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ABSTRACT 

Presented within this dissertation is the evolution of the research leading to the 

selection of small, low power architectural solutions to the University of Rhode 

Island’s (URI) Neural Machine Interface (NMI) algorithm. The NMI is designed to 

provide volitional control of an artificial limb for transfemoral amputees. The NMI 

algorithm is based on neuromuscular–mechanical fusion, gait phase dependent, non-

linear support vector machine (SVM) classification. URI’s NMI algorithm utilizes 

electromyography to detect direct commands from the human brain to the residual 

thigh muscles in conjunction with mechanical signals derived from loadcell to 

determine the user’s intended locomotion mode.   

Of utmost importance is the classification accuracy, since any misclassification 

can cause the user to stumble, possibly leading to serious injury or death. Furthermore, 

of importance is the development of a small and low power architectural solution, 

such that it can be included within the confines of the artificial limb. URI has tackled 

both these challenges, leading to its mobile Central Processing Unit (CPU) solution. 

The mobile CPU solution was the first solution with sufficient processing throughput 

to execute the NMI at 20ms window increments. This led to a steady state 

classification accuracy of 99.94%, during real-time testing, with an able bodied 

subject. This testing included a total of 14000+ static classifications, and is currently 

URI's only, 20ms window increment, state of the art algorithmic and architectural 

solution to undergo real time human subject testing and evaluation.  



 

iii 
 

In contrast to URI’s NMI algorithm, other state of the art algorithms provide 

volitional control through either echo control or solely thru intrinsic mechanical 

feedback. In echo control, sensors are placed within the sound leg to determine the 

intended locomotion mode. In most cases these sensors typically communicate 

wirelessly with the artificial limb to provide the feedback necessary for volitional 

control. This approach is disadvantaged in the fact that it requires that sensors be 

instrumented on the sound limb, the user must always lead with the sound limb, and 

the wireless communications may possibly be jammed. Current algorithms based 

solely on intrinsic mechanical feedback, have been shown to provide high accuracy, 

but have had difficulty dealing with more than two simultaneous dynamic locomotion 

modes (e.g. - walk, stair up, stair down, ramp up, and ramp down).  

Clearly URI's NMI solution has advantages over other state of the art powered 

lower limb prosthetic control algorithms. It provides volitional control without the 

need to instrument the sound limb, without the need of wireless communications, can 

easily detect at least seven simultaneous locomotion modes, provides smooth and 

highly responsive locomotion transition detection and does so with high accuracy. 

This accuracy can be attributed to the use of neuromuscular-mechanical fusion, SVM 

detection and 20ms window analysis increments. URI's small, low power, 

architectural solutions are leading the way towards highly accurate volitional artificial 

leg control of powered prosthetic devices, thereby making a bionic leg a feasible 

reality in the near future. 
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PREFACE 

This dissertation is written in the manuscript format. It consists of four 

manuscripts organized as follows: 

Manuscript 1: 

Robert Hernandez, Fan Zhang, Xiaorong Zhang, He Huang, and Qing Yang, 

"Promise of a Low Power Mobile CPU Based Embedded System in Artificial Leg 

Control," published in the proceedings of the 34th Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society (EMBC ‘12), San Diego, CA, 

2012. pp. 5250-5253.  

Manuscript 2: 

Robert Hernandez and John Faella, “Towards Policy and Guidelines for the 

Selection of Computational Engines," published in the proceedings of the 7th Annual 

IEEE Systems Conference (SysCon ’13), Orlando, FL, 2013. pp. 88-95. 

Manuscript 3: 

Robert Hernandez, Jason Kane, Fan Zhang, Xiaorong Zhang, and He Huang, 

“Towards Ubiquitous Mobile-Computing-Based Artificial Leg Control,” submitted to 

IEEE Transactions on Mobile Computing. 

Manuscript 4: 

Robert Hernandez, Qing Yang, He Huang, Fan Zhang and Xiaorong Zhang, 

"Design and Implementation of a Low Power Mobile CPU Based Embedded System 

for Artificial Leg Control," published in the proceedings of the 35th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC ‘13), Osaka, Japan, 2013. pp. 5769-5772. 
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This dissertation is concluded and suggestions on further development of the 

Neural Machine Interface algorithm and hardware architecture are provided in Chapter 

5.  
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Abstract 

This paper presents the design and implementation of a low power embedded 

system using mobile processor technology (Intel AtomTM Z530 Processor) specifically 

tailored for a neural-machine interface (NMI) for artificial limbs. This embedded 

system effectively performs our previously developed NMI algorithm based on 

neuromuscular-mechanical fusion and phase-dependent pattern classification. The 

analysis shows that NMI embedded system can meet real-time constraints with high 

accuracies for recognizing the user’s locomotion mode. Our implementation utilizes 

the mobile processor efficiently to allow a power consumption of  2.2 watts and low 

CPU utilization (less than 4.3%) while executing the complex NMI algorithm. Our 

experiments have shown that the highly optimized C program implementation on the 

embedded system has superb advantages over existing PC implementations on 

MATLAB. The study results suggest that mobile-CPU-based embedded system is 

promising for implementing advanced control for powered lower limb prostheses. 
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1.1 Introduction 
 

A neural-machine interface (NMI) based on neuromuscular-mechanical fusion [1] 

and phase-dependent pattern recognition (PR) strategy [2] has been successfully 

developed in our research group to identify user intent for volitional control of 

powered lower limb prostheses. Embedded implementation of this complex NMI 

algorithm for real-time operation is essential for lower limb prostheses, but is 

challenging due to the rigorous system requirements. First, the prosthesis control must 

be accurate and responsive to enable lower limb amputees to perform different tasks 

safely and intuitively. In addition, the prosthesis control system must perform 

continuously for 6-8 hours daily without interruption. Finally, the system must be 

easily integrated into the prosthetic limb. These requirements demand the embedded 

system to be computational powerful, low power, and small in size. 

In our previous study, Field Programmable Gate Arrays (FPGAs) have been used 

as the embedded system to implement our designed NMI with Linear Discriminant 

Analysis (LDA)-based classifiers [3]. The prototype demonstrated promising 

performance for real-time NMI implementation. Although extremely effective, FPGAs 

pose many challenges during the design stage, such as language syntax, design 

environment, and toolsets [4]. Another concern with the use of FPGAs is its 

requirement of special purpose hardware design and fabrication giving rise to high 

cost. For example, a Support Vector Machine (SVM)-based classifier improved the 

accuracy of NMI for intent recognition compared to LDA [1]. However, hardware 

programming the complex SVM algorithm on a FPGA is challenging and time 
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consuming. These difficulties limit our capability to further optimize and develop the 

NMI for neural control of powered lower limb prostheses.   

With the wide availability of commodity off-the-shelf hardware such as Personal 

Computers (PCs), an efficient and cost-effective way of implementing our NMI is to 

develop an NMI program specifically tailored to such Commercial of the Shelf 

(COTS) hardware. Existing PC implementations of our SVM-based NMI algorithms, 

however, are mainly based on MATLAB giving rise to high overheads and poor real-

time performance. Our objective here is to develop a C program realizing our NMI 

algorithm on a commodity PC that is portable and fast enough.  

One alternative to FPGA and regular CPU is a mobile CPU. Mobile CPUs are 

low cost, low power and much smaller devices than regular CPUs (as shown in Fig. 

1.1 [5]). In addition, they have the capability to provide the flexible design 

environment as a PC/CPU combination. However, the computational power of mobile 

CPUs, such as the Intel AtomTM Z530, is relatively low [6, 7]. Therefore, in this study, 

we are interested to investigate whether or not a mobile CPU can execute a highly 

 
 

Figure 1.1. Intel AtomTM mobile CPU size compared to a United States penny (a 
United States penny is approximately 19.05 millimeters in diameter)  
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computational intensive algorithm, such as our phase-dependent, SVM-based NMI for 

powered lower limb prostheses. 

This paper makes the following contributions: 

• Design and implementation of a NMI for artificial legs based on mobile 

processors; 

• Design and implementation of a highly optimized, C-based, embedded 

application tailored to execute a phase-dependent NMI with SVM 

classifiers; 

• A performance analysis that evaluates the potential of mobile processors 

for embedded implementation of a NMI for neural control of powered 

lower limb prosthesis. 

1.2 System Design 

1.2.1 Hardware Architecture 
 

To provide viable use capability of a NMI, the NMI must be small, dissipate low 

power, and be fast enough to execute the classification algorithm in real-time. To meet 

these requirements, the AxiomTek eBOX530-820-FL fanless embedded hardware 

with the Intel AtomTM Processor Z530 (512K cache, 1.6 GHz) was chosen [8]. The 

Intel AtomTM Processor Z530 provided the highest performance and lowest power 

dissipation of Hyper-Threading capable mobile CPUs, which is ideal for thermally 

constrained and fanless embedded applications [9, 10]. The Hyper-Threading 

technology allows the operating system and the NMI application to execute 

simultaneously on two Hyper-Threads as they would on two physical processors [11]. 



 

6 
 

This minimizes the impacts of the OS execution on the real time embedded NMI 

application. 

1.2.2 Software Architecture 
 

C was chosen as the software language in our study because of its superior 

performance for real-time embedded applications [12-15]. To enhance the system 

performance, several programming techniques were used in the design and 

implementation of the application. First, dynamic memory management is one of the 

most expensive operations in C applications [16], which may cost 30% of the total 

execution time for the heap intensive C applications [16]. To avoid this problem, the 

various data structures within the software were defined statically with pre-defined 

maximum sizes. Secondly, to increase the reliability of the application, the data 

structures were placed in the application’s data segment, not in the application’s stack 

[17], to help avoid stack overflows. Other performance enhancements implemented 

included loop unwinding [18] and inline function expansion [19]. Loop unwinding is 

an efficient means to increase the utilization of pipelines and helps eliminate loop 

overhead [18]. Inline function expansion replaces a function call with the body of the 

function, which reduces the overhead associated with a function call during program 

execution [19]. 

The designed Neuromuscular-Mechanical fusion PR algorithm, utilizes SVM 

classification. The open source library LIBSVM [20] was used and specifically 

tailored to our embedded NMI application for real-time SVM classification. LIBSVM 

was also utilized in our previous MATLAB implementation, which served as a 

baseline for accuracy determination of the embedded application.   
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1.3 Pattern Recognition Algorithm 
 

The previously developed NMI identifies the user’s locomotion mode based on 

electromyographic (EMG) signals recorded from the residual thigh muscles and 

mechanical forces/moments signals recorded from prosthetic pylon.  These EMG and 

mechanical data are segmented by the sliding analysis windows. Features are extracted 

from the raw EMG and mechanical data in each analysis window and fused into one 

feature vector. This feature vector is sent to a phase-dependent pattern classifier for 

determination of user intent. The phase-dependent pattern classifier consists of 

multiple sub-classifiers for individual defined gait phases and a gait phase detector 

that identifies current gait phase and switches the corresponding sub-classifier on. 

Detailed description of this previously designed NMI can be found in [1] and [2]. 

1.3.1 Feature Extraction 
 

In this study, four time-domain (TD) features (the mean absolute value, the 

number of zero crossings, the waveform length, and the number of slope sign changes) 

were extracted from EMG signals in each analysis window. For mechanical 

measurements, the mean, minimum, and maximum values in each analysis window 

were extracted as the features. More detailed information can be found in [1]. The 

length of sliding analysis window and window increment were 150ms and 50ms, 

respectively.  

The features and increments were chosen to match our previous MATLAB 

implementations [21], thereby providing a baseline for an accuracy comparison with 

the newly designed embedded application.     
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1.3.2 Phase Dependent Pattern Recognition 
 

To accurately determine user intent, SVM utilizing a Radial Basis Function 

(RBF) kernel [21] was utilized. The SVM gamma parameter of 0.015 was used. 

In the designed phase-dependent classifier, four sub-classifiers were defined 

corresponding to the following four gait phases: initial double limb stance (phase 1), 

single limb stance (phase 2), terminal double limb stance (phase 3), and swing (phase 

4) [21]. The gait phase detector detects these gait phases based on the vertical Ground 

Reaction Force (GRF). In order to build the parameters in the classifiers, training 

procedure must be conducted on a training data set. During training, the output of 

phase detector is used to label the training data with the corresponding gait phase. 

Each classifier is trained only with the data pertinent for its gait phase.  When testing 

the classification, the gait phase detector determines which classifier is responsible for 

the determination of user intent. The algorithmic data flow of the phase-dependent 

pattern recognition is shown in Fig. 1.2. 

 
Figure 1.2. Phase-dependent PR algorithmic data flow 
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1.3.3 Software Implementation 
 

To implement the Neuromuscular-Mechanical Fusion PR, three applications were 

developed. The first application accepts offline raw training data, performs the EMG 

and mechanical feature extraction, fuses and then normalizes the features into vectors. 

