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ABSTRACT 

1.  Many branching corals are fragmented by storms, which can serve as a mechanism 

of asexual reproduction for species that are able to reattach themselves to the 

substratum and form new colonies.  Fragments can also be manually reattached as a 

means of reef restoration.   

2.  The growth and survival of 832 fragments of Elkhorn coral, Acropora palmata, that 

were transplanted for a restoration project in the British Virgin Islands was modeled.   

3.  Mortality was higher in the first year after transplanting than in subsequent years, 

perhaps reflecting stress from handling or failure of the attachment method.  

4.  Survival also varied with the year of transplantation (from 2005-2011), and was 

lowest in years with major storms (2007 and 2010).   

5.  Fragment survival increased with increasing initial size, with the largest fragments 

(surface area roughly 1,000cm2) faring substantially better than the smallest (roughly 

10cm2) and average sized fragments (roughly 100cm2).   

6.  Colony size (surface area of live tissue) tended to decrease in size slightly in the first 

3 months after being reattached, presumably due to stress from transplanting.  

Subsequently, the surface area of surviving colonies tended to progressively increase 

over time, with fragments typically reaching 3,000 cm2 after 7 years.  Colony growth 

was, however, extremely variable and largely independent of initial colony size.   
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7.  Despite initial reductions in growth and survival due to transplanting, long-term 

survival of transplanted fragments was roughly comparable to that of natural colonies.  

Transplanting fragments is thus a promising tool for grass-roots restoration projects. 

INTRODUCTION 

As corals have progressively declined in abundance worldwide over the past 30 years 

(Gardner et al., 2003; Bellwood et al., 2004), there has been an increasing interest in 

developing methods to restore coral populations (Harriott and Fisk, 1988; Edwards 

and Clark, 1998; Precht, 2006; Rinkevich, 2005, 2008).   One approach to restoration is 

seeding broken fragments from coral colonies on damaged reefs, or manually 

reattaching fragments to the substratum.  Coral colonies fragment naturally through 

the actions of storms, bioerosion and predation, but fragmentation also occurs when 

boats, divers and snorkelers collide with the reef (Woodley et al., 1981; Rogers et al., 

1982; Bruckner and Bruckner, 2001, Hawkins et al., 2005, ).  Fragments used for 

restoration include those generated naturally by storms, by unintentionally human 

impact, and also created deliberately by pruning natural colonies (Rinkevich, 2005; 

Precht, 2006). 

The process of fragmentation is important to the natural demography of branching 

scleractinian corals, as well as other branching colonial invertebrates on coral reefs 

(Lasker, 1984; Wallace, 1985; Karlson, 1986; Lewis, 1991,).  Under favourable 

conditions, coral fragments may naturally reattach to the reef and form new colonies 

(Smith and Hughes, 1999).  This process of fragmentation and reattachment is 

hypothesized to be an adaptive strategy for branching corals to colonize new habitats, 
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spread the risk of mortality, and circumvent mechanical limits on colony size 

(Highsmith, 1982; Wallace, 1985).   

For natural coral populations, population dynamic models based on individual body 

size are often more accurate than are models based on age (Hughes, 1984).  Because 

individual corals are colonies of genetically identical modules, the importance of 

colony size derives in part from the fact that colony growth is indeterminate and that 

colonies can also shrink through the death of some modules (partial mortality) 

(Connell, 1973).  Analyses of growth and survival of naturally generated fragments 

have focused on the fragments created in enormous numbers after major storms.  The 

fate of these fragments is independent of the parent colony (Highsmith, 1982) and 

their chance of survival is typically very low (Tunnicliffe, 1981; Fong and Lirman, 

1995; Smith and Hughes, 1999).  In some cases, larger fragments had an improved 

chance of post-storm survival (Loya, 1976; Highsmith et al., 1980), but others found no 

effects of size (Lirman and Fong, 1997), or observed size-distributions consistent with 

better survival of smaller fragments (Rogers et al., 1982).   

