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Abstract 
 

The passage of vehicular traffic over short-span steel highway bridges generates 

cumulative fatigue damage within the supporting plate girders. Over time, fatigue crack 

growth may lead to the untimely occurrence of elastic limit states which may cause a 

bridge to become structurally deficient or even collapse. It may be useful for structural 

engineers to be able to design or otherwise modify plate girders for presumed through-

thickness fatigue crack configurations so that the premature occurrence of elastic limit 

states may be averted. The objective of this research was to develop theoretical 

expressions for the residual bending moment and shear force strengths of I-shaped, 

transversely stiffened, steel plate girders corresponding to various elastic limit states. 

Several through-thickness fatigue crack configurations were considered. The formulation 

of the expressions employed various theories from solid mechanics including elasticity 

theory, linear elastic fracture mechanics, classical plate theory, and the principle of 

stationary potential energy. Finite element analyses were then conducted to validate the 

formulated expressions. The correspondence between the analytical and numerical results 

was generally in good agreement. Plots of the formulated and validated expressions as 

functions of crack length and load cycle demonstrated that various elastic limit states 

influence the overall residual strength of a fatigue-cracked plate girder at varying scales; 

certain limit states may be neglected in favor of more detrimental limit states. A design 

procedure for modifying the initial design of a plate girder for prescribed fatigue crack 

configurations was finally developed and demonstrated by employing the newly 

formulated and validated expressions. 
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1 Introduction 
 

The short-span slab-girder steel bridge is the most common highway bridge type 

in the United States (see Figure 1.1) (Barker & Puckett, 1997, sec. 6.3.1). The growth of 

fatigue cracks in the plate girders of these bridges has previously caused many to become 

structurally deficient or even collapse (Bowman, 2002, 2004; Chajes, Mertz, Quiel, 

Roecker, & Milnius, 2005; Kirke & Al-Jamel, 2004; Lichtenstein, 1990; Minor & 

Woodward, 1996; Stockfish, 2011; Wardhana & Hadipriono, 2003; Zhou & Biegalski, 

2010). The ageing of bridge infrastructure in the U.S. is only exacerbating the problem of 

potential structural deficiencies and collapses of these bridges. A recent study by 

Wardhana & Hadipriono (2003) analyzed over 500 bridge failures (structural deficiencies 

and collapses) in the U.S. between 1989 and 2000 and found that almost 30% involved 

slab-girder steel bridges Approximately 5% of all the failures were caused by steel 

deterioration, corrosion, or fatigue cracks. 

 

 

Figure 1.1: Typical short-span slab-girder steel highway bridge (Ryan, Mann, Chill, & Ott, 2012). 
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I-shaped transversely stiffened steel plate girders constitute an integral component 

of short-span slab-girder steel highway bridge superstructures (see Figure 1.2) (Taly, 

1998, sec. 1.3.3.1). The code-based procedure for bridge design in the U.S. requires 

engineers to design these plate girders for various limit states assuming that a girder will 

always remain uncracked (AASHTO, 2010). Furthermore, the state departments of 

transportation are required by the Federal Highway Administration (FHWA) National 

Bridge Inspection Program (NBIP) to conduct inspections of all public highway bridges 

at a maximum of every two years (CRS, 2007). In the time period between bridge 

inspections, fatigue crack growth may lead to untimely plate girder failure which may 

cause a bridge to become structurally deficient or even collapse. 

 

 

Figure 1.2: Typical I-shaped transversely stiffened steel plate girders (MRC, 2013). 

 

The passage of vehicular traffic over these superstructures produces sub-critical 

quasi-static stress fluctuations in the plate girders which generate cumulative fatigue 

damage. Specifically, high concentrations of stresses form at locations of discontinuity 

such as at flaws in the welds connecting the web plate to the flange or stiffener plates, or 
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at the ends of weld lines (Crocetti, 2003; Davies, Roberts, Evans, & Bennett, 1994; 

Goodpasture & Stallmeyer, 1967; Hall & Stallmeyer, 1964; Kouba & Stallmeyer, 1959; 

Marek, Perlman, Pense, & Tall, 1970; Meguid, 1989; Mueller & Yen, 1967; Roberts, 

Davies, & Bennett, 1995; Yen, 1963; Yen & Mueller, 1966). These stress concentrations 

may cause pre-existing microscopic flaws to develop into through-thickness macrocracks 

(see Figure 1.3) (Lawn, 1993; Osman & Roberts, 1999; Rolfe & Barsom, 1977). 

 

   

Figure 1.3: Cross-sections of through-thickness fatigue cracks in I-shaped plate girders. The cracks have 

propagated through the flange and web plates (Mertz, 2012; Ryan, Mann, Chill, & Ott, 2012). 

 

The stress fluctuations may then cause a crack to propagate along the weld line or 

through the flange or web plates (see Figure 1.4) (Crocetti, 2003; Davies et al., 1994; 

Goodpasture & Stallmeyer, 1967; Hall & Stallmeyer, 1964; Kouba & Stallmeyer, 1959; 

Marek et al., 1970; Meguid, 1989; Mueller & Yen, 1967; Roberts et al., 1995; Yen, 1963; 

Yen & Mueller, 1966). The resulting loss of gross cross-sectional area may hasten the 

advent of various elastic limit states such as flange local yielding, section yielding, elastic 

flange local buckling, and elastic web local buckling due to bending moment or shear 

force effects (Brighenti, 2009). Furthermore, the crack may attain a critical length such 

that the stress intensity at the crack tip equals or exceeds the fracture toughness of the 

girder steel resulting in brittle fracture (Meguid, 1989, sec. 3.3). Alternatively, the plastic 
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region at the crack tip may grow to a critical size indicating impending ductile failure 

(Meguid, 1989, sec. 5.4. Overall, the growth of a fatigue crack may serve to initiate the 

premature occurrence of elastic limit states in a plate girder under sub-critical loading 

conditions. 

 

     

Figure 1.4: Fatigue-cracked steel plate girders (Kirke & Al-Jamel, 2004; Stockfish, 2011; Zhou & 

Biegalski, 2010). 

 

Herein are described some specific instances of bridge deficiencies and collapses 

caused directly by the formation and growth of fatigue cracks. The King‟s Street Bridge 

in Melbourne, Australia collapsed in 1962 due to the brittle fracture limit state (Kirke & 

Al-Jamel, 2004, sec. 2.3.3). Inherent discontinuities and flaws in the welds holding 

together the supporting plate girders induced high concentrations of local stresses within 

the loaded girders. The high stress concentrations, combined with the low ambient 

temperatures and the low fracture toughness of the girder steel, led to the sudden fracture 

and collapse of the supporting girders. 

More recently in 1994, one of the supporting I-shaped girders of the Blue River 

Bridge carrying I-64 in southern Indiana experienced the formation of a long, vertical, 

through-thickness crack within the web plate (Bowman, 2002, 2004). It was concluded 
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that the low temperatures during the winter of 1994 around the location of the bridge 

served to greatly reduce the fracture toughness of the girder steel. Inherent flaws within 

the plate girder welds initiated the propagation of a fatigue crack. The fatigue crack 

eventually propagated to a critical size causing the loaded web plate to fracture in a brittle 

manner. 

In 2003, a fascia steel plate girder supporting the I-95 Bridge over the 

Brandywine River in Delaware experienced the formation of a long, vertical, through-

thickness crack (Chajes et al., 2005). The crack was concluded to be caused primarily by 

the brittle fracture limit state. Although the bridge did not experience collapse, it had to 

be partially closed to traffic for over two months for repairs. Also in 2003, two plate 

girders supporting the I-895 Bridge over U.S. Route 1 and the Patapsco River in 

Maryland experienced the formation of two long through-thickness cracks (Zhou & 

Biegalski, 2010). As with the I-95 Bridge over the Brandywine River, the crack was 

deemed to be caused primarily by the brittle fracture limit state. 

Minor & Woodward (1996) described the buckling of a cracked web panel 

located within an I-shaped transversely stiffened steel plate girder supporting the I-40 

Bridge over the Rio Grande in New Mexico. The girder did not collapse and therefore 

retained a certain quantity of residual strength. However, the presence of the long, 

vertical, through-thickness crack in the web panel led directly to the buckling of the web 

panel. The buckled region of the web panel was limited to the local region adjacent to the 

crack. 
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2 Objective 
 

It may be useful for structural engineers to be able to design or otherwise modify 

the elastic capacities and fatigue lives of plate girders for presumed through-thickness 

fatigue crack configurations. In this way, the premature occurrence of elastic limit states 

may be averted in between bridge inspection periods. The objective of this research was 

to develop theoretical expressions for the bending moment and shear force capacities of 

I-shaped transversely stiffened steel plate girders corresponding to the limit states of 

flange local yielding, section yielding, elastic flange local buckling, elastic web local 

buckling, brittle fracture, and impending ductile failure while considering the presence of 

various through-thickness fatigue crack configurations. These elastic limit states 

generally do not correspond to ultimate failure modes and may therefore be viewed as 

initial limit states which are to be conservatively avoided. 

The capacity expressions considered non-composite girder configurations in 

which the girder cross-section considered was exclusively that of the steel plate girder. 

Theoretical expressions were also developed for the incremental decay of the bending 

moment and shear force capacities per cycle of stress application by considering the 

growth of the through-thickness fatigue crack configurations. The general finite element 

(FE) software ABAQUS/CAE 6.11 was employed to model and perform analyses on a 

series of full-scale trial plate girders for the purpose of validating the capacity 

expressions. 

A procedure for designing or otherwise modifying the elastic capacities and 

fatigue lives of plate girders for prescribed through-thickness fatigue crack configurations 

was finally demonstrated. Constant-amplitude load functions were developed from the 



7 

 

American Association of State Highway and Transportation Officials (AASHTO) bridge 

design specifications (AASHTO, 2010). The load functions were used in conjunction 

with the capacity and decay expressions to investigate the capacities, limit states, critical 

crack lengths, and fatigue lives of a trial plate girder considering different prescribed 

fatigue crack configurations. The AASHTO LRFD Bridge Design Specifications (2010) 

was employed to perform the initial design of the trial girder. The trial girder design was 

then modified to have prescribed fatigue lives and sufficient capacities for the prescribed 

crack configurations. The modified trial girder design was then compared and contrasted 

to the initial design. 

In summary, the following tasks were accomplished: 

 Formulation of theoretical expressions for the elastic bending moment and shear 

force capacities of I-shaped transversely stiffened non-composite steel plate 

girders considering various through-thickness fatigue crack configurations 

 Development of theoretical expressions for the incremental decay of the elastic 

bending moment and shear force capacities per cycle of stress application as 

affected by fatigue crack growth 

 Development and demonstration of a procedure for designing new plate girders or 

modifying existing girders for prescribed through-thickness crack configurations 

and fatigue lives 
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3 Background 
 

3.1 Overview 

A comprehensive background is presented to give a solid theory base relating to 

the effects of fatigue crack growth on the elastic bending moment and shear force limit 

states of short-span steel highway bridge plate girders. A summary of the broader context 

within which steel highway bridges belong to is first given by assessing the current state 

of the highway system in the United States. The typical structural configurations and 

general statistics of steel highway bridges are then evaluated. Much attention is given to 

the geometrical and material properties of steel plate girders and their associated 

elements. Fatigue load models derived from vehicular traffic traveling over highway 

bridges are then briefly overviewed. Finally, an overview of various analytical and 

numerical methods for analyzing the effects of fatigue crack growth on the elastic 

bending moment and shear force capacities of steel plate girders is presented. 

 

3.2 Steel Plate Girders 

3.2.1 Highways in the United States 

Highways in the U.S. are categorized into two broad types of systems: the 

National Highway System (NHS) and state highway systems (Oglesby & Hicks, 1982, 

pp. 13-19). These two systems are not mutually exclusive in that a road belonging to the 

NHS may also belong to the state highway system. Also, these two systems generally do 

not include the networks of local roads and streets, which are administered by appropriate 

county, city, or town agencies. 
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The NHS was approved by Congress in 1995 and incorporated mostly preexisting 

primary and secondary roads deemed essential for the economic strength and defense of 

the U.S. (Slater, 1996). Importantly, the NHS incorporated the nationwide network of 

highways known as the Dwight D. Eisenhower National System of Interstate and Defense 

Highways (henceforth referred to as the Interstate Highway System or IHS) which in 

2008 consisted of 47,000 miles of limited-access highways (see Figure 3.2.1) (USDOT, 

2011). More than 40% of all highway traffic and 75% of heavy truck traffic utilize the 

almost 160,000 miles of NHS roads (Slater, 1996). This is despite the fact that the NHS 

constitutes only about 4% of the total road mileage in the U.S. 

 

 

Figure 3.2.1: Nationwide extent of the IHS (FHWA, 2012a). 

 

Approximately 95% of the roads belonging to the NHS are owned and maintained 

by the state governments with the rest owned by the federal government or local 
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governments (USDOT, 2010). A substantial portion of funding for the construction and 

maintenance of the NHS is provided by the federal government. Federal funding for 

roads that would later become part of the NHS was first made possible by a series of acts 

beginning with the Federal-Aid Highway Act of 1921 (Oglesby & Hicks, 1982, p. 13). 

The development of the IHS was later initiated with the Federal-Aid Highway Act of 

1956 (USDOT, 2010). The Federal Highway Administration (FHWA), which itself is a 

division of the United States Department of Transportation (USDOT), monitors the 

allocation of Federal-Aid funds to the state departments of transportation. 

Similar to the NHS, the state highway systems primarily consist of primary and 

secondary roads (OLA, 2008). The state highway systems are owned and maintained by 

the state governments (Oglesby & Hicks, 1982). State highways generally receive a mix 

of Federal-Aid and state funds for their construction and maintenance (USDOT, 2010). 

Overall, approximately 20% of the 4.1 million miles of public roads in the U.S. belong to 

either the NHS, state highway systems, or both (USDOT, 2010). 

 Another lesser known designated highway system is the National Network. The 

National Network is concerned with the regulation of truck traffic traveling on the NHS 

and state highway systems. The National Network was designated under the Surface 

Transportation Assistance Act of 1982 and incorporated approximately 200,000 miles of 

roads belonging to the state highway systems and roads that would later become part of 

the NHS (USDOT, 2010). The 1982 act essentially requires individual states to allow 

trucks with conventional combinations to travel on the highways designated as being part 

of the National Network. The FHWA (2012b) defines conventional combinations as 



11 

 

“tractors with one semitrailer up to 48 ft. in length or with one 28 ft. semitrailer and one 

28 ft. trailer, and can be up to 102 in. wide”. 

 In 2008, Americans accumulated almost 3.0 trillion vehicle miles traveled (VMT) 

on all public roads. A little over 60% of VMT were on either the NHS, state highway 

systems, or both (USDOT, 2010). Furthermore, the USDOT (2011) reports that over 12 

billion tons of freight was shipped using trucks in 2010 alone, and this amount is 

expected to double by 2040. As previously mentioned, approximately three quarters of all 

heavy truck traffic utilizes roads that are part of the NHS (Slater, 1996). In 2009, 288 

billion VMT were accumulated for combination trucks and single-unit trucks on all 

public roads with approximately 37% of VMT on the IHS (USDOT, 2011). This data 

implies that the NHS and state highway systems constitute an indispensible mode of 

transportation for moving people and freight. 

Overall, the NHS and state highway systems form an essential component of the 

transportation infrastructure in the U.S. Together, they greatly facilitate interstate 

commerce by allowing for the passage of people and freight throughout the country. 

Additionally, they help provide for national defense by allowing for the rapid 

mobilization of military forces and their support systems (USDOT, 2010). 

 

3.2.2 Steel Highway Bridges 

3.2.2.1 Design and Maintenance 

 Highway bridges are an integral part of both the NHS and state highway systems. 

They provide essential access across various natural obstacles such as rivers, streams, and 

gullies, as well as over man-made obstacles such as railroads and other roads (Tonias, 
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1995, p. 3). Highway bridge design is performed in accordance with the AASHTO LRFD 

Bridge Design Specifications (see Appendix A: AASHTO LRFD Bridge Design 

Specifications). The overwhelming majority of highway bridges belonging to the NHS 

are owned and maintained by various state agencies, such as state highway departments, 

under the umbrella of the state departments of transportation (FHWA, 2011). These 

bridges are largely financed by Federal-Aid funds through the Highway Bridge Program 

(HBP) (Oglesby & Hicks, 1982, p. 13; CALTRANS, 2008, p. 2-3). Highway bridges 

belonging to the state highway systems are also owned and maintained by various state 

agencies and are financed by a mix of HBP and state funds. 

The state departments of transportation are required by the FHWA to periodically 

inspect and report the properties and conditions of all public vehicular bridges in their 

respective states (see Appendix B: Bridge Inspection and Evaluation) (FHWA, 2011). 

Bridges included in this requirement are those belonging to the NHS, state highway 

systems, and networks of local roads and streets (CRS, 2007). The FHWA uses this 

information to maintain a record called the National Bridge Inventory (NBI) which lists 

the various properties and conditions of all public vehicular bridges in the U.S. having 

spans greater than 20 ft. (OLA, 2008, p. 30). As of 2011, the NBI listed over 600,000 

bridges in its inventory (FHWA, 2011). Approximately half of these bridges are part of 

the NHS, state highway systems, or both, while the rest belong mostly to networks of 

local roads and streets (CRS, 2007). 
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3.2.2.2 Classification 

Bridges listed in the NBI are organized by various criteria such as bridge owner, 

location by state and county, year built, unit cost, structure type, wearing surface type, 

deck type, span length, construction material, and condition (FHWA, 2011). In terms of 

structural properties, bridges may generally be classified based only upon span length, 

structure type, and material of construction (Taly, 1998, pp. 47-50). Short-span bridges 

typically have spans of 20 to 125 ft., medium-span bridges have spans of 125 to 400 ft., 

and long-span bridges have spans exceeding 400 ft. Spans of these lengths may be part of 

single-span or multi-span bridges (Taly, 1998, p. 50). 

Structure type refers to the physical configuration of a bridge and is directly 

related to the manner by which the superstructure transfers load to the substructure. 

According to Tonias (1995), the superstructure “comprises all the components above the 

supports” while the substructure “consists of all elements required to support the 

superstructure” (pp. 4, 6). There are many classifications of structure type including slab-

girder bridges, orthotropic bridges, truss bridges, arch bridges, cantilever bridges, cable-

stayed bridges, and suspension bridges (Taly, 1998, pp. 50-80). The material of 

construction refers to the type of material used in the construction of the superstructure 

and may include structural steel, concrete, timber, or advanced composite materials 

(Taly, 1998, pp. 47-49). This research focuses upon short-span, slab-girder, steel highway 

bridges (henceforth referred to simply as steel highway bridges), as shown in Figure 

3.2.2. 

The slab-girder configuration is the most common bridge structure type in the 

U.S. (Barker & Puckett, 1997, p. 276). At the end of 2011, approximately 255,000 
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bridges listed in the NBI were classified as slab-girder bridges (FHWA, 2011). This 

amounts to nearly 50% of the total number of bridges listed in the NBI. Furthermore, 

approximately 15% of the slab-girder bridges, or about 38,000 slab-girder bridges, were 

classified as structurally deficient (see Appendix B: Bridge Inspection and Evaluation) 

(FHWA, 2011). Further analysis of the study by Wardhana & Hadipriono (2003) suggests 

that approximately 25% of the structurally deficient slab-girder bridges, or about 9,000 

bridges, were made structurally deficient by steel deterioration, corrosion, or fatigue 

cracks. 

 

 

Figure 3.2.2: Typical short-span slab-girder steel highway bridge (Ryan et al., 2012). 

 

 

 

3.2.2.3 Superstructure and Substructure 

 Typical of most bridge types, steel highway bridges consist of a superstructure 

and substructure (see Figure 3.2.3). The primary function of the superstructure is to 

transfer vehicular traffic load, along with any other type of load, from the bridge deck to 

the substructure, which provides support for the superstructure (Tonias, 1995, pp. 4, 6). 
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Slab-girder superstructures essentially consist of a concrete deck supported by a series of 

girders. The girders are in turn supported by components of the substructure (Taly, 1998, 

sec. 1.3.3.1). 

The components of the substructure typically include bearings, piers, and 

abutments (Tonias, 1995, p. 353). Piers serve to provide intermediate support of the 

superstructure between the end supports of the bridge. Although piers are constructed in a 

variety of different shapes and forms, their ultimate function is to transfer load from the 

superstructure to the foundations (Tonias, 1995, p. 384). Similarly, abutments serve to 

provide end support of the superstructure (Barker & Puckett, 1997, p. 1107). In addition 

to transmitting load from the superstructure to the foundations, abutments may act as 

retaining walls to resist horizontal earth pressure from soil supporting the approach 

highways (Tonias, 1995, p. 355). Piers and abutments are generally constructed of 

reinforced concrete, but may also be constructed of steel or timber (Tonias, 1995, pp. 

355, 384). Bearings serve to directly transmit load from the superstructure to supporting 

piers and abutments by providing translational and rotational support. Cylindrical 

bearings, rocker bearings, and pot bearings provide translational restraint while allowing 

rotational movement. Roller bearings and sliding bearings allow for both translational 

and rotational movement (Barker & Puckett, 1997, pp. 1091-1094). 
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Figure 3.2.3: Superstructure and substructure of a slab-girder bridge (About Bridges). 

 

 

 

3.2.3 Superstructure 

Steel highway bridge superstructures generally consist of a deck, girders, and 

secondary members (see Figure 3.2.4) (Tonias, 1995, p. 5). The deck is commonly a cast-

in-place or precast reinforced concrete slab with a wearing surface to resist deterioration 

from vehicular traffic (Barker & Puckett, 1997, p. 276). Various other components such 

as traffic barriers, parapets, and sidewalks are monolithically attached to or otherwise 

situated upon the slab (Tonias, 1995, pp. 5, 141). Generally, the slab is directly or 

indirectly supported by girders. Cast-in-place concrete slabs cast upon cold-formed steel 

decking are indirectly supported by the girders in that the decking serves as an 

intermediate component in the transfer of load from the slab to the girders (Salmon, 
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Johnson, & Malhas, 2009, ch. 16). Conventional cast-in-place concrete slabs do not 

utilize steel decking and are thus directly supported by the girders. 

 

 

Figure 3.2.4: Cross-section of highway bridge superstructure with concrete deck, traffic barriers, and 

supporting girders. 

 

The primary function of the slab is to distribute and transfer vehicular live loads 

to the girders (Tonias, 1995, p. 5). Additional types of load such as dead loads, vehicular 

dynamic loads, wind loads, and earthquake loads are also transferred from the slab to the 

girders (AASHTO, 2010). The slab behaves as a plate-like structure and thus carries load 

primarily by flexure (MacGregor & Wight, 2005, pp. 610-611). Design standards such as 

the American Concrete Institute (ACI) Standard 318 (2005) and the AASHTO LRFD 

Bridge Design Specifications (2010) provide codified procedures for the analysis and 

design of concrete bridge slabs. 

The supporting girders are oriented longitudinally to the direction of traffic and 

are generally spaced at a constant distance across the bottom width of the slab in order to 

efficiently support the deck (Barker & Puckett, 1997, p. 278). The primary function of the 

steel girders is to transfer load from the slab to supporting bearings, piers, and abutments 

(Tonias, 1995, p. 6-7). Lateral bracing is usually required along the length of the girders 

to prevent lateral-torsional buckling (Salmon et al., 2009, ch. 9). Therefore, secondary 

members are attached to and oriented perpendicular to the girders in order to provide 

lateral bracing (Tonias, 1995, p. 6). 
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Elements of the steel girders, referred to as details, include such components as 

welded stiffener plates, welded cover plates, welded shear stud connectors, welded 

connections, and bolted connections (Massarelli & Baber, 2001). Steel details perform 

various roles such as holding the components of the girder together, attaching the girder 

to other components, and providing additional stiffness to the girder to prevent local 

buckling (Salmon et al., 2009, ch. 11). 

 

3.2.4 Steel Plate Girders 

3.2.4.1 Geometrical Properties 

Commonly used steel girder types used in steel highway bridge superstructures 

include rolled beams, plate girders, and box girders (Tonias, 1995, p. 73). Rolled beams 

are members that have been hot-rolled to form an I-shaped cross-section (see Figure 

3.2.5a). Plate girders are generally fabricated from two flange plates and a single web 

plate which are welded together to form an I-shaped cross-section (see Figure 3.2.5b) 

(Blodgett, 1966, p. 4.3-1). Box girders are similar to plate girders except that they are 

generally fabricated from two flange plates and two web plates to form a box shaped 

cross-section (see Figure 3.2.5c). 

 

 

Figure 3.2.5: (a) Hot-rolled I-shaped beam, (b) I-shaped plate girder, and (c) box girder. 
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Plate girders may be configured to form a wide range of I-shaped section types 

possessing different section properties. This is because the flanges and webs may be 

proportioned to achieve various I-shaped cross-sections. In this way, the most efficient 

plate girder design may be attained in terms of weight and material savings (Salmon et 

al., 2009, sec. 11.1). Dimensions which may be modified include the flange width, flange 

thickness, web depth, and web thickness. Changing these dimensions modifies various 

section properties including the neutral axis, cross-sectional area, moment of inertia, 

elastic section modulus, plastic section modulus, radius of gyration, and polar moment of 

inertia. In contrast, a limited range of standard rolled beam section types are available and 

may not allow for the most efficient design (Salmon et al., 2009, sec. 1.5). The American 

Society for Testing and Materials (ASTM) and AASHTO publish standard specifications 

(ASTM A709 and AASHTO M270, respectively) by which structural steel shapes used 

for bridges conform to (AASHTO, 2010). 