The feature vectors are then separated into their corresponding gait phases and 

provided to the training application. The first application is also responsible for 

generating the normalization parameters required by the PR to normalize the testing 

data, when determining user intent. The second application accepts the four sets of 

training vectors and generates four SVM models, one model for each gait phase. The 

third application accepts raw offline testing data, the four gait phase SVM models, and 

the normalization parameters. The application extracts EMG and mechanical features 

from the raw testing data. The features are then fused and normalized, with the 

provided normalization parameters, into a vector. Finally, the application determines 

the current gait phase, and forwards the test vector to the respective phase based 

classifier for determination of user intent.  The software implementation data flow is 

shown in Fig. 1.3. 

1.4 Performance Evaluation 
 

This study was conducted with approval of Institutional Review Board (IRB) at 

the University of Rhode Island and informed consent of the subject. The evaluation 

was performed offline on the data collected from a male subject with a transfemoral 

amputation.  The collected data included the EMG signals from the subject’s residual 

thigh muscles and mechanical forces/moments measured by a 6 degree-of-freedom 

load cell mounted on the prosthetic pylon. The monitored residual muscles included 
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the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris 

long head (BFL), semitendinosus (SEM), biceps femoris short head (BFS), and 

adductor magnus (ADM). The recognition accuracy of NMI by using the designed 

embedded system was compared with the results of existing PC implementations on 

MATLAB. In addition, the timing and processor loading of the application’s execution 

on the embedded hardware were evaluated. A power consumption comparison 

between similar proposed NMI embedded systems and this embedded system was 

provided. 

1.4.1 Recognition Accuracy of NMI 
 

The offline data was composed of seven different classes: level-ground walking, 

ramp ascent, ramp descent, stair ascent, stair descent, sitting, and standing. The 

comparison of recognition accuracies of the NMI by using the designed embedded 

system and existing PC implementations on MATLAB are provided in Table 1.1. This 

study utilized a slightly different value for the gamma parameter required by the SVM 

 

Figure 1.3. Software implementation data flow 



 

11 
 

classifiers. The different gamma value was shown to provide a slightly higher 

accuracy during testing. This is noticeable in the comparison results, whereby the 

embedded application slightly outperformed the MATLAB model in PR accuracies.  

Both the MATLAB results and the embedded application had lower Phase 4 

(swing) accuracies. Two explanations for this result are provided in [22]. The first is 

that there is little force/moment data present during the swing phase from the 

prosthetic pylon [22]. The second explanation is related to the swing phase being 

longer than any of the other three phases, leading to larger variations in the EMG 

features [22]. 

1.4.2 Execution Timing and Processor Loading on the Embedded Hardware 
 

This previously designed NMI algorithm was executed on the Intel AtomTM based 

embedded hardware and the performance results were evaluated. A total of 3555 

predictions were   produced   by   the   Intel   AtomTM   based embedded hardware. For 

the purpose of this evaluation, the prediction time will be defined as the total time to 

execute feature extraction, normalization, gait phase detection and classification for a 

single analysis window. The mean prediction time was 0.8455 milliseconds with a 

standard deviation of 0.1044 milliseconds. The worst case prediction executed in 

2.1265 milliseconds. These results clearly show that the embedded system is capable 

Table 1.1. MATLAB and embedded software classification accuracies 
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of real-time implementation at 50ms and 20ms window increments. If the embedded 

system is combined with a highly responsive Data Acquisition (DAQ) system to 

provide the EMG and mechanical data, even a window increment of 10ms may be 

feasible. At the 10ms window increment, the interface to the DAQ and the DAQ 

system drivers will become of the utmost importance.  

Because there is additional loading on the CPU to execute the data logging for 

post analysis, the CPU loading provided by the operating system may be inaccurate. 

Therefore the mean and maximum value of CPU loading was calculated by (1.1) 

which were 1.691% and 4.253% respectively.  

��� ����	
� �
��������� ����

������ ��������� ������
 100                                  (1.1) 

1.4.3 Power Consumption Comparison 
 

Previous studies have utilized Field Programmable Gate Arrays (FPGA) and PCs 

for similar NMI applications [23]. The reported power consumption for the FPGA was 

3.499 watts and the AMD Turion 64x2 CPU within [23] can utilize up to 35 watts 

[23]. The Intel AtomTM Z530 Processor utilized in this embedded system design 

dissipates 2.2 watts [9]. The Intel AtomTM CPU’s power dissipation is less than one-

fifteenth that of the CPU and less than two third that of the FPGA. 

1.5 Conclusions 
 

This paper presented the design and implementation of a mobile CPU based 

embedded system for a NMI for artificial leg control. The performance evaluation 

showed that the highly optimized C-based embedded application combined with the 

mobile-CPU-based embedded hardware, can easily meet real-time constraints. The 
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performance evaluation also shows that there is no loss in classification accuracy, 

when compared with the MATLAB model [21]. In fact, there is a slight increase due 

to the use of a different SVM gamma parameter. Lastly, the CPU utilized for this 

embedded system dissipated less power than other systems designed for similar 

applications. Future work to be performed includes interfacing the embedded system 

to a DAQ to create a real-time capable system and testing the system on lower limb 

amputees.  
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Abstract 

Much research has been performed that concentrates on providing processing 

throughput enhancements to existing algorithms. Many systems have performance 

requirements that constrain their volume and/or power consumption. For volume and 

power consumption constrained systems, throughput cannot be the only decision 

factor when selecting a computational engine. Typical studies can aid in the selection 

of computational engines that meet the throughput requirements of a system, but may 

be of little help with respect to the volume, power and thermal constraints. This paper 

takes a different approach to help provide a different perspective on the constrained 

design problem. The research performed in this paper emphasizes the cost due to the 

power, size and Non-Recurring Engineering (NRE) costs of various computational 

engines. The computational engines researched in this paper are: Central Processing 

Unit (CPU), mobile CPU, Digital Signal Processor (DSP), and mobile Graphics 

Processing Unit (GPU). The various architectures are compared against each other 

with respect to throughput, power, size and NRE costs. The authors hope that the 

process outlined in this paper may serve as a possible guideline for other Systems 

Engineers to perform similar Analysis of Alternatives of computational engines. 

Furthermore, the authors hope that the methods used for the relative performance 

evaluations will serve as a starting point to help shape policy in the selection of 

computational engines for future designs. 
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2.1 Introduction 
 

When performing an Analysis of Alternatives (AoA) for the selection of the 

computational engine of a system, attention needs to be paid to the system constraints. 

Much research has been performed that concentrates on providing processing 

throughput enhancements to existing algorithms [1, 2, 3, 4], but many systems have 

performance requirements that constrain their volume and/or power consumption. 

Studies such as [1, 2, 3, 4] can aid in the selection of computational engines that meet 

the throughput requirements of a system, but may be of little help with respect to the 

volume, power and thermal constraints. If the limitations of the chosen architecture are 

not well understood beforehand, the results can be expensive and time consuming. 

Furthermore, if the benefits of each computational engine are not well understood 

beforehand, an inferior or inappropriate architecture may be chosen. This results in 

reduced system capability, thereby limiting the current and future software algorithms 

that can be implemented.  Therefore, it is important to understand the limitations and 

benefits of existing hardware architectures and provide the best system design 

alternatives based on each system’s specific performance requirements and 

constraints. This research is a direct result of this initiative and provides a 

methodology for performing AoAs of existing computer architectures for use in future 

Naval Systems. The intent is that this research may serve as guidelines and enable 

system engineers to choose the most appropriate architecture for use in their particular 

system. The primary focus will be providing guidelines for systems that are 

constrained, such as volume constrained, power constrained, or both power and 

volume constrained. The guidelines will be useful for system engineers whose 
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applications are unconstrained, but the primary focus of this paper will be the 

constrained design analysis. The viable architectures analyzed in this study are: 

Central Processing Unit (CPU), mobile CPU, Digital Signal Processor (DSP), and 

mobile Graphics Processing Unit (GPU).  

To help systems engineers and designers choose the appropriate architectures, this 

study provides the following contributions: 

• Data on the software development Non-Recurring Engineering cost (NRE) 

for the DSP and GPU architectures for porting from a C-based application 

to aid in producing accurate NRE estimates and schedules; 

• Architecture based performance assessments related to power utilization, 

space utilization and SWaP (space, wattage and performance) [5] to aid in 

meeting system performance requirements and constraints; 

• Architecture specific overhead, such as GPU Kernel function overhead, to 

better understand the complexity and limitations of the architectures. 

A candidate algorithm has been chosen that performs signal processing on 

multiple raw data streams and utilizes Support Vector Machine (SVM) based 

classification [6, 7]. The candidate algorithm was chosen for its similarity with 

processing requirements for many naval systems as well as the research’s applicability 

to the Wounded Warrior Program. This particular algorithm is a Neural Machine 

Interface (NMI) for volitional control of powered lower limb prostheses. A NMI 

application is both volume and power constrained, but also requires a significant 

amount of processing throughput, which poses many challenges [8]. To develop the 

candidate algorithm, the MATLAB model utilized in [6] and [7] was ported to an 
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ANSI C baseline and its accuracy verified against the MATLAB model. The first 

candidate architecture to undergo a performance evaluation was the mobile CPU, 

because of its direct applicability to the NMI’s constraints (i.e. - high performance 

utilizing a small and low power device). The performance results for the mobile CPU 

based NMI were published in [8]. This paper provides the additional performance 

results for a CPU, DSP, and mobile GPU. Furthermore, it provides an architecture 

performance comparison of all four architectures, thereby providing the basis of an 

AoA for the selection of hardware architectures. 

The paper is organized as follows. The next section presents the Neural Machine 

Interface Algorithm. Sections III, IV and V present our implementation and 

performance for the various architectures (i.e. - computational engines). Sections VI, 

VII and VIII provide our constrained performance evaluations. We conclude our paper 

in Section IX. 

2.2 Neural-Machine Interface 
 

This NMI utilizes a pattern recognition (PR) algorithm that identifies user 

locomotion intent based on seven (7) electromyographic (EMG) signals acquired from 

leg muscles and six (6) mechanical forces/moments data acquired from a 6 degrees-of-

freedom (DOF) load cell mounted on the prosthetic device. Time domain based 

features are extracted from this data and provided to SVM-based gait phase classifiers 

for determination of user intent. A brief description of the NMI PR algorithm is 

provided below, a detailed description is available in [6] and [7]. 
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2.2.1 Support Vector Machine Classification 
 

SVM is a supervised learning classification technique whereby the selection of 

the features utilized for training and detection directly relate to classification accuracy 

and burden placed on the computational engine [9]. SVM supports the use of non-

linear kernel functions [9], such as the Radial Basis Function (RBF), which provides 

the capability to better match the distribution of the feature sets. The chosen algorithm 

utilizes SVM with an RBF kernel function to provide its user intent classification. The 

features were chosen to provide high accuracy and minimize the burden on the 

computational engine [10].  

2.2.2 Feature Extraction 
 

In this study, four time-domain (TD) features (the mean absolute value, the 

number of zero crossings, the waveform length, and the number of slope sign changes) 

were extracted from EMG signals in each analysis window [10]. For mechanical data 

the mean, minimum, and maximum values in each analysis window were extracted as 

the features. 

2.2.3 Phase Dependent Pattern Recognition 
 

The user’s human locomotion is separated into four gait phases: initial double 

limb stance, single limb stance, terminal double limb stance, and swing [11]. Four 

separate detectors are trained, each with the data from a single corresponding gait 

phase. Data features are extracted from the raw EMG and mechanical signals during a 

sliding analysis window and fused into a single feature vector. A gait phase detector 

identifies the current gait phase in real-time, selects the corresponding gait sub-

classifier, and forwards the feature vector to the classifier for final determination of 
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user intent. In this study, a sliding analysis window of 150ms with a window 

increment of 50ms was utilized. 

2.2.4 Performance Evaluation of the NMI 
 

The performance evaluation of the NMI on the various architectures will be 

directly related to the average prediction achieved by the architectures. For the 

purposes of the various evaluations, the prediction time will be defined as the total 

time to execute: feature extraction, normalization, gait phase detection and 

classification for a single analysis window. 

2.3 CPU and Mobile CPU Implementation and Performance 
 

The CPU and mobile CPU implementations were directly based on the C 

language implementation of the research performed in [8]. In [8], the goal was to 

create a NMI capable of meeting real-time constraints, while executing on low power 

architectures. To help the lower power architectures meet real-time constraints, 

various common performance enhancements techniques were implemented. These 

enhancements included reduced dynamic memory management [12], loop unwinding 

[13], and inline function expansion [14] among others. The NMI’s average prediction 

time, during execution on an Intel Atom Z530, was 0.846ms. The Intel Atom Z530 

CPU has a form factor of 13mm x 14mm and has a maximum power utilization of 2.2 

watts [15]. 