A comparable understanding of the demography of transplanted fragments is valuable 

to assess the success of restoration projects.  Variable effects of fragment size on 

survival have been observed for artificially seeded fragments that were loose on the 

substratum, with examples reported of size-dependence (Heyward and Collins, 1985; 

Smith and Hughes, 1999; Bowden-Kerby, 1997, 2001) and size-independence (Bruno, 

1998; Bowden-Kerby, 2001; Lindahl, 2003).  The fate of fragments that have been 

manually re-attached to the substratum also appears to be size-dependent in some 
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cases (Bowden-Kerby, 2001, Bruckner and Bruckner, 2001, Raymundo and Maypa, 

2004; Garrison and Ward, 2008, Okubo et al., 2005, 2007, 2009) but not others 

(Kobayashi, 1984; Yap et al., 1998; Bowden-Kerby, 2001; Lindahl, 2003).  The survival 

and colony growth of fragments used for restoration can also be reduced by the 

handling and disturbance involved in the transplanting process (Yap and Gomez, 1985; 

Plucer-Rosario and Randall, 1987; Yap et al., 1992; Forrester et al., 2011) and survival 

may also be reduced by the failure of methods used to reattach the fragment to the reef 

(Borneman and Lowrie, 2001; Bruckner and Bruckner, 2001).   

Few studies have compared the relative effects of natural and transplant-related  

influences on the demography of transplanted coral fragments.  The objectives of this 

study were thus to test the influence on colony growth and survival of:  (1) the year 

when fragments were transplanted, (2) the time elapsed since transplanting and (3) 

the size of fragments.  Differences in colony growth and survival among years should 

reflect changes in natural conditions (e.g. storms, temperature anomalies) that 

influence coral demography.  Effects of elapsed time are hypothesized because stress 

from handling fragments and failure of the attachment procedure should reduce 

survival immediately after transplanting.  Because most experimental transplanting 

studies are of relatively short duration (one year or less), we tracked fragments over 7 

years in order to assess the longer-term fate of transplanted corals (Harriott and Fisk, 

1988; Edwards and Clark, 1998; Rinkevich, 2005; Precht, 2006).   

The study species was the Elkhorn coral, Acropora palmata (Lamarck, 1816).  Acropora 

palmata is a major reef-building coral in the Caribbean, and was formerly the dominant 
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coral species in shallow wave-exposed areas (Goreau, 1959).  During the 1980s and 

1990s, A. palmata declined by 80-98% (Precht et al., 2004), making it a priority 

candidate for restoration and prompting its listing on the US Endangered Species Act, 

the IUCN red list and CITES Appendix II.  Acropora palmata has a branching 

morphology and reproduces both asexually, by fragmentation, and sexually (Bak and 

Engel, 1979; Dunne and Brown, 1980; Highsmith, 1982; Fong and Lirman, 1995,).  

Post-storm survival of unattached fragments generated by hurricanes has been 

reported as both size-dependent (Highsmith et al., 1980) and size-independent 

(Lirman and Fong, 1997; Lirman, 2000).  Broken fragments of A. palmata have been 

translocated and reattached in several restoration projects (Bruckner and Bruckner, 

2001; Garrison and Ward, 2008; Williams and Miller, 2010; Forrester et al., 2011), and 

larger fragments are reported to survive better than smaller ones (Bruckner and 

Bruckner, 2001, Garrison and Ward, 2008).  

METHODS 

Study sites and transplanting methods 

This study used 832 storm-generated A. palmata fragments that were transplanted to a 

restoration site (0.4-1.6 m deep) on the leeward southern side of Guana Island, British 

Virgin Islands (18°29’N, 64°35’W).  The fragments were collected from three source 

populations, all within 4 km of the restoration site.  Conditions at the study sites are 

described in detail elsewhere (Forrester et al., 2012).  Groups of fragments were 

transplanted in July-August each year from 2005-2011 (Table 1).   
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Each year, student and volunteer divers searched for fragments at the source sites, and 

brought all fragments they found to the surface, except fragments that showed visual 

symptoms of disease (Williams et al., 2006).  Because all undiseased fragments 

encountered were collected, the distribution of fragment sizes should be 

representative of that present in the area.  Once on the boat, fragments were 

submerged in bins of fresh seawater.  Corals were then taken to the restoration site 

and transplanted within 2.5 hrs of collection (for further details see Forrester et al., 

2011).   