I-shaped plate girders (henceforth referred to simply as plate girders or girders) 

are designed to resist many loading effects including bending, torsional, shearing, and 

axial stresses. The flange plates nominally act to resist most of the internal bending 

moment effects (see Figure 3.2.6a). The web plate nominally acts to resist most of the 

internal shear force effects (see Figure 3.2.6b) (Chen & Duan, 1999, p. 12-5). 
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Figure 3.2.6: Profile views of I-shaped girder with (a) flange plates resisting the bending stress distribution 

and (b) web plate resisting the shear stress distribution. 

 

A major consideration in the design of a girder is the avoidance of shear-based 

limit states including shear yielding of the web and web local buckling (Salmon et al., 

2009, sec. 11.7). The shear force capacity of a girder corresponding to shear yielding may 

be increased by enlarging the gross cross-sectional area of the web. Similarly, the shear 

strength of a girder corresponding to web local buckling may be increased by modifying 

the dimensions of the web as well as adjusting additional parameters. It can be deduced 

from classical plate theory that the elastic buckling strength of a plate loaded under pure 

shear is maximized if the length-to-width ratio of the plate approaches unity (Ugural, 

1999, ch. 3). For this reason, transverse stiffener plates are generally welded to the web 

and flanges at varying intervals along the length of the girder, effectively subdividing the 

web into individual panels bounded by the flanges and stiffener plates (see Figure 3.2.7) 

(Salmon et al., 2009, sec. 11.7). In regions of the girder loaded under predominantly 

shear, the web panels are effectively loaded under pure shear (Salmon et al., 2009, sec. 

11.7). Hence, the modification of the spacings between the stiffener plates directly 

influences the buckling strengths of the web panels. 
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Figure 3.2.7: Profile view of I-shaped girder with transverse stiffener plates subdividing the web into 

individual web panels. 

 

 

 

3.2.4.2 Material Properties 

Plate girders are typically constructed of structural steel. Structural steel is 

essentially an alloy composed primarily of iron and carbon (see Appendix C: Structural 

Steel). Small amounts of additional alloying elements include manganese, phosphorus, 

sulfur, silicon, aluminum, vanadium, columbium, nickel, copper, chromium, nitrogen, 

and boron (Taly, 1998, p. 118). Various proportions of these alloying elements serve to 

modify the material properties of steel such as the yield strength, ultimate tensile 

strength, ductility, hardness, toughness, and corrosion resistance (Blodgett, 1966, p. 2.1-

1; Barker & Puckett, 1997, p. 702). Carbon is by far the most important alloying element 

and helps to modify the strength of steel (Barker & Puckett, 1997, p. 703). Increasing the 

amount of carbon serves to increase the resulting steel strength while at the same time 

reducing its ductility, toughness, and weldability (Salmon et al., 2009, sec. 2.1). The 

ASTM A709 and AASHTO M270 specifications provide equivalent standards by which 

the material properties of structural steels used for bridges must conform to (AASHTO, 

2010, p. 6-24). For the purpose of this research, the girders are implied to be constructed 

of standard high-strength low-alloy structural steel. 
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3.2.4.3 Non-composite and Composite Configurations 

Steel highway bridge superstructures may be constructed in non-composite or 

composite configurations (Barker & Puckett, 1997).  In non-composite configurations, 

the plate girders carry load independently of the reinforced concrete slab (see Figure 

3.2.8a). The girders may thus be analyzed and designed considering only the girder cross-

sections and neglecting the influence of the concrete slab. 

In composite configurations, the plate girders act compositely with a portion of 

the concrete slab to carry load (see Figure 3.2.8b) (Taly, 1998, p. 726). The geometrical 

and material properties of the concrete slab affect the overall section properties and 

therefore influence the stress and strain bending distributions (Salmon et al., 2009, ch. 

16). Full composite action is developed when there is continuous compatibility at the 

interface between the slab and the girder, and the strain distribution across the slab-girder 

interface remains uniform under load (Salmon et al., 2009, sec. 16.2). 

 

 

Figure 3.2.8: (a) Non-composite and (b) composite girder sections with corresponding stress and strain 

bending distributions. 
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Shear stud connectors are generally employed to resist the horizontal shear 

stresses and to maintain uniform strain distribution across the interface (Barker & 

Puckett, 1997, sec. 8.9). These connectors are typically welded along the top flanges of 

the girders before the slab is poured such that they become embedded within the slab 

after the concrete hardens (Salmon et al., 2009, sec. 16.1). In positive bending moment 

regions, the slab essentially behaves as a concrete cover plate attached to the compression 

flange (Taly, 1998, p. 728). In negative bending moment regions, the tensile resistance of 

the slab is not relied upon and only the longitudinal reinforcing steel is considered (Taly, 

1998, p. 735). Overall, the steel-concrete composite action allows for increased span 

lengths, increased deck stiffness, and shallower plate girder depths (Salmon et al., 2009, 

sec. 16.3). This translates into material and cost savings, and an overall efficient design. 

 

3.2.5 Fatigue Loading 

Vehicular traffic passing over a steel highway bridge induces fluctuating sub-

critical bending moments and shear forces within the superstructure girders. These cyclic 

bending moments and shear forces are directly coupled to fluctuating stresses within the 

structural members and elements of the superstructure. The magnitudes of the stresses 

depend upon a number of factors originating from the spectrum of loading and the 

configuration of the superstructure (Taly, 1998, p. 181). Vehicular traffic load, termed as 

vehicular live load, varies depending upon such parameters as the gross vehicle weights, 

axle loads, axle configurations, the longitudinal and transverse positions of vehicles, 

multipresence of vehicles, and vehicle speeds (Nowak, 1993). As such, the magnitude of 

vehicular live load at any one location along the superstructure changes over time and is 
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thus classified as transient load (Barker & Puckett, 1997, p. 139). These load fluctuations 

may be approximately described by constant-amplitude trigonometric load functions (see 

Figure 3.2.9). It follows that the corresponding magnitudes of stresses within the 

superstructure also changes over time. Hence, the continuous passage of vehicular traffic 

across a bridge induces repeated stress cycles in the steel plate girders of the 

superstructure (Barker & Puckett, 1997, p. 106). 

 

 

Figure 3.2.9: Constant-amplitude trigonometric load functions for (a) bending moment and (b) shear force. 

 

The live load due to car traffic is negligible when compared to the live load due to 

truck traffic, namely because of the much greater weight of trucks (Barker & Puckett, 

1997, p. 142). Therefore, truck traffic produces the critical load effects in steel highway 

bridge superstructures (Nowak et al., 1993). The stress cycles due to the vehicular live 

load (henceforth implied to mean the truck live load) generates cumulative damage in the 

steel plate girders, which may lead to the initiation of fatigue cracks (Barker & Puckett, 

1997, p. 106). The newly formed fatigue cracks may continue to propagate through the 
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girders under the fluctuating stress, and may eventually lead to the untimely occurrence 

of elastic limit states or ultimate failure modes. 

Vehicular live loads generally act concurrently with additional types of load such 

as dead loads, vehicular dynamic loads, wind loads, and earthquake loads. Dead loads are 

generally permanent and include loads due to structural components, nonstructural 

attachments, wearing surfaces, and utilities (Barker & Puckett, 1997, p. 140). Vehicular 

dynamic loads act together with the static aspect of vehicular live loads, and occur due to 

the dynamic force effects from vehicles traveling over discontinuities in the wearing 

surface such as deck joints, cracks, potholes, and delaminations (AASHTO, 2010, p. 3-

30). The possible load combinations acting upon a highway bridge are numerous and 

result in a potentially complex loading spectrum (Taly, 1998, p. 181). The AASHTO 

LRFD Bridge Design Specifications (AASHTO, 2010) provides a code-based procedure 

for determining load types and load combinations specific to fatigue loading (see 

Appendix A: AASHTO LRFD Bridge Design Specifications). 

 

3.3 Structural Analysis and Design 

3.3.1 Analytical Analysis 

The bending moment and shear force capacities of I-shaped transversely stiffened 

steel plate girders are adversely influenced by fatigue crack growth. As previously 

mentioned, the propagation of a fatigue crack through a girder may induce the premature 

occurrence of various elastic limit states. The influence of fatigue crack growth on the 

elastic strength and fatigue life of steel plate girders may be analyzed with various 

theories from solid mechanics including beam theory, the theory of elasticity, classical 
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plate theory, the principle of stationary potential energy, and linear elastic fracture 

mechanics (LEFM). 

 

3.3.1.1 Fatigue Crack Growth 

Every structure contains microscopic flaws which can develop into macrocracks 

as discussed by Lawn (1993, ch. 9) and Rolfe & Barsom (1977, ch. 7). As previously 

mentioned, the ongoing passage of vehicular traffic over steel highway bridge induces 

sub-critical cyclic bending moments and shear forces within the supporting girders 

(Barker & Puckett, 1997). These forces are directly coupled to fluctuating bending and 

shear stresses acting throughout the supporting steel plate girders. High concentrations of 

fluctuating stress may form at inherent discontinuities in a girder (Crocetti, 2003; Davies 

et al., 1994; Goodpasture & Stallmeyer, 1967; Hall & Stallmeyer, 1964; Kouba & 

Stallmeyer, 1959; Marek et al., 1970; Meguid, 1989; Mueller & Yen, 1967; Roberts et 

al., 1995; Yen, 1963; Yen & Mueller, 1966). These discontinuities are generally 

attributable to flaws in the fillet welds connecting the web to the flanges and stiffener 

plates, and may include incomplete fusion, porosity, undercutting, and partial penetration 

(Crocetti, 2003). The fluctuating stress concentrations may in time cause a pre-existing 

microcrack to grow into a through-thickness macrocrack (Lawn, 1993; Osman & 

Roberts, 1999; Rolfe & Barsom, 1977) (see Figure 3.3.1). 
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Figure 3.3.1: Cross-sections of through-thickness fatigue cracks in the flange-to-web connections of I-

shaped plate girders. The arrows indicate the locations of the crack initiations (Mertz, 2012). 

 

The fatigue crack may then continue to propagate through the girder to form one 

of several fatigue crack configurations (Crocetti, 2003; Davies et al., 1994; Goodpasture 

& Stallmeyer, 1967; Hall & Stallmeyer, 1964; Kouba & Stallmeyer, 1959; Marek et al., 

1970; Meguid, 1989; Mueller & Yen, 1967; Roberts et al., 1995; Yen, 1963; Yen & 

Mueller, 1966). In regions of a girder loaded under predominantly bending, some crack 

configurations include but are not limited to vertical edge-cracks extending from the 

tension flange through the web plate, cracks extending through one or both sides of the 

tension flange, and three-ended cracks extending through the web plate and both sides of 

the tension flange (see Figure 3.3.2a, b, c, d). In regions of a girder loaded under 

predominantly shear, a fatigue crack may initiate in a corner of a web panel at the 

junction of a flange and transverse stiffener plate and propagate diagonally through the 

web plate (see Figure 3.3.2e). 

 

 

Figure 3.3.2: (a) Vertical edge-crack in web plate, (b) crack extended through both sides of tension flange, 

(c) crack extending through one side of tension flange, (d) three-ended crack, and (e) diagonal fatigue crack 

originating at a corner of a web panel. 
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 The presence of macrocracks, as well as intentional discontinuities such as holes 

and notches, produces stress concentrations in the local vicinity of the discontinuities 

(Meguid, 1989, sec. 1.17). Inglis (1913) was one of the first to investigate the 

concentration of stresses around an elliptical hole in a stressed plate. The shape of an 

elliptical hole can be modified to represent a wide array of flaw shapes ranging from 

round holes to straight cracks (see Figure 3.3.3). In general, it was found that the 

concentration of stresses about the corners of a flaw is dependent upon the radius of 

curvature of the elliptical hole. 

 

 

Figure 3.3.3: Infinite plates loaded under uniaxial tensile stress containing (a) a round hole, (b) a narrow 

elliptical hole, and (c) a straight through-thickness crack. 

 

Using an energy approach, Griffith (1921) theorized that the formation and 

growth of a crack in a stressed body serves to release the elastic strain energy in the body 

(Rolfe & Barsom, 1977, ch. 2). The total energy change, dUT, of a stressed body due to 

crack growth is thus equal to the energy change, dUE, from the work performed by 

external loads, and the energy change, dUA, from the release of elastic strain energy from 

the crack growth. This is expressed by (Lawn, 1993, p. 21) 

AET dUdUdU                                                                                            (3.3.1) 

The total energy change per unit area of potential crack surface, dA, at the crack tip is 

called the energy release rate, G, given by (Meguid, 1989, pp. 113-114) 

 
dA

dU
G T                                                                                                       (3.3.2) 
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The concept of the energy release rate remains valid only if the plastic work at the crack 

tip is small, as is the case for brittle materials and ductile materials under low levels of 

stress (Meguid, 1989, sec. 3.5.2). A crack will propagate if the energy release rate 

exceeds a critical value, Gc. In other words, a crack will propagate if the energy at the 

crack tip equals or exceeds the amount of energy necessary to extend the crack (Shukla, 

2005, p. 33). 

 

3.3.1.2 Elastic Limit States of Fatigue-Cracked Plate Girder 

There exist several elastic limit states and corresponding plate girder capacities 

associated with the propagation of a fatigue crack in a loaded girder. These limit states 

generally include flange local yielding, section yielding, elastic flange local buckling, 

elastic web local buckling, brittle fracture, and impending ductile failure (Salmon et al., 

2009, ch. 11; Sun & Jin, 2012, ch. 3). Each limit state is associated with a critical 

magnitude of bending moment or shear force, which is equivalent to the elastic capacity 

or elastic strength of the girder (Beer, Johnston, & DeWolf, 2006, chs. 4, 6). The limit 

states of flange local yielding, section yielding, elastic flange local buckling, and elastic 

web local buckling concerning a cracked girder are essentially modified limit states of an 

uncracked girder. Conversely, the limit states of brittle fracture and impending ductile 

failure are limit states uniquely associated with a fatigue-cracked girder. 

It is noted that elastic limit states generally do not correspond to ultimate failure 

modes. The occurrence of an elastic limit state within an uncracked girder does not 

necessarily result in the immediate or complete collapse of the girder. Elastic limit states 

pertaining to yielding are concerned with the stress within a local region of the girder 
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initially exceeding the yield strength of the girder steel, such as at the yield moment, My 

(see Figure 3.3.4a). Elastic limit states pertaining to buckling are concerned with local or 

global buckling of the girder when the stresses remain below the yield strength of the 

girder steel. Conversely, ultimate failure modes pertain to the complete exhaustion of 

strength of the girder which may lead directly to collapse, such as at the plastic moment, 

Mp, in which a plastic hinge is formed (see Figure 3.3.4b). Elastic limit states are 

nevertheless important because their occurrence may eventually lead to the onset of an 

ultimate failure mode (Bowman, 2002, 2004; Chajes et al., 2005; Kirke & Al-Jamel, 

2004; Lichtenstein, 1990; Minor & Woodward, 1996; Stockfish, 2011; Wardhana & 

Hadipriono, 2003; Zhou & Biegalski, 2010). 

 

 

Figure 3.3.4: (a) Uncracked girder showing bending stress distribution at the yield moment, My, with the 

extreme outer fibers of the girder reaching the yield strength, and (b) uncracked girder showing bending 

stress distribution at the plastic moment, Mp, with the entire cross-section reaching the yield strength. 

 

 

 

3.3.1.3 Flange Local Yielding 

The elastic limit state of flange local yielding as influenced by fatigue cracks is 

related to plate girders loaded under predominantly bending. The presence of a vertical 

crack in the web plate may serve to locally increase the bending stress in the compression 

flange, thereby precipitating premature yielding of the compression flange in the region 

directly above the crack (see Figure 3.3.5). The normal bending stress field within the 



31 

 

girder as influenced by the crack, and the flange local yielding capacity, may be analyzed 

using the theory of elasticity (see Appendix D: Theory of Elasticity). 

 

 

Figure 3.3.5: Local increase of bending stress in compression flange directly above the crack in the web. 

 

 

 

3.3.1.4 Section Yielding 

The limit state of section yielding as affected by fatigue cracks is concerned with 

plate girders loaded under predominantly shear. In an uncracked girder, the limit state of 

section yielding occurs when the shear stresses acting throughout the gross cross-section 

of the web plate exceed the shear yield strength nearly simultaneously, resulting in 

yielding of the entire cross-section (see Figure 3.3.6a). The shear force corresponding to 

yielding of the cross-section is the beam action shear strength. The presence of a diagonal 

or vertical crack in the web plate serves to reduce the gross cross-sectional area of the 

web plate. The shear stress field along the cross-section above the crack exceeds the 

shear yield strength at lower magnitudes of external shear force, thus serving to reduce 

the beam action shear strength of the girder (see Figure 3.3.6b). The shear stress field 

within the girder as affected by the crack, and the section yielding capacity, may be 

analyzed using the theory of elasticity (see Appendix D: Theory of Elasticity). 
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Figure 3.3.6: (a) Uncracked  girder displaying the shear stress distribution in a state of shear yielding, and 

(b) vertically-cracked girder displaying the shear stress distribution above the crack in a state of shear 

yielding. 

 

 

 

3.3.1.5 Elastic Flange Local Buckling 

The limit state of elastic flange local buckling as influenced by fatigue cracks 

pertains to plate girders loaded under predominantly bending. Elastic buckling refers to 

the advent of buckling in the flange with the stresses within the flange remaining below 

the steel yield strength. The presence of a crack in the tension flange may induce local 

transverse compressive stresses adjacent to the crack which may in turn lead to so-called 

tension buckling (see Figure 3.3.7a). Tension buckling results in the wrinkling of the 

flange steel in the immediate region around the crack. The local transverse compressive 

stresses in the tension flange stems as influenced by the crack may be analyzed using the 

theory of elasticity (see Appendix D: Theory of Elasticity). The associated tension 

buckling capacity may be approximately analyzed using the Rayleigh-Ritz energy 

method (see Appendix E: Principle of Stationary Potential Energy). 

Alternatively, the presence of a vertical crack in the web plate may serve to 

locally increase the bending stress in the compression flange, thereby leading to 

premature elastic buckling of the compression flange stems (see Figure 3.3.7b). The 

bending stress in the compression flange as influenced by the vertical crack in the web 

plate may be analyzed using the theory of elasticity (see Appendix D: Theory of 
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Elasticity). The associated elastic flange local buckling capacity may be analyzed using 

classical plate theory (see Appendix F: Classical Plate Theory). 

 

 

Figure 3.3.7: (a) Plan view of a single tension flange containing an edge-crack with transverse compressive 

stresses adjacent to the crack, and (b) vertically-cracked girder showing the local increase of bending stress 

in the compression flange directly above the crack in the web. 

 

 

 

3.3.1.6 Elastic Web Local Buckling 

The limit state of elastic web local buckling as influenced by fatigue cracks is 

related to plate girders loaded under predominantly bending or shear. For a plate girder 

loaded under predominantly bending, the presence of a vertical crack in the tensile region 

of the web plate may induce local compressive stresses near the crack (see Appendix D: 

Theory of Elasticity) which may in turn induce tension buckling (see Appendix E: 

Principle of Stationary Potential Energy) (see Figure 3.3.8). Alternatively, the presence of 

the vertical crack may locally increase the stress distribution in the compressive region of 

the web (see Appendix D: Theory of Elasticity), thereby influencing the web local 

buckling capacity (see Appendix E: Principle of Stationary Potential Energy). 
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Figure 3.3.8: Profile view of a girder containing an edge-crack in the web with transverse compressive 

stresses adjacent to the crack. 

 

For a plate girder loaded under predominantly shear, the presence of a diagonal or 

vertical crack may adversely influence the shear stress field within a web panel (see 

Appendix D: Theory of Elasticity), thereby precipitating premature buckling of the web 

panel (see Appendix E: Principle of Stationary Potential Energy). 

 

3.3.1.7 Brittle Fracture 

The limit state of brittle fracture concerns plate girders loaded under 

predominantly bending or shear. For a plate girder loaded under predominantly bending, 

the growth of a fatigue crack in the web plate or tension flange is driven by opening-

mode loading (Mode I). For a plate girder loaded under predominantly shear, the growth 

of a diagonal crack in the web plate is driven by a combination of Mode I loading and 

sliding-mode loading (Mode II). The stress intensity factors for both of these cases are 

inherently coupled to the far-field stress driving the crack growth. Brittle fracture occurs 

when the stress intensity factor at the crack tip equals or exceeds the fracture toughness 

of the girder steel. The stress intensity factor and the brittle fracture capacity may be 

analyzed using LEFM (see Appendix G: Linear Elastic Fracture Mechanics). 
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3.3.1.8 Impending Ductile Failure 

The limit state of impending ductile failure is related to plate girders loaded under 

predominantly bending or shear. The fracture toughness characterization holds true as 

long as the plastic region at the crack tip remains small, as is the case for brittle materials 

and ductile materials under low levels of stress (see Figure 3.3.9) (Meguid, 1989, sec. 

3.5.2). Brittle materials have low fracture toughness and thus the plastic region always 

remains small up until fracture. Conversely, ductile materials have high fracture 

toughness and the plastic region may become quite large prior failure. The presence of a 

large plastic region invalidates the fracture toughness characterization for ductile 

materials, and the impending ductile failure must be described using elasto-plastic 

fracture mechanics (EPFM) (Meguid, 1989, ch. 6; Rolf & Barsom, 1977, ch. 16). 

 

 

Figure 3.3.9: Plastic region at crack tip. 

 

The impending ductile failure limit state may be postulated to correspond to a 

critical plastic region size indicating the approximate transition to a ductile failure mode 

(i.e., the transition from LEFM to EPFM). Converting the Westergaard stress function 

given by (G.2.1) to polar coordinates and substituting the result into (G.1.3) results in the 

stress field near the crack tip expressed in terms of KI (Sun & Jin, 2012, sec. 3.4) 
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where r is the radius with respect to the crack tip and θ is the angle of the radius with 

respect to the longitudinal direction of the crack. The size and shape of the plastic region 

at the crack tip may be predicted using (3.3.3) in conjunction with the Mises yield 

criterion (Meguid, 1989, sec. 5.4). 

 

3.3.1.9 Fatigue Life 

The plate girder fatigue life is defined as the number of load cycles that a girder is 

capable of resisting prior to the occurrence of a governing limit state. The elastic capacity 

of a fatigue-cracked girder is in part directly dependent upon the crack length. The 

incremental extension of the crack length with each load cycle implies that a governing 

limit state may occur when the crack length achieves a critical value. Similarly, a 

governing limit may occur when the number of load cycles achieves a critical value, 

which is the fatigue life. The propagation of the crack with each load cycle may be 

predicted using an empirical crack growth law (see Appendix H: Empirical Crack Growth 

Law). 

 

3.3.2 Numerical Analysis 

The influence of fatigue crack growth on the elastic strength and fatigue life of 

steel plate girders may alternatively be analyzed with the finite element method (FEM, or 
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FEA for finite element analysis). In FEM, a structure is discretized into individual 

elements and the equilibrium equations are subsequently derived. The approximate stress, 

strain, and displacement fields are therein solved for using the constitutive equations, 

compatibility equations, and strain-displacement relations. FEM is in contrast to 

analytical methods in which the stress, strain, and displacement fields are directly derived 

considering the structure as a continuum (see Appendix D: Theory of Elasticity). 

In FEM, the equilibrium equations may be formulated either directly or with 

energy methods. There are two methods for directly deriving the equilibrium equations 

including the direct stiffness method (DSM) and the force method (Hibbeler, 2006, sec. 

10.1; McGuire, Gallagher, & Ziemian, 2000). In these two methods, matrix structural 

analysis is employed to assemble local stiffness or flexibility matrices considering the 

local geometric and material properties of each individual element. Global stiffness or 

flexibility matrices are then assembled and the equilibrium equations are therein 

formulated. The approximate displacement field or force field is finally formulated 

considering the external boundary conditions. DSM and the force method are typically 

used for analyzing indeterminate lattice-like structures such as building frames or trusses, 

in which the elements are the individual beams or truss members (McGuire et al., 2000). 

Alternatively, the equilibrium equations may be derived using the Rayleigh-Ritz 

energy method (see Appendix E: Principle of Stationary Potential Energy), which is 

essentially identical to the principle of virtual work. The internal virtual strain energy, or 

variation of internal strain energy, of a structure is set equal to the external virtual work, 

or variation of external work. The displacements within each element (beam, plate, etc.) 

are therein described by a shape function subject to variation. The variation of potential 
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energy of the entire system of elements is then minimized, therein forming the 

equilibrium equations and allowing for the approximate displacement field to be solved 

for. The stress and strain fields are finally solved for using the constitutive equations, 

compatibility equations, and strain-displacement relations. 

 

3.3.3 Code-based Design 

I-shaped transversely stiffened steel plate girders are designed in accordance with 

the AASHTO LRFD Bridge Design Specifications (2010). As previously mentioned, 

highway bridge girders are designed for various limit states assuming that they will 

always remain uncracked. The procedure for obtaining load cases and combinations, and 

designing for the strength limit state and the fatigue and fracture limit state, is briefly 

outlined in Appendix A: AASHTO LRFD Bridge Design Specifications. 
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4 Literature Review 
 

4.1 Overview 

A comprehensive literature review is presented to give an overall view of former 

research relating to the effects of fatigue crack growth on the elastic bending moment and 

shear force limit states of steel highway bridge plate girders. Former research works 

concerning the static and fatigue testing of full-scale and small-scale plate girders are first 

reviewed. Next, research works regarding the residual strength and stability of cracked 

plate-like structures are reviewed. Also, research investigations pertaining to the residual 

strength and stability of beam-like structures containing cracks and intentional 

discontinuities are reviewed. Finally, a synopsis of the literature review is given. 