The current NMI CPU implementation was written to take advantage of single 

core hyper threaded [16] CPUs and is, therefore not capable of taking full advantage 

of multi-core CPU architectures such as Intel’s i5 and i7 CPUs. The closest CPU 

comparison to the execution on the Atom Z530 we had available was the Intel E7500 
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Core 2 Duo. Similarly to the previous study, the Intel E7500 allowed the Operating 

System (OS) to execute on one core, while the NMI executes on the second core. This 

helps minimize the impacts of the OS on the NMI. The NMI’s average prediction time 

during execution on an Intel E7500, was 0.605ms. The Intel E7500 CPU has a form 

factor of 37.5mm x 37.5mm and has a maximum power utilization of 65 watts [17]. 

2.4 DSP Implementation and Performance 
 

The DSP implementation began with the mobile CPU C software baseline. The C 

baseline was modified and optimized to work with the Spectrum Digital TMS3206713 

board that utilizes a Texas Instruments TMS3206713 DSP [18] at a clock speed of 

225MHz. The development board was programmed in the C programming language 

using the provided Code Composer Studio integrated development environment.   

For a professional with prior C programming experience, but no prior experience 

using Code Composer Studio, it took about 1 week to get a non-optimized program to 

match the mobile CPU version’s execution time and accuracy. An additional 2 weeks 

of time was required to optimize the application to reach its maximum potential.   

One optimization performed was to reduce the number of branches required by 

the program.  The TMS320C6713 does not have any form of branch prediction.  

Instead, each branch function results in 5 stall operations being inserted into the 

pipeline [19]. When possible, the instances of nested if statements were merged into a 

single if statement, thus reducing the number of branches required for the same 

operation.  The number of conditional loops was reduced by combining multiple 

operations into a single loop whenever possible.  This also reduced the number of 

branches that occur within the program.   
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The most effective optimization was the activation of L2 cache. The 

TMS3206713 development board does not have L2 cache activated by default [20].  

Instead only a small L1 cache is used.  Since the external memory accesses are slow, it 

is beneficial to activate the L2 cache as long as the application execution does not 

result in a large number of cache misses. The inclusion of the L2 also requires the 

remapping of some internal memory to be configured to serve as the cache.  In this 

case neither of these two issues were a factor and the inclusion of L2 cache provided a 

major performance boost.  This change required an additional two lines of code to be 

added to the program.  The first instruction configures the board to use L2 cache, and 

the second instruction can be used to control the size of the L2 cache.  In this case it 

was found that the largest performance was achieved when with the largest possible 

L2 cache.  For the TMS320C6713 development board the largest possible L2 cache 

size is 64KB [20].    

The optimized version of the DSP implementation resulted in an average time of 

11.35ms per prediction with a standard deviation of 2.186ms.  The feature extraction 

required an average of 6.887ms with a standard deviation of 838µs. The classification 

required an average of 4.472ms with a standard deviation of 1.778ms. The 

TMS3206713 DSP has a form factor of 27mm x 27mm and has a power utilization of 

approximately 1 watt [18]. 

2.5 Mobile GPU Implementation and Performance 
 

The mobile GPU implementation began with the mobile CPU software baseline. 

The C baseline was modified and optimized to take advantage of the Nvidia GeForce 

GT 540m architecture.  The GPU utilized in this study is located within a Dell XPS 
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laptop with an Intel i7-2720QM CPU.  The GeForce GT 540m has 96 Compute 

Unified Device Architecture (CUDA) cores divided up into 2 separate streaming 

multiprocessors and runs at a clock speed of 1.3GHz [21]. The development of the 

application was performed in a Microsoft Visual Studio integrated development 

environment which provides CUDA programming capability.  

One immediate difference in the GPU architecture versus the DSP and CPU 

architectures is that the GPU is more of a highly optimized and parallelized co-

processor to the CPU than it is a standalone architecture. Therefore, the GPU incurs 

the additional power and space overhead of the CPU or device it communicates with. 

Because the CPU power and form factor can vary, our analyses will not take into 

consideration this additional overhead. It is recommended that this implementation 

specific overhead be accounted for by the systems engineer, while performing the 

analyses within this paper. Another disadvantage of the GPU is the time of the 

overhead required to launch a GPU kernel function.  The CPU needs to communicate 

with the GPU in order to setup and run a CUDA kernel function. There is a certain 

amount of overhead time required to perform this process. If the kernel launch 

overhead begins to approach or exceeds the actual execution time of the kernel 

function then it can become a detriment to the total execution time of the program. 

Therefore, if one has a kernel function that performs little to no calculations, attention 

needs to be paid to how time is spent in actual kernel function execution versus the 

kernel launch overhead. In some cases it may be more advantageous to execute the 

less calculation intensive functions on the CPU, thereby eliminating the need for 

kernel function overhead. In the case of our implementation of the gait phase detection 
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and tallying of SVM vote, it was beneficial to execute these on the CPU versus the 

GPU. For this system, it was found that an average of 3µs of overhead time is required 

per GPU kernel launch. Our GPU implementation utilized nine (9) GPU kernel 

functions per prediction; therefore a total of 27µs per prediction is attributed to kernel 

function overhead. 

One important concept in GPU programming is the concept of organizing 

execution paths into grids, blocks, threads, and warps.  When starting a kernel function 

the CPU specifies several parameters.  The main parameters used are the number of 

threads per block, the number of blocks, and the number of grids of blocks.  In this 

case there was only one grid, since we were using a single GPU board.  Threads are 

grouped into blocks.  Threads in the same block can share data and be synchronized 

whereas threads of different blocks cannot.  Another important concept is warps.  

Threads are grouped into sets of 32 threads known as warps.  Threads in the same 

warp are intrinsically synchronized and are scheduled together.  When writing GPU 

code it is important to keep threads of the same warp following the same execution 

path to prevent divergent warps.  When threads of the same warp execute different 

code the warp is said to be divergent and the operations are executed in a serialized 

fashion, thus missing the potential parallelism offered by the GPU. More detailed 

information on CUDA programming, grids, blocks, threads and warps can be found in 

[22]. 

Our CUDA program begins its execution on the CPU and then the CPU initiates 

kernel functions that execute on the GPU.  In this case the program begins by copying 

the raw EMG and load cell data to the GPU to be used during its execution.  For each 
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analysis window, the phase detection is performed on the CPU.  Nine GPU kernel 

functions are used to perform the needed steps for the feature extraction, 

normalization, and to determine the one versus one SVM classifier votes.  The votes 

are then copied from the GPU to the CPU where the actual one versus one SVM votes 

are tallied to determine the user intent for the given window. 

This NMI algorithm allows for a large amount of parallelization.  The GPU’s 

massively parallel architecture provides the capability to take advantage of this 

opportunity.  As shown by Amdahl’s Law [23], the more parallelization that can be 

found in an application, the greater the increase in the performance of the application 

on a parallel architecture such as a GPU. To take advantage of the principles defined 

by Amdahl’s Law we examined the NMI algorithm for every possible opportunity to 

exploit parallelism. The DC offset for each of the channels can be calculated and 

removed in parallel.  Each of the 46 features that need to be extracted from the channel 

data can be calculated in parallel.  Similarly, the approximately 200 to 400 SVM 

support vector dot products can be performed in parallel, and the 21 one versus one 

SVM classifiers that use the SVM dot product values can be performed in parallel. 

The parallelization was further increased by utilizing the parallel reduction 

method [24, 25] to parallelize the necessary work to calculate the values. The parallel 

reduction method uses many threads to process a data set.  For example, when finding 

the sum of a data set each thread will be used to find the sum of two values in the data 

set.  After the first stage, half of the threads will have partial sums. Then half of the 

threads with the partial sums add their resultant partial sums to that of one of the other 

threads.  This process continues until one thread holds the sum of the entire data set.  
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In this way the sum is found in the most efficient way to maximize the parallelism 

provided by the GPU [24, 25].   

Fig. 2.1 shows the NMI algorithm’s GPU implementation, data flow, and the 

workload separation between the CPU and GPU architectures.  In Fig. 2.1, the 

portions of the algorithm allocated to the GPU are initiated by kernel functions 

launched by the CPU to perform the calculations.  These kernel functions are launched 

with a set amount of blocks and threads per block in order to best take advantage of 

the architecture of this particular GPU.  For our program we utilized a block size of 96 

threads.  This provided enough threads to accomplish each given task.   

For the six EMG channels, the DC offset first has to be removed.  This is done by 

calculating the mean of each channel and subtracting the mean from each of the 

 
 

Figure 2.1. Phase-dependent PR algorithmic data flow 
implementation in a GPU architecture 
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values.  The mean of each channel is calculated in the first GPU kernel function.  This 

function finds the means for all channels including the mechanical channels as this is a 

feature required from the mechanical channels.  A second kernel function is then used 

to subtract the mean from the EMG channels.   

For the feature extraction, 96 threads per block are used to calculate the features 

needed for a channel.  Each block is responsible for extracting the features for 1 

channel.  Therefore 13 blocks are required, seven for the EMG channels and six for 

the mechanical features. All the features are calculated using the reduction method. 

The third kernel function is used for the extraction of the EMG features.  In this 

function each thread reads in a single data value from a single EMG channel and then 

extracts all four EMG features for this data point (calculates the absolute value of the 

current data point, calculates the waveform length of the current data point relative to 

the prior data point, determines if the current data point is representative of a zero 

crossing, and determines if the current data point is representative of a slope sign 

change).  Once these factors are known, the values can then be combined together 

using parallel reduction as previously described until one thread holds the feature 

values for the current window increment.  The mechanical channels do not have to 

wait for the DC offset to be subtracted from the data so the features from these 

channels can begin to be extracted immediately while the EMG channels are still 

waiting.  There is no need for a separate kernel function to calculate the mean of the 

mechanical channels as that is handled by the same kernel function that calculates the 

mean of each channel in order to remove the DC offset from each of the EMG 

channels.  The fourth kernel function is used to extract the mechanical features and 
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also utilizes the reduction method to increase parallelism.  Each thread reads in one 

value from the current window.  It then compares this value to the value in one other 

thread to determine which is the minimum and which is the maximum.  This process 

continues until there are only two threads remaining at which point the min and max 

for the entire data set can be found.  The fifth kernel function saves the features by 

loading them into an array to be processed by the later steps in the GPU 

implementation of the algorithm. 

A sixth kernel function is utilized to calculate the SVM dot products and also 

utilizes the reduction method. Each block is allocated 96 threads.  Each block of 96 

threads is segmented into three warps of 32 threads. Each warp calculated the value 

for one SVM dot product; hence the three warps can calculate 3 SVM dot products in 

parallel. There are a total of 46 features in each SVM support vector and test vector, 

therefore 46 products and 45 sums are required for each dot product.  Each warp 

performs the following steps: 

Step 1.  The 32 threads in the warp calculate the first 32 products. 

Step 2.  The first 14 threads in the warp calculate the final 14 products and 

sums them with their prior 14 products, resulting in the first 14 partial 

sums. 

Step 3.   The 32 terms (18 remaining products and 14 partial sums) are reduced 

into 16 partial sums. 

Step 4.  The remaining 16 partial sums are reduced into 8 partial sums. 

Step 5.  The remaining 8 partial sums are reduced into 4 partial sums. 

Step 6.  The remaining 4 partial sums are reduced into 2 partial sums. 
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Step 7.  The remaining 2 partial sums are summed and become the final sum. 

 We allocated a single SVM dot product to a warp of 32 threads to minimize 

warp divergence and synchronization issues.  If threads from the same warp follow 

different execution paths then the threads are said to diverge.  In the case that the 

threads diverge, they are executed in a serial fashion and thus do not take best 

advantage of the parallel processing provided by the GPU.  The other advantage of 

using a warp to calculate a single SVM dot product is that there is no need to call any 

thread synchronization functions because the threads of a warp are naturally 

synchronized.       

An eighth kernel function is executed at the same time as the SVM dot products 

are being calculated.  This function does some necessary setup prior to the SVM 

classification.  In this function some required variables are initialized to be used in the 

classification.  The ninth kernel function performs the one versus one SVM 

classification. The 21 classifiers are executed using 21 blocks of 96 threads each.  

Each of the classifications is again done using parallel reduction.   This produces the 

21 votes that are copied back to the CPU in order to tally the final vote and determine 

the user intent for the current window.   

This implementation takes advantage of the parallel nature of the GPU while at 

the same time avoiding one of its biggest disadvantages, the need to copy data back 

and forth between the GPU and the CPU [22].  With the method outlined above the 

program only requires one memory copy between the GPU and the CPU per 

prediction.  This is done by keeping as much of the data as possible on the GPU and 
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only copying data to the CPU at the very end of a prediction.  Fig. 2.2 shows the GPU 

program flow for this implementation. 

