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PHYSICAL REVIEW D VOLUME 4, NUMBER 5 1 SEPTEMBER 1971

A-Nucleon Charge-Symmetry-Breaking Interaction. I. Separable Potentials*

K. Hartt and E. Sullivan)
DePa&ment of Physics, University of Rhode Island, Eingston, Rhode Island 02881

(Received 8 September 1969; revised manuscript received 17 May 1971)

The existence of a charge-'symmetry-breaking (CSB) term in the lambda-nucleon (A-N)
interaction is shown to produce an admixture of a T =1 state to the predominant isospin ~sin-

,glet state in AH3. The present analysis shows that a CSB term constructed to fit light hyper-
nuclear and A-p scattering data is poorly determined (-4%-25% of the total A+ singlet and
-4%-15% of the total A+ triplet interaction), but is strongly correlated with the A-separa-
tion energy, 8 A, from &H, and that isospin mixing in AH3 can lead to significant adjustments
of the deduced A;N interaction strengths. The mixed-symmetry T =0 state in AH3 is seen to
have a small effect. Data employed include A~ total cross sections, cr(Ap), for total c.m.
energy Ec m & 18 MeV, published values of BA, and a theoretical determination by Herndon
and Tang of the relative magnitudes of the A-N potentials responsible for the mean binding
and the ground-state splitting of AHe4 and AH4. The two hypotheses that the spin, I, of AHe4

is 0 and 1 are studied. Nonlocal separable, spin-dependent central interactions of the Yama-
guchi form are used, and all range parameters in the A-N interaction are constrained to be
equal. A search of fits to o(Ap} is made with intrinsic ranges in the interval 1.5 F to 2.3 F.
Self-consistent CSB potentials are found for I=0 and I=1. The deduced singlet A+ CSB inter-
action is attractive in all cases, in disagreement with predictions of the SU3 particle-mixing
model of Downs.

I. INTRODUCTION

A hyperons interact differently with neutrons
than with protons. This charge-symmetry-break-
ing (CSB) effect is directly observed in the greater
A separation energy in AHe' than in &H', the pres-
ent experimental value for this difference being
given by'

AB =B ( He ) —Bp(pH )

= 0.28 +0.07 MeV. (&)

In 1964, Dalitz and von Hippel found that the super-
position of different isospin states both in the phys-
ical A's and the physical pions, which they deduced
from the Coleman-Glashow relation for electro-
magnetic mass splitting, could contribute substan-
tially to CSB."%Pith such isospin mixing, the
isospin-forbidden exchange of a single pion be-
tween a A and a-nucleon could occur, and mould
contribute with the right order of magnitude and
sign to 4B~. The analysis by Downs, including
particle mixing of vector mesons, pseudoscalar
mesons, and baryons, then showed that vector-
meson exchange also could contribute significantly
to CSB, and that pion-g mixing effects were re-
duced by cancellations. ' Downs constructed a one- '

boson-exchange potential model for his analysis,
which employed the octet model of SU3 to provide
relationships between many of the unknown cou-
plings in his theory.

It is of interest to study and delimit the spin
dependence and magnitude of the CSB lambda-

nucleon (A-N) potential as deduced from experi-
ment. Although it is perhaps premature to expect
a direct test thereby of Downs's model, a phenom-
enological analysis of light hypernuclei and lambda-
proton (A-P) scattering might provide some useful
information. Consistency checks between the as-
sumptions of the model and the values assumed
for some of the experimentally uncertain meson-
baryon couplings'' can be of value. Domns per-
formed one such check in showing that of the two
possible values of the coupling constant g», 6
and -5, the first was more clearly compatible with
the size of CSB apparently needed for 4BA.' In the
phenomenoldgical analysis which he made'upon the
four-body hypernuclei, the tensor part of the CSB
potential, which has zero expectation value in rel-
ative 8 states, was not considered. '

The central spin-isospin dependence of Downs's
CSB interaction has the form -7,(N)o(N) o(A)
for pseudoscalar-meson exchange, and —r, (N)
X[A+Bo(N) ~ o(A)] for ve.ctor-meson exchange The.
combination of all his central potential terms leads
to a substantial spin-independent part. This is
easily seen by computing the total volume integral
of the spin-independent and spin-dependent con-
tributions from his Eqs. (19) and (20).' Since the
vector mesons are heavier. than the pseudoscalar
mesons considered, a hard core in-the CSB inter-
action, if present, would tend to reduce the spin-
independent part in a different manner than the
spin-dependent part. This is seen in Fig. 1, in
which the total volume integral of the CSB A-p
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1354 K. HART T AND E. SULLIVAN

potential is plotted as a function of a hard-core
radius A. For a Yukawa potential, e "'/px, the
corresponding volume integral is just

J=—,e " (1+gR).4w

The summed volume integrals for the complete
central part of Downs's CSB A-N interaction have
the form T(N-}[C+Do(A) .o(N}], and C and D are
plotted. A reduction of C/D with increase in A
occurs at B~ 0.3 F and is clearly rather gradual.
A feature particularly worth noting is that the
singlet A-p volume integral, C —3D, is always
negative. Since the tensor interaction vanishes in
the singlet state, we conclude that the Downs mod-
el predicts a repulsive singlet A-P interaction.
This conclusion holds for extensive variations of
the SU, couplings we made about the experimental
values quoted in Ref. 4. The sign of C —3D be-
comes positive (attractive CSB singlet A-p) only
when the isospin mixing in the physical lambda
is more than 16 times smaller than the theoretical
estimates made in Ref. 4.

The purpose of this paper is to use two-, three-,
and four-baryon hypernuclear and scattering data
in determining the parameters of a CSB singlet
and triplet central A-¹interaction. We find a
class of such potentials with systematic relation-
ships between our CSB parameters and the range
of experimental possibilities for low-energy A-p
scattering length as well as several quoted values
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FIG. 1. Volume integrals of the central CSB interac-
tion given in Ref. 4, as a function of hard-core radius,
R. Curve I is the spin-independent part; curve II is the
factor of o(A) ~ 0(N); curve III is the singlet volume inte-
gral. These are denoted in Sec. I, respectively, by C,
D, and C —3D. Assumed value of g&z is 6.

for the A-separation energy from AH', which we
label as J3A. Because of the factor v, (N) in the
A-¹interaction, isospin is not a good quantum
number in hypernuclei. In particular, the CSB
spin dependence produces an isospin mixing in
&H'. An evaluation is made here of this effect
upon A-N potential parameters. The possibility
that the spin of AHe might be 1 also is considered.

The CSB potential produces a greater energy
difference than the value for ABq of Eq. (1), since
the value of 4BA would be negative in the absence
of CSB. This is because of the Coulomb energy
associated with compression of the He' core, and
the differences in the form factors of the nuclear
cores, H' and He'. ' Upon including these effects
in their solutions for three- and four-body hyper-
nuclei, Herndon and Tang have found a greater
CSB contribution to the A-separation energy in
AHe' than in AH' by the amount 4B,= 0.54 MeV. '
They assumed a spin of 0 for AHe'.

