for post analysis, the CPU loading providgdthe operating system may be
inaccurate; therefore the mean and maximum valt€PtJ loading were calculated

using (4.1), which were 3.61% and 10.62% respégtive

Prediction Time

CPU Loading = * 100 4.1

Window Increment (20ms)

45 Conclusions

This paper presented the design and implementatioa mobile CPU based
neural machine interface for artificial legs. Thesdined NMI prototype was tested on
an able-bodied subject for classifying multiple rament tasks (level-ground walking,
stair ascent and standing) in real-time. In the 20mal-time window increment
experiments, the system achieved 99.94% classdicaccuracy in static states, while
utilizing less than 10.62% of the Intel Atdth CPU. The experiment showed fast
response time for predicting the mode transitidrestly, this mobile CPU based
design utilizes less power than other systems dedidor similar applications [6],
while still providing nearly 90% reserve to providdditional expansion capability of
our NMI. The results demonstrated the feasibilityaomobile CPU based real-time
NMI for control of artificial legs.

Our future work includes utilizing the reserve aapaprovided by this efficient
implementation to provide real-time impedance baksgd control, real-time EMG

motion artifact detection, and a real-time EMG sigtrust assessments; thereby
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creating a single processor based NMI embeddedi@olthat performs all these

functions.
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CHAPTER S

Conclusions and Future Work

5.1 Conclusions

This dissertation presented the research into vb&uton of two small and low
power architectural solutions for the University Rhode Island (URI's) Support
Vector Machines (SVM)-based Neural Machine Intezfa¢NMI) algorithm.
Manuscripts 1 thru 4 presented the offline reseafetalysis of Alternatives (AoA),
and the first two real time capable design iteratiof the CPU-based architecture. At
the time of publication, the research presentedManuscript 1, showed that the
mobile CPU based embedded system was URI's lowestep and smallest
architectural solution capable of executing eitd&{’s Linear Discriminant Analysis
(LDA) or SVM-based NMI algorithm. The mobile CPUdmal solution was further
evolved via modifications to the NMI algorithm, $uas a different choice of gamma
for the SVM and a 20ms window increment, whichraétely led to URI's highest
overall static prediction accuracy (99.94%), whighs presented in Manuscript 4.

When comparing URI’s algorithmic and architectwalutions to other published
state of the art systems, intended to provide ieoltl control of powered lower limb
prosthesis for transfemoral amputees, the URI swlstprovide various contributions
above and beyond that of the current state of thenahe fields of biomedical and
computer engineering. These advantages are agfollo

e To the best of the author's knowledge, URI's amttiiral solutions,

presented in Manuscripts 4, provides the highe&tlighed overall static
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accuracy of any NMI, intended for artificial leg itool, and tested to
simultaneously classify multiple (more than thréesfinct locomotion modes
[1-19];

¢ In contrast to the intrinsic mechanical feedbac&teays described in [1-5],
which appear to have difficulty in the developmeh# single model that can
accurately classify more than two dynamic locomotinodes (e.g. - walk,
stair up, stair down, ramp up, and ramp down) §]shown in Manuscripts
1 and 4, URI's NMI architectural solutions are dalea of properly
classifying a minimum of seven distinct locomotioodes;

e Unlike echo control based systems [7-10], whiclunmeginstrumentation of
the sound leg to determine the user intended lotomanodes [1-3, 6],
URI's NMI architectural solution provides volitioh@ontrol without the
need to instrument the sound limb; instead URIgoathm provides its
volitional control via a much more natural method dampling the neural
commands sent by the brain to residual muscldsammputated limb;

¢ To the best of the author’s knowledge, URI's MolflIEU based architecture
has the lowest power dissipation of any publish&dl Sblution shown to be
capable of accurately handling at least four siamdbus locomotion classes
[1-6, 11-15].

e To the best of the author’'s knowledge, Manuscriptisru 4 provide the only
currently published C-based implementations of a&vM$ased NMI

algorithm, designed to utilize both mechanical amelral information,
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optimized to enable real-time execution on smalld alow power
architectures such as Digital Signal Processor$@)&nd mobile-CPUs.
Based on the contributions above, URI's NMI sohsgidhave been shown to
provide many advantages over other state of thepasered lower limb prosthetic
control algorithms and embedded architectures. $JRMmall and low power,
architectural solutions are leading the way towdnighly accurate volitional artificial
leg control of powered prosthetic devices, theremgking a bionic leg a feasible

reality in the near future.

5.2 FutureWork

Although the research presented in this dissertatio a huge step towards
making URI's NMI algorithm a feasible reality, moresearch and development still
needs to be performed in order to create a comgetk final NMI solution. In
particular it would be beneficial to add EMG anoyndétection and trust assessments
to detect when the EMG signals have become unstebl¢he system can take
appropriate action. This is beneficial in detectangd compensating for changes in
EMG frequency and amplitude due to muscle fatigiueing workouts. It will also aid
in detection of EMG contact failures due to dirtlaweat or simply a fallen EMG.

Furthermore, it is preferable that the final desjgmvides impedance-based
control of the artificial limb, rather than utilizeseparate Finite State Machine (FSM)
to perform this function. Lastly, it is desirable further improve the accuracy of the
NMI algorithm. One possible solution that may agbkidigher accuracy is to provide

an additional vote layer composed of two additiopatallel classifiers, such as an
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additional linear and a polynomial classifier, these the output of the three classifiers

to determine if a change in locomotion mode ise@brmitted.
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