About a month and a half of work performed by a professional with prior C 

experience and no prior CUDA experience was required to produce a GPU 

implementation that matched the accuracy of the CPU implementation.  An additional 

month and a half was required to produce code that could match and exceed the 

prediction speed accomplished by the CPU implementation.  In the final optimized 

version of the GPU code, the program required an average 0.193ms per prediction 

with a standard deviation of 21µs.  An average of 51µs with a standard deviation of 

 
 

Figure 2.2. GPU implementation program flow 



 

33 
 

0.2µs was required for the feature extraction and 74µs with a standard deviation of 

18µs for the classification. The GeForce GT 540m GPU has a form factor of 29mm x 

29mm and has a maximum power utilization of 35 watts [26, 27]. 

2.6 Mobile GPU Implementation and Performance 
 

This analysis will compare the computational performance of the architectures 

relative to their respective power utilization. We recommend that this analysis be 

performed for systems that are constrained to operate within a limited power or 

thermal range. This performance requirement is usually imposed when the lower 

power utilization will allow the device to operate for a longer period, there is a limited 

method to dissipate thermal energy, or the system has a limited power source. Some 

examples might be satellites, electric passenger vehicles, and electric autonomous 

vehicles. 

For a computational performance measure we will utilize the number of floating 

point operations per second (FLOPS). The power utilization will be measured in watts. 

Of interest is the performance of each architecture per its respective power utilization, 

therefore (2.1) can be used to provide the relative performance of each architecture for 

our NMI algorithm. We intentionally utilized the same NMI algorithm for all the 

architectures to ensure that the number of floating point operations per prediction, the 

numerator in (2.1) below, is the same for all architectures implementations. Therefore 

to maximize the performance of any given architecture we must minimize the product 

of the prediction time and power utilization. Conversely, the architecture whose 

product of the prediction time and power utilization is the largest will be the worst 

performing architecture for this analysis. For this analysis, the Intel E7500 CPU 
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architecture exhibited the worst performance with a prediction time of 0.605ms and a 

maximum power utilization of 65 watts. To provide a comparison between all the 

architectures we will take a ratio of each architecture’s performance achieved by (2.1) 

relative to the worst performer (CPU). By comparing the architectures to the worst 

performer we can then provide a performance ratio utilizing (2.2).  

 

         #$%& �
'()*+,-. #),-+ /0$%*+,)-1 ')% 2*34 #%$5,3+,)-

�6$3)-51 ')% 2*34 #%$5,3+,)-� �7*++1�
                         (2.1) 

 

    8*+,) �
�9#: #%$5,3+,)- ;,<$� �9#: 7*++1�

�=%34,+$3+>%$ #%$5,3+,)- ;,<$� �=%34,+$3+>%$ 7*++1�
                (2.2) 

 

Table 2.1 provides the results of the power constrained analysis. As can be seen, 

the Atom mobile CPU provided the highest performance, which was 21 times that of 

the CPU. Although the mobile CPU provided the highest performance, it does not 

automatically make it the best architecture choice; the system performance 

requirements need to be examined prior to making a final selection. This applies for all 

       

Table 2.1. Power Constrained Performance Results 

 

Computational 
Engine 

Average 
Prediction 

Time 

Power 
Consumption 

Performance 
Ratio 

CPU Core 2 
Duo E7500 

0.605ms 65 watts 1X 

DSP 
TMS320C6713 

11.35ms 1 watt 3.5X 

Mobile GPU 
GeForce 540m 

0.193ms 35 watts 5.8X 

Mobile CPU 
Atom Z530 

0.846ms 2.2 watts 21X 
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of the analyses performed in this paper. For example, for an NMI, the less power 

utilized the longer a patient is able to use the prosthesis without the need for changing 

and/or replacing the power cell. All of the architectures tested met the requirement for 

a 50ms prediction time. Since the DSP’s power consumption is lower than that of the 

mobile CPU, it may be the better choice. Alternatively, since the prosthetic device we 

are targeting requires updates every 10ms, the goal is for the NMI to perform a 

prediction every 10ms. Based on a 10ms prediction time, the mobile CPU becomes the 

better choice. Furthermore, the mobile CPU provides additional expansion capability 

to augment the existing NMI algorithm to provide actual leg control and EMG signal 

anomaly detection in future design iterations. 

It is important to note that these results are for the phase dependent NMI 

algorithm and that a different algorithm will probably result in different performance 

and rankings for the architectures. To ensure accurate results, it is recommended that 

the actual target algorithm, actual architecture power utilizations during algorithm 

execution, and actual architecture sizes be utilized to perform this and all of the other 

analyses in this paper. To provide an example of how to perform these analyses, we 

have only taken into account the computational engine and utilized the manufacturers’ 

maximum advertised power consumption. 

2.7 Volume Constrained Analysis 
 

This analysis will compare the computational performance of the architectures 

relative to the surface area that each would utilize on a circuit board assembly. We 

recommend that this analysis be performed for systems designs that are constrained to 
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operate within a small volume. Some applications that can be volume constrained are 

networked surveillance cameras, digital photo frames and home automation devices. 

For a computational performance measure, we will utilize the number of floating 

point operations per second. Of interest is the computational performance of each of 

the architectures relative to its surface area consumption, therefore (2.3) can be used to 

provide a measure of the relative performance of each of the architectures for our NMI 

algorithm. Similarly to the power constrained analysis, the NMI algorithm utilized the 

same number of floating point operations per prediction; therefore, to maximize the 

performance of any given architecture, we must minimize the product of the prediction 

time and architecture surface area. Conversely, the architecture whose product of the 

prediction time and surface area is the largest will be the worst performing architecture 

for this analysis. For this analysis, the Texas Instruments TMS320C6713 DSP 

architecture exhibited the worst performance with a prediction time of 11.35ms and a 

package dimension of 27mm by 27mm. To provide a comparison between all the 

architectures we will take a ratio of each architecture’s performance as determined by 

(2.3) relative to the worst performer (DSP). By comparing the architectures to the 

worst performer we can then provide a performance ratio utilizing (2.4).  
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Table 2.2 provides the results of the power constrained analysis. As can be seen, 

the mobile CPU provided the highest performance, which was 53.7 times that of the 

DSP. Again, the mobile CPU architecture appears to be the best alternative. 

Furthermore, being the smallest architecture chosen for this AoA, the mobile CPU 

provides a viable solution for mounting the final design into the prosthesis. 

2.8 Volume and Power Constrained Analysis 
 

This analysis will compare the computational performance of the architectures 

using SWaP. We will examine the architectures’ computational performance relative 

to their respective surface areas and power consumptions. We recommend that this 

analysis be performed for systems designs that are both volume and power 

constrained. Some applications that are both power and volume constrained are cell 

phones, tablets and neural-machine interfaces. 

For a computational performance measure, we will utilize the number of floating 

point operations per second. Of interest is the computational performance of each 

architecture relative to its surface area and power consumption, therefore (2.5) can be 

   

Table 2.2. Volume Constrained Performance Results 

 

Computational 
Engine 

Average 
Prediction 

Time 

Surface 
Area 

Performance 
Ratio 

DSP 
TMS320C6713 

11.35ms 27mm x 
27mm 

1X 

CPU 
Core 2 Duo 

E7500 

0.605ms 37.5mm 
x 

37.5mm 

9.7X 

Mobile GPU 
GeForce 540m 

0.193ms 29mm 
x29mm 

51X 

Mobile CPU 
Atom Z530 

0.846ms 13mm x 
14mm 

53.7X 
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used to provide the relative performance of each architecture for our NMI algorithm. 

Similarly to the prior constrained analyses, the NMI algorithm utilized the same 

number of floating point operations per prediction; therefore, to maximize the 

performance of any given architecture, we must minimize the product of the prediction 

time with the architecture surface area and power consumption. Conversely, the 

architecture whose product of the prediction time, surface area and power 

consumption is the largest will be the worst performing architecture for this analysis. 

For this analysis, the Intel E7500 CPU architecture exhibited the worst performance 

with a prediction time of 0.605ms, a package dimension of 37.5mm by 37.5mm and a 

power consumption of 65watts. To provide a comparison between all the architectures 

we will take a ratio of each architecture’s performance as measured by (2.5) relative to 

the worst performer (CPU). By comparing the architectures to the worst performer we 

can then provide a performance ratio utilizing (2.6).  
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Table 2.3 provides the results of the SWaP analysis. As can be seen, the mobile 

CPU provided the highest performance, which was 163 times that of the CPU. 

Similarly to the prior constrained performance analyses, it is important that the results 

from the SWaP performance evaluations are used in conjunction with the system 

performance requirements prior to making a final architecture selection. Based on the 
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three constrained analyses and the future performance requirements of the NMI, the 

mobile CPU architecture appears to be the best selection. 

2.9 Conclusions 
 

This paper presented a methodology of performing constrained AoAs for the 

selection of computational engines for future system designs. Various analyses were 

utilized to evaluate power, volume and both power/volume performance constraints. 

Guidance was provided on when to use each analysis and how to combine the results 

of the analyses with performance requirements to provide the appropriate computer 

architecture selection for future system designs. NRE was provided for the DSP and 

mobile GPU architectures to aid in properly planning such an analysis. As can be seen 

by the three man-month effort to port and optimize the NMI for use in a mobile GPU 

architecture, such analysis can be time consuming and expensive. We hope that the 

processes and analyses presented will help other systems engineers perform their own 

AoAs for their system. Furthermore, we hope that the methods used for the relative 

performance evaluations will serve as a starting point to help shape policy in the 

selection of computational engines for future designs. 

Table 2.3. SWaP Performance Results 

 

Computational 
Engine 

Average 
Prediction 

Time 

Surface 
Area 

Power 
 

SWaP 
Ratio 

CPU Core 2 Duo 
E7500 

0.605ms 37.5mm x 
37.5mm 

65 
watts 

1X 

DSP 
TMS320C6713 

11.35ms 27mm x 
27mm 

1 watt 6.7X 

Mobile GPU 
GeForce 540m 

0.193ms 29mm x 
29mm 

35 
watts 

9.7X 

Mobile CPU 
Atom Z530 

0.846ms 13mm x 
14mm 

2.2 
watts 

163X 
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Our future research includes the development of multi-core variants of the phase-

dependent NMI algorithm, using various programming techniques. We plan to 

compare the performance of multi-core processors, such as the Intel i5 and i7 

architectures, to that of the mobile CPU, CPU, DSP and mobile GPU architectures. 

Although the size and power consumption of these architectures may exclude them 

from candidacy for an NMI, the additional results will provide a more complete AoA.  

Furthermore, the parallel capability of the multi-core processors should provide a 

better comparison relative to the parallel GPU architecture. 
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Abstract 

This paper presents a rapid prototype approach for the development of a real-time 

capable neural-machine-interface (NMI) for control of artificial legs based on mobile 

processor technology (Intel AtomTM Z530 Processor.) By effectively exploiting the 

architectural features of a mobile embedded CPU, we implemented a decision-making 

algorithm, based on neuromuscular-mechanical fusion and gait phase-dependent 

support vector machines (SVM) classification to meet the demanding performance 

constraints. To demonstrate the feasibility of a real-time mobile computing based 

NMI, real-time experiments were performed on an able bodied subject with window 

increments of 50ms. The experiments showed that the mobile computing based NMI 

provided fast and accurate classifications of four major human locomotion tasks 

(level-ground walking, stair ascent, stair descent, and standing) and a 46X speedup 

over an equivalent MATLAB implementation. The testing yielded accuracies of 

96.31% with low power consumption. An offline analysis showed the accuracy could 

be increased to 98.87% with minor modifications to the application. 
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3.1 Introduction 
 

In 2005, there were approximately 1.6 million people in the United States with 

some kind of limb loss [1]. By the year 2050, the number is expected to increase to 3.6 

million people [1]. Furthermore, in 2005, lower limb loss accounted for almost two-

thirds (65.5%) of the 1.6 million [1]. People with lower-limb amputations typically 

favor their intact limb and therefore provide additional stress upon their intact limb 

during everyday activities [2]. It has been speculated that the additional stress placed 

upon their intact limb will lead to degenerative diseases [2]. These statistics clearly 

present the increasing need for technology that restores as much functionality to the 

large and increasing population of lower limb amputees. 

The recent development of powered artificial legs, such as the Power Knee [3] 

and the Vanderbilt University design [4], provide positive mechanical energy that 

helps restore the user’s locomotion modes [5]. These devices detect the user’s 

intended locomotion mode though the use of echo control or solely though intrinsic 

mechanical feedback. In particular, the Power Knee [3] utilizes echo control [4] and 

requires instrumentation of the sound leg in order to detect what locomotion mode the 

user is currently performing. The system described in [4] utilizes, solely, intrinsic 

mechanical feedback [6]. In contrast, we have developed a Neural Machine Interface 

based on neuromuscular-mechanical fusion [7] and phase-dependent pattern 

recognition (PR) strategy [8]. Our strategy does not require instrumentation of the 

sound leg and has been shown to provide higher accuracy than the classifiers utilizing 

only electromyographic (EMG) data or only mechanical data [9]. Our PR strategy can 

be implemented utilizing either Support Vector Machines (SVM) or Linear 
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Discriminant Analysis (LDA) classifiers. The selection of a Support Vector Machines 

(SVM) classifier provided improved prediction accuracy performance of our PR 

strategy when compared to a Linear Discriminant Analysis (LDA) classifier [7]; 

therefore for this study we will utilize an SVM-based classifier.  