The spin dependence of the CSB interaction has
been discussed by Downs and Phillips. ' In a phe-
nomenological analysis which estimated 4B4 at
0.75 MeV, they obtained a A-N CSB interaction
which contributed significantly to the elastic A-p
scattering cross section, a(AP). They considered
the more general spin dependence in the central
CSB interaction, A+ Bo(A) o(N}, pointing out that
only the linear combination A. +3B is determined by
AB„but that the large values of o(AP) seemed
consistent with the dominance of A. In deducing
A-N CSB and charge-symmetric (CS) hard-core
potentials, HT assumed the case of A. =0. Both
DP and HT used o(AP) data as a final test of poten-
tials constructed so as to be consistent with hyper-
fragment binding energies.

Dalitz recently suggested using a variety of A-p
effective-range parameters in theoretical investi-
gations of hypernuclei, inasmuch as the data appear
to support many sets of these parameters nearly
equally well. ' I parallel course, given adequate
A-p scattering data, is to determine the parame-
ters in A-P potentials for good g' fits, and then to
specify the CSB interaction by requiring consis-
tency with hyperfragment binding energies. This
is feasible provided that the computer time spent
determining binding energies given by the large
variety of potentials tested is not prohibitive. Such
a procedure is employed in this paper. It has the
advantage of first meeting the most stringent re-
quirement, fitting o(Ap), thereby enabling a good
over-all data fit. We employ nonlocal separable
(NLS) potentials, well known for their amenability
to efficient analysis of three-body systems. " Our
solution of the AH' eigenvalue problem is discussed
in Sec. II.

The data for A-p scattering tend to support many
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different interpretations as to singlet and triplet
scattering lengths and intrinsic ranges, "'"re-
quiring an extensive search of A-p potentials.
However, the potential parameters we find, al-
though by no means unique, enable a number of
conclusions to be drawn concerning the nature of
CS and CSB potentials, within the limitations of
the assumptions we make. Shown in Table I is a
combination of the recently published A-p data of
Alexander et al. ' and Secci-Zorn et aE."at six
points with total c.m. energy E, '& 18 MeV. As
discussed in Sec. III, the resulting data are smooth
enough to allow fits by S-wave interactions at a
confidence level of 0.61.

For Bq we use the published values of 0.05 MeV"
and 0.25 MeV'4 and we also include results for the
0.17 MeV value quoted by HT. The final datum
employed in this paper consists of a theoretical
estimate by HT of the relative magnitudes of the
effective CSB and CS interactions in the mirror
hypernuclei &He' and qH', expressed in terms of a
dimensionless parameter, 4. 4 is defined and
evaluated later in this section.

Although it has been suggested that CSB effects
cancel in ~H',""this is strictly true only when
the possibility of isospin mixing is not considered.
As shown in Sec. II, CSB produces an admixture of
a T= 1 state to the predominant isospin single~
state in ~H'. In some cases, our CSB term is
large enough to lead to significant adjustments of
the A-N interaction strengths upon inclusion of
isospin mixing in the theoretical description of

3pH.
Recent studies of the T=0 mixed-symmetry state

(S') in ~H' have shown that such a state leads to a
reduction of the spin dependence of the CS inter-
action" and that the percentage S' state increases
upon the introduction of short-range A-N and N-N
repulsions. " As seen in Sec. II, the S' state that
we compute has a smaller effect upon B~ than the
dominant T= 1 state.

The CSB interaction operator can be written as

W,~(A, N) =- s r, (N)[a+o(A) o(N) W~(A, N),
2pgw

(8)

where A.& is the over-all interaction strength, p,»
is the reduced mass of N and A, W~ is the spin-
and isospin-independent part of the interaction,
and r, (N) is a Pauli operator in isospin space.
Without making the restriction += 0, we arrive at
bounds of interaction stren'gths and intrinsic ranges
of the CS and CSB interactions that are consistent
with the following assumptions:

(a) The A-N interaction is represented by two-
body MLS spin-dependent central potentials of the
Yamaguchi form. " Then, for example, W~(A, Nq)

TABLE I. Combined results of Alexander et al. and
Secci-Zornetal. Total c.m. energies are listed. They
corres'pond to the average A momentum within each mo-
mentum interval as measured by Secci-Zorn et al.

Ec.m.
(NeV)

0.(AP)
(mb)

3.7
5.6
7.7

10.5
13.0
17.6

211.0+ 31.0
154.3+ 22.0
146.0 + 15.0
101.0+ 10.7
83.0+ 7.3
52.4+ 7.7

would be written in momentum space as

W, (A, N, )%(P„..., P„„...)
)))PIP'I"d'P-'g)P'lk)P'„. .., P', , ...)ll()", —I'.),

(4)
where P and P, are the relative and c.m. momenta
of A and the ith nucleon. The Yamaguchi kernel,
g(P) =(P'+ p') ', has the effect of projecting onto
the S state of the relative motion of A and N;. CS
potentials of this form have been employed by
Hetherington and Schick" in their study of A-d
scattering and &H'. Although NLS interactions in
states of higher angular momentum can be con-
structed in a similar fashion, we make the assump-
tion here that their contribution in explaining the
data we use is small enough to be neglected.

(b) The n Pinte-raction is approximated by sin-
glet-even and triplet-even Yamaguchi kernels,
whose range parameters and interaction strengths
are determined by effective-range theory. These
parameters are listed in Table II. The relatively
weaker odd-state n-p interactions are assumed to
have negligible effect in these calculations.

(c) The intrinsic range, b=8jP, is taken to be
the same for all CSB and CS A-Ninteraction terms.
The singlet and triplet A-p interaction strengths
and b are assigned a range of values obtained by
fitting o(Ap) for c.m. energies under 18 MeV.

(d) The tensor A-N and N-Ninteractions are
represented by effective central triplet terms.

(e) A completely self-consistent treatment of
two-, Ithree-, and four-baryon data would require
solving the four-body problems for &He4 and &H'.
Although this is not done here, we assume that
information about the four-body systems still is
utilized in the form of a dimensionless parameter,
L, the value of which is inferred from the calcula-
tions of HT. 4 is chosen to represent the relative
strength of the perturbation in the A-N potential
causing the splitting of four-baryon binding ener-
gies. Let A„» = spin-averaged A-N interaction
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strength in qHe', and let A„„~= spin-averaged A-N
interaction strength in AH'. Then we define

nnb

4'+ 4nn
(5)

Spin 0: A„~, =-,'(X, +Z,)+-', (3+a)Xs,

Spin 1: g»=&(5~, +~,)+-,'(a-1)~„
Spin 0: A„„~=—,'(X, +X,). ——,(3+a)Xs,

(6a)

(6b)

(6c)

where the CS triplet and singlet A-N interaction
strengths are denoted by X, and A,

Following HT, we adopt the experimental value
of 0 for the spin of AH'. However, as the spin, I,
of AHe' appears to be unknown, we consider both
the possibilities I= 0 and I= 1, given in (6a) and
(6b). The first case (I=O) leads to