 

4.2 Research Works 

4.2.1 Static Testing of Plate Girders 

The theoretical mechanisms by which uncracked plate girders and beam-like 

structures carry load had been understood ever since the developments of beam theory, 

elasticity theory, and classical plate theory in the 17
th

, 18
th

, and 19
th

 centuries (Love, 

1892; Timoshenko, 1983; Timoshenko & Woinowsky-Krieger, 1959; Todhunter, 1886, 

1893; Ventsel & Krauthammer, 2001). Numerous experimental and analytical studies 

initiated in the early to mid 20
th

 century investigated the load carrying behavior of plate 

girders including the post-buckling behavior and the influence of stiffener plates (Basler, 

1961; Basler, Bung-Tseng, Mueller, & Thurlimann, 1960a, b, c, d; Basler & Thurlimann, 

1960a, b; D‟Apice & Cooper, 1965; Fujii, 1968; Herzog, 1974; Kuhn, 1940; Lee & Yoo, 



40 

 

1998; Moore, 1942; Rockey, 1956; Salmon et al., 2009, ch. 11; Smith, Bradford, & 

Oehlers, 1999; Sparkes, 1947; Wagner, 1931), the interaction between bending moment 

and shear force effects (Basler, 1961; Basler et al., 1960d; Herzog, 1974; Liang, Uy, 

Bradford, & Ronagh, 2005; Salmon et al., 2009, sec. 11.9), and composite action (Baskar, 

Shanmugam, & Thevendran, 2002; Brendel, 1964; Chen, Aref, Ahn, Chiewanichakorn, 

Carpenter, Nottis, & Kalpakidis, 2005; Grant, Fisher, & Slutter, 1977; Heins & Fan, 

1976; Liang, Uy, Bradford, & Ronagh, 2005; Nassif & Salama, 2011; Salmon et al., 

2009, ch. 16; Slutter & Dricoll, 1963; Viest, 1960, 1974). The general experimental 

setups of the tests involved statically loading small-scale or full-scale plate girders under 

three-point or four-point loading. Wheatstone strain gauges and vertically aligned dial 

gauges were then employed to measure the strains and displacements, respectively. The 

findings of some of these studies were later adopted by the AASHTO bridge design 

specifications (AASHTO, 2010; Liang et al., 2005). 

For experimental tests of girders loaded under predominantly bending, the 

resulting normal bending stress distributions along the depth of the girder sections were 

found to generally comply with the linearly varying triangular bending stress distribution 

derived from beam theory (Basler et al., 1960b; Basler & Thurlimann, 1960a; Salmon et 

al., 2009, sec. 11.4). For tests of girders loaded under predominantly shear, the web plate 

was found to resist most of the shear stresses as predicted from beam theory (Basler et al., 

1960c; Basler & Thurlimann, 1960b; Salmon et al., 2009, sec. 11.7). Transverse stiffener 

plates were found to contribute additional shear strength by way of so-called tension field 

action (Fujii, 1968; Lee & Yoo, 1998; Salmon et al., 2009, sec. 11.8; Wagner, 1931). 

Tension field action was determined to predominate especially upon buckling or yielding 
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of the web plate, thereby greatly contributing to the post-buckling shear strength of 

transversely stiffened plate girders. For tests of girders loaded under combined bending 

and shear, it was found that the interaction between the bending moment and shear force 

is generally minimal (Basler et al., 1960c; Basler & Thurlimann, 1960b, Salmon et al., 

2009, sec. 11.9). Nonetheless, interaction expressions have been devised (Basler, 1961; 

Basler et al., 1960d; Herzog, 1974). 

 

4.2.1.1 Research Works 

A major step toward a theory describing the post-buckling behavior of stiffened 

plate girders was made by Wagner (1931) in which a theory of a thin web plate resisting 

shear by pure diagonal tension field action was put forth. The theory postulated that the 

stresses within a thin web plate under shear loading transform into a state of pure 

diagonal tension, and that the flange plate rigidities have an effect on the magnitude of 

the tension field. Specifically, an increase in the flange rigidities results in a decrease in 

the tension field magnitude. The theory necessarily neglected the beam action shear 

resistance and in-plane bending resistance of the web plate. Kuhn (1940) suggested that 

the theory by Wagner (1931) was too conservative in that a state of pure diagonal tension 

field action is never truly achieved due to the persistent effects of beam action shear 

resistance. A semi empirical theory was hence put forth describing a so-called incomplete 

diagonal tension field (Kuhn, 1940). 

Experimental tests such as those carried out by Moore (1942), Rockey (1956), and 

Sparkes (1947) investigated the effects of stiffener plates on the static load carrying 

behavior of plate girders (Hall & Stallmeyer, 1964). Specifically, the effects of the 
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spacings and rigidities of transverse stiffener plates on the buckling behavior of web 

panels were analyzed. The tests collectively demonstrated that transverse stiffener plates, 

which were presumed to effectively divide the web plate into distinct panels, serve to 

increase the local buckling capacity of the web. It was also confirmed that stiffener plates 

perform an important role in the distribution of stresses in the web plate, especially in the 

formation of diagonal tension fields. 

Comprehensive experimental tests on full-scale transversely stiffened plate 

girders were carried out at Lehigh University from 1957 to 1961 by Basler et al. (1960a, 

1960b, 1960c, 1960d) for the purpose of investigating the ultimate strength of plate 

girders. The theoretical aspects of the tests were put forth by Basler & Thurlimann 

(1960a, 1960b) and Basler (1961), and an overall summary of the experimental and 

theoretical results were presented by Yen & Basler (1962). Ultimate load tests were 

conducted on a total of thirteen full-scale girders of which five were tested under 

bending, two under shear, and six under combined bending and shear (Basler et al., 

1960a). The girders tested under bending and under shear utilized cover plates to thicken 

the cross-sections along the end regions of their lengths for the purpose of concentrating 

the stresses in the test sections at mid-span. The girders tested under combined bending 

and shear had prismatic cross-sections. All of the girders were fabricated from mild steel. 

Tension test coupons were obtained from the flange and web plates, of which the tested 

yield strength was found to range from 33 ksi to 45.7 ksi. 

For the girders subjected to bending, it was found that the compression stresses in 

the flange were slightly greater than the stresses predicted from beam theory (Basler et 

al., 1960b). Furthermore, the compression stresses in the web were slightly different from 
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the stresses predicted from beam theory. These phenomena were attributed to a 

redistribution of stresses from the web plate to the compression flange, and suggested that 

the flange plates are primarily responsible for the bending resistance of girders. It was 

shown that flange local yielding or flange local buckling may occur due to the stress 

redistribution. Overall, it was concluded that the compression flange fails by way of local 

buckling in most cases, thus controlling the overall bending moment capacity. A limiting 

width-to-thickness ratio for the flange plate and a limiting depth-to-thickness ratio for the 

web plate were derived to prevent vertical buckling of the compression flange (Basler & 

Thurlimann, 1960a). Additionally, allowable stress formulas were derived to prevent 

lateral and torsional buckling of the compression flange while taking into account the 

stress redistribution from the web to the flange. 

The girders subjected to shear demonstrated that tension field action in the web 

plate and presumed compression in the transverse stiffener plates only occurs after the 

advent of web local buckling (Basler et al., 1960c). This phenomenon was shown to be 

analogous to the load distribution in a loaded Pratt truss in which the diagonal struts are 

in tension and the vertical struts are in compression. In the case of the girders, the 

transverse stiffener plates act as the vertical compression struts and the diagonal tension 

fields in the web plate act as the diagonal tension struts. As previously implied by Kuhn 

(1940), it was concluded that the total shear capacity of a web panel is derived from both 

beam action and tension field action. The post-buckling behavior of plate girders was 

hence understood to adhere by the following process: a girder initially resists shear 

primarily through beam action until the advent of web local buckling, at which point the 

girder transitions to resist shear primarily through tension field action. The girder then 
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fails by way of the diagonal tension fields causing yielding in the web panel. The tension 

field action was thus shown to be the post-buckling shear resistance of girders. It was 

found, however, that if the depth-to-thickness ratio of the web plate is low enough, the 

beam action shear resistance is sustained until web local yielding, and the tension field 

action shear resistance does not occur. Ultimate shear load and allowable shear stress 

formulas were derived which took into account both the beam action shear strength and 

tension field action shear strength. In contrast to the method of Wagner (1931), the 

contribution of flange plate rigidity to the tension field action shear strength was 

neglected. Formulas were also developed for the sizing and spacing of transverse 

stiffeners. In general, it was confirmed that the shear capacity of a girder is dependent 

upon the web plate and transverse stiffener plates. 

The girders subjected to combined bending and shear demonstrated a 

redistribution of compression stresses from the web to the compression flange, presumed 

compression stresses in the transverse stiffener plates, and beam action and tension field 

action in the web (Basler et al., 1960d). Interaction formulas and corresponding 

interaction curves were developed for combined bending and shear (Basler, 1961). A 

limit was established such that the interaction of the bending stresses and shear stresses 

may be neglected so long as the bending stresses and shear stresses do not exceed 75% 

and 60% of the their allowable values, respectively. 

Fujii (1968) later recognized some errors in the post-buckling shear strength 

theory put forth by Basler & Thurlimann (1960b). First, it was shown that the 

contribution of flange plate rigidity should in fact be considered in the calculation of 

tension field action shear resistance as originally postulated by Wagner (1931). Tension 
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field action evidently induces additional compressive stresses in the compression flange 

which has an effect on the angle of the diagonal tension fields. Secondly, it was shown 

that the shear resistance of the transverse stiffener plates should also be taken into 

account in the calculation of tension field action shear resistance. Lastly, it was shown 

that the interaction curves for combined bending and shear should take into account the 

compressive stresses in the compression flange from tension field action, in addition to 

the compressive stresses from bending. Modified formulas for the ultimate shear capacity 

of plate girders were developed by taking into account the aforesaid corrections. Results 

from the modified formulas were shown to be in good agreement with the experimental 

results from the shear capacity tests by Basler et al. (1960c). 

Most of the test girders used in previous research investigated the effects of 

transverse stiffener plates. D‟Apice & Cooper (1965) investigated the effects of 

longitudinal stiffener plates on the static bending capacity of full-scale plate girders. 

Specifically, the effects of longitudinal stiffener plates on web local buckling, the post-

buckling strength of web panels, and the out-of-plane deflection of web panels were 

scrutinized. Four girders were fabricated with both longitudinal and transverse stiffener 

plates, and one girder was fabricated with only transverse stiffener plates. Each girder 

was subjected to four-point loading using Amsler hydraulic jacks. The strain distribution 

in the web was obtained from a vertical series of strain gauges located along the center 

line of the test web panel at mid-span. The out-of-plane web deflection was measured 

using a series of vertically aligned dial gauges positioned along the test panel. Results 

from the tests indicated that the longitudinal stiffener plates had no apparent effect in 

increasing the ultimate load capacity of the girders. The redistribution of compression 
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stresses from the web plate to the compression flange as observed in the tests on 

transversely stiffened girders by Basler et al. (1960b) did not occur until after the 

longitudinal stiffener plate buckled. Instead, the longitudinal stiffener plate assisted in 

maintaining a linear strain distribution as predicted from beam theory. The longitudinal 

stiffener plates also served to greatly reduce out-of-plane web deflections and assisted in 

limiting the occurrence of vertical flange buckling, such that the ultimate load of each 

longitudinally stiffened girder was achieved by way of the compression flange yielding. 

These results were in contrast to the conclusions made by Basler & Thurlimann (1960a) 

in which the compression flanges in transversely stiffened girders were predicted to fail 

primarily by way of buckling. This suggests that the geometrical requirements for the 

compression flange and web plate put forth by Basler & Thurlimann (1960a) may be 

relaxed with the presence of longitudinal stiffener plates. 

Herzog (1974) derived simplified formulas for the ultimate static strength of 

symmetrical and unsymmetrical, homogeneous and hybrid, unstiffened and stiffened 

plate girders in shear, bending, and combined shear and bending. Formulas were also 

introduced for calculating the flange yield moment and the web yield shear force, and 

correction factors were introduced for the prevention of local buckling. It was shown that 

the shear strength of plate girders is essentially unaffected by simultaneous bending as 

long as the bending moment is lower than that to cause flange local yielding. Similarly, it 

was shown that the bending capacity of plate girders is essentially unaffected by 

simultaneous shear as long as the shear force is lower than that to cause web local 

yielding. Results from the formulas were compared to several hundred tests conducted 

throughout the world and were deemed to be adequate for general design purposes. 
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The previously discussed studies had focused purely on the static load carrying 

behavior of plate girders without considering the effects of composite action with a 

concrete slab. Composite steel-concrete construction was first employed in the early 

1900s in the form of concrete-encased steel beams (Taly, 1998, sec. 8.5.2). This form of 

composite action is developed purely by the natural bond and friction between the steel 

and concrete. However, these early designs did not necessarily take into account the 

effects of composite action and may have resulted in overly conservative designs 

(Salmon et al., 2009, sec. 16.1). In the 1930s, the development and use of shear stud 

connectors in composite construction became widespread, culminating in the approval of 

composite steel-concrete construction in highway bridge design in the 1944 AASHO 

Standard Specifications (Taly, 1998, p. 728). 

Numerous texts provide a historical background and detailed discussion on the 

load carrying behavior of composite steel-concrete construction, such as by Barker & 

Puckett (1997, sec. 8.9), Salmon et al. (2009, ch. 16), and Taly (1998, sec. 8.5). A 

comprehensive review of research relating to composite steel-concrete construction is 

provided by Viest (1974, 1960) (Salmon et al., 2009, pp. 805-806). The analysis of the 

effective slab width has especially been the subject of many studies. This concept 

originated with theoretical work by von Karman in 1923 with later analytical and 

experimental developments by many others such as Metzer in 1929 and Timoshenko & 

Goodier (1951) (Nassif & Salama, 2011; Taly, 1998, p. 729). Brendel (1964) reported 

comparisons between theoretical formulas for determining the effective slab width with 

test results on T-beams and various code-based requirements. Heins & Fan (1976) later 

developed two empirical equations for calculating the effective slab width by using finite 
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difference methods to approximate the deformations of numerous composite slab-girder 

bridges. 

A recent report for the National Cooperative Highway Research Program by Chen 

et al. (2005) provides recommendations for the determination of the effective slab width 

based on a comprehensive review of research findings. These recommendations were 

incorporated into the LRFD Specifications (2010, sec. 4.6.2.6). Nassif & Salama (2011) 

further investigated this matter by comparing experimental results from tests on 8 

composite steel-concrete beam specimens with results from finite element models of 

composite steel-concrete beams. The results were also compared to code-based 

requirements. The finite element results correlated well with the experimental results, and 

it was found that the number of shear stud connectors is directly related to the effective 

slab width. Namely, the effective slab width increases with the number of connectors. 

Furthermore, it was concluded that the code-based provisions are generally overly 

conservative.  

Many static loading tests on composite steel-concrete girders have been 

conducted, such as the tests by Slutter & Dricoll (1963) on twelve full-scale composite 

beams. Most of the beams utilized mechanical shear connectors to induce composite 

action. Two beams were fabricated without shear connectors and relied upon the natural 

bond between the steel top flange and concrete for composite action. Additionally, a 

series of pushout tests were conducted on nine slab-beam specimens in which the 

connectors were directly tested under shear by pulling the slab and beam in opposite 

directions. The tests confirmed that the use of an adequate number of shear connectors 

allow composite beams to attain the theoretical ultimate bending moment capacity 
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regardless of connector spacing. Grant, Fisher, & Slutter (1977) later summarized results 

from numerous tests on composite beams utilizing lightweight concrete cast upon cold-

formed ribbed steel decking. It was found that the rib depth has much more influence 

than the rib slope on the ultimate bending moment capacity. An empirical expression was 

developed for the strength of shear stud connectors in the ribs of steel decking. 

Expressions were also developed for the effective moment of inertia and section modulus 

for use in calculating deflections and stresses. 

More recently, Baskar et al. (2002) developed a finite element model of a 

composite steel-concrete girder which produced comparable results to experimental tests 

in the elastic and plastic region. Liang et al. (2005) also conducted numerical analyses of 

composite beams and developed an expression for the shear strength as well as an 

interaction formula for combined bending and shear. These two expressions consider the 

shear strength of the overall composite section. 

By the mid 1970s, knowledge concerning the post-buckling behavior of stiffened 

plate girders had advanced to the point where a complete set of theories describing the 

mechanisms by which plate girders carry load had largely been achieved. The research by 

Basler et al. (1960a, 1960b, 1960c, 1960d),  Basler & Thurlimann (1960a, 1960b), Basler 

(1961), Fujii (1968), and many others concerning the post-buckling strength, interaction 

between bending and shear, and composite action of stiffened plate girders, led to 

provisions which were adopted by the AISC and AASHTO specifications (Cooper & 

Roychowdhury, 1990). 
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4.2.2 Fatigue Testing of Plate Girders 

Fatigue loading tests on small-scale and full-scale plate girders have been 

conducted at the University of Illinois (Goodpasture & Stallmeyer, 1967; Hall & 

Stallmeyer, 1964; Kouba & Stallmeyer, 1959), Lehigh University (Marek et al., 1970; 

Mueller & Yen, 1967; Yen, 1963; Yen & Mueller, 1966), and elsewhere (Crocetti, 2003; 

Davies et al., 1994; Roberts et al., 1995). In general, small-scale or full-scale plate girders 

were arranged under three-point or four-point loading configurations and cyclically 

loaded using electro-hydraulic fatigue testing machines. These studies found that fatigue 

cracks in stiffened plate girders subjected to sub-critical cyclic loading initiate at the base 

of the fillet welds connecting the web plate to the flange or transverse stiffener plates. 

Specifically, the cracks form at locations of discontinuity such as at the ends of weld 

lines, and at imperfections due to porosity and incomplete fusion. 

The cracks may propagate along the weld boundaries (Crocetti, 2003; Davies et 

al., 1994; Goodpasture & Stallmeyer, 1967; Hall & Stallmeyer, 1964; Mueller & Yen, 

1967; Roberts et al., 1995; Yen, 1963; Yen & Mueller, 1966), through the web panels 

(Crocetti, 2003; Hall & Stallmeyer, 1964; Kouba & Stallmeyer, 1959; Yen, 1963), and 

through the flange plates (Kouba & Stallmeyer, 1959; Marek et al., 1970), in areas under 

both tension and compression stresses. The cracks initiate as surface cracks and 

propagate short distances before becoming through-thickness cracks (Osman & Roberts, 

1999). It was generally concluded that the cracks are initiated by a combination of 

residual stresses, in-plane tensile membrane stresses, and out-of-plane bending stresses 

due to so-called plate breathing. More recent studies have investigated the influence of 

plate breathing on the fatigue behavior of plate girders (Davies & Roberts, 1996; Davies 
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et al., 1994; Roberts et al., 1995). Some fatigue crack classification schemes have been 

devised (Maeda & Okura, 1983; Roberts & Davies, 2002). 

 

4.2.2.1 Research Works 

Early testing of girders under fatigue loading was conducted by Kouba & 

Stallmeyer (1959) at the University of Illinois. A series of small-scale plate girders were 

tested using various arrangements of transverse stiffeners and weld patterns. A Wilson 

lever-type fatigue machine was used to produce two concentrated fatigue loads at the 

mid-span of each test girder. Through-thickness fatigue cracks were observed to initiate 

in both the web plate and the flange plates, and in areas of the girder under tension 

stresses and compression stresses. It was concluded that the configuration of transverse 

stiffener plates did not have any apparent effect on where the fatigue cracks initiated. In 

general, the fatigue cracks were observed to initiate along the web panel boundaries at 

locations of discontinuity such as at the toe of the fillet welds connecting the web plate to 

the flange or stiffener plates, or at the end of a weld line. Fatigue cracks in the flange 

generally propagated in a straight line perpendicular to the web, and cracks in the web 

propagated diagonally towards the centerline of the girder.  

Whereas the tests by Kouba & Stallmeyer (1959) were somewhat general, fatigue 

loading tests conducted at Lehigh University by Yen (1963) on two full-scale stiffened 

plate girders sought to investigate the actual sources of fatigue crack initiation and 

growth. The girders were tested under predominantly shear loading at 250 cycles per 

minute and endured hundreds of thousands of load cycles before any fatigue cracks were 
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observed. The web panels were observed to laterally deflect under repeated loading 

which produced out-of-plane plate bending stresses, also known as secondary stresses. 

The fatigue cracks generally initiated as surface cracks on the tension side of the 

web panel boundaries, and slowly propagated along the weld boundaries or into the web 

plate before becoming through-thickness cracks. Overall, it was concluded that the 

combination of residual stresses, membrane stresses, and out-of-plane bending stresses in 

the web plate are responsible for the formation and propagation of fatigue cracks. The 

bending resistance of plate girders is presumably unaffected by the growth of fatigue 

cracks in the web panels since the flanges are primarily responsible for this task. The 

shear resistance may ultimately be affected if the length of the crack becomes long 

enough as to affect beam action or tension field action shear resistance. However, it was 

found that the formation of fatigue cracks did not result in the immediate loss of girder 

strength. The reason given was that the cracks were mainly formed due to secondary 

stresses and not primary stresses. It was thus concluded that plate girders have a 

significant post-cracking fatigue life. 

Further fatigue loading tests at the University of Illinois were conducted by Hall 

& Stallmeyer (1964) on small-scale thin-web plate girders. The focus of the tests was to 

investigate the fatigue behavior of the web panels. Specifically, the effects of flange 

rigidity, transverse stiffener plate rigidity, and load type were investigated. The test 

girders were subjected to two different loading schemes including pure shear and a 

combination of shear and bending. As with the tests by Kouba & Stallmeyer (1959), 

fatigue loading was applied with a Wilson lever-type fatigue machine. The resulting 

stresses were measured with strain gauge rosettes and the out-of-plane deflections of the 
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web panels were measured with a series of dial gauges. Fatigue failure was assumed to 

occur when observed through-thickness fatigue cracks attained a length of approximately 

3 in. 

The fatigue cracks were observed to initiate on the tension side of the web panel 

boundaries undergoing plate bending, and propagate along the weld boundary or into the 

web itself. The fatigue cracks initiated as surface cracks and propagated short distances 

before become through-thickness cracks. For the case of the test girders loaded under 

combined shear and bending, the fatigue cracks generally propagated approximately 1 in. 

before becoming through-thickness cracks. The propagation of fatigue cracks through the 

thickness of the web plate was not discussed in detail. The fatigue cracks were concluded 

to have been caused by a combination of residual stresses, membrane stresses, and out-

of-plane bending stresses in the web panels. These conclusions were generally in 

agreement with earlier observations made by Yen (1963). Furthermore, it was concluded 

that the rigidities of the flange and transverse stiffener plates, as well as the initial 

deflection pattern of the web plate, greatly influence the fatigue behavior of the web 

panels. Specifically, an increase in flange rigidity was correlated with an increase in 

fatigue life. A correlation between increased transverse stiffener plate rigidity and an 

increase in fatigue life was less complete, although this trend was generally accepted to 

be true. The initial web plate deflections, or web distortions, were concluded to have both 

beneficial and detrimental effects on the fatigue life. Namely, it was thought to be 

possible for the initial web distortions to either decrease the out-of-plane web panel 

stresses or to increase the web panel membrane stresses at the web panel boundaries. 
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Goodpasture & Stallmeyer (1967) conducted fatigue loading tests on small-scale 

girders for the purpose of investigating the effects of longitudinal stiffener plates and 

initial web distortions on the fatigue behavior of the web panels. The tests were 

performed in the same manner as the tests by Hall & Stallmeyer (1964). Static loading 

tests were also performed on the same girders. The longitudinal stiffener plates were 

proportioned according to requirements by Massonnet (1948) to be rigid enough in order 

to prevent buckling with the web plate (Goodpasture & Stallmeyer, 1967, sec. 2.3). As 

with the tests by Hall & Stallmeyer (1964), fatigue failure was assumed to occur when 

observed through-thickness fatigue cracks attained a length of approximately 3 in. It was 

found that the longitudinal stiffener plates served to effectively divide the web panels into 

smaller sub panels which had the effect of nearly eliminating out-of-plane deflections of 

the overall web panel. Additionally, it was concluded that the longitudinal stiffener plates 

did not increase the static load carrying capacity unless the stiffeners were 

uneconomically rigid, which confirmed the findings by D‟Apice & Cooper (1965). 

The girders fabricated with initial web distortions behaved as if web local 

buckling had already occurred. The post-buckling theory by Basler & Thurlimann 

(1960b) and Fujii (1968) would suggest that the shear strength was carried primarily by 

tension field action in these girders, which would affect the membrane stresses at the web 

panel boundaries. Indeed, all of the fatigue cracks were observed to form and propagate 

along the web panel boundaries, and was attributed to a combination of residual stresses, 

membrane stresses, and out-of-plane stresses, which further confirmed the conclusions of 

Hall & Stallmeyer (1964) and Yen (1963). The formation of fatigue cracks in the web 

panels had no apparent effect on the static girder strength unless the cracks had formed in 
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the tension flange, which was in agreement with the conclusion by Yen (1963). It was 

generally concluded that an increase in the magnitude of initial web distortions results in 

a decrease of the fatigue life of plate girders. This was in contrast to the conclusion by 

Hall & Stallmeyer (1964) that initial web distortions could also have a beneficial effect 

on the fatigue life. 

Around the same time, fatigue loading tests on full-scale thin-web plate girders 

were conducted by Yen & Mueller (1966) and further analyzed by Mueller & Yen 

(1967). The test girders were subjected to shear effects and combined shear and bending 

effects. The relation between stresses in the web panels and the initiation and growth of 

fatigue cracks was investigated. A correlation was found between out-of-plane plate 

bending stresses along the web panel boundaries and observed fatigue behavior. 