In order to make our PR strategy a feasible reality we developed a Cyber Physical 

System (CPS), designed to test our Neural-Machine Interface (NMI). This CPS is a 

unique and complex system consisting of biomedical engineering components, a 

mechanical prosthesis, as well as computer software and hardware. Our objective here 

is to integrate various components in such a complex system in an optimal way using a 

system engineering approach. The important parameters that we aim to optimize 

include mainly 1) real-time performance to provide fast control of prosthesis; 2) high 

accuracy of locomotion prediction; 3) low power consumption; and 4) small size 

wearable by leg amputees.   

With these objectives in mind, we investigated commercial off-the-shelf (COTS) 

computing devices and chose one ubiquitous mobile computing system, the Intel 

AtomTM Z530. It is low power (2.2 watts [10]), low cost, and a portable mobile 

computer that meets our NMI performance requirements. Our preliminary study [11] 

showed that a mobile processor based NMI had great promise in control of artificial 

legs [11]. The primary objective of this paper is to determine the viability of mobile 

technology as a possible architectural solution for use in our 50ms window increment 

NMI. We chose to utilize 50ms window increments in this study to provide a 

comparison with our existing MATLAB implementations. Additionally we wish to 

determine if the Intel Atom based design will allow for further expansion of our NMI 
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algorithm to perform electromyographic (EMG) anomaly detection and perform the 

prosthesis leg control by sending control signals based on our PR strategy at 10ms 

intervals, it is desirable to quantitatively evaluate the mobile technology’s reserve 

capability while executing our 50ms window increment NMI.  

Existing solutions for prosthesis control have been implemented on MATLAB 

that cannot satisfy real-time requirements running on the mobile computing device. 

We have developed an entire software implementation of our SVM-based PR strategy 

in C to run on the mobile computer. It turns out that porting the software to the mobile 

computer present several challenges to meet our goals. The first challenge is the time 

constraint of the NMI to deliver correct control decision in real time. Straight forward 

implementation is far from satisfactory. We therefore proposed several innovative 

techniques to exploit the inherent architectural features, which are described in 

detailed in Section 2. Another challenge is low power consumption. We proposed 

implementation techniques that can lower CPU requirements so that power 

consumption is kept minimal.  

To meet our research objectives, we designed and developed a real time software 

interface to a data acquisition system (DAQ) providing the capability to acquire real-

time EMG, mechanical force and moment data from human subjects, with no data loss 

or lag. This newly developed NMI was combined with a Measurement Computing 

USB-1616HS-BNC DAQ [12] to facilitate the collection of the real-time EMG and 6 

degrees-of-freedom (DOF) mechanical data. This final NMI design was utilized to 

execute and test the real-time performance of our phase dependent SVM based PR 

algorithm utilizing 50ms window increments on an able bodied human subject.  



 

48 
 

This paper makes the following contributions: 

• Design and implementation  of a real-time capable NMI utilizing 50ms 

window increments for artificial leg control based on a mobile processor; 

• Design and implementation of a highly optimized program for a phase-

dependent NMI with SVM classifiers tailored specifically to the mobile 

processor utilizing 50ms window increments; 

• A comparison between our new C based NMI embedded application and 

our equivalent MATLAB based NMI that shows the embedded C 

application provides a 46X speedup; 

• A real time experiment that evaluates the potential use of mobile 

processors for a 50ms window increment embedded implementation for 

neural control of powered lower limb prosthesis; 

• An analysis that shows the future algorithm expansion capability of this 

mobile based NMI implementation.  

This paper is organized as follows. Next section presents an expanded description 

of our previously published offline system design [11]. Sections 3 and 4 present our 

previously published pattern recognition algorithm and offline performance 

evaluation. Sections 5, 6, 7, and 8 present our newly designed and developed 50ms 

window increment real-time system design, software implementation, experimental 

protocol and performance evaluation. Section 9 presents recommended updates to our 

new real-time algorithm and updated performance expectation. We conclude our paper 

in Section 10. 
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3.2 Offline Study System Design 

3.2.1 Hardware Architecture 
 

To provide viable capability of prosthesis control, the NMI must be small, 

dissipate low power, and be fast enough to execute the classification algorithm in real-

time. One possible candidate chosen to meet these requirements is the Intel AtomTM 

Processor Z530 (512K cache, 1.6 GHz) single core CPU [10]. The AxiomTek 

eBOX530-820-FL [13] fanless embedded hardware was chosen as the COTS 

prototype architecture to test the viability of the Intel AtomTM Processor. The Intel 

AtomTM Processor Z530 provided the highest performance and lowest power 

dissipation of available hyper-threading capable mobile CPUs, which is ideal for 

thermally constrained and fanless embedded applications [10, 14]. The Hyper-

Threading technology provides the capability for the operating system and the NMI 

application to execute simultaneously on their own Hyper-Threads providing similar 

capability to that of executing on two physical processors, when only a single 

processor is utilized [15]. This helps to minimize the impacts of the OS execution on 

the real time embedded NMI application. 

3.2.2 Software Architecture 
 

We have developed the entire SVM-based NMI application in C because of its 

superior performance for real-time embedded applications [16-19]. To enhance the 

system performance, several programming techniques were used in the design and 

implementation of the application. For example, dynamic memory management is one 

of the most expensive operations in C applications [20]. In fact, it has been shown that 

heap intensive C applications, on the average spend 30% of the execution time in 



 

50 
 

dynamic memory management [20]. To avoid execution time spent on dynamic 

memory management, the various data structures within the software were defined 

utilizing arrays with pre-defined maximum sizes. To increase the reliability of the 

application and help avoid any stack overflows, the data structures were defined as 

“static.” Static variables are placed in an application’s data segment, not in the 

application’s stack [21], hence avoiding stack overflows, push/pop penalties and 

increases the applications reliability. Other performance enhancements implemented 

were loop unwinding [22] and inline function expansion [23]. Loop unwinding is an 

efficient means to increase the utilization of pipelines and helps eliminate loop 

overhead [22]. For example, if the number of times a loop will execute is known prior 

to the body of the loop and the control code can be duplicated, thereby eliminating the 

loop overhead [22] and mitigating any pipeline stalls due to branch hazards [24]. The 

feature extraction code is one computationally intensive area where loop unwinding 

was utilized. The feature extraction code was highly repetitive and the number of raw 

data channels and features per channel were known ahead of time, which made it an 

excellent candidate for loop unwinding. A simple example of loop unwinding is 

shown in Fig. 3.1, whereby all the j variable comparisons and the need for branch 

prediction to determine when the j loop has completed are eliminated via loop 

unwinding. Upon further examination of Fig. 3.1, it can be seen that the i loop can also 

be unwound. Since variable i iterates a total of 150 times (window length), the 

resultant code would become unmanageable. Therefore, an engineering tradeoff 

between performance and software maintainability led to the decision to not unwind 

the i loop code. For our PR algorithm, the loop unwound code’s execution time was 
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approximately 10% faster than the original code; these results were with the compiler 

speed optimization enabled for both the original and the unwound code. 

Inline function expansion replaces a function call with the body of the function 

[23]. This reduces the overhead associated with a function call during program 

execution [23]. Because the keyword inline only serves as a hint to compilers and not 

all compilers support the inline keyword [23], to further reduce overhead the total 

number of function calls were kept to a minimum. 

                                 Original Code: 
 
    for (j = 0; j < 7; j++) 
    { 
         for (i = 0;i < WindowLength;i++) 
         { 
               CH_Mean[j] += *(channels[j] + i + start_index); 
         }  
         CH_Mean[j] /= WindowLength; 
    } 
 
                              Unwound Code: 
 
     for (i = 0;i < WindowLength;i++) 
     { 
           CH_Mean[0] += *(channels[0] + i + start_index); 
           CH_Mean[1] += *(channels[1] + i + start_index); 
           CH_Mean[2] += *(channels[2] + i + start_index); 
           CH_Mean[3] += *(channels[3] + i + start_index); 
           CH_Mean[4] += *(channels[4] + i + start_index); 
           CH_Mean[5] += *(channels[5] + i + start_index); 
           CH_Mean[6] += *(channels[6] + i + start_index); 
     }  
     CH_Mean[0] /= WindowLength; 
     CH_Mean[1] /= WindowLength; 
     CH_Mean[2] /= WindowLength; 
     CH_Mean[3] /= WindowLength; 
     CH_Mean[4] /= WindowLength; 
     CH_Mean[5] /= WindowLength; 
     CH_Mean[6] /= WindowLength; 

 
Figure 3.1. Simple example of loop unwinding to calculate channel means 
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The Neuromuscular-Mechanical fusion PR algorithm, utilizes SVM for its 

classification. Our prior studies based on the same Neuromuscular-Mechanical fusion 

PR recognition utilized the MATLAB release version of LIBSVM [25], which 

provided high accuracy. Analysis of the LIBSVM source showed that it could be 

possible to modify the libraries for real-time use. Therefore, the open source library 

LIBSVM was used and specifically tailored to our embedded NMI application for 

real-time SVM classification. This was beneficial since, in addition to its high 

accuracy, it also allowed LIBSVM to serve as a baseline for accuracy determination of 

the embedded application. 

3.3 Pattern Recognition Algorithm 
 

The previously developed NMI identifies the user’s locomotion mode based on 

electromyographic (EMG) signals recorded from the residual thigh muscles and 

mechanical forces/moments signals recorded from prosthetic pylon.  These EMG and 

mechanical data are segmented by the sliding analysis windows. Features are extracted 

from the raw EMG and mechanical data in each analysis window and fused into one 

feature vector. This feature vector is sent to a phase-dependent pattern classifier for 

determination of user intent. The phase-dependent pattern classifier consists of 

multiple sub-classifiers for individual defined gait phases and a gait phase detector 

that identifies current gait phase and switches the corresponding sub-classifier on. 

Detailed description of this previously designed NMI can be found in [7] and [8]. 

3.3.1 Feature Extraction 
 

In this study, four time-domain (TD) features (the mean absolute value, the 

number of zero crossings, the waveform length, and the number of slope sign changes) 
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were extracted from EMG signals in each analysis window. For mechanical 

measurements, the mean, minimum, and maximum values in each analysis window 

were extracted as the features. More detailed information can be found in [7]. The 

length of sliding analysis window and window increment were 150ms and 50ms, 

respectively.  

The features and increments were chosen to match our previous MATLAB 

implementations [26], thereby providing a baseline for an accuracy comparison with 

the newly designed embedded application.  

3.3.2 Phase Dependent Pattern Recognition 
 

To accurately determine user intent, an SVM based classification architecture 

utilizing a Radial Basis Function (RBF) kernel and an SVM gamma parameter of 

0.015 was employed [7, 8]. The phase-dependent classifier is composed of four sub-

classifiers corresponding to one of the following four gait phases: initial double limb 

stance (phase 1), single limb stance (phase 2), terminal double limb stance (phase 3), 

and swing (phase 4) [26]. Throughout this paper, inclusive of the figures, we utilize 

the following gait phase definitions: 1 - Initial Double Limb Stance, 2 - Single Limb 

Stance, 3 - Terminal Double Limb Stance and 4 - Swing. The gait phase detector uses 

the real-time vertical Ground Reaction Force (GRF) to determine the gait phases. In 

order to build the SVM sub-classifier models, a training procedure is conducted on all 

the acquired training data sets. During training phase, the output of the phase detector 

is used to label the training data with its corresponding gait phase. Each sub-classifier 

is trained only with the data pertinent for its gait phase. During the real-time testing 

phase, the gait phase detector determines which sub-classifier is responsible for the 
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determination of user intent. The gait phase detector’s determination is used to select 

the appropriate sub-classifier to act upon the feature vector composed of fused EMG 

and mechanical data. The algorithmic data flow of the phase-dependent pattern 

recognition is shown in Fig. 1.2. 

3.3.3 Software Implementation 
 

To implement the Neuromuscular-Mechanical Fusion PR, three applications were 

developed. The first application accepts offline raw training data, performs the EMG 

and mechanical feature extraction, fuses and then normalizes the features into vectors. 

The feature vectors are then separated into their corresponding gait phases and 

provided to the training application. The first application is also responsible for 

generating the normalization parameters required by the PR to normalize the testing 

data, when determining user intent. The second application accepts the four sets of 

training vectors and generates four SVM models, one model for each gait phase. The 

third application accepts raw offline testing data, the four gait phase SVM models, and 

the normalization parameters. The application extracts EMG and mechanical features 

from the raw testing data. The features are then fused and normalized, with the 

provided normalization parameters, into a vector. Finally, the application determines 

the current gait phase, and forwards the test vector to the respective phase based 

classifier for determination of user intent.  The offline analysis software 

implementation data flow is shown in Fig. 1.3. 