—,'(3+ a)X~
(7a)

The second case (I=1) yields

-', (a+ 1)as+ s(x, —x,)
A., +A,

(7b)

where the denominator in Eq. (7b) is taken to be
the same as in Eq. (7a) with negligible error.
Using potential II of HT (they set a= 0) produces
the value 6 = 0.0099 +0.0012, which is taken as a
final piece of data to be fitted by our phenomeno-
logical A-N interaction. " The quoted error in 6,

TABLE II. Yamaguchi m-p potential parameters.

p"
State- (F ~) (F 3)

Scattering
length

(F)

Effective
range

(F)

Singlet
even 1.163 0.1486 -23.714+ 0.013 2.704 + 0.095

Triplet
even 1.389 0.3696 5.425 + 0.005 1.763+ 0.005

For notation see Ref. 18. Effective-range parameters
are taken from T, Houk and R. Wilson, Rev. Mod. Phys.
39, 546 (1967); Aid. 40, 672(E) (1968).

Units are chosen such that 5 =c =1.
This is the mixed effective range, p(0, -e). The value

of p (0, 0) =xpg which is consistent with this triplet poten-
tial is given by w@ -—1.788 F. The deuteron binding ener-
gy computed with these parameters is 2.2247 MeV.

The ratio of the associated energies, —,(&B,)/(aver-
age four-baryon A-separation energy), is 0.13.
4 is necessarily appreciably smaller than 0.13 be-
cause the average A-N potential must overcome
kinetic energies as well as provide binding. The
spin-averaged interaction strengths for the A-par-
ticle interacting with the nuclear cores are easily
seen to be

is associated with the experimental errors of the
four-baryon energies. '

Although 4 is not an experimental number, there
is a fair degree of consistency in its value obtained
from' the potentials of HT. The potentials intro-
duced in Ref. 7 yield values of 4 in the range
-0.0091 to 0.014. The value 0.0099 should probably
be considered a lower bound of the 4 expected with
our potentials. The 0.6-F hard core employed by
HT creates larger kinetic energies with correspond-
ingly sizeable cancellations than would be expected
in the model containing no short-range repulsions
that we use. In order to observe the effects of a
plausible increase of 4, we have chosen the cases
4=10 ' and 6=1.5X10 '. Strictly speaking, Cou-
lomb effects in the structures of the nuclear cores
H' and He' should be assessed in relation to our
model. However, our analysis does not depend so
sensitively upon 4 as to demand more precise es-
timates of these effects here. While we assume the
same numerical value of 4 for the case I= 1, the
mechanism leading to a positive 4, as given in Eq.
(7b) is clearly different. There are in addition
possible isospin-mixing effects in the four-baryon
systems, which are not treated by HT. Although
we expect these to make a comparatively smaller
contribution to 4B4, they should be included in a
more complete calculation.

Our potentials contain five independent parame-
ters, an intrinsic range b, and singlet and triplet
CS and CSB strengths. Fitting the A-p interaction
to o(Ap) leaves only two independent parameters,
determined uniquely by BA and 4 as discussed in
Sec. IV.

The assumptions (a)-(e) which we make in this
initial analysis certainly do not have an unqualified
validity. The large intrinsic ranges (5= 1.8-2.1 F)
required for best fits of o(AP) contrast with the
shorter intrinsic ranges (5 & 1.5 F) associated with
known meson-exchange processes. This has fre-
quently been taken as evidence for a A-N repulsive
core."'" Such repulsioris, requiring at least a
rank-2 nonlocal interaction, would be an impor-
tant refinement of assumption (a), and will be dis-
cussed in the following paper. The A-N tensor
interaction" acts more weakly in AH' than in A-p
scattering, "and hence cannot be represented by
the same effective central triplet interaction in
both these systems without introducing some error.
Tensor interactions and short-range repulsions
known to be in N-N interactions" should also be
included. Three-body forces are predicted as a
consequence of two-pion-exchange processes, but
can be expected to be less effective in AH' than in
heavier hypernuclei. "

Two-pion exchange is accomplished by the iso-
spin-conserving virtual process A- Z+ w, result-



A-NUCLEON CHARGE -SYMMETRY-BREAKING INTERACTION. I. . .

ing in an intermediate state wherein the A hyperon
has been converted into a Z hyperon. Potential
models which take A-Z conversion into account
through the inclusion of an explicit Z component
in the wave function have been derived meson-
theoretically" and have also been discussed in
phenomenologieal three-body analyses. "' ' The
resulting two-channel formalism (TCF) permits
the distinction to be made between component po-
tentials causing A-Z conversion and those which
do not. Reference to the Z component can be elimi-
nated, resulting in the one-channel formalism
(OCF), but an artifact which then appears is many-
body forces. Even at low energies the resulting
three-body AN¹interaction can be large. " Mainly
because of the Pauli exclusion principle, which re-
stricts the available intermediate nucleon states,
A-Z conversion is considerably suppressed in
nuclear matter. ' In addition, the isospin-con-
serving A-Z conversion is significantly suppressed
in AHe' and can therefore help account for the ob-
served anomalously low A-separation energy in

He5 16

A final qualification of our assumptions, then, is
that the OCF used in this paper, with assumed
two-body interaction, might lead to a deduced CSB
interaction with different properties from those
obtained in a TCF calculation.

II. ISOSPIN MIXING IN p,H

The total potential-energy operator is V„,
= V»(2, 3)+ Vs„(1,2)+ VA„(1, 3), where (1, 2, 3)
denote (A, N, N) coordinates, and V~(s,j) is given
by V~(i,j)= Ucs(i, j)+ Wcss (f, j). Wcss is defined
in Eq. (3), and the symbol U is reserved in what
follows for the CS A-%potential.

The two linearly independent spin eigenvectors
of o, and o' for the (S, S,) = (-„-,') state are"

IX.& = (~)'"[n(1)~(2)P(3)

+ a(1)P(2) a(3) —2P (1)o'(2)e(3)], (Sa)

It'.&
= (s)'"[~(2)~(3)+ ~(2)~(3)],

It & = (s)'"[~(2)~(3) —~(2)~(3)],

(9a)

(9b)

where w(i) and v(s) are proton and neutron states.
The most general wave functj. on obeying the gen-

eral|zed Pauli exclusion principle is a linear com-
bination of products of the states in Eqs. (6) and

(7), which we denote by iS, T), where S=+ for
iy, &, the spin state which is symmetric in n and P,
and S= —for iy &, which is antisymmetric. T is
the total isospin. These four states are coupled
by V„,as follows:

IX &=(s)'"[~(1)~(2)P(3)—~(1)P(2)~(3)], (6b)

where a(i) and P(i) are "spin up" and "spin down"
states.