At the restoration site, divers attached fragments to the reef using one of three 

methods:  (1) nylon cable ties (2) marine epoxy, or (3) hydrostatic cement.  In a 

previous analysis, these three attachment methods were shown to have no effect on 

the growth and survival of the transplanted fragments (Forrester et al., 2011).  An 

independent study of A. palmata also found no differences between cable tied and 

epoxied fragments (Williams and Miller, 2010).  To facilitate recognition and analysis 

of fragments over time, the location of fragments was mapped and a numbered tag was 

attached to the reef adjacent to each fragment.   

Monitoring fragments 

Fragments were monitored at intervals after transplanting.  Each cohort (fragments 

transplanted in the same year) was monitored 3 and 12 months after transplanting, 

and then annually thereafter.  The size of each coral fragment was estimated within a 

few days of transplanting and during all subsequent surveys.  Colony size was 

measured as the surface area of live tissue (SAL) and estimated using two methods.  
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For small colonies with simple shapes, the surface area was traced from digital 

photographs of each surface using image analysis software (ImageJ) (Bythell et al., 

2001; Abramoff et al., 2004).  For large colonies, with more complex 3-dimensional 

branching morphology, SAL was estimated from linear dimensions.  SAL was estimated 

as [(L+W+H)/3]2, where L, H and W are colony length, width and height respectively 

(Williams et al., 2008).   

Analysis of survival  

Differences in survival among years were tested to assess whether interannual 

differences in conditions influenced the success of transplanting.  As a simple means of 

testing for a difference in survival among cohorts, a χ2 test was used to compare the 

observed number of fragments that survived their first year against the number 

expected under the null hypothesis of equal survival in all years (Sokal and Rohlf, 

1995).   The range of fragment sizes used was fairly consistent each year, and the mean 

initial size of fragments, did not differ among cohorts (ANOVA F6,825 = 1.72, p = 0.12; 

Table 1), so this analysis should be unaffected by bias in fragment sizes.   

Additional tests examined the effect of initial fragment size on survival and whether 

survival was a function of time elapsed since transplanting.  Data from all cohorts was 

pooled for this analysis, which is justifiable because the range of fragment sizes used 

was fairly consistent across cohorts (discussed above).  Pooling cohorts permitted 

analysis of a large sample of fragments and allowed tracking of early cohorts for 

several years.  For this analysis, simple parametric survival models appropriate for 

censored (i.e. incomplete) data on survival times were used (Lee, 1992; Kleinbaum, 
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2011).  Survival times are uncertain in field studies because the exact timing of death is 

almost never observed.  Regularly monitoring the fragments yielded estimates of 

survival time (the time elapsed between transplanting and death) that were either 

interval-censored (when a fragment died between two censuses) or right-censored 

(the fragments was still alive at the end of the study) (Lee, 1992).  

Estimates of survival time are conservative because any coral that could not be 

positively identified was assumed to have died.  There were no sexually produced A. 

palmata recruits at the restoration site; therefore transplants could not be confused 

with natural colonies.  By the end of the study, however, there were 35 fragments at 

the site that could not be positively identified because they lacked a tag and/or were 

not in the location of an original fragment.  Based on their locations and morphology, 

these fragments probably originated from A. palmata transplanted early in the study 

that were damaged by storms or boats, and then subsequently reattached to form a 

new colony.  

