Jasmine (Jasminum grandiflorum) Flower Extracts Ameliorate Tetradecanoylphorbol Acetate Induced Ear Edema in Mice

Dongli Li
Xiaodan Tang
Chang Liu
Huifang Li
Shuzhen Li

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/bps_facpubs

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Citation/Publisher Attribution

This Article is brought to you for free and open access by the Biomedical and Pharmaceutical Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biomedical and Pharmaceutical Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Jasmine (*Jasminum grandiflorum*) Flower Extracts Ameliorate Tetradecanoylphorbol Acetate Induced Ear Edema in Mice

Dongli Li¹,², Xiaodan Tang¹,³, Chang Liu³, Huifang Li¹, Shuzhen Li¹, Shili Sun⁴, Xi Zheng¹, Panpan Wu¹, Xuetao Xu¹, Kun Zhang¹,² and Hang Ma¹,²,³

Abstract

Published data from in vitro assays support the anti-inflammatory effects of jasmine (*Jasminum grandiflorum* Linn.) but limited studies are reported in animal models. Herein, the anti-inflammatory effects of jasmine flower extracts (JFEs) including ethanol extract (JF-EE), petroleum ether extract (JF-PEE), ethyl acetate extract (JF-EAE), and n-butanol extract (JF-BE) were evaluated in a mouse ear edema model. Acute mouse ear skin inflammation was induced by tetradecanoylphorbol acetate (TPA; 125 µg/mL) and then treated with JFEs (100 mg/mL) or dexamethasone (DEX; 6.25 mg/mL; as a positive control). Jasmine flower extracts alleviated ear edema by reducing TPA-increased ear thickness and ear weight by 30.8% to 64.1% and 24.0% to 47.1%, respectively, whereas DEX showed comparable activity (by 71.8% and 49.1%, respectively). Their anti-inflammatory effects were supported by data from the immunohistochemical assays. Jasmine flower extracts reduced the inflammatory cells (from 5.5- to 9.5-fold) and the expressions of inflammation related enzymes including cyclooxygenase-2 and inhibitor of kappa-B kinase (from 1.9- to 2.8-fold and from 7.1- to 11.0-fold, respectively). Findings from this study showed that JFEs were able to ameliorate TPA-induced mouse skin inflammation. However, future studies on the underlying mechanisms of jasmine flower’s anti-inflammatory effects are warranted.

Keywords

jasmine flower, *Jasminum grandiflorum*, phenolics, oleuropein, tetradecanoylphorbol acetate (TPA), anti-inflammation

Received: December 19th, 2019; Accepted: March 7th, 2020.
Natural Product Communications

The course of bioactivity screening using a panel of in-house bioassays, several plant extracts (including jasmine flower extracts [JFEs]) showed promising anti-inflammatory effects in cellular based assays and in animal models. To further investigate the anti-inflammatory property of jasmine extracts as well as their skin protective effects, 4 JFEs were evaluated for the anti-skin-inflammatory effect in a mouse model. Herein, the ameliorative effects of JFEs against tetradecanoylphorbol acetate (TPA)-induced ear skin inflammation are reported.

Materials and Methods

Chemicals and Reagents

Ethanol, petroleum ether, ethyl acetate, and n-butanol are all ACS grade solvents purchased from Sigma-Aldrich (St. Louis, MO, United States). Dexamethasone (DEX; purity >98%), acetic acid, acetone, and formalin solution were purchased from Sigma-Aldrich (St. Louis, MO, United States). Oleuropein, kaempferol, and quercetin were purchased from Aladdin Chemistry (Shanghai, China). Tetradecanoylphorbol acetate (TPA; purity >99.9%) was purchased from Henan Cancer Hospital (Zhengzhou, China). Antibodies for cyclooxygenase-2 (COX-2) and inhibitor of kappa-B (IκB) were purchased from BOSTER Biological Technology (Wuhan, China). Hematoxylin and cosin (H&E) staining reagent was purchased from Beyotime Biotechnology (Shanghai, China).