3.4 Offline Performance Evaluation 
 

All experiments performed in this study were conducted with the approval of the 

Institutional Review Board (IRB) at the University of Rhode Island and with the 
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informed consent of the subject. The evaluation was performed offline on the data 

collected from a male subject with a transfemoral amputation.  The collected data 

included the EMG signals from the subject’s residual thigh muscles and mechanical 

forces/moments measured by a 6 degree-of-freedom load cell mounted on the 

prosthetic pylon. The monitored residual muscles included the rectus femoris (RF), 

vastus lateralis (VL), vastus medialis (VM), biceps femoris long head (BFL), 

semitendinosus (SEM), biceps femoris short head (BFS), and adductor magnus 

(ADM). The recognition accuracy of NMI by using the designed embedded system 

was compared with the results of existing PC implementations on MATLAB. In 

addition, the timing and processor loading of the application’s execution on the 

embedded hardware were evaluated. A power consumption comparison between 

similar proposed NMI embedded systems and this embedded system was provided. 

3.4.1 Recognition Accuracy of NMI 
 

The offline data was composed of seven different classes: level-ground walking 

(W), ramp ascent, ramp descent, stair ascent (SA), stair descent (SD), sitting, and 

standing (ST). The comparison of recognition accuracies of the NMI by using the 

designed embedded system and existing PC implementations on MATLAB are 

provided in Table 1.1. This study utilized a slightly different value for the gamma 

parameter required by the SVM classifiers. The different gamma value was shown to 

provide a slightly higher accuracy during testing. This is noticeable in the comparison 

results, whereby the embedded application slightly outperformed the MATLAB model 

in PR accuracies.  
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Both the MATLAB results and the embedded application had lower Phase 4 

(swing) accuracies. Two explanations for this result are provided in [8]. The first is 

that there is little force/moment data present during the swing phase from the 

prosthetic pylon [8]. The second explanation is related to the swing phase being longer 

than any of the other three phases, leading to larger variations in the EMG features [8]. 

3.4.2 Execution Timing and Processor Loading on the Embedded Hardware 
 

This previously designed NMI algorithm was executed on the Intel AtomTM based 

embedded hardware and the performance results were evaluated. A total of 3555 

predictions were   produced   by   the   Intel   AtomTM   based embedded hardware. For 

the purpose of this evaluation, the prediction time will be defined as the total time to 

execute feature extraction, normalization, gait phase detection and classification for a 

single analysis window. The mean prediction time was 0.8455 milliseconds with a 

standard deviation of 0.1044 milliseconds. The worst case prediction executed in 

2.1265 milliseconds. These results clearly show that the embedded system is capable 

of real-time implementation at 50ms and 20ms window increments. If the embedded 

system is combined with a highly responsive Data Acquisition (DAQ) system to 

provide the EMG and mechanical data, even a window increment of 10ms may be 

feasible. At the 10ms window increment, the interface to the DAQ and the DAQ 

system drivers will become of the utmost importance.  

Because there is additional loading on the CPU to execute the data logging for 

post analysis, the CPU loading provided by the operating system may be inaccurate. 

Therefore the mean and maximum value of the CPU loading was calculated by (3.1) to 

be 1.691% and 4.253% respectively.  
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3.4.3 Power Consumption Comparison 
 

Previous studies have utilized Field Programmable Gate Arrays (FPGA) and PCs 

for similar NMI applications [27]. The reported power consumption for the FPGA was 

3.499 watts and the AMD Turion 64x2 CPU within [27] can utilize up to 35 watts 

[27]. The Intel AtomTM Z530 Processor utilized in this embedded system design 

dissipates 2.2 watts maximum [10]. The Intel AtomTM CPU’s power dissipation is less 

than one-fifteenth that of the AMD CPU and less than two thirds that of the FPGA.  

3.5 Real-Time Capable System Design 
 

Based on the offline performance and the results of our Analysis of Alternatives 

(AoA) [28], it was decided to continue using the AxiomTek eBOX530-820-FL fanless 

embedded hardware with the Intel AtomTM Processor Z530 (512K cache, 1.6 GHz) as 

our COTS mobile computing system. During the source selection of a DAQ to 

combine with the AxiomTek embedded hardware, it was clear that the vast majority of 

COTS DAQ devices with the capability to meet our design requirements (16 analog 

input channels and simultaneous sampling or a similar capability) only provided 

drivers for the Windows and Linux operating systems. The NMI design needs to meet 

real-time constraints and therefore the use of a Real-Time Operating System (RTOS) 

is preferable. An RTOS performs its functions, including external events in a specified 

amount of time [29]. Windows and Linux are general purpose operating systems (OSs) 

and do not meet the criteria of an RTOS. Therefore, as a compromise, it was decided 

to utilize a general purpose operating system with the understanding that RTOS 



 

58 
 

options were available for both Windows and Linux implementations, such as 

Windows Compact Embedded (WinCE) [30] and Real-Time Linux (RT Linux) [31]. 

Furthermore, it would be expected that if real-time constraints can be met with a 

general purpose OS, then porting the design to an RTOS would provide better system 

response and make the design more deterministic. The decision to go with the 

Windows OS vs. Linux was based on the experience and familiarity of the research 

team with the Microsoft Visual Studio product. This familiarity would facilitate the 

rapid design, implementation and debugging of the prototype COTS solution. 

For our COTS prototype, Measurement Computing's USB-1616HS-BNC DAQ 

was chosen to interface with the AxiomTek eBOX530-820-FL fanless embedded 

hardware to provide the real-time EMG and loadcell data necessary to make our 

neuromuscular-mechanical fusion SVM NMI a feasible reality. The Measurement 

Computing device met all our performance requirement, provided a C-library interface 

that was capable of interfacing with our prior embedded software design, and was 

easily interfaced to the AxiomTek embedded hardware via  a universal serial bus 

(USB) port. 

3.6 Real-Time Capable Software Implementation 
 

All of the initial software architectural and implementation decisions made in our 

design, such as the use of the C programming language, loop unrolling and inline 

function expansion were utilized within the real-time implementation. In addition a 

few other techniques were incorporated to augment and provide further performance 

enhancement. 
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3.6.1 Software Architecture 
 

The use of a general purpose OS in this prototype design iteration raised concerns 

with the embedded software’s capability to meet real time constraints. Therefore, to 

further reduce the impact of the OS on the embedded application, the priorities of the 

application and thread were increased to a real time critical status. In a Microsoft 

Windows OS, this is accomplished by setting the priority class to 

REALTIME_PRIORITY_CLASS and the thread priority to 

THREAD_PRIORITY_TIME_CRITICAL [32].  

The real-time software implementation required that all raw data, phase data, and 

classification data be logged to allow for performance evaluations. To minimize the 

impacts of the real-time data logging on the application, a statically allocated and 

statically defined Random Access Memory (RAM) buffer was implemented that 

stored all the raw EMG, mechanical, classification and application performance data. 

The RAM buffer eliminated the need to write to the hard drive during time critical 

operations. Furthermore, it took advantage of the RAM’s superior speed for storage. 

The real-time data logging for each classification was performed after all time-critical 

functions were completed (i.e., at the end of each classification). Lastly, The RAM 

buffer’s contents were written to the hard drive for post analysis after the experiment 

was completed, by which point no further time critical functions were being executed. 

Re-implementing the our software optimizations and the newly incorporated 

additional enhancements, resulted in an embedded application specifically designed to 

minimize pipeline stalls, minimize OS impacts, minimize cost of memory allocation, 

minimize the impacts of real-time data logging and take advantage of the Intel 
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AtomTM Z530 Processor hardware architecture. These enhancements provided the 

basis for the performance introduced by this embedded application. 

3.6.2 Real-Time Software Implementation 
 

To implement the real-time Phase-Dependent PR algorithm, four applications 

were required.  Where previously the offline study’s data was read in via a file, the 

real-time study requires a new application to be developed to interface with the DAQ 

and capture real-time training data. The feature extraction & normalization 

application, as well as the SVM training application remained unchanged. Finally, the 

Neuromuscular-Mechanical Fusion PR application had to be modified to acquire real 

time data testing from the DAQ. The training data capture application acquires data 

for all of the various human locomotion tasks, segregates the data into each 

locomotion class, and allows for multiple trials of each locomotion task. The real-time 

PR application is used during the real-time testing phase. The real-time PR application 

extracts EMG and mechanical features from the raw testing data acquired in real-time 

from the DAQ. Similarly to the offline method, the features are then fused and 

normalized with the provided normalization parameters and formed into a vector. 

Finally, the application determines the current gait phase, and forwards the test vector 

to the respective phase based classifier for determination of user intent. The software 

implementation data flow is shown in Fig. 3.2. 

3.7 Real-Time Experimental Protocol 
 

A real-time performance evaluation utilizing a 50ms window increment and an 

offline performance evaluation utilizing a 50ms window increment were performed as 

part of the real-time study. The evaluations were performed on the data collected from 
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a male able bodied subject.  The collected data included the EMG signals from the 

subject’s thigh muscles and mechanical forces/moments measured by a 6 degree-of-

freedom load cell mounted on the prosthetic pylon. The monitored muscles included 

the sartorius (SAR), rectus femoris (RF), vastus medialis (VM), adductor magnus 

(ADM), biceps femoris short head (BFS), biceps femoris long head (BFL), and 

semitendinosus (SEM). 

The EMG and mechanical forces/moments were sampled at 1 KHz by the 

Measurement Computing USB-1616HS-BNC DAQ device. The user intent decisions 

provided by the embedded hardware were routed via an analog output interface on the 

DAQ device. The real-time experiments provided real-time gait-phase and user intent 

decisions to the console screen as a visual cue during the training and testing 

processes. The 50ms window increment experiments utilized a window increment of 

50ms and a window length of 150ms.  

 

Figure 3.2. Real-time software implementation data flow 
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For all experiments performed in this study, the prediction time will be defined as 

the total time to execute feature extraction, normalization, gait phase detection, 

majority vote (if performed) and classification for a single analysis window. 

3.8 Real-Time Performance Evaluation 
 

For this experiment, four tasks (level-ground walking (W), stair ascent (SA), stair 

descent (SD), and standing (ST)) were studied and captured for offline analysis. To 

ensure the subject’s safety, the subject was allowed to use hand rails when necessary. 

To train the gait-phase classifier, the subject was instructed to perform each task for 

approximately 10 seconds. Two trials of standing data, three trials of walking data, 

three trials of stair descent and three trials of stair ascent data were accumulated to 

train the classifier. For the real-time performance evaluation, the subject was 

instructed to stand and then transition to one of the other tasks (ST�W, ST�SD and 

ST�SA). Seven trials of each mode transition were conducted, for a total of 21 trials. 

To assess the real-time performance of the NMI, the timing and processor loading of 

the application’s execution on the embedded hardware are provided and the raw 

recognition accuracy of the NMI will be evaluated via the following criteria:  

Classification Accuracy in the Static States: For all experiments in this paper, the 

static state is defined as the state where the subject has completed a transition and is 

continuously performing the same task (W, SA, SD or ST). The classification 

accuracy in the static state is the total number of correct classifications observed over 

the total number of classifications during the static state. 

The overall raw classification accuracy of the NMI in the static states for all 21 

trials and all tasks (W, SA, SD and ST), when executed on the Intel AtomTM based 
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embedded hardware was 96.31%. A total of 5937 static state predictions were   

produced   by   the   Intel   AtomTM based embedded hardware during the 21 trials. The 

mean prediction time for all of the predictions performed during the 21 trials was 

0.7683ms with a standard deviation of 0.0971ms. The worst case prediction executed 

in 2.0192ms. 

Due to the fact that there is additional loading on the CPU to execute the data 

logging for post analysis, the CPU loading provided by the operating system may be 

inaccurate; therefore the mean and maximum values of CPU loading were calculated 

using Equation (3.1), which were 1.54% and 4.04% respectively. These results show 

that the majority of the time, the embedded software design was awaiting new EMG 

and Loadcell data from the DAQ, as shown in Fig. 3.3. During this time the processor 

is idle and can be utilized to execute other additional algorithms to augment our 

NMI’s capability.   

Although 96.31% accuracy is very good, it fell short of the average 97% accuracy 

that was achieved by the MATLAB model in the offline analysis shown in Table 1.1. 