To isolate the effect of time-elapsed since transplanting, three models for the time-

dependence of survival were compared.   The null exponential model assumes the 

instantaneous mortality rate is constant.  The Weibull model allows the instantaneous 

mortality rate to either rise or decline monotonically as a function of time, whereas the 

log-logistic model allows the rate to either rise or decline over time, or to rise to a 

maximum then subsequently decline (i.e. a “hump” shaped pattern).  A parameter was 

then added to these models to test for the effect of fragment size on survival. 
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The fit of data to each model was assessed by inspecting plots of the quantiles of the 

fitted distribution versus observed cumulative deaths, Cox-Snell residual plots 

(estimated cumulative mortality), and probability plots (failure times versus the 

quantiles of the chosen distribution) (Davison and Tsai, 1992; Waller and Turnbull, 

1992; Cohen, 1995).  Relative model fit was also compared using Akaike’s Information 

Criterion, corrected for small samples (AICc), using the convention that models differ 

in fit when their AICc values differ by more than 7 (Burnham and Anderson, 2002). 

Analysis of change in colony size  

To assess the effect of initial fragment size on the net change in colony size due to the 

combined effects of loss (partial mortality) and gain (clonal reproduction) of polyps we 

modeled the change in SAL as a function of initial SAL using linear regression.  We 

performed two analyses, in which the response variables were growth over 12 months 

and growth over 24 months respectively, because we had large sample sizes for these 

time intervals (n=653 and 238 respectively).  

RESULTS 

Analysis of survival  

There were significant differences in first-year survival among cohorts (χ2=41.9, df=1, 

p<0.0001).  The percentage of transplants surviving the first year was lower for the  

2007 and 2010 cohorts than for corals transplanted in other years (Table 2).    

When we pooled cohorts, both survival models allowing the instantaneous mortality 

rate to vary as a function of time since transplanting (log-logistic and Weibull) fit better 
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than the simpler model that assumes a constant mortality rate (exponential) (Table 3).   

Of the two models allowing the mortality rate to vary over time, AICc values indicate 

that the log-logistic model fit better than Weibull (Table 3).   This ranking of relative 

model fit based on AICc values was also consistent with inspection of diagnostic plots 

for the three models (plots not shown).   

Although the log-logistic allows for complex patterns of survival over time, the 

mortality functions for both the Weibull and log-logistic models indicated a simple 

decelerating mortality rate over time.  Under both models, the mortality rate was high 

in the first 12 months after transplanting and then relatively constant thereafter (plot 

for best-fitting log-logistic function shown in Figure 1).   For comparison to the data on 

percent survival among cohorts, we converted the instantaneous mortality rates to 

annual percent survival.  This conversion requires the simplifying assumption that 

instantaneous mortality is constant over time (and high) for year 1, and then constant 

(but lower) thereafter (Figure 1).  Under this simplifying assumption, roughly 56% of 

fragments are expected to remain alive a year after transplanting but annual survival 

increases to 68% for all subsequent years.   

Acropora palmata fragments found at the source sites varied widely in initial size (2–

1016cm2), but most fragments were small (mean=108cm2) and 50 % of the fragments 

were between 26 and 136cm2 (Figure 2).  For all three survival models we evaluated, 

adding a term for the effect of initial fragment size improved model fit relative to the 

comparable model lacking this covariate (Table 3).  The parameter for fragment size 

was always positive and significantly different from zero (Table 3), indicating that all 
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models predict increased survival of larger fragments.  Adding a term for fragment size 

to the survival models did not alter the relative fit of the three models, and both 

parameters of the Weibull and log-logistic models were still statistically significant 

(Table 3).  This indicates separate effects both of time since transplanting and fragment 

size on survival, i.e. poor initial survival was not simply a by-product of that fact that 

fragments tended to be smaller when transplanted than afterwards.   

To illustrate the effect of fragment size on survival, we used the best-fitting model (log-

logistic) to predict survival over time for three representative sizes of coral: 10cm2, 

100cm2, and 1000cm2 (sizes close to the smallest, average and largest fragments found 

at our study site) (Figure 3).  This plot shows a modest increase in expected survival as 

coral size increases from 10-100cm2, but a dramatic improvement for 1000cm2 corals.  

For example, 10% of the smallest corals are expected to remain alive after 7 years.  For 

average sized corals, this figure increases to 19%, but 67% of the largest corals remain 

alive after 7 years.    