Preparation of JFEs

Commercially available jasmine flower from “Gulao” mountain (Jiangmen, Guangdong, China) was purchased from local market and stored in the freezer (at −20°C) until extraction. The plant material of jasmine flower was authenticated by Professor Xiaoji Zheng (Guangdong Jiangmen Chinese Traditional Medicine College, Jiangmen, China) and a voucher specimen (FA2004N) was deposited in School of Biotechnology and Health Sciences, Wuyi University (Jiangmen, Guangdong, China). Jasmine flower was air dried at room temperature and pulverized into fine powder (90.0 g). Jasmine flower powder was extracted 3 times with 95% aqueous ethanol (1 L) at 80°C for 2 hours. Ethanol extract was concentrated under vacuo after removal of ethanol to obtain a jasmine flower ethanol extract (JF-EE). Jasmine flower ethanol extract was suspended in distilled water (500 mL) and partitioned sequentially with petroleum ether (500 mL × 3), ethyl acetate (500 mL × 3), and n-butanol (500 mL × 3) to afford 4 JFEs including jasmine flower petroleum ether extract (JF-PEE), ethyl acetate extract (JF-EAE), and n-butanol extract (JF-BE), respectively, after solvents removal. The extraction yield of JF-EE, JF-PEE, JF-EAE, and JF-BE was 18.7%, 6.9%, 42.2%, and 36.6%, respectively (Table 1).

Characterization of Phenolic Compounds in JFEs

Total phenolic content was analyzed using the Folin-Ciocalteu method with minor modifications. Each JFE (10 mg) was dissolved in ethanol (4 mL) and mixed with Folin-Ciocalteu reagent (1:1 v/v with water; 1 mL). The mixture was allowed to stand for 6 minutes, then sodium carbonate solution (7%; w/v; 5 mL) and distilled water (12 mL) were added. After incubation at room temperature for 90 minutes, the absorbance of the mixture was read at 760 nm. The total phenolic content was expressed as milligrams of gallic acid equivalents per gram of extract (mg GAE/g) using a standard curve prepared with gallic acid. Levels of 3 phenolic compounds including oleuropein, kaempferol, and quercetin were quantified by high performance liquid chromatography (HPLC) method.

Briefly, each JFE (dissolved in methanol; all at equivalent concentrations of 10 mg/mL) was analyzed on a Luna C18 column (250 × 4.6 mm i.d., 5 µM; Phenomenex) with a flow rate of 0.75 mL/min and injection volume of 20 µL for each sample. A linear gradient solvent system consisting of solvent A (0.1% aqueous trifluoroacetic acid) and solvent B (methanol) at room temperature was used as follows: 0 to 30 minutes, 10% to 60% B; 30 to 35 minutes, 60% to 100% B; 35 to 40 minutes, 100% B; and 40 to 42 minutes, 100% to 10% B.

Tetradecanoylphorbol Acetate Induced Mouse Ear Edema Model and Treatments

Protocol for this animal study was approved by the Animal Care & Welfare Committee of Tea Research Institute.

Table 1. Characterization of Phenolic Content (by the Folin-Ciocalteu Method) and Levels of Phenolics Including Oleuropein, Kaempferol, and Quercetin (by High Performance Liquid Chromatography Method) in Jasmine Flower Extracts.

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Extraction yield (%)</th>
<th>Total phenolics (%)a</th>
<th>Oleuropein (%)</th>
<th>Kaempferol (%)</th>
<th>Quercetin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JF-EE</td>
<td>18.7</td>
<td>20.8</td>
<td>23.3</td>
<td>0.1</td>
<td>n.d.</td>
</tr>
<tr>
<td>JF-PEE</td>
<td>6.9</td>
<td>12.3</td>
<td>27.5</td>
<td>0.2</td>
<td>n.d.</td>
</tr>
<tr>
<td>JF-EAE</td>
<td>42.2</td>
<td>34.5</td>
<td>55.1</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>JF-BE</td>
<td>36.6</td>
<td>31.7</td>
<td>39.5</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

JF-EE, jasmine flower ethanol extract; JF-PEE, jasmine flower petroleum ether extract; n.d., not detected.