Specifically, it was concluded that out-of-plane plate bending stresses are primarily 

responsible for the initiation of fatigue cracks, as previously suggested by Goodpasture & 

Stallmeyer (1967), Hall & Stallmeyer (1964), and Yen (1963). Importantly, it was 

confirmed that normal membrane tensile stresses in the web panels also have a role in the 

formation of fatigue cracks. The fatigue cracks were presumed to initiate where the plate 

bending stresses were maximum along the web panel boundaries. In web panels 

subjected to primarily shear stresses, fatigue cracks were observed to form in the tension 

diagonal corners. In web panels subjected to primarily bending stresses, fatigue cracks 

were observed to form along the web plate boundaries under plate bending tensile 

stresses. In all cases, the fatigue cracks initiated and propagated along the web panel 

boundary. 
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Only a few of the fatigue cracks in the previously discussed studies propagated 

into the flange plates, such as in the tests by Kouba & Stallmeyer (1959). During the first 

phase of an experimental program by Marek et al. (1970), three-ended through-thickness 

cracks were generated by fatigue loading. The cracks formed at the boundary between the 

web plate and tension flange and propagated through both sides of the flange plate and up 

through the web plate. 

Maeda & Okura (1984) derived a relation between out-of-plane bending stresses 

and in-plane bending stresses in a thin-walled web plate. The strength of fatigue cracks 

was then expressed in terms of the in-plane plane bending stresses. Soon after, Okura & 

Maeda (1985) examined the relation between of out-of-plane bending stresses and in-

plane shear stresses through a finite element analysis. Analyses by Okura, Yen, & Fisher 

(1993) further examined the effects of out-of-plane bending stresses on the fatigue 

behavior of thin-walled plate girders. 

More recently, Davies et al. (1994) and Roberts et al. (1995) further investigated 

the effects of out-of-plane bending stresses on the fatigue behavior of web plates. Each 

set of fatigue loading tests were conducted on fourteen small-scale plate girders. For each 

test, the plate girders were simply supported and a concentrated fatigue load was applied 

at mid-span by a servo-controlled dynamic testing machine. Each test girder had double 

stiffener plates located at mid-span and at each end over the supports. A transducer bar 

was used to measure out-of-plane displacements of the web. Pairs of strain gauges were 

placed near the outer boundary of one of the two web panels and used to determine the 

membrane and out-of-plane stresses. 
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The strain gauges revealed a complex state of stress near the weld boundaries of 

the web plate which were generally in agreement with the results by Mueller & Yen 

(1967). The formation of fatigue cracks occurred in these boundary areas and were 

attributed to out-of-plane bending stresses and corresponding out-of-plane web 

deflections, denoted by the new term „plate breathing‟. In-plane membrane stresses were 

also found to have a role in fatigue crack initiation, as had been previously concluded by 

Mueller & Yen (1967). A nonlinear finite element analysis was conducted by Davies & 

Roberts (1996) to determine the range of stresses in areas of potential crack initiation, 

and the results compared favorably to the test results by Davies et al. (1994). 

Crocetti (2003) noted that most of the previous research concerning the 

investigation of plate breathing did not realistically represent the actual conditions that 

steel highway bridge plate girders are exposed to. Some of the noted inaccuracies were 

that the range of fatigue loads applied to the test girders did not represent the actual range 

of load effects due to traffic and dead load. In reality, the range of traffic load is much 

more moderate than what was previously assumed. Additionally, previous research 

assumed a predominance of shear loading instead of combined shear and bending. Actual 

steel bridge plate girders are commonly continuous over inner supports where transverse 

stiffener plates are utilized over the supports to prevent web local buckling. Maximum 

combinations of shear and bending are predominant in this vicinity. Furthermore, a large 

number of studies used small-scale girders instead of full-scale girders.  

In an attempt to reduce these inaccuracies, fatigue loading tests were performed 

on four identical simply supported full-scale slender plate girders. A servo-controlled 

dynamic pulsating machine was used to produce concentrated fatigue loading upon the 
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top flange at mid-span. Double transverse stiffener plates were located on each girder 

directly below the concentrated loading, presumably to replicate the location of a 

continuous girder over an inner support. A single transverse stiffener plate was located at 

a quarter-point along each girder, while double transverse stiffener plates were located at 

the ends of each girder directly above the supports. Transducer bars were used to measure 

out-of-plane displacements, while numerous pairs of strain gauges were placed on both 

sides of the web to measure membrane and out-of-plane stresses. All four girders were 

then tested until failure. 

As with the test results from previous related research, it was found that the 

initiation and growth of fatigue cracks were due to a combination of tensile membrane 

and out-of-plane stresses in the vicinity of the fillet weld boundaries between the web and 

flange or stiffener plates. Importantly, it was found that membrane stresses were 

predominant for small loads, while the out-of-plane stresses were predominant for larger 

loads. Most of the observed fatigue cracks originated on the web plate at the base of the 

fillet weld throat in the vicinity of the neutral axis of the girder, and propagated vertically 

along the weld boundary. Cracks also formed in the web along the weld boundary with 

the top flange, and propagated horizontally along the weld. It was demonstrated that once 

the fatigue cracks reached a critical length, the web failed due to shear buckling, which in 

turn led to the subsequent failure of the girders. The tests also confirmed that the 

initiation of fatigue cracks in the web near the fillet welds was largely due to 

imperfections in the weld such as stop/start points, porosity, and incomplete fusion with 

the web. These imperfections likely produced high concentrations of combined 

membrane and out-of-plane stresses. 
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The previously described fatigue loading tests demonstrated that fatigue cracks 

tend to initiate along the fillet weld boundaries between the web plate and the flange or 

stiffener plates due to a combination of out-of-plane and in-plane stresses. Maeda & 

Okura (1983, 1984) classified these cracks into three types. Type 1 cracks initiate on the 

web plate at the toe of the fillet weld connecting the compression flange. Type 2 cracks 

initiate on the web plate at the toe of the fillet weld connecting the transverse stiffener 

plates. Type 3 cracks initiate on the web plate at the toe of the fillet weld connecting the 

tension flange. The conclusions by Goodpasture & Stallmeyer (1967), Hall & Stallmeyer 

(1964), Yen (1963), and Yen & Mueller (1966) would suggest that Type 1 cracks are 

primarily formed by out-of-plane bending stresses, while Type 2 and Type 3 cracks are 

formed by a combination of out-of-plane bending stresses and normal in-plane tensile 

stresses. 

In contrast to the fatigue crack classifications described by Maeda & Okura 

(1983, 1984), a more detailed classification scheme was described by Roberts & Davies 

(2002) due to the availability of more test data. Types 1, 4, 5, and 6 initiate on the web 

plate at the fillet weld connecting the flange or transverse stiffener plates and propagate 

along the weld boundary. These crack types are formed due to combinations of in-plane 

and out-of-plane stresses and are generally in agreement with the characteristics of cracks 

observed in previous fatigue loading tests. Types 2 and 3 initiate on the web plate below 

the neutral axis at the fillet weld connecting the tension flange or transverse stiffener 

plates, and are formed due to primarily in-plane tensile membrane stresses. Type 2 cracks 

propagate vertically along the fillet weld connecting the web plate to transverse stiffener 

plates. Type 3 cracks propagate vertically through the web plate from the fillet weld 
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connecting the web to the tension flange. Fatigue cracks in the flange plates were not 

classified. 

Many other studies have focused on the effects of fatigue loading on the strength 

of composite steel-concrete girders. Slutter & Fisher (1966) investigated the fatigue 

strength of shear connectors by performing a series of pushout tests on slab-beam 

specimens possessing different types of shear connectors. It was found that the applied 

stress range is the most important variable affecting the shear connector strength. An 

expression was developed for calculating the spacing between shear connectors while 

taking into account the stress range. More recently, Yen, Lin, & Lai (1997) conducted 

static and fatigue loading tests on a total of 44 composite beam specimens. Several local 

failure modes were observed including the crushing of concrete in the region around the 

shear connectors, and cracks formed in the slab. 

 

4.2.3 Residual Strength and Stability of Cracked Plate-like Structures 

The development of LEFM allowed for the analysis of alternative failure modes 

including brittle fracture and impending ductile failure (Griffith, 1921; Inglis, 1913; 

Irwin, 1957). Furthermore, the introduction of the Paris-Erdogan crack growth equation 

provided a novel approach for predicting the propagation of fatigue cracks (see Appendix 

H: Empirical Crack Growth Law) (Paris & Erdogan, 1963). Some studies have examined 

the validity of empirical crack growth laws in plate-like structures (Hertzberg & 

Nordberg, 1969; Miki, Murakosi, & Sakano, 1987) and beam-like structures (Fisher, 

1970; Marek et al., 1970; Osman & Roberts, 1999). 
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Numerous studies have investigated the effects of through-thickness cracks on the 

strength and stability of plate-like structures loaded under tension, compression, and 

shear using analytical, numerical, and experimental methods (Alinia, Hosseinzadeh, & 

Habashi, 2007a, b, c; Brighenti, 2005a, b, 2009; Brighenti & Carpinteri, 2011; Guz & 

Dyshel, 2001, 2004; Khedmati, Edalat, & Javidruzi, 2009; Kumar & Paik, 2004; Paik, 

Kumar, & Lee, 2005; Seifi & Khoda-yari, 2011; Vafai & Estekanchi, 1999). The 

presence of a crack was generally concluded to reduce the tensile and shear capacity of a 

plate, with the predominant buckling failure mode attributed to tension buckling. Tension 

buckling occurs when portions of the plate adjacent to the crack experience buckling due 

to local compressive stresses induced by the presence of the crack. Conversely, the 

presence of a crack was found to actually increase the buckling strength of a plate loaded 

under compression (Brighenti, 2005a, b, 2009; Khedmati et al., 2009). Other potential 

failure modes of cracked plate-like structures such as yielding and alternative buckling 

modes have not been directly investigated. However, these other potential failure modes, 

as well as tension buckling, brittle fracture, and impending ductile failure, may be 

analyzed using plane elasticity (see Appendix D: Theory of Elasticity). 

 

4.2.3.1 Research Works 

The concept of stress intensity at a crack tip by Irwin (1957) and the development 

of an empirical crack growth law by Paris & Erdogan (1963) provided a new approach 

for analyzing the propagation of fatigue cracks. Numerous studies such as by Barsom 

(1973, 1976), Hertzberg & Nordberg (1969), and Miki et al. (1987) have investigated the 

use of empirical growth laws in steel specimens under constant-amplitude and variable-
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amplitude stress fluctuations. The study by Hertzberg & Nordberg (1969) examined 

fatigue crack propagation in welded plate specimens made of A514 steel. The behavior of 

fatigue crack growth as influenced by stress intensity range and specimen thickness was 

investigated. Additionally, the behavior of crack growth across and along weldments was 

examined. Fatigue crack growth rate curves were recorded for each trial. It was found 

that the crack propagation was largely dependent upon the range of the stress intensity 

factor, and independent of specimen thickness for thicknesses of up to 1 in. Furthermore, 

the fatigue crack growth rate curves showed a mostly linear correlation between growth 

rate and stress intensity factor range during the specimen fatigue life. 

These results confirmed that the Paris-Erdogan equation could be used to predict 

fatigue crack growth rates in thin plate-like elements made of steel. It was also found that 

the crack growth rates through the weldments and heat affected zones were significantly 

lower than the growth rates in the base metals, especially at low stress intensities. It was 

thought that the residual stresses served to decrease the stress intensity range and thus 

reduce the growth rate. The growth rates in weldments and heat affected zones were 

found to converge with the growth rates in base metals at higher stress intensities. 

Summaries of this study and many others at Lehigh University are provided by Tall 

(1971). 

The tests by Miki et al. (1987) were conducted on compact tension specimens 

made of SM 58 steel. The specimens were subjected to constant-amplitude and variable-

amplitude stress fluctuations. The variable-amplitude stress fluctuations were calibrated 

to simulate the effects of vehicular live load induced within simply supported steel 

girders. Residual tensile stresses were generated in each specimen by cutting away a 
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rectangular strip of the plate and welding it back to the primary specimen such that the 

weld was oriented perpendicular to the direction of crack growth. An electro-hydraulic 

servo fatigue testing machine was used to produce the stress fluctuations. Fatigue crack 

growth was determined by measuring the compliance of the specimen through the use of 

strain gauges attached to the back of the specimen on the opposite side of the edge crack. 

Crack growth was also measured using a traveling microscope. 

It was found that the Paris-Erdogan equation is valid for constant-amplitude stress 

fluctuations when the stress intensity factor range exceeds the stress intensity factor range 

threshold. The fatigue crack growth rate in the vicinity of the threshold region was found 

to be best expressed by a modified form of the Paris-Erdogan equation originally 

suggested by Klesnil & Lukas (1972) given by 
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For variable-amplitude stress fluctuations, the mean crack growth rate was obtained and 

plotted as a function of the corresponding equivalent stress intensity factor range given 

by 

 
m

i

i

m

i

eq
N

NK
K

1













 





                                                                                   (4.2.2) 

The Paris-Erdogan equation was found to accurately describe the resulting fatigue crack 

growth rate, even in the vicinity of the stress intensity range threshold. Hence, it was 

shown that the mean fatigue crack growth due to variable-amplitude stress fluctuations 

may be predicted by utilizing the equivalent stress intensity factor range in the Paris-

Erdogan equation. 
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The previously discussed fatigue loading tests on girders, such as by Davies et al. 

(1994) and Roberts et al. (1995), and on plate specimens such as by Hertzberg & 

Nordberg (1969) and Miki et al. (1987), had not examined the growth of fatigue cracks 

through the plate thickness in detail. Osman & Roberts (1999) investigated the 

propagation of a semi-elliptical surface crack through the thickness of a plate under 

various stress configurations. Stress intensity factors for a surface crack were derived for 

use in the Paris-Erdogan equation. It was found that the initial crack depth, aspect ratio, 

and plate thickness have the most influence in affecting the number of load cycles for a 

crack to penetrate a plate. It was noted that these parameters and the Paris-Erdogan 

equation material constants may be difficult to obtain in real structures. 

Besides the analytical and experimental analysis of fatigue crack behavior, the 

influence of crack growth on the static strength of plate girders had been largely passed 

over up until these two developments. Conclusions by Goodpasture & Stallmeyer (1967) 

and Yen (1963) suggested that the presence of fatigue cracks does not immediately affect 

the static girder strength. However, the matter was not investigated in detail. Most of the 

previously discussed failure modes of plate girders and the literature pertaining to post-

buckling girder strength would suggest that the presence of a through-thickness crack 

may indeed adversely affect the static carrying capacity of plate girders. 

Analytical and experimental investigations related to this matter were initiated in 

the late 1960s and early 1970s. Many studies focused on the effects of through-thickness 

cracks and openings on the static strength of plate-like structures. Clearly, openings such 

as holes, slots, or copings are not the same as through-thickness cracks. Nonetheless, 
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these studies provide invaluable insight for how a through-thickness crack may affect the 

static carrying capacity of plate-like structures. 

Vafai & Estekanchi (1999) performed numerical analyses on cracked plates and 

shells, and the computed stress distributions in the crack tip area were compared to the 

stress distributions obtained from LEFM. It was found that the numerical results and 

theoretical results were in good agreement, and that a refined finite element mesh is 

required in the crack tip area in order to obtain accurate stress distributions. Furthermore, 

the presence of a crack in a plate under tension was shown to increase the compressive 

stresses at the crack center, thus reducing the so-called tension buckling strength. 

As pointed out by Brighenti (2009), tension buckling occurs due to transverse 

compression fields created by the presence of a flaw in a stressed plate. This type of 

buckling appears as complex wrinkling of the plate. Tension buckling of a plate specimen 

containing an edge crack was experimentally investigated by Guz & Dyshel (2001) 

considering clamped and pinned boundary conditions. An empirical expression for the 

critical tension buckling stress was developed, given by 
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where h is the plate thickness, b is the plate width, a is the crack length, and k is an 

empirical constant. It was found that a clamped plate has a higher buckling strength than 

a pinned plate, and that the fracture strength of a plate in tension is greater if the plate is 

unbuckled than if it is buckled. 

Guz & Dyshel (2004) later investigated the use of a slightly different critical 

tension buckling stress, given by 
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The validity of this expression was compared to experimental tests on various plate 

specimens possessing different dimensions, materials, and crack configurations. The 

expression provided reasonable predictions of the tension buckling stress if the empirical 

constant k was modified for each parameter. Tension buckling is further examined by 

Friedl, Rammerstorfer, & Fischer (2000) in an uncracked plate and by Shimizu (2007) in 

a numerical analysis of a stressed plate containing a hole. 

In contrast to the previous analytical methods, Kumar & Paik (2004) derived the 

elastic buckling strength of a cracked plate under compression and shear by discretizing 

the plate into several plate elements. Hierarchical trigonometric functions satisfying the 

appropriate boundary conditions were used to derive displacement functions for each 

plate element. The local stiffness and geometric stiffness matrices of the plate elements 

were then assembled into global stiffness and geometric stiffness matrices and used to 

formulate the eigenvalue problem. The resulting buckling loads correlated very well with 

finite element results. It was found that the analytical and numerical results essentially 

converged after discretizing the plate into 64 elements. 

Paik et al. (2005) later investigated the effects of fatigue cracks on the ultimate 

strength of a steel plate loaded under uniaxial tension and compression using 

experimental and numerical methods. An ultimate strength limit state was suggested 

where ultimate failure is assumed to occur when the stress intensity factor at the crack tip 

equals or exceeds the fracture toughness. A second ultimate strength limit state was also 

suggested where the cross-sectional area besides the area removed by the crack is 

assumed to carry all of the axial stress, with failure occurring upon section yielding. The 
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experimental and numerical tests were found to correlate well with each other, and 

clearly demonstrated that the ultimate strength of a plate may be degraded by the 

presence of a crack. Specifically, the tests confirmed the validity of the second 

aforementioned ultimate strength limit state for both axial tension and compression. 

Brighenti (2005a, b) performed analytical and numerical studies concerning the 

effects of cracks on the buckling strength of plates under tension or compression. The 

strengths were recorded in terms of a buckling load multiplier, which is defined as the 

ratio of the actual applied buckling load and the buckling load of an uncracked plate in 

compression (Brighenti, 2005a). A theoretical proposal and buckling load multiplier for 

predicting the buckling strength of stressed plates in tension as effected by cracks was 

developed. Namely, the portions of the plate adjacent to the crack were modeled as being 

part of an embedded deep beam under uniform tension loading. The boundary conditions 

and external stresses on the deep beam were then used to formulate a stress function of 

the plate. Additionally, a Gauss-like displacement function was assumed for the cracked 

plate. The resulting buckling strength from the theoretical proposal compared favorably 

with numerical analyses. It was concluded that cracks always degrade the buckling 

capacity of plates in tension. Furthermore, the crack length and orientation have a 

significant role in degrading the tension buckling strength. For plates under axial 

compression, it was concluded that the effects of cracks are largely dependent upon the 

plate boundary conditions, and the effects of crack closure have minimal impact on the 

buckling capacity. It was found that the presence of a crack may either increase or 

decrease the buckling capacity of plates in compression. 
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Brighenti (2009) further examined the sensitivity of crack orientation on the 

failure modes of cracked stressed plates in tension and compression through a series of 

finite element analyses. The buckling, fracture, and plastic failure modes were 

considered. The buckling strengths were recorded in terms of buckling load multipliers. 

In terms of compression buckling, cracks oriented transversely to the loading generally 

tended to increase the buckling strength, while cracks oriented parallel to the loading 

tended to decrease the buckling strength. In terms of tension, it was found that cracked 

plates are more prone to tension buckling than fracture failure. Plastic failure becomes 

more likely if a crack is oriented parallel to the tension loading. A buckling-plastic 

collapse function was derived which governed whether buckling or plastic failure occurs. 

Khedmati et al. (2009) numerically investigated the elastic buckling strength of 

cracked plate-like structures under compression while considering the plate aspect ratio 

and crack length, orientation, and location. Namely, edge cracks and central cracks were 

considered, and were found to have completely different influences on the buckling 

strength. The buckling strengths were recorded in terms of the buckling coefficient. 

Conclusions similar to those of Brighenti (2005a, 2005b, 2009) were found in that cracks 

perpendicular to the compression loading tend to increase the buckling strength and 

cracks parallel to the loading degrade the buckling strength. 

Seifi & Khoda-yari (2011) experimentally and numerically investigated the effect 

of a central crack in a plate under compression while considering different combinations 

of plate aspect ratios and thicknesses, as well as crack lengths and orientations. In 

contrast to the conclusions by Brighenti (2005a, b, 2009) and Khedmati et al. (2009), it 
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was found that cracks perpendicular to the compression load serve to decrease the 

buckling strength of the plate. 

Other studies such as those by Alinia et al. (2007a, 2007b, 2007c) and Brighenti 

& Carpinteri (2011) have focused on the effects of cracks and openings on the shear 

strength of plate-like structures. Alinia et al. (2007a) examined the effects of through-

thickness vertical edge cracks and horizontal cracks on the buckling and post-buckling 

strength of plates under shear by way of finite element simulations as outlined by Alinia 

et al. (2007c). The presence of a vertical edge crack reduced the elastic shear buckling 

strength. The presence of a horizontal crack did not significantly affect the buckling 

strength if the crack was located near the center of the plate edge. However, the buckling 

strength was reduced if the horizontal crack began to interfere with the tension fields near 

the corners of the plate. The theory by Basler & Thurlimann (1960b) would suggest that 

tension field action was not yet predominant if the plate had not buckled. 

The effects of through-thickness central cracks on the buckling and post-buckling 

strength of plates under shear were also investigated numerically by Alinia et al. (2007b). 

As may have been expected, the presence of the central crack served to degrade the 

stiffness and elastic shear buckling strength of the plate. Furthermore, the orientation of 

the crack was found to have an influence on the buckling strength as had been 

demonstrated by Brighenti (2005). Small crack sizes were found to have very little 

influence on the post-buckling plate strength, though this influence increased with crack 

size. 

Brighenti & Carpinteri (2011) recently examined the effects of plate boundary 

conditions, crack length, and crack orientation on the buckling strength of plates under 
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shear through the use of finite element analyses. The fracture failure mode was also 

considered. As with previous related research, the buckling strength was expressed in 

terms of the buckling load multiplier. As may have been expected, the presence of cracks 

generally degraded the buckling strength. In a similar manner to the method by Brighenti 

(2009), a buckling-fracture collapse function was derived which governed whether 

buckling or fracture failure occurs. It was concluded that buckling tends to occur before 

fracture unless the fracture toughness of the concerned material is very low. This was a 

similar conclusion to that by Brighenti (2009) concerning cracked plates in tension. 

 

4.2.4 Residual Strength and Stability of Cracked Beam-like Structures 

Very few studies have investigated the effects of cracks on the strength and 

stability of plate girders and beam-like structures (Roberts, Fisher, Irwin, Boyer, 

Hausammann, Krishna, Morf, & Slockbower, 1977; Roberts, Osman, Skaloud, & 

Zornerova, 1996). These studies did not provide comprehensive expressions or a clear 

procedure for determining the bending moment and shear force capacities of plate girders 

possessing various crack configurations. Furthermore, the fatigue and fracture 

requirements of the AASHTO bridge design specifications consider only the stress range 

induced within plate girder elements, and the stress intensity and the reduction in stability 

of plate girder elements due to the presence of cracks are not directly taken into account 

(AASHTO, 2010). 

An abundance of studies have focused upon the effects of openings on the 

strength and stability of these structures (Bedair, 2011; Cheng & Yura, 1986; Cooper & 

Roychowdhury, 1990; Hagen & Larsen, 2009; Hagen, Larsen, & Aalberg, 2009; Ito, 
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Fujiwara, & Okazaki, 1991; Narayanan & Der-Avanessian, 1985; Redwood & 

Demirdjian, 1998; Shanmugam, Lian, & Thevendran, 2002; Zaarour & Redwood). 

Openings such as holes, slots, and copings are clearly not the same as through-thickness 

cracks. Nonetheless, these studies provide invaluable insight for how a through-thickness 

crack may affect the carrying capacity of beam-like structures. 

 

4.2.4.1 Research Works 

Marek et al. (1970) investigated the behavior of a pre-existing crack in a small-

scale plate girder subjected to fatigue loading. The test girder was previously subjected to 

fatigue loading in order to produce initial through-thickness fatigue cracks. Unwanted 

cracks were repaired so as to leave one three-ended test crack at mid-span. The initial 

state of the test crack was such that it extended from the base of the web plate through 

both sides of the flange plate and up through the web. A concentrated fatigue load 

ranging from 30 to 80 kips was applied at mid-span at a rate of 250 cycles per minute. 

Specifically, the load was applied to the top of the flange opposite the test crack so that 

the crack was in a region of tensile stresses. The strains in the vicinity of the crack were 

recorded along with the crack growth rate. 

The crack was observed to slowly propagate towards the outside edges of the 

flange plate and up through the web plate. Measurements showed that the crack grew at a 

slightly faster rate in the flange than in the web. Furthermore, the crack growth rate was 

observed to increase with the length of the crack. Neglecting the presumed effects of 

residual stresses from the welds, the strains and corresponding stresses at the crack tips 

would have generally increased with the growth of the crack. 
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A growth rate curve of a crack in a steel plate specimen obtained by Hertzberg & 

Nordberg (1969) was compared with the growth rate curve of the crack in the flange of 

the test girder. The two curves demonstrated similar upward trends of growth rate with 

the length of the crack. The vertical displacement between the two curves was thought to 

be due to the differences in geometry between the plate specimen and the actual geometry 

of the test girder flange. Nevertheless, the tests suggested that fatigue crack growth rate 

curves obtained from plate specimens could be used to predict fatigue crack growth in 

actual plate girders with the use of correction factors. A theoretical study conducted by 

Smith, Marek, & Yen (1970) in parallel with the experimental test utilized a lumped 

parameter method to analyze the stress and strain distributions in the vicinity of the crack. 