Effects of initial colony size on colony growth 

Considering only surviving colonies, the average fragment shrank slightly in size in the 

first 3 months after being transplanted (Figure 4).  Subsequently, surviving fragments 

tended to progressively increase in size, albeit with substantial variation around the 

trend (Figure 4).   

Linear regressions for survivors only, showed that the relationship between initial 

colony size (SAL in cm2) and change in colony size was statistically significant for 

change over 12 months (r2=0.06, F1,385=25.6, p<0.0002), but not for change over 24 
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months (r2=0.02, F1,143=2.79, p=0.196).  Although the relationship was statistically 

significant after 12 months, initial colony size (SAL in cm2) explained only a trivial 

percentage of variation in colony growth in the first 12 and 24 months after 

transplanting (6% and 2% respectively; Figure 5).   

DISCUSSION 

Effects on survival of time elapsed since transplanting and year transplanted 

For any fragment loose on the reef, survival depends on remaining at a favorable 

location long enough for the colony to reattach itself to the reef (Tunnicliffe, 1981; 

Fong and Lirman, 1995; Smith and Hughes, 1999).  For this reason, fragments 

reattached manually for restoration have an initial advantage over loose fragments 

(Lindahl, 2003; Forrester et al., 2011).  For example, at the sites from which we 

collected A. palmata, only 2% (2 out of 102) of fragments left loose as controls 

remained alive after 12 months, so their survival was far worse than transplanted 

fragments (Forrester, unpublished data).  

Survival in the first 12 months after transplanting varied considerably among the 

seven years we transplanted corals (2005-2011).  We attribute these interannual 

differences partly to the effects of storms, whose ability to inflict severe episodic 

mortality on A. palmata is well documented (Highsmith et al., 1980; Woodley et al., 

1981; Rogers et al., 1982).  In the two years when survival to 12 months was lowest 

(2007 and 2010), storms caused visible damage to the benthos and reef structure at 

the site (a winter storm on 19-20 March 2008, and hurricane Earl on 30 August 2010 

respectively).  Interestingly, survival was highest in 2005 even though a warming event 
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caused mass bleaching throughout the Caribbean in autumn of that year.  In addition 

differing among years, pooling data across cohorts showed that survival was 

consistently lower in the 12 months after transplanting than thereafter.  Low initial 

survival may be attributed partly to stress induced by the transplanting process (Yap 

and Gomez, 1985; Plucer-Rosario and Randall, 1987; Yap et al., 1992; Forrester et al., 

2011).  Transplanting stress is further indicated by the fact that surviving fragments 

tended to decrease in size in the first three months after transplanting, but 

progressively increased in size thereafter.  Another probable cause of low initial 

survival is failure of the ties/epoxy/cement used to reattach the fragment (Borneman 

and Lowrie, 2001; Bruckner and Bruckner, 2001).  Deaths from attachment failure 

should decline rapidly with elapsed time as fragments grow and form their own 

connection with the substratum (Guest et al., 2011) and we noted during monitoring 

visits that, after 12 months, the tissues of virtually all surviving A. palmata fragments 

had grown to contact the reef.   

Effects of initial colony size on growth and survival 

We found that fragment survival improved with increasing colony size and, across the 

size range of fragments at our sites, the very largest fragments survived far better than 

did small and average-sized fragments.  Our results are consistent with the analysis of 

the survival of A. palmata fragments reattached to the reef with wire after a ship 

grounding in Puerto Rico (Bruckner and Bruckner, 2001).  Survivors after two years 

(mean length=70cm) were significantly larger than fatalities (mean length=52cm), 

indicating better survival of larger fragments.  These ship grounding-generated 
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fragments (15-304cm long) were generally larger than the (presumably) storm-

generated fragments we transplanted (we expressed colony size as surface area but, 

for comparison, our fragments ranged from 4-105cm long).  Okubo and colleagues also 

reported size-dependent survival of two Pacific species of Acropora.  They pruned 

small fragments from natural colonies of A. formosa (5, 10 and 20cm in length) and A. 

nasuta (5 and 10cm in length) and cable-tied them to nails that had been hammered 

part-way into the reef.  Larger fragments of both species survived better than smaller 

ones after 1 year and 3 years respectively (Okubo et al., 2007, 2009).  Acropora 

fragments affixed to the substratum for restoration thus appear to consistently display 

size-dependent survival.   