aValue expressed as in w/w% of gallic acid equivalents.
All experimental procedures were performed in strict accordance with the laboratory animal care and use guidelines, and best efforts were made to minimize the pain of experimental animals. Female Kunming mice were obtained from Tea Research Institute of Guangdong Academy of Agricultural Sciences (Guangzhou, China). The animals were housed in standard cages under a 12-hour light/dark cycle with free access to water and chow. Mice were acclimated for 1 week (body weight 28-35 g) and randomly divided into 7 groups (n = 8 per group). Aqueous acetone (50%) was used as a vehicle solvent to dissolve TPA, DEX, and JFEs. All the solvents were externally applied on the skin of mice ears. In the control group, both left ears and right ears of mice were treated with vehicle solvent (50% aqueous acetone; 20 µL). In the model (TPA-treated) group, left ears and right ears of mice were treated with vehicle solvent (20 µL) and TPA (at 125 µg/mL; 20 µL), respectively. In the treatment groups and positive control (DEX-treated) group, right ears of mice were pretreated with JFE (at 100 mg/mL; 20 µL), including JF-EE, JF-PEE, JF-EAE, and JF-BE, or DEX (at 6.25 mg/mL; 20 µL), respectively. After 20 minutes, both left ears and right ears of mice were treated with TPA (at 125 µg/mL; 20 µL). After 8 hours, mice were sacrificed and ear pieces were collected using an electronic rotary microtome (ThermoFisher Scientific, United States). Ear punch biopsies with 6 mm diameter were collected using a metal punch and then weighed. The ear thickness was measured using a digital caliper (Mitutoyo, Japan). Changes (Δ) of ear thickness, ear weight, and percentage of inflammatory cells of each mouse were calculated by comparing differences between the left ear (treated with vehicle solvent first and then with TPA) and the right ear (treated with DEX or JFEs first and then with TPA) in each group (n = 8 per group).

Histological and Immunohistochemical Assays

Collected ear tissue was fixed with formalin solution for histopathological examinations. Hematoxylin and eosin staining assay was performed on mice ear tissues that were fixed in paraffin and sectioned into 4-µm sections using method previously reported. Immunohistochemical staining assays were performed on mice ear tissue sections as we previously reported. Sectioned tissues were incubated with antimouse monoclonal antibodies including COX-2 and IkB, followed by appropriate secondary antibodies. Randomly selected visual fields (n = 10; at 400× magnification) in each group are recorded using a microscope (AxioScope A1, ZEISS, Germany), and the amount of COX-2 and IkB positive cells were counted with microscopy.

Statistical Analysis

GraphPad prism 6.0 (GraphPad Software, La Jolla, CA, United States) was used to analyze data. All data expressed as mean ± standard deviation. To evaluate the significance, one-way analysis of variance with multiple comparisons and Student-Newman-Keuls (SNK) test were performed. A P-value less than .05 was considered as a statistical significance.

Results

Oleuropein Is a Major Phenolic Compound in JFEs

The chemical constituents of JFEs were characterized by HPLC methods (supplemental Figure S1). The phenolic contents of JFEs were measured by the Folin-Ciocalteu method. The total polyphenol content of JF-EE, JF-PEE, JF-EAE, and JF-BE were 20.8%, 12.3%, 34.5%, and 31.7% (as of mg GAE/g), respectively (Table 1). A major phenolic compound in JFEs was identified as oleuropein by HPLC method and its levels in JF-EE, JF-PEE, JF-EAE, and JF-BE were 23.3%, 27.5%, 55.1%, and 39.5%, respectively. Two flavonoids, namely kaempferol and quercetin, were identified as minor phenolics in JFEs. Kaempferol was detected in JF-EE (0.1%), JF-PEE (0.2%), and JF-EAE (1.1%); and quercetin was detected in JF-EAE (0.4%).