A mathematical model of the test girder was developed using the same geometrical and 

material properties, crack configuration, and load setup as in the experiment. The stress 

and strain results from the mathematical model were largely in agreement with the 

experimental test. 

Fisher (1970) later performed further fatigue loading tests on a total of 374 small-

scale girders made of different steels with various arrangements of details. Of particular 

interest were the tests that were conducted on cover-plated girders and girders without 

cover plates. The cover plated girders exhibited fatigue crack initiation at the transverse 

welds along the ends of the cover plate, and along the longitudinal welds connecting the 

cover plate to the flange. The cracks at the cover plate ends propagated outward toward 

the flange tips and up through the web plate. For girders without cover plates, multiple 

fatigue cracks were observed to form at flaws in the fillet welds connecting the web plate 

to the tension flange and compression flange. For all cases, the stress range and 
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corresponding range of stress intensity factor were found to be the overwhelming 

variables in controlling the crack growth rates as had been previously shown by 

Hertzberg & Nordberg (1969). A Paris-Erdogan crack growth equation was developed 

which predicted crack growth in good agreement with the observed crack growth. 

Very few studies have been conducted relating to the effects of cracks on the load 

capacity of plate girders or beam-like structures. Roberts et al. (1977) performed an 

extensive set of fatigue loading tests at Lehigh University on a total of 24 full-scale 

girders with various attachments. The purpose of the study was to investigate tolerable 

flaw sizes in the test girders. The test girders were fabricated from structural steels 

conforming to the 1975 AASHTO toughness specifications. The girders were fatigue 

loaded until fracture and the locations and sizes of fatigue cracks were recorded. As 

would be expected, the fatigue cracks generally formed along the weld boundaries. It was 

concluded that the smallest tolerable crack size was on the order of the flange thickness. 

Details containing cracks of this size were estimated to have already exhausted 80% of 

their fatigue life. 

An investigation into the effects of crack growth on the static shear capacity of 17 

transversely stiffened test girders was conducted by Roberts et al. (1996). A portion of 

the test girders were tested to failure under static loading, and exhibited behaviors that 

would be expected from the theory by Basler & Thurlimann (1960b). The girders tested 

under fatigue loading exhibited plate breathing and corresponding out-of-plane bending 

stresses, which formed fatigue cracks at the web panel boundaries. Additionally, tension 

field action was evident, suggesting that the web plate had already effectively buckled. 

This had been previously observed in tests by Goodpasture & Stallmeyer (1967). The 



74 

 

effect of fatigue cracks on the tension field action was analyzed and a modified 

expression for the ultimate shear capacity was derived which took into account the length 

of the crack and the depth of the web. 

As for the influence of openings on the static strength of beam-like structures, 

Narayanan & Der-Avanessian (1985) demonstrated that the ultimate shear capacity of a 

plate girder with a rectangular hole in the web is derived from the elastic capacity of the 

web, the post-buckling tension field action, and the plastic capacity of the flanges. An 

approximate expression for the shear buckling stress was derived from a finite element 

analysis. Specifically, the buckling coefficient was modified with an adjustment factor 

which takes into account the width and height of the rectangular hole. Overall, an 

approximate expression for the ultimate shear capacity was formulated, and compared 

favorably to results from 10 experimental tests. 

Cheng & Yura (1986) examined the effects of copings on web local buckling of 

plate girders and rolled beams using numerical and experimental methods. Again, the 

buckling coefficient was modified with an adjustment factor which considers the 

dimensions of the coped web and the cutout. The resulting capacity expressions 

conservatively predicted the bending moment and shear force capacities at the coped 

region. 

Cooper & Roychowdhury (1990) later developed a modified tension field action 

shear strength expression for plate girders containing web openings. The modified 

expression was essentially based on the tension field theory by Basler & Thurlimann 

(1960b). It was noted that the tension field action shear strength reduces to zero when the 

depth of the web opening exceeds 15% to 20% of the web panel depth. It was also noted 
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that the modified tension field action shear strength expression used in conjunction with 

the modified beam action shear strength expression proposed by Narayanan & Der-

Avanessian (1985) is much more accurate than the theory by Basler & Thurlimann 

(1960b) for plate girders containing web openings. 

Ito et al. (1991) tested a series of plate girders containing U-shaped holes in the 

top of the web plate. Each girder was tested under a concentrated load and strain gauges 

were used to obtain the experimental stress distributions. In terms of elastic behavior, the 

bending and shear stress distributions throughout the sections with and without openings 

correlated very well with the stress distributions obtained from finite element analyses 

and beam theory taking into account the so-called Vierendeel action. Vierendeel action is 

the effect due to modified shear forces acting along the T-shaped cross-section where the 

U-shaped holes are present. Expressions for the modified shear forces were formulated 

which take into account the unmodified shear force, the moment of inertias of the T-

shaped section and the upper flange section, and the top and bottom widths of the U-

shaped hole. Modified bending moments may also be derived from the modified shear 

forces. The modified shear forces and bending moments may then be used in traditional 

beam theory to obtain the shear and bending stress distributions. 

Around the same time, Zaarour & Redwood (1996) tested 14 castellated beams in 

a three-point loading scheme until failure. The out-of-plane web deflections and vertical 

beam displacements were measured in order to identify the governing failure mode. 

Several beams exhibited local buckling of the portion of web plate separating the 

openings (termed the web post). The presence of the openings adjacent to the web post 

produced local instability which led to a decrease in the buckling strength. Other possible 
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failure modes included flange local buckling and yielding. It was concluded that local 

buckling of the web post should be considered in design, especially when the web is 

expected to be deep. Finite element analysis results correlated very well to the tests and 

were deemed to be sufficient for design purposes. 

Bedair (2011) noted that web openings in deep plate girders are oftentimes 

required to pass through utilities such as electrical conduits or pipelines to locations that 

would otherwise be inaccessible. A brief review was given of the AISC Guideline 2 

(2003) flexural capacity expression for deep plate girders with rectangular web openings, 

given by 
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                                                                      (4.2.5) 

where Φ is the resistance factor, Mp is the plastic moment, α is the depth of the opening, 

tw is the web thickness, e is the eccentricity of the opening, and Z is the plastic section 

modulus. It was noted that an ideal design would be one in which the geometry and 

location of the opening are such that the stresses about the opening are minimized. 

Several shortfalls of the expression were noted, namely the absence of parameters such as 

the width of the opening and the radius of curvature of the corners. These two 

parameters, along with the depth and eccentricity of the opening, were thought to have a 

significant effect on the near-field and mid-field stress distributions. Finite element 

analyses were carried out to further investigate the effects of these parameters, and a 

series of recommendations and guidelines were set forth for design purposes to minimize 

the stresses in the vicinity of web openings. 
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4.3 Synopsis 

The behavior of plate girders loaded under predominantly bending, shear, and 

combined bending and shear has been comprehensively established through both theory 

and experimental methods. Also, past research has thoroughly explained the origins and 

configurations of fatigue crack growth within plate girders. However, much of the 

previous research concerning the residual strength of cracked plate-like and beam-like 

structures, as well as the relevant theories and methods, have not been deployed in such a 

manner to develop capacity expressions and an associated design procedure directly 

suitable for structural engineers. The aforementioned objectives of this research to 

develop such capacity expressions and a procedure concerning the residual elastic 

strength of fatigue-cracked plate girders therefore appears to be justified in light of the 

related work performed on this subject as well as the omnipresence of structurally 

deficient bridge infrastructure. 
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5 Methodology 
 

5.1 Overview 

5.1.1 Outline of Research Procedure 

The theoretical expressions for the elastic bending moment and shear force 

capacities of I-shaped transversely stiffened steel plate girders as affected by the presence 

of cracks were analyzed and formulated using the various aforementioned theories 

including beam theory, plane elasticity, classical plate theory, the Rayleigh-Ritz method, 

and LEFM. Specifically, the capacities associated with the general limit states of flange 

local yielding, elastic section yielding, elastic flange local buckling, elastic web local 

buckling, brittle fracture, and impending ductile failure were developed. In general, the 

capacity expressions were developed by determining the local capacities of the flange and 

web plates and coupling these local capacities to the global girder capacities. The 

capacity expressions were then validated with FE analyses using ABAQUS/CAE 6.11. 

Following validation, the decay expressions were formulated using the derived capacity 

expressions. After the capacity and decay expressions were consolidated, the proposed 

design procedure was developed. A flowchart of the research procedure is shown in 

Figure 5.1.1. 
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Figure 5.1.1: Flowchart of the research procedure. 

 

 

 

5.1.2 Elastic Limit State Exceedance Criteria 

The normal stress and shear stress components describing the state of stress of a 

material element are in part dependent upon the orientation of the coordinate axis system 

(see Figure 5.1.2). A reference coordinate axis system is employed for the formulation of 

each capacity expression. The associated normal stress and shear stress components 

obtained using the reference axis system are compared to the various elastic failure 

criteria such as the yield strength and elastic buckling strength. In accordance with 

conventional design procedures, it is assumed that the satisfaction or failure of these 

stress components in meeting the elastic failure criteria constitute whether or not elastic 

failure will occur for all orientations of coordinate axes (Salmon et al., 2009, sec. 2.6). 
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Figure 5.1.2: (a) Material element with normal stress and shear stress components, and (b) material element 

with transformed stress components under a rotated coordinate axis system. 

 

 

 

5.1.3 Non-composite Configuration 

The capacity expressions are formulated considering only non-composite plate 

girder configurations (see Figure 5.1.3). The I-shaped transversely stiffened steel plate 

girders are conservatively assumed to carry load independently of the concrete deck. The 

plate girder properties available to be modified include the flange and web plate 

dimensions, the transverse stiffener plate spacings, and the girder material properties. 

 

 
Figure 5.1.3: Non-composite girder section with corresponding stress and strain bending distributions. 

 

 

 

5.1.4 Form of Capacity Expressions 

The capacity expressions are of the following form: 

   fM cr                                                                                                    (5.1.1) 

   fVcr                                                                                                     (5.1.2) 

where Г represents the material properties, geometrical properties, and loading 

configuration of the girder, as well as the configuration and length of the associated 

crack. It is noted that the capacity expressions do not contain built-in resistance factors 
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and represent the nominal unfactored strength corresponding to the appropriate elastic 

limit state. 

 

5.1.5 Investigated Fatigue Crack Configurations 

5.1.5.1 Configurations Associated with Predominantly Bending 

The investigated fatigue crack configurations are derived from various crack 

configurations observed in the literature (Crocetti, 2003; Davies, Roberts, Evans, & 

Bennett, 1994; Goodpasture & Stallmeyer, 1967; Hall & Stallmeyer, 1964; Kouba & 

Stallmeyer, 1959; Maeda & Okura, 1983, 1984; Marek, Perlman, Pense, & Tall, 1970; 

Roberts, Davies, & Bennett, 1995; Yen, 1963). The investigated crack configurations 

associated with girders loaded under predominantly bending include vertical edge-cracks 

extending from the tension flange through the web plate, cracks extending through one or 

both sides of the tension flange, and three-ended cracks extending through the web plate 

and both sides of the tension flange (see Figure 5.1.4). 

 

 
Figure 5.1.4: (a) Vertical edge-crack in web plate, (b) crack extended through both sides of tension flange, 

(c) crack extending through one side of tension flange, and (d) three-ended crack. 

 

 

 

5.1.5.2 Configurations Associated with Predominantly Shear  

In regions of a girder loaded under predominantly shear, a fatigue crack may 

continue to propagate under mixed-mode loading (Meguid, 1989, ch. 7; Sun & Jin, 2012, 

ch. 5). In the most general case, a fatigue crack may initiate in a corner of a web panel at 
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the junction of a flange and transverse stiffener plate (see Figure 5.1.5a) (Crocetti, 2003; 

Goodpasture & Stallmeyer, 1967; Hall & Stallmeyer, 1964; Kouba & Stallmeyer, 1959; 

Mueller & Yen, 1967; Yen, 1963; Yen & Mueller, 1966). Primarily opening-mode 

loading (Mode I) complemented by low values of sliding-mode loading (Mode II) may 

then cause the crack to propagate in a straight line diagonally through the web panel at an 

angle near to 45° relative to the flange (see Figure 5.1.5b) (Paris & Erdogan, 1963; Sun & 

Jin, 2012, ch. 5). 

 

 

Figure 5.1.5: (a) Girder loaded under predominantly shear with diagonal fatigue crack originating at a 

corner of a web panel, (b) diagonal fatigue crack within the web panel displaying the x-y and x’-y’ axis 

systems. 

 

 

 

5.2 Theoretical Bending Moment Capacity Expressions 

The continued growth of a fatigue crack associated with predominantly bending 

may adversely affect the bending strengths of the overall girder corresponding to the limit 

states of flange local yielding, flange local buckling, tension buckling, web local 

buckling, brittle fracture, and impending ductile failure (Minor & Woodward, 1996; 

Salmon et al., 2009, ch. 11; Sun & Jin, 2012, chs. 3, 6). It is assumed that the portions of 
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the plate girder that the bending moment capacity expressions are applicable to are 

loaded under predominantly bending (see Figure 5.2.1a). The plate girder itself is 

assumed to be an I-shaped transversely stiffened steel plate girder (see Figure 5.2.1b). 

 

 

Figure 5.2.1: (a) Steel plate girder loaded under predominantly bending with (b) I-shaped cross-section. 

 

 

 

5.2.1 Three-ended Crack 

 The three-ended crack configuration (see Figure 5.2.2) is assumed to be through-

thickness and loaded primarily by Mode I loading. The three branches of the three-ended 

crack are assumed to propagate through the girder at approximately the same rate. In this 

way, the length, a, of each branch is always approximately equal to the other branch 

lengths. 

 

 

Figure 5.2.2: Three-ended crack configuration. 
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5.2.1.1 Tension Buckling in Tension Flange 

The tensile capacity expression associated with tension buckling of the tension 

flange stem considering the presence of a three-ended through-thickness fatigue crack is 

derived using several assumptions. The flange stem is assumed to part of an I-shaped 

steel plate girder loaded under pure bending (see Figure 5.2.3a). The flange stem itself is 

assumed to be a rectangular, homogeneous, linear isotropic elastic, thin plate with plane 

stress conditions governing the stress field (see Figure 5.2.3b). The edge along the y-axis 

bordering the web plate is assumed to be clamped. Also, the flange stem is assumed to be 

loaded by far-field tensile stress, ζf, equal in magnitude to the normal bending stress at 

the extreme outer fibers of the associated plate girder. Finally, the edge-crack of length a 

is assumed to be a single branch of a through-thickness three-ended fatigue crack 

extending through the web plate and out through the tension flanges in a direction 

perpendicular to the applied tensile stress. 

 

 
Figure 5.2.3: (a) I-shaped plate girder loaded under pure bending, (b) top view of tension flange stems 

loaded under far-field tensile stress ζf. 

 

 

The presence of the edge-crack in the loaded flange stem induces local transverse 

stresses, ζx, in the vicinity of the crack. The compressive transverse stresses are 

theoretically capable of elastically buckling the portions of flange stem adjacent to the 
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edge-crack (see Figure 5.2.4a). The formulation of the tension buckling capacity requires 

at least an approximate expression describing the local transverse stress field. The non-

symmetric nature and complicated boundary conditions of this configuration make 

difficult the calculation of the stress field. The configuration is therefore approximated by 

considering the edge-crack to be one half of a central crack within an infinite plate loaded 

by ζf (see Figure 5.2.4b). 

 

 
Figure 5.2.4: (a) Distribution of compressive transverse stresses σx adjacent to edge-crack and (b) infinite 

plate loaded by uniformly distributed far-field tensile stress ζf. 

 

 

 The case in Figure 5.2.4b is more general and the complete two-dimensional 

stress field about the crack is readily derived by employing the Airy stress function, 

F(x,y) (see Appendix D: Theory of Elasticity). The Airy stress function must satisfy the 

applicable boundary conditions and the biharmonic equation, expressed by (D.2.5) and 

rewritten here for clarity as (Sadd, 2009, sec. 7.5) 
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which identically satisfies the equilibrium and compatibility requirements. The stress 

field is then given by 
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The Airy stress function for two-dimensional elastic bodies containing cracks may be 

expressed in terms of the real and imaginary parts of the Westergaard stress function, 

Z(δ), in the form (Westergaard, 1939) 

 ZyZF ImRe                                                                                            (5.2.3) 

where 
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and δ is the complex variable δ = x + iy (see Appendix G: Linear Elastic Fracture 

Mechanics). Substitution of (5.2.3) into (5.2.2) results in the stress field about a crack 

given by 
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 The stress field for the case in Figure 5.2.4b is calculated by superimposing the 

stress fields of two distinct configurations (Sun & Jin, 2012, sec. 3.5). The first 

configuration consists of the infinite plate without a crack subjected to far-field tensile 

stress equal in magnitude to ζf (see Figure 5.2.5a). The second configuration consists of 

the central crack within the infinite plate loaded by internal crack face stresses equal in 

magnitude to ζf (see Figure 5.2.5b). The transverse stress field for the first configuration 

is zero, and thus the complete transverse stress field is derived in its entirety from the 

second configuration. 
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Figure 5.2.5: (a) Infinite plate loaded by uniformly distributed far-field tensile stress ζf and (b) infinite plate 

with central crack loaded by internal crack face stress ζf. 

 

 

The Westergaard stress function for the second configuration (see Figure 5.2.3b) 

is given by (Sedov, 1972, sec. 13.2.8) 
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Substituting (5.2.6) into (5.2.5)1 and setting x = 0 results in the transverse stress 

distribution along the positive y-axis of the central crack shown in Figure 5.2.4b, 

expressed as 
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It follows that the transverse stress distribution along the negative y-axis is the mirror of 

(5.2.7). Equation (5.2.7) represents an approximation of the transverse stress distribution 

along the clamped edge of the flange stem adjacent to the edge-crack on the y-axis. Close 

inspection of (5.2.7) reveals that the maximum compressive stress is equal to -ζf and 

occurs at the base of the crack when y = 0. 

The magnitude of ζf corresponding to elastic buckling of the portions of flange 

stem adjacent to the edge-crack is approximated by employing the Rayleigh-Ritz method 

(see Appendix E: Principle of Stationary Potential Energy). The buckled portions of 

flange stem are each assumed to be an embedded rectangular plate (see Figure 5.2.6a). 

Each plate has clamped support conditions along the three embedded edges and is 



88 

 

unrestrained along the edge formed by the edge-crack (see Figure 5.2.6b). These 

assumptions are substantiated by the buckled shapes of centrally cracked plates loaded 

under tension obtained in analyses by Brighenti (2005a, b, 2009) and Paik et al. (2005), 

and the buckled shape of a cracked plate girder web panel loaded under bending as 

observed by Minor & Woodward (1996). 

The distribution of the compressive transverse stresses adjacent to the edge-crack 

(see Figure 5.2.4a) is approximated by loading the clamped edges of each embedded 

plate along the y-axis with the previously determined transverse stress distribution given 

by (5.2.7) (see Figure 5.2.6a). The length, b, of each plate is equal to the extent of (5.2.7) 

in compression, and is determined by equating (5.2.7) to zero and solving for y, resulting 

in 

 ab 786.0                                                                                                        (5.2.8) 

It is evident that the length is entirely dependent upon the width, a, of the plate, which is 

equal to the edge-crack length (see Figure 5.2.6b). 

 

 
Figure 5.2.6: (a) Position of loaded embedded plates adjacent to the edge-crack and (b) geometrical 

boundary conditions of the embedded plate along the positive y-axis. 

 

 

The buckled shape of each embedded plate is assumed to take on a form described 

by a displacement function, w(x,y). The displacement function must satisfy the 

aforementioned geometrical boundary conditions indicated in Figure 5.2.6b and are 

explicitly expressed for the plate along the positive y-axis as 



89 

 

  0,0 yw           0, yaw           0, bxw  

 
0

,0


dx

ydw
      

 
0

,


dx

yadw
      

 
0

,


dy

bxdw
                                                                                 

(5.2.9)                                                   

 

A displacement function of the following form satisfies these boundary conditions 
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where A is an arbitrary variable controlling the amplitude of the displacement function. 

The transverse stress distribution applied upon each embedded plate and the 

corresponding displacement function are both coupled to the total potential energy, П, of 

the plate by (E.1.2) and expanded as (Vinson, 1974, ch. 6) 
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where D is the flexural rigidity of the plate given by (F.2.10) and rewritten here for 

clarity as (Barker & Puckett, 1997, p. 297) 
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The constant E is the modulus of elasticity, ν is Poisson‟s ratio, and tf is the flange plate 

thickness. 

In accordance with the Rayleigh-Ritz method, the variation of total potential 

energy of each embedded plate with respect to A is set to zero as expressed by (E.1.3) and 

rewritten here for clarity: 
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
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Given that the transverse stress distribution applied upon each plate is directly dependent 

upon ζf, the value of ζf enabling this equilibrium of energy is solved for, which 

corresponds to elastic buckling of the portions of flange stem adjacent to the edge-crack 

(embedded plates). Substituting (5.2.7), (5.2.8), (5.2.10), and (5.2.12) into (5.2.11) results 

in an extended expression for the total potential energy of the embedded plate along the 

positive y-axis. Introducing the result into (5.2.13) requires that δ(A
2
) = 2A δA, allowing 

for A to be canceled from the expression (Vinson, 1974, ch. 6). Solving for ζf and 

dividing the result by tf gives 
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where ζY is the yield strength of the flange steel. Equation (5.2.14) represents the critical 

value of ζf associated with elastic buckling of the portions of flange stem adjacent to the 

edge-crack (embedded plates). The corresponding elastic bending moment capacity of the 

associated plate girder is expressed as 

 SM crcr                                                                                                      (5.2.15) 

where S is the elastic section modulus of the uncracked plate girder section with respect 

to the strong axis of bending. 

 

5.2.1.2 Brittle Fracture 

The presence of the edge-crack in the loaded flange stem may alternatively lead to 

the brittle fracture limit state. The edge-crack is again considered to be one half of a 

central crack within an infinite plate loaded by ζf (see Figure 5.2.4b). From LEFM, the 
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Mode I stress intensity factor at the crack tip is given by (G.2.2), and written for clarity as 

(Sun & Jin, 2012, sec. 3.4) 

aK fI                                                                                                (5.2.16) 

A stress intensity correction factor is typically employed to account for the finite 

dimensions of a cracked structure (see Appendix G: Linear Elastic Fracture Mechanics) 

(Sun & Jin, 2012, sec. 3.6). The length of the edge-crack is presumed to remain small in 

comparison to the flange stem prior to elastic failure, and thus the correction factor is 

deemed to be negligible. 

The critical value of ζf corresponding to brittle fracture is simply determined by 

solving (5.2.16) for ζf and conservatively substituting the plane strain fracture toughness, 

KIc, of the flange steel for KI giving 
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The corresponding elastic bending moment capacity of the associated plate girder is 

expressed as 

 SM crcr                                                                                                      (5.2.18) 

 

5.2.1.3 Impending Ductile Failure 

The plastic region at the crack tip induced by ζf must remain small in order for the 

stress intensity factor to remain valid (Meguid, 1989, ch. 6). The growth of the plastic 

region beyond a critical size invalidates the fracture toughness characterization of the 

flange steel and the impending ductile failure must be described using EPFM. A new 
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flange stem limit state may be defined by prescribing a critical plastic region size 

approximating the transition from LEFM to EPFM (see Figure 5.2.7). 

 

 

Figure 5.2.7: Plane stress plastic region at the crack tip. 

 

The plastic region radius, rp, measured from the crack tip is determined by 

employing the Mises yield criterion for plane stress, expressed by (Meguid, 1989, sec. 

5.4) 
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where ζ1 and ζ2 are the principal in-plane stresses expressed as (Beer et al., 2006, sec. 

7.3) 
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Also, the two-dimensional stress field in the local vicinity of the crack tip is expressed in 

terms of the stress intensity factor as (Sun & Jin, 2012, sec. 3.4)
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where polar coordinates are used in place of the original rectangular coordinates. The 

variable r is the radius measured from the crack tip and 𝜃 is the angle of r with respect to 

the longitudinal axis of the crack. 

Substituting (5.2.16), (5.2.20), and (5.2.21) into (5.2.19), setting 𝜃 = 0, and 

solving for ζf results in 
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                                                                              (5.2.22) 

where rp,cr is a prescribed critical plastic region radius measured from the crack tip at 𝜃 = 

0. The corresponding elastic bending moment capacity of the associated plate girder is 

expressed as 

 SM crcr                                                                                                      (5.2.23) 

 

5.2.2 Vertical Edge-crack in Web Plate 

The vertical edge-crack in the web plate is assumed to be through-thickness and 

loaded primarily by Mode I loading (see Figure 5.2.8). The crack of length 2a is assumed 

to initiate along the boundary between the web plate and tension flange plate and 

propagate vertically through the web plate. 

 

 

Figure 5.2.8: Vertical edge-crack configuration. 
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5.2.2.1 Yielding of Compression Flange 

The bending moment capacity expression associated with yielding of the 

compression flange considering a vertical crack in the web plate is next derived. As with 

the three-ended crack, the I-shaped steel plate girder is assumed to be loaded under pure 

bending (see Figure 5.2.9). The presence of a vertical through-thickness edge-crack in the 

tension region of the web plate induces a local disturbance in the normal bending stress 

distribution. Specifically, the crack serves to locally shift the neutral axis of the plate 

girder towards the compression flange, which may give rise to premature yielding of the 

compression flange. 