Survival is also commonly a positive function of size for natural coral colonies (Connell, 

1973; Hughes and Jackson, 1985; Vermeij and Sandin, 2008).  The survival of 

transplanted fragments is likely to differ from that of natural colonies for at least three 

reasons: (1) transplanting stress, (2) failure of the manual reattachment process, and 

(3) microhabitat differences - the specific locations chosen by restoration practitioners 

to attach fragments are likely to be different from locations selected by sexual coral 

recruits (Hughes, 1984).  Nonetheless, two mechanisms for increased survival with 

larger size should apply equally to natural colonies and transplants: (1) a reduced 

probability that predators, disease or abrasion can kill all polyps in a colony, and (2) an 

improved ability to mobilize resources from unaffected polyps (Pearse and Muscatine, 

1971; Hughes, 1984).  
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To the best of our knowledge, the only direct comparison between natural colonies and 

manually reattached fragments was made by Garrison and Ward (2008).  They found 

no difference in survival of natural colonies and manually reattached fragments of 

Acropora cervicornis and Porites porites, though their samples were small enough that 

subtle differences in survival might not be detectable (n=15 transplants and n=15 

natural colonies per species).  They were able to compare a larger sample of A. palmata 

(n=30 transplants and n=45 natural colonies) and found that natural colonies survived 

better than transplanted ones.  Their natural colonies were, however, also larger on 

average than transplanted colonies so better survival may be a function of larger size.  

Further direct comparisons between natural colonies and manually reattached 

fragments would thus be valuable to test whether size-based demographic models 

developed for natural colonies (Hughes, 1984, Hughes and Jackson, 1985) might be 

modified to predict the fate of transplanted fragments.   

Although survival was size-dependent, we found the change in size of surviving A. 

palmata colonies to be independent of their initial size.   In contrast, experimentally 

created fragments of Acropora nasuta, Porites rus and P. cylindrica, all displayed a 

positive relationship between size and colony growth after attachment to the reef (Yap 

et al., 1998; Okubo et al., 2009).  For A. nasuta, this represented a trade-off between 

growth and reproduction, smaller fragments grew faster than larger ones at the 

expense of oocyte production (Okubo et al., 2009).  A. palmata reproduces sexually 

once per year, and we were not able to monitor spawning at our sites.  Nonetheless, 

size-independence of colony growth in A. palmata presumably reflects the fact that, 

like all modular colonial organisms, coral colonies can shrink as well as grow over time 
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and at our sites, surviving colonies were just as likely to lose as they were to gain 

polyps in any given time interval (Garrison and Ward, 2008).  This matches the pattern 

of growth reported for natural colonies Agaricia agaricites, whose colonies frequently 

decreased as well as increased in size between monitoring events (Hughes, 1984).  

Implications for restoration 

For coral fragments transplanted and reattached to restore reefs, one useful measure 

of their success is whether they grow and survive as well as natural colonies.  Although 

there were obvious impacts of the transplanting process, in terms of reduced colony 

growth in the first 3 months and reduced survival in the first 12 months after 

transplanting, it is encouraging that transplanting effects were of no greater magnitude 

than year-to-year differences in survival from natural causes (e.g. storms).  Beyond the 

first year, fragment survival was reasonably high and, although differences in methods 

preclude an exact comparison, long-term survival of the larger fragments we 

transplanted appears roughly equivalent to the survival of large natural A. palmata 

colonies in Florida (Williams and Miller, 2012).  For practitioners, our results thus 

suggest that demographic monitoring of restoration projects should focus on the first 

year after transplanting.    

We used students and volunteers to transplant most fragments, rather than 

professional scientists, in order to simulate a level of care and expertise that might be 

expected in volunteer-based restoration projects.  This restoration method depends on 

locating a donor population of A. palmata with fragments suitable for transplanting.  