The effect of the r, (N) fa.ctor in Wc»(A, N) is to
connect the np isosinglet to the nP isotriplet sub-
states of the AnP system. The meson-theoretic
CSB potential and also our Wcss (A, N) make no
reference to the isospin quantum numbers of the
physical A particle. Hence the isospin mixing in
the OCF AH' wave-function depends only in an in-
direct fashion upon the A-Z' mixing, through the
potential S'c3» and is obtained formally by setting
to zero the isospin of the A particle and solving
the Schrddinger equation. This is strictly a formal
device and is not in contradiction with the A-Z'
mixing responsible in large part for Wca~ . The
present calculation, which does not include two
explicit channels for A and Z states, cannot dis-
tinguish between the CSB contribution from A-Z'
mixing and isospin mixing of exchanged mesons.

In our model, the total isospin of the AH' wave
function is determined by n and P and is expressed
in terms of the symmetric triplet state i$,& corre-
sponding to (T, T,) = (1, 0) and the antisymmetric
singlet state i$ & corresponding to (T, T,) = (0, 0):

V„, i+, 0) = [Vg, (2, 3) + s U(1, 3) + -', U(1, 2)] i+, 0& ——', W3[U~(l, 3) —U~(l, 2)] i-, 0&

—s[W,(l, 3) —W, (1, 2)] (+, 1& + ~ V 3 [W~(1, 3)+ W, (1, 2)] i —,1),

V„, i-, 0) = [V„(2, 3) + U(1, 3) + 0'(1, 2)] i-, 0)- —,'&3[U, (l, 3) —U, (l, 2)] i+, 0)

+[IF(1,2) —W(1, 3)] i-, 1)+—,'&3[W,(1, 2) + Wa(1~ 3)] I+ ~ 1&i

V„, i-, 1) = [V„(2, 3) + P(1, 3) + lT(l, 2)] i-, 1&—-'~3[U, (1, 3) —U, (1, 2)] i+, 1&

+[W(1, 2) —tV(1, 3)]i-, 0&+ g&S[W,(l, 2) + W, (1, 3)] i+, 0&,

Veo~ I+ i 1) = [V)0(2, 3) + sUs(1~ 3) + s Us(l, 2)] I+ ~ 1& —av 3 [Ua(li 3) —Uo(l~ 2)] I-i 1&

—s[ W (1, 3) —Ws(l, 2)] i+, 0) + gW[ W, (1, 3) + W, (l, 2)] i-, 0&,

(10a)

(10b)

(10c)

(lod)
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where subscripted '~V's denote N-N interactions,
t, s, e, 0 stand for triplet, singlet, even, odd,

ilarly for W). Equations (10), derived in a
straightforward manner using spin- and isospin-
projection operators, are a generalization of the
case of symmetry mixing considered earlier by
Bodmer. " However, upon dropping the states
~-, 1) and ~+, 1), a discrepancy remains with Eqs.
(15) of Ref. 16. As pointed out by one of us earlier, "
this discrepancy could result in an overestimation
of the effect of ~-, 0) (associated with Bodmer's
S' state) upon the interaction strength 4 = —,'A, + &A.,
for fixed A-separation energy, B~. Here, A., and

X, are interaction strengths associated with V,
and U, .

With use of Eqs. (10) and the assumed interac-
tions, the Schrodinger equation for AH' reduces to
coupled one-dimensional integral equations in a
fashion that is by now well known. " These equa-
tions, in which BA is known and A,

' is the eigen-
value, are presented in the Appendix.

Two special cases are considered in this paper.
The first is the coupling of the dominant ~+, 0)
state to ~-, 0). This enables a direct comparison
with the results of Ref. 16. As the effect of )-, 0)
upon A, is shown to be small, we neglect this state
in studying the second special case, namely, the
coupling of (+, 0) to the T=1 state ~-, 1). As can
be seen in Eqs. (10), such a coupling can be en-
hanced by a strong spin dependence of S'c» and
the strongly attractive n-p singlet-even potential.
Mainly because the triplet-odd n-p interaction is
not strongly attractive (and in fact is set equal to
0 in our model), the ~+, 1) state would be expected
to exert a smaller influence upon X.

The importance of the S' state in AH' depends
upon whether its presence significantly affects
the A-Ninteraction parameters required to fit the
experimental binding energy. As shown in Ref. 16,
the parameter directly affected is the spin depen-
dence of Uzs. This is proportional to the interac-
tion strength, A, „defined by

&a= ~s

where e, and e, are the singlet and-triplet CSB

(13)

.006
M
C9

.003-
/

/

0 .05 .I 0
S

.I5 .20

.06

.04-

upon the A-¹intrinsic range is indicated by con-
sidering b=1.5 F, which corresponds to 2m ex-
change, and the three other intrinsic ranges, 1.8 F,
2.1 F, 2.3 F. For comparison, the result of Ref.
16 for 5 = 1.5 F is expressed in our dimensionless
form and shown as the dashed curve in Fig. 2(a).
The present estimate of the effect of the S' state
upon the A-N interaction is appreciably smaller
than that predicted in Ref. 16, and for the large
majority of spin dependences of our potentials, can
be neglected.

By contrast, isospin mixing in ~H' shows a
stronger effect than the S' state in changing the
value of the spin-averaged CS interaction strength,
A., that is required to produce a given BA. As seen
in Eqs. (10), the relevant interaction parameter in
the isospin coupling is the CSB spin-difference
strength, e„defined by

It is more convenient to work with the dimension-
less parameter

(12)

Figure 2(a) shows the variation of A, with S, with

BA kept fixed. This is obtained by repeatedly
solving the qH' equations with different values of
S. This plot has been put in dimensionless form
by defining G(S) =1 —X(S)/X(0). Increasing Bl, from
0.05 MeV to 0.3 MeV increa. ses G(S) by a maxi-
mum of 2.5% for S ~0.3. Therefore, only the case
EJ„=0.17 MeV is shown. The dependence of G(S)

.02-

0 .IO
M

.20

Fia. 2. (a) G(S) curves representing effect of mixed-
symmetry $ state in AH, for B&

=0.17 MeV and the
intrinsic ranges b =1.5 F (I), b =1.8 F (II), b =2.1 F
(III), and b =2.3 F (IV). The dashed curve is for b =1.5 F
and is deduced from Ref. 16. (b) I (M) curves repre-
senting effect of T =1 state in AH3, for B&=0.17 MeV and
the intrinsic ranges b =1.5 F (I), 1.8 F (II), 2.1 F (III),
and 2.3 F (IV).
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III. A-P POTENTIALS

The total A-P elastic cross section for a c.m.
momentum k is given by

k'(I + cot'5«) l't'(I + cot'5„) ' (15)

If we denote the A-p singlet and triplet interaction
strengths by X„and X„, then a given A-p poten-
tial is characterized by X,„, A.,„and intrinsic
range, b. In a search of these parameters, the
known analytic solutions for the singlet and trip-
let S-wave phase shifts 50, and 5«, from a Yama-
guchi potential" are evaluated at the six energies
of Table I. The X' function then is evaluated, g'
being given by

u,, (i) —(r (i))'
Ao(i)

o,„~(i), ae(i), and Aa(i) are the measured and
computed cross section and standard error at the
ith energy. The errors listed in Table I are re-
duced from those given in Refs. 11 and 12 as a
consequence of the improved statistics obtained in
combining the two sets of data. It should be noted
that the data in Refs. 11 and 12 might not be en-
tirely compatible, as these two groups use dif-
ferent methods of data analysis. However, in pre-
liminary calculations, both sets of data appeared
to produce similar results.