Furthermore, based on the offline analysis, this implementation was expected to 

perform approximately 1% higher than the MATLAB model due to the use of a 

different SVM gamma value. Upon further review of [26], it became obvious that this 

50ms window increment embedded software design did not incorporate a real-time 

majority vote method. Upon examination of the raw data, it was apparent that a 5-

point majority vote method could have a substantial effect on the overall system 

accuracy. For example, in Fig. 3.4 we see a real-time stair ascent trial with 6 

misclassifications. We manually post processed the stair ascent data, implementing the 
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5-point majority vote, which led to the removal of all misclassifications as shown in 

Fig. 3.5. The implementation of a majority vote increased the accuracy from 97.9% to 

100% for this trial. In order to determine if this was the cause for the discrepancy in 

overall accuracy, it was decided to perform an offline analysis of this algorithm with a 

majority vote implementation. 

 
 

           Figure 3.3. Simplified real-time software flowchart and CPU utilization 
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3.9 Modified Real-Time Algorithm Evaluation 
 

The 50ms window increment offline evaluation utilized the exact data acquired 

during the real-time experiment. This allows for an accurate comparison between the 

original software design and this proposed design. 

To perform this evaluation, the initial software was modified to utilize the raw 

DAQ data logged during the real-time testing. The algorithm was further modified to 

provide a five-point majority vote algorithm as in [26]. For this experiment, the same 

four tasks (W, SA, SD, and ST) were examined. Since the intent of this study is to 

determine the mobile CPU’s capability to execute our PR algorithm, initially it was 

determined that examining the Classification Accuracy in the Static States should 

suffice. However, since slight modification to the software would enable mode 

transition performance evaluations that initiate from a standing position and all of the 

Figure 3.4. Real-time stair ascent trial showing misclassification prior to 
majority vote implementation 
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raw data was recorded during the real-time trials, we were also able to examine the 

performance during the three mode transitions (ST�W, ST�SD and ST�SA), 

therefore the analysis was performed and the results have been included within this 

paper. Additionally, included in the offline evaluation is a speedup assessment of the 

C based embedded application to the MATLAB based application. The performance 

of the NMI will be evaluated using the following criteria: 

Classification Accuracy in the Static States: As previously defined in the real-

time 50ms experiment. 

The Number of Missed Mode Transitions: For this experiment, the mode 

transition period starts from the beginning of gait phase 2 (single limb stance) and 

 
Figure 3.5. Stair ascent trial manually post processed with a 5-point majority vote 

showing no misclassifications 
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terminates at the beginning of gait phase 4 (swing). A mode transition is declared to 

have been missed, if no correct transition decision is made during this defined period. 

Mode Transition Prediction Time: The mode transition prediction time in this 

experiment is defined as the amount of time prior to the critical timing, during which 

the classifier user intent decision has stabilized and is no longer changing, such that 

safe switching of the prosthesis device is made possible. For this experiment, the 

critical timing is defined as the termination of the mode transition (i.e. - just prior to 

the start of the swing gait phase).  

3.9.1 Speed Up Provided by the C Embedded Application 
 

A self-contained version of the PR embedded application was built with raw test 

data resident within the application itself. Timing analysis software was added to 

verify the performance of the embedded software design and implementation. To 

provide an accurate comparison between the MATLAB based NMI and our C based 

embedded application, our application was executed on the MATLAB system for a 

determination of average prediction time. The MATLAB system is composed of Core 

2 Duo E7500 CPU clocked at 2.93 GHz with 3GB of RAM and executes the Windows 

XP operating system. A total of 1002 classifications were performed by the PR 

embedded application on the MATLAB system and completed in 472.53ms. This 

results in an average of 472 microseconds per classification. The average classification 

time of the MATLAB model executed on the same system was 21.9ms. Based on this 

experiment, the C based embedded application provides a 46X speedup over the 

MATLAB model. 
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Although this is obviously not an “apples to apples” comparison (i.e. - MATLAB 

vs. C), this does provide critical information that is useful to systems engineers; it 

allows them to understand what speedup can be achieved and/or expected by simply 

porting a MATLAB algorithm to an optimized C-based application. We would like to 

have provided a comparison of our PR algorithm on other embedded architectures, but 

this is our first embedded implementation, therefore no other comparison is available 

3.9.2 Recognition Accuracy of NMI 
 

The overall classification accuracy of the NMI in the static states for all 21 trials 

and all tasks (W, SA, SD and ST) was 98.87%. No missed mode transitions were 

observed during the defined mode transition period. The mean mode transition 

prediction time for ST�SA was 871.4ms with a standard deviation of 197.6ms.  The 

mean mode transition prediction time for ST�W was 528.6ms with a standard 

deviation of 107.5ms. The mean mode transition prediction time for ST�SD was 

314.3ms with a standard deviation of 94.5ms.  The mode transition performance 

implies that user intent classification during transitions can be accurately determined, 

on the average, 314.3ms prior to the critical timing and be used for safe switching and 

control of the prosthesis. Representative trials, depicting the user intent classifications 

prior and during the ST�SD, ST�SA and ST�W mode transitions are provided in 

Figures 3.6, 3.7, and 3.8, respectively. As can be seen in Figs. 3.6 thru 3.8, there were 

a few misclassifications during the ST�W and ST�SD transitions, but it can be seen 

that the transitions were correctly predicted prior to the critical timing and the static 

state accuracy was 100% during these three trials. 

 



 

69 
 

 

Figure 3.6. Offline performance of a standing to stair descent trial  

 
 

  

Figure 3.7. Offline performance of a standing to stair ascent trial 

 
This revision to the algorithm provided an additional 2.5% accuracy in static 

states, while still meeting all of its other performance requirements. This clearly 
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showed that the majority vote method is a critical component of the algorithm and 

must be included in future implementations and/or expansion of the algorithm. 

3.10 Conclusions 
 

This paper presented the design and implementation of a mobile CPU based 

neural machine interface for artificial legs. The designed NMI prototype was tested on 

an able-bodied subject for classifying multiple movement tasks (level-ground walking, 

stair ascent, stair descent and standing) in real-time. The 50ms window increment 

experiments achieved 98.87% classification accuracy in static states, while utilizing 

less than 4.04% of the Intel AtomTM CPU. Furthermore, the 50ms embedded 

application provided a 46X speedup over an equivalent MATLAB implementation. 

The experiments showed fast response time for predicting the mode transitions. Lastly, 

this mobile CPU based design utilizes less power than other systems designed for 

similar applications, while still providing nearly 96% reserve to provide additional 

 

 
Figure 3.8. Offline performance of a standing to walking trial   
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expansion capability of our NMI. The results demonstrated the feasibility of a mobile 

CPU based real-time NMI for control of artificial legs.  

Our future work includes utilizing the reserve capacity provided by this efficient 

implementation to provide real-time impedance based leg control [33, 34], real-time 

EMG motion artifact detection [35, 36], real-time EMG signal trust assessments [35, 

36] and the development of a 20ms window increment NMI.  
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Abstract 

This paper presents the design and implementation of a new neural-machine-

interface (NMI) for control of artificial legs. The requirements of high accuracy, real-

time processing, low power consumption, and mobility of the NMI place great 

challenges on the computation engine of the system. By utilizing the architectural 

features of a mobile embedded CPU, we are able to implement our decision-making 

algorithm, based on neuromuscular phase-dependent support vector machines (SVM), 

with exceptional accuracy and processing speed. To demonstrate the superiority of our 

NMI, real-time experiments were performed on an able bodied subject with a 20ms 

window increment. The 20ms testing yielded accuracies of 99.94% while executing 

our algorithm efficiently with less than 11% processor loads. 
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4.1 Introduction 
 

A pattern recognition (PR) strategy based on phase dependent and 

neuromuscular-mechanical fusion support vector machines (SVM) has been 

successfully developed in our research group to identify user intent in real-time to 

allow neural control of artificial legs [1, 2]. To make this strategy a feasible reality, a 

real-time neural machine interface (NMI) that is small, low cost, low power and 

capable of executing this computationally intensive algorithm needs to be developed. 

In our previous study we utilized FPGA technology to meet all of the NMI constraints 

with excellent results when executing a linear discriminant analysis (LDA) based 

classifier [3]. A non-linear SVM based algorithm was shown to provide increased 

accuracy over LDA [1], but is much more computationally intensive, which increases 

the complexity of an FPGA based design. This complexity exposes challenges such as 

language syntax, design environments, and toolsets during the design, implementation 

and troubleshooting phases of FPGA based systems [4].  

Commodity mobile processors, such as the Intel AtomTM Z530, are low power 

(2.2 watts [5]), low cost, and portable. Our prior offline study developed a prototype 

mobile processor based NMI to execute our complex PR algorithm and performed an 

offline study [6]. The study showed that a mobile processor based NMI had great 

promise in control of artificial legs [6]. However, in order to meet the special 

requirement of high accuracy and real time processing, tailoring our SVM based NMI 

software to this mobile PC architecture is desirable and challenging. We have 

developed fully functional software based on the SVM classifier on the mobile PC 

with all necessary interfaces for a data acquisition system with the capability to 
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acquire real-time electromyographic (EMG), mechanical force and moment data from 

human subjects. This newly developed NMI was combined with a Measurement 

Computing's USB-1616HS-BNC DAQ [7] to facilitate the collection of the real-time 

EMG and 6 degrees-of-freedom (DOF) mechanical data. This final NMI design was 

utilized to execute and test the performance of our phase dependent SVM based PR 

algorithm at a 20ms window increment during real-time experiments on an able 

bodied human subject.  

This paper makes the following contributions: 

• Design and implementation of a real-time capable NMI for artificial leg 

control based on a mobile processor; 

• The first NMI embedded system to execute our phase dependent SVM based 

PR algorithm at 20ms window increments; 

• A real time experiment that evaluates the potential use of mobile processors 

for real-time embedded implementation for neural control of powered lower 

limb prosthesis. 

4.2 Software Design and Implementation 
 

This study is based on a previously developed PR algorithm that identifies the 

user’s locomotion mode based on electromyographic (EMG) signals acquired in real-

time from thigh muscles and mechanical forces/moments signals acquired from 6 DOF 

load cell mounted on the prosthetic pylon [1,2].  The EMG and mechanical data are 

segmented by sliding analysis windows. Features data are extracted from raw EMG 

and mechanical signals in each analysis window and fused into a single feature vector. 

The feature vector is sent to a phase-dependent pattern classifier for determination of 
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user intent. The phase-dependent pattern classifier consists of four sub-classifiers, one 

for each individually defined gait phase. A gait phase detector identifies the current 

gait phase in real-time and selects the corresponding sub-classifier for final 

determination of user intent. A detailed description of this previously designed PR 

algorithm can be found in [1] and [2]. 

4.2.1 Feature Extraction 
 

In this study, four time-domain (TD) features (the mean absolute value, the 

number of zero crossings, the waveform length, and the number of slope sign changes) 

were extracted from EMG signals in each analysis window. For mechanical data, the 

mean, minimum, and maximum values in each analysis window were extracted as the 

features. Further details on the feature extraction can be found in [1]. 

4.2.2 Phase Dependent Pattern Recognition 
 

To accurately determine user intent, an SVM based classification architecture 

utilizing a Radial Basis Function (RBF) kernel and an SVM gamma parameter of 

0.015 was used [1, 2]. The phase-dependent classifier is composed of four sub-

classifiers corresponding to one of the following four gait phases: initial double limb 

stance (phase 1), single limb stance (phase 2), terminal double limb stance (phase 3), 

and swing (phase 4) [8]. Throughout this paper, inclusive of the figures, we utilize the 

following gait phase definitions: 1 - Initial Double Limb Stance, 2 - Single Limb 

Stance, 3 - Terminal Double Limb Stance and 4 - Swing. The gait phase detector uses 

the real-time vertical Ground Reaction Force (GRF) to determine the gait phases. In 

order to build the SVM sub-classifier models, a training procedure is conducted on all 

the acquired training data sets. During training phase, the output of the phase detector 
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is used to label the training data with its corresponding gait phase. Each sub-classifier 

is trained only with the data pertinent for its gait phase. During the real-time testing 

phase, the gait phase detector determines which sub-classifier is responsible for the 

determination of user intent. The gait phase detector’s determination is used to select 

the appropriate sub-classifier to act upon the feature vector composed of fused EMG 

and mechanical data. The algorithmic data flow of the phase-dependent pattern 

recognition is shown in Fig. 1.2. 

4.2.3 Software Architecture 
 

We implemented the NMI software as shown in Fig. 1.2 in the C programming 

language. To meet real-time constraints, while executing on an AtomTM CPU, we 

implemented various performance enhancements techniques to the program. We took 

advantage of reduced dynamic memory management [9], loop unwinding [10] and 

inline function expansion [11].  

To minimize the impacts of the real-time data logging on the application, a 

statically allocated and statically defined Random Access Memory (RAM) buffer was 

implemented that stored all the raw EMG, mechanical, classification and application 

performance data. The RAM buffer eliminated the need to write to the hard drive 

during time critical operations. Furthermore, it took advantage of the RAM’s superior 

speed for storage. The real-time data logging for each classification was performed 

after all time-critical functions were completed (i.e., at the end of each classification). 