Every year in our study area, we were able to locate enough fragments in a few days of 
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searching.  Before starting the transplanting process, students and volunteers received 

training for one or two days on how to attach fragments to the reef, and on selecting 

suitable locations for attachment.  The overall process of finding and transplanting 

fragments thus took less than a week, and so is feasible for projects using volunteers 

that have limited time to invest in conservation work.  Simple, direct transplanting of A. 

palmata thus shows promise as a method usable by practitioners to restore local 

populations of endangered A. palmata on Caribbean reefs.   
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TABLE 1.  Initial sizes (surface area of live tissue in cm2) of coral fragments, grouped by 

year transplanted.  Displayed are number of corals transplanted (n), mean (±SE), 

minimum and maximum sizes.  

 

Year 

transplanted 

n Mean (±SE) Min. Max. 

2005 35 198 (37) 7 961 

2006 19 78 (17) 2 300 

2007 88 117 (16) 8 950 

2008 254 106 (17) 15 823 

2009 44 87 (22) 2 561 

2010 135 79 (10) 4 1004 

2011 257 113 (10) 12 1015 
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TABLE 2.   Initial survival of corals transplanted in different years.  * indicates years 

when major storms impacted the site.  

 

Year transplanted Percent alive 

after 12 months 

2005 85 

2006 58 

2007 21* 

2008 50 

2009 68 

2010 

2011 

30* 

70 
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TABLE 3.  Estimates of model fit (AICc) and parameter estimates (± 95% CI) for  

survival models fit to the data.   We compared three survival models:  exponential, 

Weibull, and log-logistic.  Models were first fit without (a) and then with (b) a term for 

initial coral size as a covariate.  The meaning of the parameters B1 and B2 is model-

specific, as follows:  for exponential B1=scale; for Weibull B1=shape and B2=scale; for 

log-logistic B1=scale and B2=location. 

(a) Models with no covariates 

 

Survival 

model AICc B1 ± (95% CI) B2 ± (95% CI)  

 Exponential 1,848 19.61 ± (17.93-21.41)   

 Weibull 1,784 0.74 ± (0.70-0.77) 21.0 ± (18.9-23.6)  

 Log-logistic 1,764 1.01 ± (0.95-1.08) 2.52 ± (2.36-2.58)  

      

(b) Models with term for initial coral size 

 

Survival 

model AICc B1 ± (95% CI) B2 ± (95% CI) Initial Size ± (95% CI) 

 Exponential 1,792 15.51 ± (12.77-18.39)  0.002 ± (0.001-0.0035) 

 Weibull 1,740 1.35 ± (1.28-1.39) 2.70 ± (2.65-2.77) 0.003 ± (0.002-0.004) 

 Log-logistic 1,718 0.99 ± (0.98-1.02) 2.10 ± (2.04-2.17) 0.003 ± (0.002-0.004) 
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Figure legends. 

 

Fig. 1.   Instantaneous mortality rate after transplanting for the best fitting log-logistic 

survival model.  Dotted lines are 95% confidence intervals.  

 

Fig. 2.   Size distribution of coral fragments encountered at source sites and used for 

transplanting.   

 

Fig. 3.  Survival as a function of time since transplanting for three representative sizes 

of transplanted corals.  Sizes were selected to represent corals close to the smallest, 

average, and largest coral fragments found naturally at the site:  10, 100, and 1000cm2 

respectively.   Solid lines are best-fit estimates from the log-logistic survival function 

and dotted lines are 95% confidence intervals. 

 

Fig. 4.  Mean colony size (mean SAL in cm2 ±95%CI) of corals as a function of time since 

transplanting.  Only corals that remained alive at each time were plotted.   

 

Fig. 5.  Change in colony size (SAL in cm2) as a function of initial size.   Data are plotted 

for growth over the first 12 months (a) and 24 months (b) since transplanting.  Corals 

that survived the interval and those that did not are plotted separately, and a linear 

regression (solid line) with 95%CI (dotted lines) is fit through data for survivors only. 
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