In our scans of fits to o(AP), we use the triplet
and singlet scattering lengths, a, and a„as inde-
pendent parameters, "and the intrinsic range.
Using a mesh of 0.1 F, we search over the values
0 & -a, & 7 F, 0 & -a, &3 F at the intrinsic ranges
1.3 &5 &2.5 F. We denote by g' the minimum
value of y' for the entire family of parameters
scanned at a given intrinsic range. As seen in
Fig. 3, although X' reaches a least value at
5= 2.1 F, a valley of nearly equally good fits ex-

(15)

A N-strengths. Again, it is more convenient to
express results in dimensionless form. We define

(14)

In Fig. 2(b) we plot the dimensionless quantity
L(M) =1 —X(M)/X(0). Unlike G(S), L(M) is quite
strongly dependent upon BA. Keeping BA fixed, the
AH Schr5dinger equation is repeatedly solved for
different assumed values of M. We show results
for the same intrinsic ranges and BA as in Fig.
2(a).

Summarizing, upon inspection of Figs. 2(a) and

2(b), X is seen to depend more sensitively upon
isospin mixing than upon symmetry (S') mixing,
when comparison is made at equal values of the
dimensionless coupling parameters, S and M.

40

5.0

I.O

0.0
12 1.5

(

1.7 1.9
b (F)

i

2.1

I

2.3 2.5

FIG. 3. Minimum value of y as a function of intrinsic
range, b. This curve represents complete scans of fits
to 0(gp) at intervals of 0.1 F.

3.0
b= 2.5 F

2.0

1.0
/

/ b= l.5F
0.0 l

0.0 5.0 6,0
—a, (F)

FIG. 4. Contours of constant ll for selected values of
the intrinsic range, b, on the scattering-length plane.
For b =1.8, 2.1, and 2.3 F they enclose regions where
y~ ~ 2.8. The contour marked b =1.5 F encloses the
region g~ ~ 3.3,

5.01.0 2.0

tends to 1.8 F. In this paper we give special
attention to the intrinsic ranges b = 1.8 and 2.1 F
as representing best fits in addition to b= 2.3 F
and 1.5 F just on the edges of the X' valley.

Contours for X'= 2.8 are shown in Fig. 4. Their
interiors correspond to potential parameters for
which X —1.8 ~&1, where X I;„=1.8 at 5=2.1 F. In
our search for solutions to the three- and four-
body data, we restrict ourselves to within the con-
tours shown. For b=1.5 F we find X' =3.0, but
because of the special interest in b =1.5 F as a
probable upper limit associated with mechanisms
for attractive A-Npotentials" we also include data
fits at 5=1.5 F with 3.0 +X' +3.2. These lie within
the contour X'=3.3 shown in Fig. 4. Clearly, the
correlations between a, and a, observed by Alex-
ander et al. persist in the present analysis. We
obtain 124 A-p potentials which meet our y' crite-
rion.
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TABLE III. Selected A-p potentials. 00 i I I I
i

I I I I.
)

I 1 I &
i

t & s9

Pot.
b

(F)
-aS

(F) (F) (F)
+ot
(F)

01
02

03
04
05

06
07
08
09
10
11
12
13
14
15

1.5 3.01
1.5 3.20

1.8 2.35
1.8 2.37
1.8 2.78

2.1 1.83
2.1 2.00
2.1 1.87
2.1 1.91
2.1 2.23
2.1 2.02
2.1 2.52
2.1 2.11
2.1 2.38
2,1 2.79

4.9
4.2

3.5
4.1
5.1

2.1
2~3
2.4
2.5
2.6
2.9
3.1
3.2
3+7
4.3

0.8
0.9

1.2
1.1
1.0
1.8
1.7
1.7
1.7
1.6
1.6
1.6
1.5
1.4
1.3

1.70 2.75
1.74 2.61

2.21 3.00
2.15 3.11
2.08 3.24

3.03 3.19
2.95 3.25
2.92 3.25
2.88 3.25
2.85 3.33
2.78 3.33
2,73 3,33
2.71 3.41
2.63 3.50
2.56 3.61

600

500

16
17

2,3 2,61
23 277

2.1
2.3

2.0
1.9

3.42
3.32

3.48
3.54 I I I I I I I I I I ~ I ' I I I I I I I0

0 5 IO l5

c.m. ENERGY (MeV)

20

The cross section at E, =17.6 MeV, having a
small statistical error, plays a major role in our
g' fits. It is characteristic of all our potentials
that the theoretical values of o(Ap) at this energy
are too large, and that the inadequacies of poten-
tials with b too large or too small tend to be ac-
centuated here. Table III lists selected A-P poten-
tials with acceptable fits to o(Ap) at different in-
trinsic ranges. These potentials are chosen to
represent the spread of values of a,/a, consistent
with each intrinsic range.

As seen also in Fig. 5, an important distinction
between the best fits at different intrinsic ranges
is the predicted behavior of o(AP) at energies be-
low E, =3.7 MeV. Best fits to o(Ap) generally
are characterized by a, = a, . However, many ex-
cellent fits for large values of the ratio a,/a,
occur and lead to self-consistent potentials which
fit three- and four-body data. It would appear
that better A-p scattering data at lower energies
would be helpful in resolving this ambiguity of our
analysis.

In using the effective-range approximation with
four parameters, Alexander et al. and Secci-Zorn
et al. determined the set of parameters shown in
Table IV along with an effective-range-parameter
search of ours using the combined data. For com-
parison, our best A-p potential which also sat-
isfies self-consistency (see Sec. IV) is listed.
Lower confidence levels are associated with ef-
fective-range fits partly because of a reduction by
1 of the number of degrees of freedom.

As in the effective-range approximation, our
three-parameter-potential fit neglects any pos-

FIG. 5. Best fits to cr(1t p) for- four intrinsic ranges.

TABLE IV. Various fits to low-energy A-p data.

Source
—at —a~ sot ~0 Confidence
(F) (F) (F) (F) level

Ref. 11b
Ref. 12b

Ref. 7c
This study
Pot. 08

1.6
2.1 2.2
3.6 2.1
2.04 1.9
1.87 1.7

1.8
2.0
2g3
1,9
2.4

3.3 2.8
3.5 5.0
3.4 3.3
3.4 3.4
3.25 2.9

0.34

0.37
0.60

Accumulative distribution of g .
"Four-parameter effective-range fits to cr(Ap). Pa-

rameters for this study were found in y2 search of com-
bined data of Table I.