 

 
Figure 5.2.9: (a) I-shaped plate girder loaded under pure bending and (b) cross-section through edge-crack. 

 

 

The normal bending stress distribution in uncracked sections of a plate girder is 

described by beam theory, in which the distribution takes on a linear form as shown in 

Figure 5.2.10a (Beer et al., 2006, ch. 4). The stress designated by ζf is the bending stress 

at the extreme fibers of the plate girder. Using the coordinate system designated in Figure 

5.2.9, the linear bending stress distribution in any uncracked section is expressed as 
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where ζw is the bending stress at the extreme fibers of the web plate, dw is the depth of the 

web plate, and a is one half the crack length. 



95 

 

 
Figure 5.2.10: (a) Normal bending stress distribution, ζy, in uncracked section of a plate girder, and (b) 

normal bending stress distribution, ζy(x,0), in cracked section. 

 

 

Given that plate girders are constructed of relatively thin plates, plane stress 

conditions are assumed to govern the stress field within the plates. The local disturbance 

in the web plate stress field induced by the edge-crack is approximately determined with 

the use of the Airy stress function, F(x,y) (see Appendix D: Theory of Elasticity). The 

two-dimensional stress field for any elastic body may be expressed in terms of the Airy 

stress function as (Sadd, 2009, sec. 7.5) 
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where the Airy stress function satisfies the biharmonic equation given by (Sadd, 2009, 

sec. 7.5) 
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hence satisfying the equilibrium and compatibility requirements. The presence of a crack 

within an elastic body requires an expanded definition of the stress field and is achieved 

by expressing the Airy stress function in terms of the Westergaard stress function, Z(ζ), as 

(Westergaard, 1939) 

ZyZF ImRe                                                                                           (5.2.27) 

where 
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Z                                                                    (5.2.28) 

and ζ is the complex variable ζ = x + iy (see Appendix G: Linear Elastic Fracture 

Mechanics). The substitution of (5.2.27) into (5.2.25) results in the stress field about a 

crack becoming 
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                                                                                      (5.2.29) 

The normal bending stress distribution, ζy(x,0), along the x-axis (see Figure 

5.2.10b) is approximated by assuming that the vertical crack resides within an infinite 

plate loaded by far-field stresses, ζy, distributed identically to the uncracked bending 

stress distribution (see Figure 5.2.10a) as expressed by (5.2.24). The peaks of the far-field 

stress distributions are equal to ζf and are slightly offset from the y-axis in order to align 

with the actual triangular bending stress distribution within the plate girder (see Figure 

5.2.11a). The stress field around the crack for this configuration is obtained by 

superimposing the stress fields for two distinct cases (Sun & Jin, 2012, sec. 3.5). The first 

case consists of the infinite plate and far-field stresses without the crack. The second case 

consists of the crack within the infinite plate loaded by internal crack face stresses 

distributed identically to the uncracked bending stress distribution as expressed by 

(5.2.24). As a further simplification, the linearly varying crack face stresses are 

approximated as being uniformly distributed with a magnitude ζw’ taken as the average of 

the crack face stresses (see Figure 5.2.11b). This average stress is obtained by 

substituting x = 0 into (5.2.24), resulting in 
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Figure 5.2.11: (a) Infinite plate with central crack loaded by far-field stresses and (b) central crack within 

an infinite plate loaded by uniform crack face stresses. 

 

 

Superimposing the uncracked bending stress distribution for the first case as given 

by (5.2.24) with the stress distribution for the second case as given by (5.2.29)2 and 

setting y = 0 results in 

yy Zx   Re)0,(                                                                                    (5.2.31) 

The Westergaard stress function for the second case (see Figure 5.2.11b) is given by 

(Sedov, 1972, sec. 13.2.8) 
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Substituting (5.2.24), (5.2.30), and (5.2.32) into (5.2.31) results in the final expression for 

the normal bending stress distribution along the x-axis: 

  





 

























 ax

dax

x

d

a
x

w

w
w

w

w
y

2
1

2
)0,(

22
                           (5.2.33) 

The local shift of the neutral axis along the x-axis (see Figure 5.2.10b) is 

determined by equating (5.2.33) to zero and solving for x, resulting in: 

22 48
2

1
wwo dadax                                                                            (5.2.34) 
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The depth of the web plate along the x-axis under tension, dt, therefore becomes: 

adadaaxd wwot  22 48
2

1
                                                        (5.2.35) 

Also, the depth of the web plate along the x-axis under compression, dc, becomes: 

22 48
2

1
wwwtwc dadaadddd                                              (5.2.36) 

The localized shift of the neutral axis towards the compression flange serves to 

increase the bending stresses in the compression flange along the x-axis, which may lead 

to local yielding. In uncracked sections of a plate girder, the bending stresses at the 

extreme fibers of the compression flange, ζf, and web plate, ζw, are related by similar 

triangles in the form, 
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where tf is the compression flange plate thickness. Solving (5.2.37) for ζw gives, 
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                                                                                              (5.2.38) 

The local increase of bending stresses in the compression flange is first calculated by 

equating the compressive force in the uncracked section of the web plate with the 

compressive force in the cracked section of the web plate, expressed as 

24

wccwwww tdtd 
                                                                                        (5.2.39) 

where tw is the web plate thickness, and ζcw is the increased bending stress at the extreme 

fibers of the web plate along the x-axis. Solving for ζcw results in: 
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Assuming a linear distribution of compressive bending stresses above the shifted 

neutral axis along the x-axis, the increased bending stresses at the extreme fibers of the 

compression flange, ζcf, is calculated by employing similar triangles, in the form 

c
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
                                                                                            (5.2.41) 

Solving (5.2.41) for ζcf results in: 
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Substituting (5.2.36) and (5.2.38) into (5.2.40), and introducing the result into (5.2.42) 

results in: 
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
                                                                                                       (5.2.43) 

where the factor βcf  is defined as 
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Solving (5.2.43) for ζf and setting ζcf equal to the yield strength, ζY, of the girder steel 

results in: 

YYcfcr                                                                                         (5.2.45) 

Equation (5.2.45) represents the critical bending stress at the extreme fibers of the 

compression flange in uncracked sections of a plate girder corresponding to yielding of 

the extreme fibers of the compression flange in the cracked section along the x-axis. The 

corresponding elastic bending moment capacity of the associated plate girder is expressed 

as 
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SM crcr                                                                                                  (5.2.46) 

 

5.2.2.2 Local Buckling of Compression Flange 

The local increase in bending stresses within the compression flange may 

alternatively lead to elastic local buckling of the compression flange stems. The critical 

bending stress at the extreme fibers of the compression flange in uncracked sections of a 

plate girder corresponding to elastic buckling of a flange stem in the cracked section 

along the x-axis is determined using (5.2.43) and (5.2.44). Equating ζcf in (5.2.43) to the 

classical elastic plate buckling strength results in (Salmon et al., 2009, sec. 6.14) 
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where the factor k is dependent upon the geometrical properties and support conditions of 

the flange stem, and bf is the compression flange width (see Appendix F: Classical Plate 

Theory). The constant D is the plate rigidity given by (Salmon et al., 2009, sec. 6.14) 
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where E is the modulus of elasticity and ν is Poisson‟s ratio. Substituting (5.2.48) into 

(5.2.47) and solving for ζf results in: 
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One side of a flange stem is unrestrained while the side bordering the web plate is 

assumed to be simply supported or fully clamped. Assuming the restrained side to be 

fully clamped requires that k = 4 (Salmon et al., 2009, sec. 6.15). The corresponding 

elastic bending moment capacity of the associated plate girder is expressed as 
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SM crcr                                                                                                  (5.2.50) 

 

5.2.2.3 Web Local Buckling 

The local increase in bending stresses within the compression region of the web 

plate (see Figure 5.2.10b) influences the elastic web local buckling strength of a plate 

girder. This strength is estimated by first calculating the critical bending stress at the 

extreme fibers of the web plate, ζcw, along the x-axis. A predefined region of the cracked 

web plate is assumed to locally buckle, and the Rayleigh-Ritz method is employed to 

estimate ζcw (see Appendix E: Principle of Stationary Potential Energy). 

The predefined buckled region is presumed to be a square embedded plate of 

width dc (see Figure 5.2.12a). This assumption is judged to be reasonable in light of the 

buckled shapes of cracked plates loaded under tension obtained by Brighenti (2005a, b, 

2009). The central axis of the embedded plate is aligned with the crack along the x-axis. 

In accordance with the Rayleigh-Ritz method, the embedded plate is assumed to buckle 

in a form described by an out-of-plane displacement function, w(x,y). The boundaries of 

the embedded plate are fully clamped, of which the boundary conditions are expressed as 

follows: 
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A displacement function of the following form satisfies the boundary conditions 

expressed by (5.2.51): 
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where A is an arbitrary variable subject to variation. The actual compressive stress 

distribution in the region above the crack is approximated by loading the vertical sides of 

the embedded plate with the linear compressive bending stress distribution along the x-

axis, ζy
c
(x,0), as shown in Figure 5.2.12b, and given by: 
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Figure 5.2.12: (a) Location of embedded plate within the web plate, and (b) the assumed external load 

distribution. 

 

The total potential energy, П, of the loaded embedded plate is expressed as 

(Vinson, 1974, sec. 6.1) 
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where W is the strain-energy density function, V is the volume of the plate, Ti are the 

applied surface tractions, ui are the corresponding displacements, and S is the surface 

over which the tractions are applied. The y-intercept of (5.2.53) is shifted by a magnitude 

of -dc / 2 such that (5.2.53) is applied upon the vertical side of the embedded plate at y = -

dc / 2. The change in total potential energy, δП, with respect to A is then equated to zero, 

as expressed by (E.1.3). Solving for ζcw and dividing the result by tw gives: 
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The substitution of (5.2.36) and (5.2.38) into (5.2.40) results in: 
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where the factor βcw  is defined as 
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Introducing (5.2.55) into (5.2.56) and solving for ζf results in 
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where tw is used in place of tf in the plate rigidity. The corresponding elastic bending 

moment capacity of the associated plate girder is expressed as 

SM crcr                                                                                                  (5.2.59) 

 

5.2.2.4 Tension Buckling in Web Plate 

The presence of the vertical crack in the loaded web plate induces transverse 

compressive stresses, ζx, adjacent to the crack which may cause local buckling (see 
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Figure 5.2.13). The exact compressive stress distribution is difficult to obtain due to the 

non-symmetric configuration and complicated boundary conditions of the crack. As an 

alternative, the transverse stress distribution is approximated by considering the vertical 

crack to be a central crack located within an infinite plate loaded by linearly varying far-

field tensile stress distributions (see Figure 5.2.14). The maximum magnitudes of the far-

field stress distributions are equal to the bending stress within the extreme fibers of the 

tension flange, ζf. The apex of each far-field stress distribution occurs at a location 

slightly offset from the y-axis in order to align with the actual triangular bending stress 

distribution in the plate girder. 

 

 

Figure 5.2.13: Web plate showing (a) transverse compressive stresses adjacent to edge-crack, and (b) 

distribution of transverse stresses along the positive y-axis adjacent to the edge-crack. 

 

 

 

Figure 5.2.14: Central crack within an infinite plate subjected to linearly varying far-field tensile stress 

distributions. 
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The case in Figure 5.2.14 is more general and the stress field around the central 

crack can be readily approximated by employing the principle of superposition (Sun & 

Jin, 2012, sec. 3.5). This stress field is obtained by superimposing the stress field for the 

case in Figure 5.2.14 without a crack with the stress field for the case of a central crack 

within an infinite plate subjected to linearly varying crack face tensile stresses, σy(xo) (see 

Figure 5.2.15a). These tensile stresses are described by the function 
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where xo is the distance along the x-axis measured from the origin of the coordinate 

system, and dw is the depth of the web plate. The variation of the crack face tensile 

stresses is identical to the stress variation of the case in Figure 5.2.14. The maximum 

tensile stress occurs at xo = -a, and is equal to ζf. 

 

 

Figure 5.2.15: Central crack within an infinite plate subjected to (a) linearly varying and (b) uniform crack 

face tensile stresses. 

 

The superimposed stress field of the case in Figure 5.2.14 without a crack has no 

effect on the transverse stress distribution around the central crack, and the stress field is 

sought for the case in Figure 5.2.15a. This case is greatly simplified by recognizing from 

(5.2.60) that, for small crack lengths and large web plate depths, σf is nearly equal to the 

crack face tensile stresses at the crack end given by σy(a). The distribution of crack face 
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tensile stresses is therefore approximated as uniform tensile stress, ζf’ (see Figure 

5.2.15b). The magnitude of ζf’ is taken as the average of ζf and ζy(a), expressed by: 
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The two-dimensional stress field of the case in Figure 5.2.15b is obtained by 

employing the Airy stress function, F(x,y) (see Appendix D: Theory of Elasticity). The 

Airy stress function must satisfy any given boundary conditions and the biharmonic 

equation given by (Sadd, 2009, sec. 7.5) 
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which identically satisfies the equilibrium and compatibility equations. The stress field is 

expressed as (Sadd, 2009, sec. 7.5) 
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For elastic bodies containing cracks, the Airy stress function may be expressed in terms 

of the Westergaard stress function, Z(ζ), as (Westergaard, 1939) 

ZyZF ImRe                                                                                            (5.2.64) 

where, 
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and ζ is the complex variable ζ = x + iy (see Appendix G: Linear Elastic Fracture 

Mechanics). Substitution of (5.2.64) into (5.2.63) results in the stress field around the 

crack: 
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The Westergaard stress function for the case in Figure 5.2.15b is expressed as 

(Sedov, 1972, sec. 13.2.8) 
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Evaluating the integral results in: 
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Substituting (5.2.61) and (5.2.68) into (5.2.66)1, and setting x = 0 results in the following 

expression for the two-dimensional transverse stress distribution along the positive y-axis 

of the central crack shown in Figure 5.2.14: 
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Alternatively, setting x = ±a results in the transverse stress distribution at the crack ends, 

given by: 
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Based on the prior assumption considering the edge-crack to be a central crack within an 

infinite plate, (5.2.69) approximately describes the transverse stress distribution at the 

middle of the crack on the positive y-axis, and (5.2.70) approximately describes the 
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transverse stress distribution along the clamped edge of the web plate and at the far end 

of the crack (see Figure 5.2.16). 

 

 

Figure 5.2.16: Transverse stress distributions at the middle and ends of edge-crack. 

 

The transverse stress distributions given by (5.2.69) and (5.2.70) are used to 

calculate the local buckling strength of the portion of web plate adjacent to the crack by 

employing the Rayleigh-Ritz method (see Appendix E: Principle of Stationary Potential 

Energy). This portion of plate is assumed to be a rectangular embedded plate (see Figure 

5.2.17a) with clamped support conditions along three edges and a free edge formed by 

the crack (see Figure 5.2.17b). These assumptions are substantiated by the buckled 

shapes of centrally cracked plates loaded under tension (Brighenti, 2005a, b, 2009; Paik 

et al., 2005), and the buckled shape of a cracked plate girder web panel loaded under 

bending (Minor & Woodward, 1996). 
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Figure 5.2.17: (a) Location of embedded plate adjacent to edge-crack with (b) exact and (c) approximate 

transverse stress distributions. 

 

The compressive stress distribution in the region directly adjacent to the crack is 

approximated by loading the clamped edge of the embedded plate bordering the tension 

flange with a transverse compressive stress distribution, σx’(-a, y), taken as the average of 

(5.2.69) and (5.2.70), expressed as 

2

),(),0(
),(' yay

ya xx
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



                                                                     (5.2.71) 

Substituting (5.2.69) and (5.2.70) into (5.2.71) results in a lengthy expression for the 

transverse stress distribution (see Figure 5.2.17b). Examination of (5.2.71) reveals that 

the stress distribution is triangular in shape and may be simplified as a linear distribution, 

ζx”(-a, y) (see Figure 5.2.17c). The slope of ζx”(-a, y) is taken as one half of (5.2.61) 

divided by the width, b, of the embedded plate, and the x-intercept is taken as one half of 

(5.2.61). The value of b is assumed to be equal to the extent of σx’(-a, y) in compression, 

and is determined by setting (5.2.71) equal to zero and solving for y, resulting in 
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ab 16.1                                                                                                       (5.2.72) 

Accordingly, the simplified transverse stress distribution becomes 
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In accordance with the Rayleigh-Ritz method, the buckled shape of the embedded 

plate is assumed to take on a form described by an out-of-plane displacement function, 

w(x,y). The displacement function satisfies the geometric boundary conditions indicated 

in Figure 5.2.17b and includes an arbitrary variable, A. The change in total potential 

energy, П, with respect to A is set to zero and the stress distribution given by (5.2.73) 

enabling this equilibrium is solved for. The total potential energy of the embedded plate 

is given by (Vinson, 1974, sec. 6.1) 
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where W is the strain-energy density function, V is the volume of the plate, Ti are the 

applied surface tractions, ui are the corresponding displacements, and S is the surface 

over which the tractions are applied. D is the plate rigidity given by 

)1(12 2

3


 wEt

D                                                                                               (5.2.75) 

where E is the modulus of elasticity, ν is Poisson‟s ratio, and tw is the web plate thickness. 

The geometric boundary conditions indicated in Figure 5.2.17b are explicitly 

expressed as: 
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A simple displacement function of the following form satisfies these conditions: 
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Substituting (5.2.72), (5.2.73), and (5.2.77) into (5.2.74) results in an expanded 

expression for the total potential energy. Setting the change in total potential energy with 

respect to A to zero requires that 
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From calculus of variations, δ(A
2
) = 2A δA, which allows for A to be canceled from the 

expanded expression (Vinson, 1974, sec. 6.1). Finally, solving for ζf and dividing the 

result by tw results in: 
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                                                          (5.2.79) 

where ζY is the yield strength of the web plate steel. Equation (5.2.79) represents an 

approximation of the critical far-field bending stress at the extreme fibers of the plate 

girder corresponding to local buckling of the portion of web plate adjacent to the crack 

(embedded plate). The corresponding elastic bending moment capacity of the associated 

plate girder is expressed as 

SM crcr                                                                                                  (5.2.80) 
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5.2.2.5 Brittle Fracture 

The presence of the vertical edge-crack in the web plate may alternatively lead to 

brittle fracture originating from the crack tip bordering the tension flange (see Figure 

5.2.9). In this case, the vertical edge-crack is loaded by the triangular tensile stress 

distribution induced by pure bending. In a manner similar to the tension buckling 

formulation, the edge-crack may be approximated as a central crack located within an 

infinite plate loaded by linearly varying far-field tensile stress distributions with peaks 

equal in magnitude to ζf (see Figure 5.2.18). 

 

 

Figure 5.2.18: Central crack within an infinite plate subjected to linearly varying far-field tensile stress 

distributions. 

 

It is observed that the total magnitude of the triangular tensile stress distribution is 

equal to one half of the total magnitude of a uniformly distributed far-field tensile stress, 

ζf, acting over the same distance. Hence, the stress intensity factor, previously defined by 

(5.2.16), is effectively reduced by one half, resulting in: 

aK fI 
2

1
                                                                                               (5.2.81) 

As with the three-ended crack configuration, the vertical crack is presumed to remain 

small in comparison to the web plate prior to the occurrence of an elastic limit state. In a 

manner similar to the brittle fracture limit state of the three-ended crack configuration, 
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the critical value of ζf corresponding to brittle fracture is determined by solving (5.2.81) 

for ζf and conservatively substituting KIc of the web plate steel for KI, resulting in: 
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2
                                                                                        (5.2.82) 

The corresponding elastic bending moment capacity of the associated plate girder is 

expressed as 

SM crcr                                                                                                  (5.2.83) 

 

5.2.2.6 Impending Ductile Failure 

As with the three-ended crack configuration, the plastic region at the crack tip 

induced by the triangular bending stress distribution must remain small in order for the 

stress intensity factor to remain valid. A new limit state may be defined by prescribing a 

critical plastic zone size approximating the transition from LEFM to EPFM (see Figure 

5.2.7). The plastic zone radius, rp, measured from the crack tip is determined by 

employing the Mises yield criterion for plane stress, expressed by (5.2.19) (Meguid, 

1989, sec. 5.4). Also, the two-dimensional stress field in the local vicinity of the crack tip 

is expressed in terms of the stress intensity factor by (5.2.21), and the principal in-plane 

stresses, ζ1 and ζ2, are expressed by (5.2.20) (Beer et al., 2006, sec. 7.3; Sun & Jin, 2012, 

sec. 3.4). Substituting (5.2.20), (5.2.21), and (5.2.81) into (5.2.19), setting 𝜃 = 0, and 

solving for ζf results in: 
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where rp,cr is a prescribed critical plastic zone radius measured from the crack tip at 𝜃 = 0 

(see Figure 5.2.7). The corresponding elastic bending moment capacity of the associated 

plate girder is expressed as 

SM crcr                                                                                                  (5.2.85) 

 

5.2.3 Crack Extending Through One or Both Sides of Tension Flange 

 A fatigue crack extending through one or both sides of the tension flange is 

assumed to be through-thickness and loaded primarily by Mode I loading (see Figure 

5.2.19a, b). Given the assumption that each crack branch propagates at approximately the 

same rate, the crack configuration extending through both sides of the tension flange is 

nominally symmetrical (see Figure 5.2.19a). Therefore, each crack branch of length 2a is 

theoretically loaded by equivalent magnitudes of uniformly distributed far-field tensile 

stress. Furthermore, the absence of a vertical crack branch extending through the web 

plate serves to further isolate each crack branch in the tension flange. Each crack branch 

may then be analyzed as if the mirroring crack branch is nonexistent, such as in the 

configuration with the crack extending through one side of the tension flange (see Figure 

5.2.19b). The two crack configurations shown in Figure 5.2.19 are thus nominally 

identical for the purpose of stress analyses, and may be analyzed using the configuration 

with the crack extending through one side of the tension flange (see Figure 5.2.19b). 
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Figure 5.2.19: (a) Crack extended through both sides of tension flange and (b) crack extending through one 

side of tension flange. 

 

 

 

5.2.3.1 Tension Buckling in Tension Flange 

The tensile capacity expression associated with tension buckling of the tension 

flange stem considering the presence of a through-thickness fatigue crack extending 

through one side of the tension flange is derived using the same assumptions as was 

employed for the three-ended crack and the vertical edge-crack (i.e., the flange stem is 

assumed to be part of an I-shaped steel plate girder loaded under pure bending, and is 

assumed to be constructed of high-strength low-alloy steel). The edge of the tension 

flange bordering the web plate is assumed to be clamped. Also, the flange stem is 

assumed to be loaded by far-field tensile stress, ζf, equal in magnitude to the normal 

bending stress at the extreme outer fibers of the associated plate girder (see Figure 

5.2.20a). Finally, the edge-crack of length 2a is assumed to extend through one side of 

the tension flange in a direction perpendicular to the applied tensile stress (see Figure 

5.2.20b). 
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Figure 5.2.20: (a) I-shaped plate girder loaded under pure bending, (b) top view of tension flange stems 

loaded under far-field tensile stress ζf. 

 

The presence of the through-thickness edge-crack in the loaded tension flange 

induces transverse compressive stresses, ζx, adjacent to the crack which may cause local 

buckling (see Figure 5.2.21a). The transverse stress distribution is approximated by 

considering the edge-crack to be a central crack located within an infinite plate loaded by 

uniformly distributed far-field tensile stress equal in magnitude to the normal bending 

stress at the extreme outer fibers of the associated plate girder (see Figure 5.2.21b). 

 

 

Figure 5.2.21: (a) Top view of tension flange with transverse compressive stresses adjacent to crack, and 

(b) infinite plate loaded by uniformly distributed far-field tensile stress ζf. 

 

The case in Figure 5.2.21b is more general and the stress field about the central 

crack is obtained by superimposing the stress field for the case in Figure 5.2.21b without 

a crack (see Figure 5.2.22a) with the stress field for the case of a central crack within an 

infinite plate subjected to uniform crack face tensile stresses, σf (see Figure 5.2.22b). 
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Figure 5.2.22: (a) Infinite plate loaded by uniformly distributed far-field tensile stress ζf and (b) infinite 

plate with central crack loaded by internal crack face stress ζf.. 

 

As with the three-ended crack configuration, the case in Figure 5.2.22a has no 

effect on the transverse stress distribution around the central crack, and the stress field is 

sought for the case in Figure 5.2.22b. The plane stress field expressed in terms of the 

Westergaard stress function was previously given by (G.1.3), and is rewritten for clarity 

as: 
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The Westergaard stress function for the case in Figure 5.2.22b is expressed as (Sedov, 

1972, sec. 13.2.8) 
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Substituting (5.2.87) into (5.2.86)1 and setting x = 0 results in the following 

expression for the plane transverse stress distribution along the positive y-axis of the 

central crack shown in Figure 5.2.22b: 
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Alternatively, setting x = ±a results in the plane transverse stress distribution at the crack 

ends given by 
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                                                (5.2.89) 

Based on the prior assumption considering the edge-crack to be a central crack within an 

infinite plate, (5.2.88) approximately describes the transverse stress distribution at the 

middle of the crack on the positive y-axis, and (5.2.89) approximately describes the 

transverse stress distribution along the clamped edge of the tension flange stem and at the 

far ends of the crack (see Figure 5.2.23). 

 

 

Figure 5.2.23: Transverse stress distributions at the middle and ends of edge-crack. 