Lastly, the RAM buffer’s contents were written to the hard drive for post analysis after 

the experiment was completed, such that no further time critical functions were being 

executed. 
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The final result is an embedded application specifically designed to minimize 

pipeline stalls, minimize OS impacts, minimize cost of memory allocation, minimize 

the impacts of real-time data logging and take advantage of the Intel AtomTM Z530 

Processor hardware architecture. These enhancements provided the basis for the speed 

performance introduced by this embedded application. 

As in our previous study [5], LIBSVM [12] was chosen as the open source library 

to utilize as the open source SVM libraries for our embedded application. This 

decision was based on LIBSVM’s proven accuracy. Also, the analysis of LIBSVM’s 

source code showed that it would be possible to modify the libraries for real-time use. 

4.2.4 Software Implementation 
 

To implement the Phase-Dependent PR algorithm, four applications were 

developed: a real-time training data capture application, a feature extraction & 

normalization application, a SVM training application and a Neuromuscular-

Mechanical Fusion PR application. The real-time training data application captures 

training data for all the various human locomotion tasks. The feature extraction & 

normalization application accepts as input the real-time training data, performs the 

EMG and mechanical feature extraction and normalization, and then finally fuses the 

features into vectors. The feature vectors are then separated into their corresponding 

gait phases and provided to the training application. This application is also 

responsible for generating the normalization parameters required by the real-time PR 

application to normalize the real-time testing data, when determining user intent. The 

SVM training application accepts the four sets of training vectors and generates four 

SVM models, one model for each gait phase. The real-time PR application is used 
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during the real-time testing phase. It accepts as input: raw real-time testing data, the 

four gait phase SVM models, and the normalization parameters. The real-time PR 

application extracts EMG and mechanical features from the raw testing data acquired 

in real-time. The features are then fused and normalized, with the provided 

normalization parameters and formed into a vector. Finally, the application determines 

the current gait phase, and forwards the test vector to the respective phase based 

classifier for determination of user intent. The software implementation data flow is 

shown in Fig. 3.2. 

4.3 Experimental Protocol 
 

The AxiomTek eBOX530-820-FL1.6G fanless embedded hardware [13] with an 

Intel AtomTM Z530 Processor [5] was chosen for the prototype design to test real-time 

feasibility and capability. To sample the raw EMG and mechanical data in real-time a 

Measurement Computing's USB-1616HS-BNC DAQ [7] system was interfaced with 

the AxiomTek embedded hardware. The Measurement Computing DAQ was chosen 

for its accuracy and capability to sample the data with a skew of 1 microsecond in 

between channels providing similar performance to that of a simultaneous sampling 

DAQ system. 

A real-time performance evaluation utilizing a 20ms window increment with a 

window length of 160ms was conducted as part of this study. This experiment was 

conducted with approval of Institutional Review Board (IRB) at the University of 

Rhode Island and informed consent of the subject. The evaluations were performed on 

the data collected from a male able bodied subject.  The collected data included the 

EMG signals from the subject’s thigh muscles and mechanical forces/moments 
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measured by a 6 degree-of-freedom load cell mounted on the prosthetic pylon. The 

monitored muscles included the sartorius (SAR), rectus femoris (RF), vastus medialis 

(VM), adductor magnus (ADM), biceps femoris short head (BFS), biceps femoris long 

head (BFL), and semitendinosus (SEM). 

The EMG and mechanical forces/moments were sampled at 1 KHz by the 

Measurement Computing's USB-1616HS-BNC DAQ device. The user intent decisions 

provided by the embedded hardware were provided via an analog output interface on 

the DAQ device. The experiment provided real-time gait-phase and user intent 

decisions to the console screen as a visual cue during the training and testing 

processes.   

For all the experiment performed in this study, the prediction time will be defined 

as the total time to execute feature extraction, normalization, gait phase detection, 

majority vote and classification for a single analysis window. 

4.4 Real-Time Performance Evaluation 
 

The 20ms window increment embedded software design incorporated a real-time 

ten point majority vote algorithm as in [8] and the phase detector was tuned to the 

subject’s locomotion patterns during the real-time training phase.  

For this experiment, three tasks (level-ground walking (W), stair ascent (SA), and 

standing (ST)) and two mode transitions (ST�W and ST�SA) were studied. To 

ensure the subject’s safety, the subject was allowed to use hand rails when necessary. 

To train the gait-phase classifier, the subject was instructed to perform each task for 

approximately 10 seconds. Two trials of standing data, three trials of walking data, 

and three trials of stair ascent data were accumulated to train the classifier. For the 
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real-time performance evaluation, 10 trials of each task and mode transitions were 

conducted (20 trials total). To assess the real-time performance of the NMI, the timing 

and processor loading of the application’s execution on the embedded hardware are 

provided and the recognition accuracy of the NMI will be evaluated via a comparison 

with a similar LDA based NMI and the following parameters: 

Classification Accuracy in the Static State: The static state is defined as the state 

where the subject has completed a transition and is continuously performing the same 

task (W, SA). The classification accuracy in the static state is the total number of 

correct classifications observed over the total number of classifications observed 

during the static state. 

The Number of Missed Mode Transitions: The mode transition period starts from 

the beginning of gait phase 2 (single limb stance) and terminates at the beginning of 

gait phase 4 (swing). A mode transition is declared to have been missed, if no correct 

transition decision is made during this defined period. 

Mode Transition Prediction Time: The mode transition prediction time is defined 

and the amount of time prior to the critical timing, during which the classifier user 

intent decision has stabilized and is no longer changing, such that safe switching of the 

prosthesis device is made possible. For this experiment, the critical timing is defined 

as the termination of the mode transition (i.e. - just prior to the start of the swing gait 

phase). 

4.4.1 Recognition Accuracy of NMI and LDA Comparison 
 

The overall classification accuracy of the NMI in the static states for all the 

predictions  performed  during the 20 trials  inclusive of all tasks (W, SA, and ST) was  
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99.94%. No missed mode transitions were observed during the defined mode 

transition period. The mean mode transition prediction time for ST�SA was 658.0ms 

with a standard deviation of 155.6ms. The mean mode transition prediction time for 

ST�W was 534.0ms with a standard deviation of 103.3ms. The mode transition 

performance implies that user intent classification during transitions can be accurately 

determined, on the average, 514ms prior to the critical timing and be used for safe 

switching and control of the prosthesis. Representative trials, acquired during real-

time testing, depicting the user intent classifications prior and during the ST�SA and 

ST�W transitions are provided in Fig. 4.1 and Fig. 4.2, respectively. As can be seen, 

the system is highly accurate and responsive. Furthermore, it can be seen that the 

 
 

Figure 4.1. Real-Time Performance of a Standing to Walking Trial   
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transitions were correctly predicted prior to the critical timing and the static state 

accuracy was 100% during these two trials.  

In comparison, a LDA based neuromuscular-mechanical fusion, phase-dependent 

pattern recognition NMI provided 97.41% accuracy in the static states [3]. Similarly, 

the LDA study was based on the same three tasks (W, SA, and ST), utilized the same 

window increment of 20ms, the same window length of 160ms, and performed same 

number of trials as well. 

4.4.2 Execution Timing and Processor Loading on the Embedded Hardware 
 

A total of 14276 predictions were   produced   by   the   Intel   AtomTM   based 

embedded hardware during the trials. The mean prediction time per trial was 0.721ms 

 
 

Figure 4.2. Real-Time performance of a Standing to Stair Ascent Trial 
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with a standard deviation of 0.0754ms. The worst case prediction executed in 

2.124ms. 

Due to the fact that there is additional loading on the CPU to execute the data 

logging for post analysis, the CPU loading provided by the operating system may be 

inaccurate; therefore the mean and maximum values of CPU loading were calculated 

using (4.1), which were 3.61% and 10.62% respectively.  
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4.5 Conclusions 
 

This paper presented the design and implementation of a mobile CPU based 

neural machine interface for artificial legs. The designed NMI prototype was tested on 

an able-bodied subject for classifying multiple movement tasks (level-ground walking, 

stair ascent and standing) in real-time. In the 20ms real-time window increment 

experiments, the system achieved 99.94% classification accuracy in static states, while 

utilizing less than 10.62% of the Intel AtomTM CPU. The experiment showed fast 

response time for predicting the mode transitions. Lastly, this mobile CPU based 

design utilizes less power than other systems designed for similar applications [6], 

while still providing nearly 90% reserve to provide additional expansion capability of 

our NMI. The results demonstrated the feasibility of a mobile CPU based real-time 

NMI for control of artificial legs.  

Our future work includes utilizing the reserve capacity provided by this efficient 

implementation to provide real-time impedance based leg control, real-time EMG 

motion artifact detection, and a real-time EMG signal trust assessments; thereby 
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creating a single processor based NMI embedded solution that performs all these 

functions.  
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CHAPTER 5 

5 Conclusions and Future Work 
 

5.1 Conclusions 
 

This dissertation presented the research into the evolution of two small and low 

power architectural solutions for the University of Rhode Island (URI’s) Support 

Vector Machines (SVM)-based Neural Machine Interface (NMI) algorithm. 

Manuscripts 1 thru 4 presented the offline research, Analysis of Alternatives (AoA), 

and the first two real time capable design iterations of the CPU-based architecture. At 

the time of publication, the research presented in Manuscript 1, showed that the 

mobile CPU based embedded system was URI’s lowest power and smallest 

architectural solution capable of executing either URI’s Linear Discriminant Analysis 

(LDA) or SVM-based NMI algorithm. The mobile CPU-based solution was further 

evolved via modifications to the NMI algorithm, such as a different choice of gamma 

for the SVM and a 20ms window increment, which ultimately led to URI’s highest 

overall static prediction accuracy (99.94%), which was presented in Manuscript 4.  

When comparing URI’s algorithmic and architectural solutions to other published 

state of the art systems, intended to provide volitional control of powered lower limb 

prosthesis for transfemoral amputees, the URI solutions provide various contributions 

above and beyond that of the current state of the art in the fields of biomedical and 

computer engineering. These advantages are as follows: 

• To the best of the author’s knowledge, URI’s architectural solutions, 

presented in Manuscripts 4, provides the highest published overall static 
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accuracy of any NMI, intended for artificial leg control, and tested to 

simultaneously classify multiple (more than three) distinct locomotion modes 

[1-19]; 

• In contrast to the intrinsic mechanical feedback systems described in [1-5], 

which appear to have difficulty in the development of a single model that can 

accurately classify more than two dynamic locomotion modes (e.g. - walk, 

stair up, stair down, ramp up, and ramp down) [6], as shown in Manuscripts 

1 and 4, URI’s NMI architectural solutions are capable of properly 

classifying a minimum of seven distinct locomotion modes; 

• Unlike echo control based systems [7-10], which require instrumentation of 

the sound leg to determine the user intended locomotion modes [1-3, 6], 

URI’s NMI architectural solution provides volitional control without the 

need to instrument the sound limb; instead URI’s algorithm provides its 

volitional control via a much more natural method by sampling the neural 

commands sent by the brain to residual muscles in the amputated limb; 

• To the best of the author’s knowledge, URI’s Mobile-CPU based architecture 

has the lowest power dissipation of any published NMI solution shown to be 

capable of accurately handling at least four simultaneous locomotion classes 

[1-6, 11-15].  

• To the best of the author’s knowledge, Manuscripts 1 thru 4 provide the only 

currently published C-based implementations of an SVM-based NMI 

algorithm, designed to utilize both mechanical and neural information, 
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optimized to enable real-time execution on small and low power 

architectures such as Digital Signal Processors (DSPs) and mobile-CPUs. 

Based on the contributions above, URI's NMI solutions have been shown to 

provide many advantages over other state of the art powered lower limb prosthetic 

control algorithms and embedded architectures. URI's small and low power, 

architectural solutions are leading the way towards highly accurate volitional artificial 

leg control of powered prosthetic devices, thereby making a bionic leg a feasible 

reality in the near future. 

5.2 Future Work 
 

Although the research presented in this dissertation in a huge step towards 

making URI’s NMI algorithm a feasible reality, more research and development still 

needs to be performed in order to create a complete and final NMI solution. In 

particular it would be beneficial to add EMG anomaly detection and trust assessments 

to detect when the EMG signals have become unstable so the system can take 

appropriate action. This is beneficial in detecting and compensating for changes in 

EMG frequency and amplitude due to muscle fatigue, during workouts. It will also aid 

in detection of EMG contact failures due to dirt and sweat or simply a fallen EMG. 

Furthermore, it is preferable that the final design provides impedance-based 

control of the artificial limb, rather than utilize a separate Finite State Machine (FSM) 

to perform this function. Lastly, it is desirable to further improve the accuracy of the 

NMI algorithm. One possible solution that may achieve higher accuracy is to provide 

an additional vote layer composed of two additional parallel classifiers, such as an 
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additional linear and a polynomial classifier, then use the output of the three classifiers 

to determine if a change in locomotion mode is to be permitted. 
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