Pot. H of HT, having hard-core radius r~ =0.6 F and
exponential shape.

sible P wave c-ontributions to o(Ap). HT have
listed P-wave phase shifts from their potential II
with a hard-core radius r, = 0.6 F, which give a 3%
contribution to o(AP) at E, = 17.1 MeV. Since
we do not have a theory of the P-wave interaction,
it seems more consistent to ignore such small
P-wave effects in determination of A-P potential
parameters. It should be mentioned, however,
that a check has been made of the effect of sub-
tracting the HT P-wave contributions directly
from the six data points and using these new data
in our scanning procedures. The result is only a
slight increase in g' for a given set of A-P param-
eters found. Furthermore, a strictly attractive
P-wave potential would be a more appropriate



A-NUCLEON CHARGE-SYMMETRY-BREAKING INTERACTION. I. .. 1361

extension of our Yamaguchi S-wave interaction
than the HT hard-core potential. Impact-param-
eter considerations suggest that such a potential
could give lower P-wave contributions at E,
&18 MeV.

IV. SELF-CONSISTENT A-N POTENTIALS

A.„(1+ 4) —A. ,+'4 1+ v 3 A(W3+M) + 5M/W3 '

while I=1 gives

A2 4=
X,(-', +A)+ X„(-', —A)

1+&3b,(v 3 +M) +M/&3

(18a)

(18b)

Part of the self-consistency problem arises
through the different dependences of X upon M
given by Eqs. (18a) and (18b) and by the solution of
the three-body problem. Given any data fit, rep-
resented by (B~ A, X, X„, b), the spin depen-
dence in S'c» must be adjusted so as to give the
same value of X from Eq. (18a) or (18b) as the
eigenvalue, A., in AH'. We can denote this eigen-

0.20

O.I9

O.I8

O.I7

O.I6

O.I5
0.0 0.05 O. IO

M

O. I5 0.20

FIG. 6. Graphical illustration of the self-consistent
solution of the two-, three-, and four-body problems.
g 4 is determined from the two- and four-body data and
A3 is the eigenvalue fro~ the three-body problem. The
dashed line represents Q without inclusion of the T = 1
state. The point of intersection determines the self-
consistent value of A (in F~) andM.

The A-p and CS interaction strengths are related
by

A.,„=X~+ Xs(a —3),

A.„=X, + Xs(a+ 1).

It is convenient to combine the relationships in-
volving two- and four-baryon data, Eqs. (17) and
(7), obtaining the dependence of X upon b., M, X,„,
and X,„. Defining A.„=—,'A.,„+&X„, we see that the
two- and four-body equations combine to give an
expression for X, which we denote by X, , For
I= 0 this becomes S~ = S+M. (20)

The inequality dS/dM &0 holds for I=O whenever
& 3A.„and for I= 1 whenever A.„&0and A.,„&0.

Hence if S&0 at the beginning or the end of an it-
eration, then the particular data fit must be re-
jected as unphysical.

Finally, a third self-consistency requirement
arises from the spin assignment for AHe'. As is
easily seen from Eqs. (7) and (18), the spin as-
signments (a) I=O and (b) I= 1 are met self-con-
sistently only if S&M or I&S, respectively.
These inequalities provide strong conditions which
eliminate many fits to o'(AP).

A-N potentials have been computed for all in-
trinsic ranges used in fits to o(Ap). In what fol-
lows, attention is directed only at the case b= 2.1 F,
because thi. s case adequately and concisely illus-
trates our results. In addition to there being
slightly better o(Ap) fits at b = 2.1 F than any other
being considered, we find here the largest spread
of self-consistent solutions with respect to the
ratio a,/a, . Table V contains all the self-consis-
tent A-%potentials we find by using the A-p po-
tentials 06 to 15 of Table III. In Table V, the suf-
fix notationA, B, C, refers, respectively, to the
cases BA=0.05, 0.1V, and 0.25 MeV. The prefix
S denotes the case I=1. As Table V tends to sug-
gest, we find no solutions for I= 1 at a value of BA
greater than 0.05 MeV.

Over the entire range of self-consistent fits of
all 50 A-p potentials, the A-p CSB interactions
are attractive. Defining r„=e,/e„we find that
1.25 ~r„~2.59 for I=O and. 2.58 ~r„~4.21 for
I=1. From Table V the CSB spin dependence
clearly is similar for both spin assignments. How-
ever, the values of I seen there lie near the upper
limit for I=O and the lower limit for I=1 from
among the entire classes of self-consistent solu-

value by X,. A solution is sketched graphically in
Fig. 6 which illustrates the considerably stronger
M dependence in X, 4 than in A, . In practice, an
iterative procedure is followed starting at M & 0,
with successive recomputations of the eigenvalue
A., at different values of Iuntil self-consistency
is achieved.

Self-consistency requires, in addition, that S&0.
If one assumes that the CS forces determine the
spin of AH', then a negative value of S is incon-
sistent" with the experimental spin value of &. In
terms of the two- and four-baryon data, S is ex-
pressible as a decreasing function of M. We define
an experimental spin-dependence parameter, S„:

S„=—,'v 3 x-'(x —x„).
S„ is the sum of a CS and CSB part, expressed
simply as
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TABLE V. A-N self-consistent potentials for b =2.1 F.

I ot.' (F )

~B

(F ) (F) (F) +st

10A
13A
14A
15A

08B
09B
10B
11B
12B
13B
14B
15B

07C
08C
09C
10C
11C
12C
13C
14C
15C

0.0474
0.0684
0.0813
0.0935

0.0175
0.0219
0.0239
0.0355
0.0425
0.0432
0.0550
0.0663

0.00360
0.00810
0.0124
0.0143
0.0255
0.0322
0.0329
0.0444
0.0552

0.0475
0.0771
0.103
0.130

0.0462
0.0490
0.0654
0.0726

' 0.0768
0.0936
0.118
0.144

0.0510
0.0539
0.0567
0.0728
0.0798
0.0840
0.100
0.124
0.149

0.157
0.157
0.157
0.156

0.167
0.167
0.167
0.167
0.167
0.167
0.167
0.166

0.171
0.171
0.171
0.171
0.171
0.171
0.171
0.171
0.171

-0.004 30
-0.006 19
-0.007 34
-0.008 43

—0.001 69
-0.002 12
-0.002 12
—0.003 42
-0.004 09
-0.004 16
-0.005 29
-0.006 37

—0.000 360
-0.000 800
-0.001 23
-0.001 41
-0.002 52
—0.003 19
-0.003 26
-0.004 38
-0.005 44

-4.07
3 0 73

-3.60
-3.51

—5.89
—5.30
—5.09
-4.40
-4.17
—4.14
—3.88
—3.72

-16.9
—9.19
—7.04
—6.49
—4.94
-4.53
—4.49
—4.09
—3.86

0.158
0.203
0.226
0.246

0.0805
0.0929
0.0974
0.127
0.144
0.144
0.170
0.192

0.0390
0.0523
0.0652
0.0697
0.100
0.118
0.119
0.145
0.167

0.0837 2.30
0.110 2.47
0.129 2.54
0.149 2.59

0.0510 1.82
0.0563 1.93
0.0600 1.98
0.0738 2.18
0.0822 2.26
0.0854 2.28
0.103 2.39
0.122 2,47

0.0353 1,25
0.0405 1,49
0.0459 1.66
0.0491 1.73
0.0630 2.01
0.0715 2.13
0.0744 2.15
0.0915 2.30
0.109 2.40

S11A 0.0744
S12A 0.0944

0.0408 0.157
0.0332 0.156

-0.006 73
-0.008' 50

—2.78
—2,24

0.195
, 0.219

0.0759 3.25
0.0672 4.21

All self-consistent solutions are shown which are obtained using A-p potentials 0.06 to 15
(see Table III). The effects of the T=1 state in AH3 are included.