 

The transverse stress distributions given by (5.2.88) and (5.2.89) are used to 

calculate the local buckling stress of the portion of tension flange stem adjacent to the 

edge-crack by employing the Rayleigh-Ritz method (see Appendix E: Principle of 

Stationary Potential Energy). In a similar manner to the three-ended crack and vertical 

edge-crack tension buckling formulations, this portion of plate is assumed to be a 

rectangular embedded plate (see Figure 5.2.24a) with clamped support conditions along 

three edges and a free edge formed by the edge-crack (see Figure 5.2.24b) (Brighenti, 

2005a, b, 2009; Minor & Woodward, 1996; Paik et al., 2005). 
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Figure 5.2.24: (a) Location of embedded plates adjacent to edge-crack with (b) exact and (c) approximate 

transverse stress distributions. 

 

The compressive stress distribution adjacent to the crack is approximated by 

loading the clamped edge of the embedded plate bordering the web plate with a 

transverse compressive stress distribution, σx’(-a, y), taken as the average of (5.2.88) and 

(5.2.89), expressed as: 
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Substituting (5.2.88) and (5.2.89) into (5.2.90) results in a lengthy expression for the 

transverse stress distribution (see Figure 5.2.24b). Examination of (5.2.90) reveals that 

the stress distribution is triangular in shape and can be simplified as a linear distribution, 

ζx”(-a, y) (see Figure 5.2.24c). The slope is taken as one half of ζf divided by the width, 

b, of the embedded plate, and the x-intercept is taken as one half of ζf. The value of b is 

assumed to be equal to the extent of σx’(-a, y) in compression and is determined by 

setting (5.2.90) equal to zero and solving for y, resulting in: 

ab 16.1                                                                                                       (5.2.91) 
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Accordingly, the simplified transverse stress distribution becomes: 
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In accordance with the Rayleigh-Ritz method, the buckled shape of the embedded 

plate is assumed to take on a form described by an out-of-plane displacement function, 

w(x,y). The displacement function satisfies the geometric boundary conditions indicated 

in Figure 5.2.24b and includes an arbitrary variable, A. The change in total potential 

energy, П, with respect to A is set to zero and the stress distribution given by (5.2.92) 

enabling this equilibrium is solved for. The total potential energy of the embedded plate 

is given by (Vinson, 1974, sec. 6.1) 
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where W is the strain-energy density function, V is the volume of the plate, Ti are the 

applied surface tractions, ui are the corresponding displacements, and S is the surface 

over which the tractions are applied. The constant D is the plate rigidity given by 

)1(12 2

3
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fEt
D                                                                                                 (5.2.94) 

where E is the modulus of elasticity, ν is Poisson‟s ratio, and tf is the flange stem 

thickness. 

The geometric boundary conditions indicated in Figure 5.2.24b are explicitly 

expressed as: 
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A simple displacement function of the following form satisfies these conditions: 











a

x
byAw

2
cos)( 22 

                                                                              (5.2.96) 

Substituting (5.2.91), (5.2.92), (5.2.94), and (5.2.96) into (5.2.93) results in an expanded 

expression for the total potential energy. Setting the change in total potential energy with 

respect to A to zero requires that: 
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From calculus of variations, δ(A
2
) = 2A δA, which allows for A to be canceled from the 

expanded expression (Vinson, 1974, sec. 6.1). Solving for σf and dividing the result by tf 

gives: 
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where ζY is the yield strength of the flange steel. Equation (5.2.98) represents an 

approximation of the critical far-field tensile stress at the extreme fiber of the plate girder 

corresponding to local buckling of the portion of flange stem adjacent to the edge-crack. 

The corresponding elastic bending moment capacity of the associated plate girder is 

expressed as 

SM crcr                                                                                                  (5.2.99) 

 



122 

 

5.2.3.2 Brittle Fracture 

The presence of a fatigue crack extending through one or both sides of the tension 

flange may alternatively lead to brittle fracture. In a manner similar to the brittle fracture 

limit state of the three-ended crack and vertical edge-crack, the horizontal edge-crack is 

again conservatively assumed to be a central crack loaded by a uniform distribution of 

far-field tensile stress, ζf, equal in magnitude to the normal bending stress at the extreme 

fibers of the associated plate girder. In this case, the far-field tensile stress is in fact 

uniformly distributed and the unmodified stress intensity factor, KI, is given by (5.2.16). 

The brittle fracture capacity is then expressed as: 
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The corresponding elastic bending moment capacity of the associated plate girder is 

expressed as 

SM crcr                                                                                                (5.2.101) 

 

5.2.3.3 Impending Ductile Failure 

As with the impending ductile failure limit state of the three-ended crack and vertical 

edge-crack, the plastic region at the crack tip induced by ζf must remain small in order for 

the stress intensity factor to remain valid. In a procedure similar to the formulation of the 

three-ended crack and vertical edge-crack impending ductile failure capacities, the 

critical magnitude of ζf corresponding to the transition from LEFM to EPFM is 

determined by employing the Mises yield criterion (5.2.19) and the two-dimensional 

stress field in the local vicinity of the crack tip expressed in terms of the stress intensity 
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factor (5.2.21) (Meguid, 1989, sec. 5.4; Sun & Jin, 2012, sec. 3.4). Substituting (5.2.20), 

(5.2.21), and (5.2.81) into (5.2.19), setting 𝜃 = 0, and solving for ζf results in: 
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where rp,cr is a prescribed critical plastic region radius measured from the crack tip at 𝜃 = 

0 (see Figure 5.2.7). The corresponding elastic bending moment capacity of the 

associated plate girder is expressed as 

SM crcr                                                                                                (5.2.103) 

 

5.3 Theoretical Shear Force Capacity Expressions 

The continued growth of a diagonal fatigue crack may adversely affect the shear 

strength of a web panel, and concurrently the overall girder, corresponding to the limit 

states of shear yielding and local buckling. Furthermore, the presence of the crack 

introduces two additional limit states including brittle fracture and impending ductile 

failure (Sun & Jin, 2012, chs. 3, 5). Overall, the growth of a diagonal fatigue crack may 

bring about the premature occurrence of elastic limit states in a girder (Bowman, 2004; 

Chajes et al., 2005; Kirke & Al-Jamel, 2004, sec. 2.3.3; Lichtenstein, 1990; Minor & 

Woodward, 1996; Wardhana & Hadipriono, 2003; Zhou & Biegalski, 2010). 

Several assumptions are made with regard to the formulation of the shear capacity 

expressions. It is assumed that the portions of the plate girder that the expressions are 

applicable to are loaded under predominantly shear (see Figure 5.3.1b). As with the 

formulation of the bending moment capacity expressions, the plate girder itself is 

assumed to be an I-shaped transversely stiffened steel plate girder (see Figure 5.3.1a). 
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The individual plates of the girder are assumed to be constructed of high-strength low-

alloy structural steel. As such, the steel is implied to be homogeneous and behave as a 

linear isotropic elastic material (Sadd, 2009, sec. 4.1). Also, the plates are assumed to be 

sufficiently thin enough for plane stress conditions to predominate. The web panel itself 

is assumed to have a depth, dw, and a width, s, designating the spacing between the 

stiffener plates (see Figure 5.3.1b, c). 

 

 

Figure 5.3.1: (a) I-shaped steel plate girder cross-section, (b) girder loaded under predominantly shear and 

subdivided into individual web panels by transverse stiffener plates, (c) web panel loaded under pure shear. 

 

 

 

5.3.1 Diagonal Crack in Web Panel 

The diagonal fatigue crack of length 2a is assumed to be through-thickness and 

loaded primarily by Mode I loading with minimal influence from Mode II loading. As 

such, the crack is assumed to propagate in a comparatively straight line from a corner of 

the web panel at an angle θ ≈ 45° relative to the flange (see Figure 5.3.2) (Sun & Jin, 

2012, ch. 5). Two coordinate axis systems are stipulated; the x’-y’ axis system is 

orthogonal with the diagonal crack, and the x-y axis system is orthogonal with the web 

panel. 
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Figure 5.3.2: (a) Girder loaded under predominantly shear with diagonal fatigue crack originating at a 

corner of a web panel, (b) diagonal fatigue crack within the web panel displaying the x-y and x’-y’ axis 

systems. 

 

 

 

5.3.1.1 Web Local Buckling 

A web panel located in a region of a girder loaded under predominantly shear is 

itself effectively loaded under pure shear (Salmon et al., 2009, sec. 11.7). This 

configuration is manifested in the form of uniform shear stress, ηxy,s, acting along the 

perimeter of the web panel (see Figure 5.3.2b). The perimeter shear stress is directly 

linked to and approximately equal to the internal shear stress within the web panel. Also, 

ηxy,s is directly coupled to the external shear force, Vs, acting at that particular region of 

the girder (see Figure 5.3.2a). The distribution of internal shear stress along the depth of 

the web is nearly uniform, and thus ηxy,s may be approximated as the magnitude of Vs 

divided by the gross cross-sectional area of the web, expressed as (Barker & Puckett, 

1997, p. 818) 
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where Aw is the gross cross-sectional area of the web and tw is the thickness of the web. 

The importance of ηxy,s lies in its direct link to the internal shear stress, which itself has a 

direct influence upon the elastic buckling strength of the web panel (Vinson, 1974, sec. 

6.1). 

The presence of a diagonal crack originating at a corner of a web panel (see 

Figure 5.3.2b) may serve to influence the magnitude and distribution of the internal shear 

stress, thus affecting the buckling strength of the web panel. This process may be 

elucidated in two steps. First, the internal shear stress field, ηxy,c, within the cracked web 

panel is developed based upon ηxy,s (see Figure 5.3.3a). Second, ηxy,c influences the 

buckling strength of the web panel (see Figure 5.3.3b). It can thus be foreseen that the 

formulation of an expression for the elastic shear force capacity of a cracked web panel 

associated with the limit state of web local buckling requires an expression for ηxy,c. 

 

 

Figure 5.3.3: (a) Internal shear stress influenced by perimeter shear stress, (b) critical magnitude of 

perimeter shear stress corresponding to web buckling as influenced by internal shear stress. 

 

The internal shear stress field, ηxy,c, within a cracked web panel may be 

approximately determined using elasticity theory (see Appendix D: Theory of Elasticity). 

The geometrical boundary conditions associated with the actual configuration of a 

diagonal crack originating at a corner of the web panel are inexorably complex, and a 

closed-form solution is difficult to obtain (see Figure 5.3.3a) (Sadd, 2009, ch. 7). 
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However, two observations are made regarding the geometrical boundary conditions of 

the crack and web panel. First, both ends of the crack are effectively restrained from 

opening. Second, the perimeter of the web panel formed by the flanges and stiffener 

plates is much more rigid than the web. As a consequence, the diagonal crack may be 

approximated as lying within the web plate and bounded by an outside margin of 

additional web plate representing the rigidity of the flanges and stiffener plates, thus 

resolving the original three-dimensional configuration into a two-dimensional 

configuration (see Figure 5.3.4a). A further approximation may then be made in 

assuming that the previous configuration is nearly equivalent to a diagonal crack lying 

within an infinite plate. The problem is thus reduced to that of determining the shear 

stress field around a central crack inclined at an angle θ ≈ 45° and loaded by far-field 

shear stress equal in magnitude to ηxy,s (see Figure 5.3.4b). 

 

 

Figure 5.3.4: (a) Two-dimensional web panel configuration, (b) infinite plate web panel configuration. 

 

The shear stress field around the inclined central crack (see Figure 5.3.4b) is 

determined by superimposing the stress fields of three distinct cases (Sun & Jin, 2012, 

sec. 3.5). The first case consists of an infinite plate without the crack loaded by far-field 

shear stress equal in magnitude to ηxy,s (see Figure 5.3.5a). The second case consists of an 
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infinite plate with the inclined central crack loaded by crack-face normal stress, ζ’y (see 

Figure 5.3.5b). The third case consists of an infinite plate with the inclined central crack 

loaded by crack-face shear stress, η’xy (see Figure 5.3.5c). The magnitudes of ζ’y and η’xy 

are obtained from the state of stress of an element within the first case that has been 

transformed to the x’-y’ axis system from the x-y axis system. 

 

 

Figure 5.3.5: (a) Case 1: infinite plate without crack loaded by far-field shear stress, (b) Case 2: infinite 

plate with diagonal crack loaded by crack-face normal stress, (c) Case 3: infinite plate with diagonal crack 

loaded by crack-face shear stress. 

 

Considering the first case with respect to the x-y axis system, an infinitesimal 

element at any location within the infinite plate is under a state of pure shear equal in 

magnitude to ηxy,s (see Figure 5.3.6a). Rotation of the element by an angle θ to the x’-y’ 

axis system results in the transformed normal and shear stresses ζ’y and η’xy (see Figure 

5.3.6b) given by (Beer et al., 2006, ch. 7): 

 )2sin(' ,  sxyy                                                                                            (5.3.2) 

 )2cos(' ,  sxyxy                                                                                             (5.3.3) 
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Figure 5.3.6: (a) Infinitesimal element under a state of pure shear, (b) rotated element with transformed 

normal and shear stresses. 

 

These normal and shear stresses are assumed to act upon the crack-faces of the second 

and third cases, respectively (see Figure 5.3.5b, c). The stress field for each of these two 

cases is next determined. 

In accordance with elasticity theory, the plane stress field is expressed in terms of 

the Airy stress function, F(x,y), as (Sadd, 2009, ch. 7) 
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The Airy stress function must satisfy the applicable boundary conditions and the 

governing biharmonic equation of plane elasticity given by (Sadd, 2009, ch. 7) 
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such that the equilibrium equations and Beltrami-Michell compatibility equations are 

identically satisfied (see Appendix D: Theory of Elasticity). The presence of a crack 

introduces local disturbances in the stress field which complicates the determination of a 

suitable stress function. The stress field around a crack may then be determined using a 

subset of the complex potential method called the Westergaard function method (see 

Appendix G: Linear Elastic Fracture Mechanics) (Westergaard, 1939). In this method, the 

Airy stress function is expressed in terms of the Westergaard function, Z(δ), for Mode I 

loading as (Sun & Jin, 2012, ch. 3) 
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 III ZyZF ImRe                                                                                             (5.3.6) 

and for Mode II loading as (Sun & Jin, 2012, ch. 3) 

 IIIIII ZyZyZF ReImRe                                                                      (5.3.7) 

where 
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The terms ZI and ZII are the Westergaard functions for Mode I and Mode II loading, 

respectively. Also, δ is the complex variable δ = x + iy. 

The stress fields for the second and third cases are determined by employing the 

Westergaard stress functions associated with crack-face normal stress and crack-face 

shear stress, respectively, given by (Sedov, 1972, sec. 13.2.8) 
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It is noted that these stress functions are given with respect to the x’-y’ axis system. 

Substituting (5.3.6) into (5.3.4) results in the complete stress field for the second case 

relative to the x’-y’ axis system, given by (Sun & Jin, 2012, ch. 3) 

 IIcx ZyZyx 'Im'Re)','(' 2,   

 IIcy ZyZyx 'Im'Re)','(' 2,                                                                    (5.3.11) 

 Icxy Zyyx 'Re')','(' 2,   
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In a similar manner, substituting (5.3.7) into (5.3.4) results in the complete stress field for 

the third case relative to the x’-y’ axis system, given by (Sun & Jin, 2012, ch. 3) 

 IIIIcx ZyZyx 'Re'Im2)','(' 3,   

 IIcy Zyyx 'Re')','(' 3,                                                                          (5.3.12) 

 IIIIcxy ZyZyx 'Im'Re)','(' 3,   

The summation of (5.3.11) and (5.3.12) results in the superimposed stress field 

obtained from the second and third cases, given by 

 3,2,, '')','(' cxcxcx yx    

 3,2,, '')','(' cycycy yx                                                                          (5.3.13) 

 3,2,, '')','(' cxycxycxy yx    

The superimposed shear stress field, ηxy,ca, obtained from the second and third cases is 

transformed to the x-y axis system from the x’-y’ axis system by substituting (5.3.13) into 

the following transformation expression (Beer et al., 2006, ch. 7): 
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

 cxy

cycx

caxy yx                                        (5.3.14) 

where the coordinates of the x’-y’ axis system are expressed in terms of the coordinates 

of the x-y axis system as 

  cossin' xyx                                                                                       (5.3.15) 

  sincos' xyy                                                                                     (5.3.16) 

Finally, the complete shear stress field around the inclined central crack with respect to 

the x-y axis (see Figure 5.3.4b) is obtained by superimposing (5.3.14) with the shear 

stress field, ηxy,s, of the first case: 
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 sxycaxycxy yx ,,, ),(                                                                             (5.3.17) 

The full expansion of (5.3.17) is quite lengthy and consists of real and imaginary 

terms. However, (5.3.17) is greatly simplified if θ ≈ 45°, thus reducing the expanded 

form of (5.3.17) to the following: 
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Resolving the imaginary term results in 
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where, 
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1 '''2'2''2 ayxayaxyxk                                                (5.3.20) 
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Equation (5.3.19) represents the complete shear stress field around the central crack 

inclined at θ ≈ 45° and lying within the infinite plate loaded by the far-field shear stress 

ηxy,s (see Figure 5.3.4b). In accordance with the aforementioned approximations, the shear 

stress field obtained from this configuration is approximately equivalent to the internal 

shear stress field obtained from the actual configuration of a cracked web panel with the 

diagonal crack originating at a corner of the web panel (see Figure 5.3.3a). Importantly, it 

is noted that (5.3.19) is in part a function of ηxy,s, and is therefore directly coupled to Vs by 

way of (5.3.1). 

Close examination of (5.3.19) reveals that the distribution of ηxy,c within a cracked 

web panel is quite complex. Magnitudes of shear stress much greater than ηxy,s are 

especially prevalent in the local region around the crack. The distribution of ηxy,c may be 
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approximated by subdividing the web panel into equal-sized rectangular elements. The 

total number of elements, Ne, are arranged such that the number of element rows, re, are 

equal to the number of element columns, ce. Each element is designated by its row 

number, r, and column number, c, relative to the origin of the crack (see Figure 5.3.7a). 

Also, each element is loaded under pure shear designated by ηxy,e-rc. The magnitude of 

ηxy,e-rc for each element is developed based upon ηxy,c. Specifically, the magnitude of ηxy,e-rc 

for each element is the value of ηxy,c at the central point of the element (see Figure 5.3.7b). 

It can be foreseen that a greater number of elements results in a higher degree of accuracy 

in describing the actual distribution of ηxy,c. 

 

 

Figure 5.3.7: (a) Web panel subdivided into rectangular elements displaying row and column numbers, (b) 

individual panel element loaded under pure shear. 

 

The magnitude of ηxy,e-rc for any element is expressed in terms of ηxy,c by setting x 

and y equal to the coordinates of the central point of the element, xrc and yrc, expressed as 
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where re and ce are expressed in terms of Ne as 

 eee Ncr                                                                                            (5.3.24) 
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and, 

  o                                                                                                            (5.3.25) 

Also, θ in (5.3.15), (5.3.16), and (5.3.19) is modified to take into account negative values 

of x: 
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Thus, the value of ηxy,e-rc for any element is determined by substituting r, c, (5.3.24), and 

(5.3.25) into (5.3.22) and (5.3.23), and introducing the results into (5.3.19), implicitly 

expressed as 

  rcrccxyrcexy yx ,,,                                                                                   (5.3.27) 

It is observed that since ηxy,e-rc is a function of ηxy,c, it is therefore also a function of ηxy,s. 

Altogether, the varying values of ηxy,e-rc for each element represent an approximation of 

the internal shear stress distribution, ηxy,c, within the cracked web panel. 

A closed-form solution for the elastic buckling strength of the cracked web panel 

is difficult to obtain using classical plate theory (see Appendix F: Classical Plate Theory) 

(Salmon et al., 2009, sec. 6.14; Vinson, 1974, ch. 5). This is primarily due to the non-

uniform internal stress field caused by the presence of the crack, as well as the complex 

geometrical boundary conditions introduced by the crack. The Rayleigh-Ritz energy 

method employs the principle of stationary potential energy to approximate the buckling 

strength when complex boundary conditions are present (see Appendix E: Principle of 

Stationary Potential Energy) (Vinson, 1974, sec. 6.1). In this method, the buckled shape 

of the cracked web panel is assumed to take on a form described by an out-of-plane 

displacement function, w(x”, y”), expressed in terms of the x”-y” axis system with the 
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origin at the central point of the web panel (see Figure 5.3.8). The displacement function 

satisfies all or most of the geometrical boundary conditions and includes an arbitrary set 

of variables, Ai, which control the shape of the displacement function, in the form 

 



n

i

ii yxfAyxw
1

)","()","(                                                                               (5.3.28) 

where n is the number of degrees of freedom of the displacement function. The total 

potential energy, П, of the panel is then formulated, expressed as (Vinson, 1974, sec. 6.1) 

 dSuTdVU
S

ii

V

                                                                                      (5.3.29) 

where U is the strain energy density function, V is the volume of the panel, Ti are the 

applied surface tractions, ui are the displacements caused by the tractions, and S is the 

surface over which the tractions are applied. It is evident that the formulation of П 

essentially couples w(x”, y”) with the externally applied stress, ηxy,s (see Figure 5.3.8). 

The variation of П with respect to Ai is then set to zero, expressed by (F.1.3) and shown 

as (Vinson, 1974, sec. 6.1) 

 0


iA


                                                                                                       (5.3.30) 

It follows that the critical external stress, η’cr, enabling this equilibrium is an initial 

estimation of the buckling strength of the cracked web panel. 
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Figure 5.3.8: Cracked web panel with externally applied perimeter shear stress and corresponding out-of-

plane displacement function. 

 

The initial magnitude of η’cr may be further developed by employing the web 

panel elements and the previously derived approximate internal shear stress distribution, 

ηxy,e-rc. Specifically, the overall initial cracked web panel buckling strength is assumed to 

be uniformly distributed among each of the web panel elements. The strength of each 

element is further assumed to be degraded by the ratio of ηxy,s to ηxy,e-rc. In this way, the 

buckling strength of each element, ηcr,e-rc, is equal to the product of the ratio of ηxy,s to ηxy,e-

rc and the initial cracked web panel buckling strength, divided by the total number of 

elements, expressed as 
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Each element is thus assumed to buckle when ηxy,e-rc equals or exceeds ηcr,e-rc. The 

corresponding critical value of ηxy,s for each element may then be determined. It follows 

that the final estimation of the buckling strength of the cracked web panel, ηcr, is the sum 

of the critical values of ηxy,s. 

An expression for w(x”, y”) for the overall cracked web panel is first required for 

the formulation of П and the determination of η’cr. The geometrical boundary conditions 
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concerning the edges of the web panel are conservatively assumed to be simply supported 

(Salmon et al., 2009, sec. 11.7): 
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The approximation is made that w(x”, y”) for the cracked web panel is nearly identical to 

w(x”, y”) for an uncracked web panel. The geometrical boundary conditions concerning 

the diagonal crack are therefore neglected, and w(x”, y”) is formulated based only upon 

the boundary conditions given by (5.3.32). In essence, the approximation is made that the 

initial buckling strength of the cracked web panel is dependent only upon the external 

shear stress, with w(x”, y”) remaining identical to w(x”, y”) for the uncracked web panel. 

A unilateral displacement function of the following form satisfies the boundary 

conditions given by (5.3.32): 
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The formulation of П is developed by substituting (5.3.33) and ηxy,s into (5.3.29), 

implicitly expressed as (Vinson, 1974, sec. 6.1) 
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where, 
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and, 
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Also, the term D is the web panel rigidity given by (Salmon et al., 2009, sec. 6.14) 
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where E is the modulus of elasticity and ν is Poisson‟s ratio. The initial cracked web 

panel buckling strength is then determined by introducing (5.3.34) into (5.3.30), solving 

for ηxy,s, and dividing the result by tw, giving 
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where the arbitrary term A in (5.3.33) vanishes in accordance with calculus of variations 

(Vinson, 1974, sec. 6.1). 

The initial cracked web panel buckling strength is further refined by determining 

the buckling strengths of the web panel elements and summing the associated critical 

values of ηxy,s. The external stress applied to each element is the previously derived pure 

shear stress ηxy,e-rc given by (5.3.27) (see Figure 5.3.7b). Equation (5.3.27) may be 

rewritten to be explicitly expressed in terms of ηxy,s as 

  1,,  rcsxyrcexy C                                                                                 (5.3.39) 
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where Crc is a constant directly derived from (5.3.19) and partially dependent upon r, c, 

xrc, and yrc of a given element, expressed as 
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The critical value of ηxy,s corresponding to buckling of each element is determined by 

setting ηxy,e-rc = ηcr,e-rc, introducing (5.3.38) and (5.3.39) into (5.3.31), and solving for ηxy,s, 

giving 
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Finally, the approximate buckling strength of the cracked web panel is determined by 

taking the sum of ηcr,e-rc for all of the elements, expressed as 
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The term ηY is the shear yield strength of the web panel steel given by (Salmon et al., 

2009, sec. 2.6) 
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where ζY is the yield strength of the web panel steel. Setting ηcr = ηxy,s, substituting 

(5.3.42) into (5.3.1), and solving for Vs results in the shear force capacity of a cracked 

web panel corresponding to the limit state of web local buckling: 
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 wwcrcr tdV                                                                                                (5.3.44) 

 

5.3.1.2 Shear Yielding 

The growth of the diagonal fatigue crack originating at a corner of the web panel 

reduces the gross cross-sectional area of the panel (see Figure 5.3.9). From (5.3.1) it can 

be deduced that the reduction in gross cross-sectional area serves to decrease the shear 

force capacity corresponding to shear yielding. The reduced web panel depth, dwc, above 

the crack tip is given by 

sin2add wwc                                                                                         (5.3.45) 

Substituting (5.3.45) for dw, and ηY for ηxy,s in (5.3.1), and solving for Vs results in 

  sin2adtV wwYcr                                                                                (5.3.46) 

The internal shear stress along dwc achieves shear yielding first at the crack tip and last at 

the perimeter of the web panel. The critical value of ηxy,s corresponding to Vcr thus occurs 

when ηxy,s equals the shear yield strength of the web panel steel, given by 

Ycr                                                                                                           (5.3.47) 

Setting ηcr = ηxy,s, substituting (5.3.47) into (5.3.1), and solving for Vs results in the shear 

force capacity of a cracked web panel corresponding to the limit state of shear yielding: 

 wwcrcr tdV                                                                                                (5.3.48) 
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Figure 5.3.9: Cracked web panel with reduced web panel depth. 