Jasmine Flower Extracts Ameliorate TPA-Induced Ear Erythema and Edema in Mouse

The anti-inflammatory effects of JFEs against TPA-induced acute ear skin inflammation were evaluated. Skin inflammatory characteristics including mouse ear erythema and edema were examined. Topical application of TPA (125 µg/mL; 20 µL) induced ear erythema by causing congestion of blood vessels and vascular permeability, which resulted in increased skin redness (Figure 1(a)). Pretreatment of JFE (100 mg/mL; 20 µL) including JF-EE, JF-PEE, JF-EAE, and JF-BE attenuated TPA-induced ear redness (Figure 1(a)). Dexamethasone, a corticosteroid anti-inflammatory drug, served as a positive control and showed similar effects as of JFE at a lower concentration (6.25 mg/mL; 20 µL). Topical application of JFE treatments also ameliorated mouse ear edema by reducing ear thickness and weight (Table 2). Treatment of JF-PEE showed the most promising anti-inflammatory effect by reducing TPA-increased ear thickness (by 64.1%) and weight (by 47.1%) as compared to the TPA-treated model group. Treatment of DEX had comparable effects by reducing increased mouse ear thickness and weight by 71.8% and 49.1%, respectively. Other JFEs including JF-EE, JF-PEE, JF-EAE, and JF-BE also showed ameliorative effects by reducing ear thickness (by 56.4%, 64.1%, 51.3%, and 30.8%, respectively) and ear weight (by 28.9%, 47.1%, 41.3%, and 24.0%, respectively) as compared to the TPA-treated model group (Table 2). The ameliorative effects of JFE on ear edema were further supported by histopathological assay. As shown in the H&E staining images, application of TPA induced loosening of connective tissue and disorganization of fibers from extracellular matrix (Figure 1(b)). Treatments of JFEs reduced TPA-induced changes of mouse skin thickness and accumulation of granulation tissue. Application of TPA also increased inflammatory cell infiltration (to 19.7%) as
compared to the control group, while treatments of JFEs reduced inflammatory cells (5.5%-9.5%) as compared to the TPA-treated group (Table 2).

Jasmine Flower Extracts Downregulated the Expressions of COX-2 and IκB

The anti-inflammatory effects of JFEs were supported by the evaluation of expressions of several inflammation related enzymes including COX-2 and IκB in histopathological assays. As shown in Figure 2, immunochemical staining assay showed that the expressions of COX-2 were significantly increased after topical application of TPA (by 3.4-fold). Treatment of JFEs significantly reduced the expressions of COX-2 in the order of JF-PEE (to 2.3-fold), JF-TEE (to 1.9-fold), JF-EAE (to 2.8-fold), and JF-BE (to 2.1-fold), while the treatment of DEX showed similar effects as the expression of COX-2 reduced to 1.84-fold (Figure 2(upper panel) and (a)). In the development of inflammation, the expression of COX-2 is regulated by a group of transcription factors including nuclear factor-κB (NF-κB), which is stimulated by the kinases of IκB. The effects of TPA induced overexpression of IκB and the downregulatory effects of JFE on the TPA-stimulated expression of IκB were evaluated. The expression of IκB was

![Figure 1. Effects of jasmine flower extracts (jasmine flower ethanol extract, jasmine flower petroleum ether extract, jasmine flower ethyl acetate extract, and jasmine flower n-butanol extract; 100 mg/mL; 20 µL) on tetradecanoylphorbol acetate (125 µg/mL; 20 µL) induced mouse ear erythema (n = 8 per group). Representative images of the mouse ears after treatment with 50% aqueous acetone (vehicle solvent; as control group) or tetradecanoylphorbol acetate (as model) with or without jasmine flower extract pretreatment groups (a). Representative images of hematoxylin and eosin staining of mouse ear tissues showing histological changes after acetone or tetradecanoylphorbol acetate treatment with or without jasmine flower extract pretreatments (b). Dexamethasone (6.25 mg/mL; 20 µL) served as a positive control.](image)
significantly increased after topical application of TPA (to 14.5-fold). Treatment of JF-EE, JF-PEE, JF-EAE, and JF-BE significantly decreased the expressions of I\(\kappa\)B to 7.9-, 7.4-, 7.1-, and 11.0-fold, respectively, which is comparable to the activity of DEX (to 5.9-fold; Figure 2(upper panel) and (b)).