Suffixes A, B, C denote BA =0.05, 0.17, and 0.25 MeV, respectively. Prefix S refers to
potentials consistent with spin 1 for AHe4.

tions. Hence, knowledge of the spin of &He4 might
serve to delimit the CSB spin dependence.

The dependence of A., upon M is induced through
isospin mixing. Although in our model of A-N
interactions X, , has a more rapid variation with
M than does X„ the point of intersection of the
two curves illustrated in Fig. 6 is shifted signifi-
cantly from the ease of no isospin mixing. Omis-
sion of (-, 1) would be represented by a horizontal
line for A, As one observes in Fig. 6, inclusion
of the i-, 1) state in ~H' has the effect of shifting
some of the spin dependence from Pcs to 8'c».
This shift of spin dependence can be seen in Table
VI, which lists the percentage change of self-con-
sistent potential parameters upon including the
T= 1 state of AH'. The potentials consistent with
lower Bq are clearly the more sensitive to iso-
spin-mixing effects. The most pronounced effects
are seen to occur for I=1.

To assess the sizes of CSB required in our anal-
ysis, it is useful to define CSB fractions r„and
r„by the equations

For &A=0.05 MeV and I=O, both CSB fractions
are increased upon inclusion of i-, 1), whereas
for I= 1, isospin mixing increases r,„but decreases
rt„, the combination of which reinforces to in-
crease M and decrease S. The entry for Pot. S12A
shows it can sometimes be hazardous to omit iso-
spin mixing in AH', if one's goal is to determine
either the CS or the CSB A-Npotential parameters
self -consistently.

The correlation of the CSB fractions with J3A is
graphically illustrated in Fig. 7, for the case I=O.

Although r~ and r,„are poorly determined by
the data, the smaller values of BA can clearly
lead to a higher value of these fractions. In our
model, the A-P potential is stronger than what is
required of a CS potential to bind &H', and this
difference becomes larger for lower BA. It should
be emphasized that M is not a free parameter, in
spite of the appearance of M on the abscissa of
Fig. '?. M is determined uniquely for any data fit
in a self-consistent manner.

V. DISCUSSION

(21) From the results of Sec. IV it is clear that the
A-N CSB potential required to fit two-, three-,
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TABLE VI. Effect of isospin mixing in AH .
Pot. rst

10A
13A
14A
15A

07C
08C
09C
10C
11C
12C
13C
14C
15C

S11A
S12A

2.6
3.6
4.2
4.9
0
0
0.8
0.7
1.6
1.6
1,9
2,5
3.0
4.2

29,1

-1.9
-1 9
-1.8

1QV

0
-0.2
-0.2
-0.1
-0.4
-0.4
-0.3
-0.5
-0.5

3 y3

-36.8

—0.3
-0.5
-0.8
—1.0

0
0

.0
0
0

-0.1
-0.1
-0.2
-0 4

-0.6
-1 3

2.1
3.0
3,4
3.8
0
0
0.8
0.7
1.2
1.9
1.9
2.3
2.5

19.3
28.4

0.6
0.7
0.7
0.7
1 I1

-0.4
-0.5
-0.4
-0 6
-0.6
-0.6
-0.6
-0.6

-20.4
-28.0

1.7
2.6
3.0
3.4

-0.9
-0.3
0.5
0.4
0.8
1.5
1.5
1.9
2.1

6.0
9.0

1.2
2.0
2.4
2.8

-1.1
-0.5
0.3
0.2
0.4
1.1
1.1
1.4
1.6

-4.4
-25.3

0.5
0.5
0.6
0.6
0.2
0.1
0.2
0.2
0.4
0.4
0.4
0.5
0.5

25.2
45.2

'Change of potential parameters upon inclusion of T =1 state, expressed in percent of values
obtained when T =1 state is not included.
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FIG. 7. CSB fractions as a function of the self-consis-
tent value of M. M is the CSB spin-difference parameter.
Upper curves are singlet fractions (r~) and lower curves
are triplet fractions (rt„) as defined in Eq. (21). These
are smooth curves drawn through a plot of all self-con-
sistent CSB potentials in order to show the systematic
variation with the assumed values of BA.

and four-body hypernuclear data can be stronger
than what is necessary to explain the experimental
CSB effect in AHe and AH' alone. For I=O, the
value -3 for the parameter o. would represent com-
plete cancellation between the spin-dependent
(v o) and spin-independent (e) contributions to 4.
Cancellations are seen to be large when 5=0, and
are also significant when I=1, where CSB must
work against the spin dependence of the CS inter-
action in providing the correct sign of the four-
body energy splitting. The spin assignment I= 1 is
inconsistent with setting e = 0 and the known ex-
perimental spin of 0 for AH', if one assumes that

a two-body central-force model is valid. In the
present analysis the spin-independent parameter
e plays a vital role in achieving maximum con-
sistency with all the data.

Only five self-consistent solutions have been
found for I=1, all for BA=D.D5 Mev, and all as-
sociated with excellent fits to o(AP). If the spin of
AHe~ is 1, then our model-predicts a strong CSB
component.

For most potentials, isospin mixing in AH' has
the effect of contributing to an increase in the
TVc» found. This is most pronounced for I= 1. To
provide a more complete picture of CSB effects
in three-body states, it would seem desirable to
study A-d scattering as well. A large CSB effect
might be encountered relative to A-p scattering,
and the CSB coupling of the T= 0 and T=1 channels
could be important.

As we have not solved the four-body problem,
there is an unknown error associated with our fit
of complete four-baryon data. A solution of the
four-body problem using separable interactions
would be an important step. In addition, definite
predictions are desirable with our potential mod-
els concerning the existence of particle-stable
excited states of AHe' and AH'. Such states have
been inferred by Herndon and Tang, '" and ex-
perimental evidence has recently been discovered
in support of them. '

That part of the four-baryon datz we have chosen,
namely &, could be too small, in view of the
strictly attractive-potential model employed with
its relatively smaller kinetic energies. Because
this error is unknown and conceivably large, we
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TABLE VII. Sensitivity to 4. Percent change of po-
tential parameters when 4 is increased by 1%, com-
puted as an average over an interval of 50% increase
of 4.

Pot.

10A -0.2 0.2 0,001 -0.2 0.4 -0.04
134 -0.2 0.2 0.001 -0.2 Q.2 —0.03
15A -0.1 0.1 0.003 -0.1 0.2 —0.03
OSB -0.6 0.2 0.000 -0.6 1.0 -Q.07
13B -0.2 0.1 0.001 -0,2 0.4 -0.04
158 -0.2 0.07 0.001 -0.2 0.2 -0.03

0.5 -0.2
0.2 -0.1
0.1 —0.1
0.4 -0.4
0.3 -0.4
0.1 -0.2
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a, = -1.8 F. The existence in our model of spin--,'
states is not very sensitive to 4,, since as 4 in-
creases, both S and A. increase, with canceling
effects upon X, = X(1 —&3S).

We find no A-N bound states. The well-depth
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APPENDIX

Specializing to the case where I+, 1) and I-, 0)
are neglected, we write the momentum-space
wave function of ~H'

@=q I+, o&+yl-, 1&. (Al)

The T=O and T=1 amplitudes y and y satisfy cou-
pled integral equations obtained by substituting
Eqs. (10) into the Schrddinger equation

D 'V,o, (A2)

1 A(x) B(N) —B(P)

1
( )

C(x)
(
—)ff(N) (&)K(P)83' +g P

N
+g'

(AS)

where

p, P, -MP,
p. M (A4)

PP3 ™P2 p 1Bp
@+M

and employing NLS potentials, as defined in Eq.
(4), for A-N and N-N interactions. Here D= T+E,
T and V„,are the total kinetic- and potential-
energy operators, and E is the total binding en-
ergy. The operator -D 'V,« is not Hermitian.
This is an artifact of the specific manner in which
the SchrMinger equation is employed, as occurs
similarly with the variation-iteration method for
determining interaction strengths when energies
are assumed to be given. " As a consequence, the
numerical eigenvalue problem finally obtained in-
volves a nonsymmetric matrix. With the n-P in-
teraction and E fixed, our procedure is to look for
the minimum over-all A-N interaction strength, X.

The calculation is performed in the c.m. system,
in which P, = -(P, + P,), and using P2 and P3 as the
independent momenta. Then D =D(P„P„E). We
write the n-P singlet and triplet kernels as f,(P)
and f,(P). Taking all A-N kernels to be of the same
form, written g(P), leads to the structure
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I and p. are mean nucleon and A masses, and
B= 2M/(g+M).

The spectator functions, A, B, C, andII, sat-
isfy four coupled integral equations. Upon sub-
stituting (A3) into the Schrlinger equation, one
obtains

Js(z, N) = Jx(z, N) ly, y

"d g(iz+-,'Br, i)g(ir, +-,'Bzi)
(A7)

eo

A(x) =z F,(x)A(x) + 2 dz Z, (x, z)B(z),
p

B(N) = G(N)B(N) + dz Z, (z, N)A(z)
Rp, 0

(A5) and

f . t'(z)

&(z, &.)

(AS)

+ dgJSN, z Bz

+ dz J2(z, N) C(z}+ G(N)H(N)
4RP. p

+ dz J,(N, z)H(z)
p

where A.„is the triplet-even n-P interacti. on
strength and E, = 2X. With the notation u = cose„
the kernels are

(AS)

Equations for C(x) and H(N) are obtained from
(A4) by making the interchanges (s, t, A, B, X „,A.,)—(t, s, C, H, X„,X}. Although J, is a symmetric
kernel, J, is not. The A spectator functions, A
and C, are readily eliminated between the four
equations, leaving two coupled equations contain-
ing only symmetric integral operators. The equa-
tions are solved with high numerical precision
using ten-point Gauss-Gegenbauer quadrature
formulas. "
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A-Nucleon Charge-Symmetry-Breaking Interaction. II. Rank-2 Potentials
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A potential model of the A-N interaction containing short-range repulsions is constructed
to study charge-symmetry-breaking (CSB). Rank-2 nonlocal central potentials and a rank-1
approximation to them (referred to as UPAA) are required to fit low-energy A-P scattering
cross sections, the A-separation energy (Bh) from AH, and a dimensionless parameter
which partially characterizes the CSB part of the binding-energy difference between AH4 and
AHe4. In a scan of these data, a class of potentials with acceptable g2 fits is found. Repul-
sions are seen to reduce significantly the lower limits of the singlet and triplet CSB
strengths required in the entire data scan, from the CSB found earlier without including
repulsions. In particular, for the largest value of BA used, 0.25 MeV, qualitative agreement
with Downs's SU3 model of CSB is attained, in that the A-P CSB singlet interaction can be
repulsive. This conclusion also holds for the UPAA, with an indication that a short-range
weakening of A-N attraction. has an effect similar to a A-N repulsion. Effects of isospin
mixing in AH are taken into account. The A-N potentials resulting from this analysis are
seen to vary in a systematic way. within the statistical spread of available data.

I. INTRODUCTION

In the preceding paper' (henceforth referred to
as I), we have sought limitations upon the charge-
symmetry-breaking (CSB) component of the A-N
interaction as imposed by experiment. Adopting
the notation of I, the A-N two-body CSB interaction
is written

Wc~B=- T,(N)(Xs/2pA„)[a+o(A) o(N)]W~, .(I)
where 7,(N) is a Pauli isospin operator, As is an
over-all interaction strength, a is a spin-indepen-
dent constant, and p,» is the A-N reduced mass.
S~ contains the momentum dependence of the po-
tential, and is defined to be positive in the limit of
low relative momenta. The singlet and triplet CSB
strengths in the A-p state, denoted by e, and e, ,
are e, =A.~(a —3) and e, =A,s(a+I). Using two-,
three-, and four-baryon data, and a rank-1 central-
separable-potential model in which all potentials,
including S~, have Yamaguchi shape, ' we found in
I a class of potentials which gave good X' fits to
all data. One of our results was to find only attrac-
tive A-p CSB contributions present, expressed by
the inequalities e, &0, e, &0. This disagrees with

one of the predictions of the SU, particle-mixing
model of Downs, ' that the long-range part of the
A-p CSB singlet interaction should produce a re-
pulsion.

The purpose of the present paper is to test the
conclusions of I by extending the analysis to a
class of potentials with different shapes. In order
to study the effect of short-range repulsions in the
Jt. -N system, we introduce rank-2 interactions.
As seen in Secs. II and GI, we are thereby able ta
produce a change in sign of the S-wave phase
shifts both in the A-Ã and the N-N interactions,
which is indicative of strong short-range repul-
sions, and come to better agreement with some of
the well-known experimental results for the N-N
interaction.

Potentials that have a two-body state which is
just bound or just unbound are frequently well ap-
proximated in the low-energy regime by rank-1
potentials, in what has come to be known as the
unitary pole approximation (UPA). ' ~ ' We intro-
duce here a closely related approximation, which
we refer to as the UPAA. We have in mind the
dual purpose of testing the pole approximation to
the rank-2 potentials introduced here and studying
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