Discussion

Jasmine is a widely used ingredient in cosmeceutical industry. Published studies showed that jasmine extracts can exert a broad range of biological activities including antioxidant and...
antimicrobial effects, which may partially contribute to their skin beneficial effects. However, only limited data are reported to show the skin protective and anti-inflammatory effects of jasmine. Herein, we evaluated the anti-inflammatory effects of 4 JFEs in a TPA-induced mouse ear edema model. Data from our current study showed that 4 JFEs were able to ameliorate TPA-induced skin inflammation biomarkers including skin redness and increased inflammatory cells in mouse ears. This anti-inflammatory activity of JFEs was partially attributed to their capacity of downregulating the expression of COX-2 and \(\text{\textit{IkB}} \) (Figure 2) in mouse ear tissues. These findings are in agreement with a previously reported study showing that a methanolic extract of jasmine leaves was able to inhibit lipopolysaccharides-induced nitric oxide production in murine macrophage cells and alleviate carrageenan-induced paw edema in a mouse model. Published studies suggested that phenolic contents of jasmine leaves extracts were correlated with their antioxidant and anti-inflammatory activities.

Oleuropein, a phenolic compound that is commonly found in the aerial parts of olive, has been reported to show anti-inflammatory effects and contribute to the overall skin protective effects of olive extracts. It is possible that oleuropein and other phytochemicals in JFEs exerted anti-inflammatory activity in additive, synergistic, and/or complementary manners. A limitation of this study is that the underlying mechanism(s) of anti-inflammatory activity of JFEs remain unclear. Although published studies suggest that a downregulated expression of \(\text{\textit{IkB}} \) is often observed in response to TPA stimulation, the expression of \(\text{\textit{IkB}} \) in the TPA-treated group was increased (Figure 2(b)). The level of the phosphorylated \(\text{\textit{IkB}} \), which is critical in response to TPA stimulation by regulating the expression of inflammatory transcription factors, such as NF-\(\text{\textit{kB}} \), in the TPA-treated group was not measured. Therefore, evaluations of effects of TPA and JFE treatments on the expression of phosphorylated \(\text{\textit{IkB}} \) level are warranted in the future study. Furthermore, although data from the immunohistological assays showed that JFEs reduced the expression of inflammation related proteins including COX-2 and \(\text{\textit{IkB}} \), other pathways that are involved in the anti-inflammatory effects of JFEs were not thoroughly examined. For example, studies showed that oleuropein was able to attenuate kidney inflammation through the regulation of HO-1/\(\text{\textit{Nrf2}} \) expression and NLRP3 inflammasome signaling pathways. Oleuropein was also reported to suppress inflammatory cytokine expressions and inhibit NLRP3 inflammasomes in human placenta. Therefore, the investigation of the anti-inflammasome activity of JFEs and its major phenolic, oleuropein, is warranted.

In summary, 4 JFEs were evaluated for their protective effects against TPA-induced skin inflammation in a mouse model. Jasmine flower extracts ameliorated TPA-induced ear edema and downregulated inflammation associated enzymes including COX-2 and \(\text{\textit{IkB}} \). Future studies on the isolation and identification of phytochemicals from JFEs with anti-inflammatory activity, as well as their mechanism(s) of action, are warranted.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by Youth Foundation of Wuyi University (No. 2017rd01), Department of Science and Technology of Jiangmen (Nos. 2016350100170008351 and 2018110100330005446), Jiangmen Program for Innovative Research Team (No. 201863010180019806), and Foundation from Department of Education of Guangdong Province (Nos. 2016KCXTD005 and 2017KSYS010). X.T. was supported by a scholarship provided by Wuyi University.

ORCID ID
Dongli Li https://orcid.org/0000-0001-9955-2304
Shili Sun https://orcid.org/0000-0003-3062-1185
Hang Ma https://orcid.org/0000-0001-7565-6889

Supplemental Material
Supplemental material for this article is available online.

References