 

 

 

5.3.1.3 Brittle Fracture 

The propagation of the diagonal fatigue crack originating at a corner of the web 

panel (see Figure 5.3.2b) is accompanied by a corresponding increase in the stress 

intensity factor, K, at the crack tip. This increase in K introduces two additional limit 

states including brittle fracture and impending ductile failure. Brittle fracture is 

characterized by the sudden rupture of the web panel and occurs when the fatigue crack 

grows to a critical length and K equals the critical stress intensity factor, Kc, of the web 

panel steel (Meguid, 1989, ch. 3; Sun & Jin, 2012, chs. 2, 3). Alternatively, impending 

ductile failure is characterized by the growth of the plastic region around the crack tip to 

a critical size and occurs when the crack length and K each equal a critical magnitude 

(Meguid, 1989, chs. 5, 6). 

In accordance with linear elastic fracture mechanics (LEFM), the theoretical form 

of K is given by (Sun & Jin, 2012, sec. 3.4) 

aK o                                                                                                   (5.3.49) 

where ζo is the far-field Mode I or II stress acting upon the crack. As previously 

mentioned, the diagonal crack shown in Figure 5.3.2b is loaded primarily by Mode I 

loading with minimal influence from Mode II loading when θ ≈ 45°.  Employing the 
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principle of superposition, the total stress intensity factor, KT, is the sum of the stress 

intensity factors derived from the Mode I and II loading, expressed by (Sun & Jin, 2012, 

sec. 3.5) 

IIIT KKK                                                                                                (5.3.50) 

where KI and KII are the stress intensity factors associated with Mode I and II loading, 

respectively. The magnitudes of KI and KII for the diagonal crack may be approximated 

by assuming once again that the actual configuration of the diagonally cracked web panel 

(see Figure 5.3.2b) is nearly equivalent to the configuration of a diagonal crack inclined 

at an angle θ ≈ 45° and lying within an infinite plate loaded by far-field shear stress equal 

in magnitude to ηxy,s (see Figure 5.3.4b). 

The Mode I and II stress intensity factors are derived from the state of stress of an 

element in the previously described configuration (see Figure 5.3.4b) that has been 

transformed to the x’-y’ axis system from the x-y axis system (see Figure 5.3.6). The 

normal stress, ζ’y, and shear stress, η’xy, of the transformed element are expressed by 

(5.3.2) and (5.3.3), respectively. The magnitudes of ζ’y and η’xy represent the far-field 

normal and shear stresses, respectively, acting upon the diagonal crack. Substituting 

(5.3.2) and (5.3.3) into (5.3.49) results in expressions for KI and KII, shown as 

aK sxyI  )2sin(,                                                                                     (5.3.51) 

aK sxyII  )2cos(,                                                                                     (5.3.52) 

Under plane strain conditions, Mode I brittle fracture occurs when KI exceeds the Mode I 

fracture toughness, KIc, of the web panel steel (Meguid, 1989, chs. 3, 4). Similarly, Mode 

II brittle fracture occurs when KII exceeds the Mode II fracture toughness, KIIc, of the web 

panel steel (Meguid, 1989, chs. 3, 4). 
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Given that the crack is concurrently subjected to Mode I and II loading, certain 

critical combinations of KI and KII may produce mixed-mode fracture. The interaction 

between KI and KII with respect to KIc and KIIc may be described by a simple elliptical 

model, expressed as (Sun & Jin, 2012, sec. 5.1) 

1

22
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                                                                                   (5.3.53) 

Stress intensity correction factors may be used to modify KI and KII in (5.3.53) to account 

for the finite dimensions of the web panel (Shukla, 2005, ch. 3). However, the length of 

the diagonal crack is expected to remain small in comparison to the web panel prior to an 

elastic limit state being attained, and thus the correction factor is neglected. The 

perimeter shear stress capacity of the cracked web panel corresponding to the limit state 

of brittle fracture is determined by introducing (5.3.51) and (5.3.52) into (5.3.53) and 

solving for ηxy,s: 

   
Y

IcIcIIc

IIcIc
cr

KKKa

KK



 




22222 2sin2sin
                                   (5.3.54) 

It is noted that the use of KIc and KIIc in (5.3.54) is conservative since plane stress 

conditions are presumed to predominate throughout the web panel, and the actual critical 

stress intensity factors are greater than KIc and KIIc (Shukla, 2005, ch. 4). Setting ηcr = ηxy,s, 

substituting (5.3.54) into (5.3.1), and solving for Vs results in the shear force capacity of a 

cracked web panel corresponding to the limit state of brittle fracture: 

 wwcrcr tdV                                                                                                (5.3.55) 
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5.3.1.4 Impending Ductile Failure 

The plastic region around the crack tip as induced by the Mode I and II loading 

must remain small in order for KI and KII to remain valid (Meguid, 1989, chs. 5, 6). The 

growth of the plastic region beyond a critical size renders the fracture toughness 

characterization of the web panel steel inapplicable. EPFM must then be employed to 

describe the impending ductile failure. A new limit state may be postulated 

corresponding to a critical plastic region size indicating the approximate transition to a 

ductile failure mode (i.e., the transition from LEFM to EPFM). 

The size of the plastic region around the crack tip as induced by the mixed-mode 

loading may be determined by superimposing the plastic regions obtained from the Mode 

I and II loadings. Specifically, the two plastic radii along the longitudinal direction of the 

crack as obtained from the Mode I and II loadings may be determined and superimposed 

to obtain the mixed-mode plastic radius (see Figure 5.3.10). The critical magnitude of ηxy,s 

associated with a critical mixed-mode plastic radius indicating impending ductile failure 

may then be solved for. 

 

 

Figure 5.3.10: Plastic region around the crack tip. 
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The near-tip stress field is expressed in terms of KI as (Sun & Jin, 2012, ch. 3), 
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Similarly, the near-tip stress field is expressed in terms of KII as (Sun & Jin, 2012, ch. 3), 
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It is noted that the near-tip stress fields are formulated in terms of polar coordinates with 

the origin at the crack tip. The variable r is the radius and θp is the angle of r with respect 

to the longitudinal direction of the crack (see Figure 5.3.10). The mixed-mode radius of 

the plastic region, rp, is determined by employing the Mises yield criterion for plane 

stress, expressed as (Meguid, 1989, sec. 5.4) 

21
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2  Y                                                                                   (5.3.58) 

where ζ1 and ζ2 are the principal stresses given by (Beer et al., 2006, sec. 7.3) 
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Substituting (5.3.56) and (5.3.57) into (5.3.59), introducing the results into (5.3.58), 

setting θp = 0°, and solving for r results in the plastic radii along the longitudinal 

direction of the crack associated with Mode I and II loadings: 
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The superposition of rp,I and rp,II requires that rp is the greater value of (5.3.60) or 

(5.3.61). Given that the diagonal fatigue crack is inclined at an angle θ ≈ 45°, the Mode I 

loading predominates and the contribution of rp,II is superseded such that rp = rp,I. 

Substituting (5.3.51) into (5.3.60) and solving for ηxy,s results in 

  Y

crpY

cr
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ar





 

2sin

2 ,
                                                                                   (5.3.62) 

where rp,cr is a predefined critical plastic radius along the longitudinal direction of the 

crack corresponding to the transition from LEFM to EPFM. Setting ηcr = ηxy,s, substituting 

(5.3.54) into (5.3.1), and solving for Vs results in the shear force capacity of a cracked 

web panel corresponding to the limit state of brittle fracture: 

 wwcrcr tdV                                                                                                (5.3.63) 

 

5.4 Validation of Capacity Expressions Using FE Analyses 

5.4.1 Overview of FE Analyses 

The derived flange plate capacity expressions, ζcr = f{Г}, are summarized in 

Table 5.4.1 for the fatigue crack configurations associated with predominantly bending. 
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Similarly, the derived web panel capacity expressions, τcr = f{Г}, are summarized in 

Table 5.4.2 for the fatigue crack configuration associated with predominantly shear. 

These formulations were numerically validated using the general FE software 

ABAQUS/CAE 6.11. 

 

Table 5.4.1. Flange stem capacity expressions (associated with bending moment). 

Crack configuration Limit state Capacity expression 
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Table 5.4.2. Web panel capacity expressions (associated with shear force). 

Crack configuration Limit state Capacity expression 

Diagonal crack in 

web panel 

Web local 
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5.4.1.1 FE Analyses for Bending Moment Capacity Expressions 

The general FE software ABAQUS/CAE 6.11 was used to model a series of full-

scale trial plate girders (PG-1 through PG-4) for the purpose of numerically validating the 

capacity expressions associated with predominantly bending (see Table 5.4.1). Each trial 

girder was modeled with a length, L = 5 m, and configured as a horizontal cantilever (see 

Figure 5.4.1a). The web plate depth was set to dw = 127 cm and the flange plate width set 

to bf = 35 cm (see Figure 5.4.1b). Each girder was assigned a varying flange plate 

thickness ranging from 0.3 to 2.4 cm (see Table 5.4.3). The web plate thickness, tw, was 

set to half the flange plate thickness. The section dimensions of PG-1 and PG-2 are 

purely theoretical for the function of investigating a wide range of failure modes. 

Conversely, the section dimensions of PG-3 and PG-4 are comparable to realistic plate 

girders (Blodgett, 1966; Salmon et al., 2009, ch. 11) 

Each through-thickness fatigue crack configuration was modeled at the mid-spans 

of each series of trial girders (PG-1 through PG-4) (see Figure 5.4.1a, c). Each crack 

configuration, in turn, was modeled with varying incremental branch lengths. The trial 
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girders were modeled with the general properties of high-strength low-alloy steel (see 

Table 5.4.4). General values of the Paris-Erdogan equation material constants were taken 

as C = 3.6 x 10
-10

 and m = 3.0 (Bowman, 2002; Shukla, 2005, ch. 5). 

 

 
Figure 5.4.1: (a) Cantilever configuration of trial plate girders with (b) cross-section dimensions and (c) 

crack configuration at mid-span. 

 

 

Table 5.4.3. Trial plate girder geometric properties. 

Plate 

girder 

(PG) 

Flange 

thickness, 

tf (cm) 

Web 

thickness, 

tw (cm) 

Web 

depth, 

dw (cm) 

Flange 

width, 

bf (cm) 

PG-1 0.30 0.15 127 35 

PG-2 0.60 0.30 127 35 

PG-3 1.20 0.60 127 35 

PG-4 2.40 1.20 127 35 

 

 

Table 5.4.4. Trial web panel material properties. 

Modulus of 

elasticity, E (GPa) 

Poisson‟s 

ratio, ν 

Yield strength, 

σY (MPa) 

Mode I fracture 

toughness, KIc 

(MPa∙m1/2) 

200a 0.3a 345a 98b 

a. General properties of high-strength low-alloy structural steel (Salmon et al., 2009, ch. 2). 

b. Representative fracture toughness of high-strength alloy steel (Meguid, 1989, ch. 5).                                        

 

The trial girders were meshed using 10-node quadratic tetrahedron solid elements 

seeded at 5 – 15 cm (global or part seeds) (see Appendix I: FEA Models). The fixed end 

of each girder was modeled by configuring the entire face of one end with encastre 

support conditions. Each crack configuration was modeled as 0.1 cm wide rectangular 

extrusions with triangular notches at the crack tips (see Figure 5.4.1c). For tests involving 
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brittle fracture and impending ductile failure, a circular partition was modeled around the 

crack tip of interest and meshed with 20-node quadratic brick elements seeded at 0.025 – 

0.250 cm (local seeds). 

Full-scale trial flange stems and web plates corresponding to PG-1 through PG-4 

were used to indirectly validate the capacity expressions associated with tension 

buckling. Numerical buckling analyses of the girders may result in alternative local and 

global buckling modes overriding the intended mode of tension buckling. Therefore, 

distinct flange stem and web plate models were employed for the purpose of 

concentrating the buckling analyses to that of buckling of the portions of the associated 

plate adjacent to the crack (embedded plates). Furthermore, the out-of-plane translation 

of each associated plate was restrained except for the areas of the embedded plates, 

essentially reducing the analysis to that of buckling of the embedded plates (as in an 

isolated system). The flange stems and web plates were modeled using 4-node shell 

elements seeded at 0.25 – 1.00 cm. The rotational and out-of-plane translations of the 

longitudinal edge bordering the web plate or flange plate were constrained. The area of 

each embedded plate was defined by modeling partitions along the perimeter of each 

plate. The associated crack configurations were modeled by assigning a seam to a single-

line partition. 

For each series of trial girders (PG-1 through PG-4), and associated flange stems, 

web plates, and crack configurations, an external bending moment, Mo, was applied to the 

free end of the girder, depending upon which capacity expression was being validated 

(see Figures 5.4.2 and 5.4.3). The external bending moment was modeled by loading the 

face on the free end with a linear stress distribution with the top half in compression and 
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the bottom half in tension. The bending moment and shear force capacities of the girders, 

flange stems, and web plates were then numerically calculated (see Section 3.3.2) and 

compared to the values obtained from the corresponding theoretical capacity expressions 

(see Table 5.4.1). 

 

 

Figure 5.4.2: Trial plate girder loaded with external bending moment. 

 

 

 

Figure 5.4.3: General outline of the FEA validation procedure for the bending moment capacity 

expressions: Each limit state was evaluated for various fatigue crack configurations. Each crack 

configuration was evaluated with a series of trial plate girders (PG-1 through PG-4). 

 

 

 

5.4.1.2 FE Analyses for Shear Force Capacity Expressions 

 A total of four trial web panels were modeled with ABAQUS 6.11 and employed 

to validate the capacity expressions associated with predominantly shear (see Table 

5.4.2). The widths and depths for all four trial panels were set as constant with s = 102 
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cm and dw = 127 cm, respectively. Each panel was modeled with a different web panel 

thickness, tw, ranging from 0.15 cm to 1.20 cm. A through-thickness diagonal crack was 

modeled in each panel with θ = 45°. The length of the crack, 2a, in each panel was set to 

range from 10 cm to 70 cm. in 10 cm increments. Also, the panels were modeled with the 

material properties of high-strength low-alloy structural steel. The geometrical and 

material properties of the trial web panels are listed in Tables 5.4.5 and 5.4.6, 

respectively. 

 

Table 5.4.5. Trial web panel geometrical properties. 

Trial web panel Thickness, tw (cm) 

WP-A 0.15 

WP-B 0.30 

WP-C 0.60 

WP-D 1.20 

 

 

Table 5.4.6. Trial web panel material properties. 

Modulus of 

elasticity, E (GPa) 

Poisson‟s 

ratio, ν 

Yield strength, 

σY (MPa) 

Mode I fracture 

toughness, KIc 

(MPa∙m1/2) 

Mode II fracture 

toughness, KIIc 

(MPa∙m1/2) 

200a 0.3a 345a 98b 74c 

a. General properties of high-strength low-alloy structural steel (Salmon et al., 2009, ch. 2). 

b. Representative fracture toughness of high-strength alloy steel (Meguid, 1989, ch. 5). 

c. Assuming KIIc ≈ 0.75KIc (Sun & Jin, 2012, ch. 5). 

 

 

 The trial web panels with tw = 0.15 cm and tw = 0.30 cm (WP-A and WP-B) were 

purely theoretical for the purpose of investigating a broader range of potential elastic 

limit states. The panels were meshed using 4-node shell elements seeded at 0.50 cm (see 

Appendix I: FEA Models). The mesh was seeded at 0.05 cm near the crack tips. Also, the 

crack in each panel was modeled by assigning a seam to a single-line partition. 

 For stress analyses, the increased rigidity along each panel perimeter caused by 

the flanges and stiffener plates was accounted for by modeling an outside margin of 

additional web plate, resolving the actual three-dimensional panel configuration into a 
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two-dimensional configuration (see Figure 5.4.4a). The width of the outside margin, m, 

was approximated by setting the gross cross-sectional area of the margin equal to the 

gross cross-sectional area of the flange plate and solving for m, resulting in 

 
w

ff

t

tb
m                                                                                                          (5.4.1) 

where bf is the flange width and tf is the flange thickness. The flange thickness was 

assumed to be twice the web panel thickness such that tf = 2tw, thus transforming (5.4.1) 

into m = 2bf. Furthermore, the flange width was assumed to be constant with bf = 35 cm. 

For buckling analyses, the outside margin of additional web plate was removed (see 

Figure 5.4.4b). The crack was slightly shifted away from the corner of the web panel to 

allow the crack to behave as a central crack while remaining near to its original position 

relative to the panel perimeter. 

 The perimeter of each panel was set to have simply supported boundary 

conditions restraining out-of-plane and in-plane movement while allowing side-to-side 

movement (see Figure 5.4.4a, b). Each trial web panel was then loaded under pure shear 

by applying shell edge loads along the perimeter of the panel margin (see Figure 5.4.4a, 

b). The resulting capacities associated with shear yielding of the web, web local buckling, 

brittle fracture, and impending ductile failure were then numerically calculated for each 

trial web panel (see Figure 5.4.3) and compared to the capacities obtained from the 

theoretical capacity expressions (see Table 5.4.2). 
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Figure 5.4.4: (a) Trial web panel configuration for stress analyses, (b) trial panel configuration for buckling 

analyses. 

 

 

 

5.4.2 FE Validation of Bending Moment Capacity Expressions 

5.4.2.1 Three-ended Crack 

PG-1 through PG-4 and the associated three-ended crack configurations (see 

Table 5.4.7) were first employed to validate the expression for the transverse stress 

distribution given by (5.2.7) along the positive y-axis (see Figure 5.2.4). The external 

bending moment was set to Mo = 500 kN·m and the transverse stress distributions were 

numerically calculated for each trial girder and associated three-ended crack 

configuration. The plots of the distributions as obtained from (5.2.7) and the FE analyses 

are shown in Figure 5.4.5 for PG-1 and PG-4. It can be seen that the analytical and 

numerical results display a close correlation. 

 

Table 5.4.7. Trial plate girder geometric properties. 

Plate 

girder 

(PG) 

Flange 

thickness 

(cm) 

Crack 

length 

(cm) 

Plate 

girder 

(PG) 

Flange 

thickness 

(cm) 

Crack 

length 

(cm) 

PG-1a 0.3 2.0 PG-3a 1.2 2.0 

PG-1b 0.3 4.0 PG-3b 1.2 4.0 

PG-1c 0.3 8.0 PG-3c 1.2 8.0 

PG-1d 0.3 12 PG-3d 1.2 12 

PG-2a 0.6 2.0 PG-4a 2.4 2.0 

PG-2b 0.6 4.0 PG-4b 2.4 4.0 

PG-2c 0.6 8.0 PG-4c 2.4 8.0 

PG-2d 0.6 12 PG-4d 2.4 12 



155 

 

 

Figure 5.4.5: Analytical and numerical compressive transverse stress distributions along the positive y-axis 

as obtained from PG-1 and PG-4. 

 

Provided the accuracy of (5.2.7), the trial flange stems were next used to 

indirectly validate the capacity expression for tension buckling in the flange given by 

(5.2.14). Each trial flange stem was loaded along the edges of the embedded plates 

bordering the web plate with a unit stress distribution in the form of (5.2.7) (see Figure 

5.2.6a). The scaled magnitude of the unit stress distribution associated with first mode 

buckling was then numerically calculated. Given that (5.2.7) is directly coupled to ζf, the 

critical value of ζf corresponding to tension buckling was equal to the scaled value. The 

tension buckling capacities of each flange stem and associated three-ended crack 

configurations as calculated from (5.2.14) and the FE analyses are listed in Table 5.4.8. 
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Table 5.4.8. Tension buckling capacities.
a
 

Plate 

girder  

(PG) 

tf /a 

ratio 

Eq. 

(5.2.14) 

(GPa) 

FE 

analysis 

(GPa) 

Plate 

girder 

(PG) 

tf/a 

ratio 

Eq. 

(5.2.14) 

(GPa) 

FE 

analysis 

(GPa) 

PG-1a 0.15 30.0 36.0 PG-3a 0.60 480 71.0 

PG-1b 0.075 7.50 11.0 PG-3b 0.30 120 71.0 

PG-1c 0.038 1.90 2.90 PG-3c 0.15 30.0 36.0 

PG-1d 0.025 0.80 1.30 PG-3d 0.10 13.0 18.0 

PG-2a 0.30 120 71.0 PG-4a 1.20 1900 71.0 

PG-2b 0.15 30.0 36.0 PG-4b 0.60 480 71.0 

PG-2c 0.075 7.50 11.0 PG-4c 0.30 120 71.0 

PG-2d 0.05 3.30 5.00 PG-4d 0.20 54.0 53.0 

a. Assuming ζY = ∞. 

 

The resulting capacities are purely theoretical since the flange steel was 

provisionally assumed to have infinite yield strength (i.e. ζY = ∞) for the purpose of 

comparing a wide range of results. The correspondence between the analytical and 

numerical results is closest for lower tf / a ratios (0.025 to 0.20). The correlation decays at 

higher tf / a ratios (0.30 to 1.20). This decay of correspondence is irrelevant since tension 

buckling is unlikely to occur in configurations with higher tf / a ratios or with thicker 

flange stems. Consequently, tension buckling is possible only in configurations with 

lower tf / a ratios with thinner flange stems. 

A comparison of the compressive transverse stress distributions adjacent to the 

edge-crack in the flange as obtained from PG-3 and the associated trial flange stem is 

shown in Figure 5.4.6 for x = 1/3a ≈ 2.67 cm and x = 2/3a ≈ 5.33 cm (see Figure 5.2.4). 

The reasonable correspondence between the two distributions validated the earlier 

assumption regarding loading the clamped edges of each embedded plate along the y-axis 

with (5.2.7) for the function of approximating the actual compressive stresses. 
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Figure 5.4.6: Numerical compressive transverse stress distributions along the positive y-axis as obtained 

from PG-3 and the corresponding trial flange stem (Mo = 500 kN·m, ζf = 72.3 MPa, tf = 1.2 cm, a = 8 cm). 

 

PG-1 through PG-4 were next employed to validate the capacity expressions for 

brittle fracture and impending ductile failure in the flange given by (5.2.17) and (5.2.22), 

respectively. The external bending moment was set to Mo = 6000 kN·m and the load time 

period was increased to 10 with an increment size of 1. History outputs were requested 

for the Mode I stress intensity factor. The bending stress at the extreme fibers of the trial 

girders corresponding to the stress intensity factor exceeding KIc was the flange stem 

tensile capacity associated with brittle fracture. Similarly, the bending stress at the 

extreme fibers of the trial girders corresponding to the plastic region radius at 𝜃 = 0 

exceeding rp,cr = tf / 50 was the flange stem tensile capacity associated with the 

approximate transition from LEFM to EPFM (Shukla, 2005, ch. 4). The tensile capacities 

of each flange stem and associated three-ended crack configurations as calculated from 

(5.2.17) and (5.2.22), and from the FE analyses, are shown in Tables 5.4.9 and 5.4.10. 
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Table 5.4.9. Brittle fracture capacities.
a
 

Plate 

girder  

(PG) 

Eq. 

(5.2.17) 

(MPa) 

FE 

analysis 

(MPa) 

Plate 

girder 

(PG) 

Eq. 

(5.2.17) 

(MPa) 

FE 

analysis 

(MPa) 

PG-1a 390 380 PG-3a 390 460 

PG-1b 280 260 PG-3b 280 290 

PG-1c 200 180 PG-3c 200 190 

PG-1d 160 120 PG-3d 160 130 

PG-2a 390 620 PG-4a 390 450 

PG-2b 280 430 PG-4b 280 390 

PG-2c 200 270 PG-4c 200 200 

PG-2d 160 120 PG-4d 160 130 

a. Assuming ζY = ∞. 

 

Table 5.4.10. Impending ductile failure capacities. 

Plate 

girder  

(PG) 

Eq. 

(5.2.22) 

(MPa) 

FE 

analysis 

(MPa) 

Plate 

girder 

(PG) 

Eq. 

(5.2.22) 

(MPa) 

FE 

analysis 

(MPa) 

PG-1a 27.0 24.0 PG-3a 53.0 69.0 

PG-1b 19.0 12.0 PG-3b 38.0 51.0 

PG-1c 13.0 6.00 PG-3c 27.0 20.0 

PG-1d 11.0 1.60 PG-3d 22.0 14.0 

PG-2a 38.0 39.0 PG-4a 76.0 84.0 

PG-2b 27.0 26.0 PG-4b 53.0 58.0 

PG-2c 19.0 10.0 PG-4c 38.0 35.0 

PG-2d 15.0 8.20 PG-4d 31.0 27.0 

 

The results generally exhibit a closer correlation for shorter crack lengths. The 

finite width of each crack, the mesh fineness, and the absence of the stress intensity 

correction factor may negatively influence the correlation for longer crack lengths. This 

decay of correspondence is irrelevant since alternative elastic limit states are likely to 

occur at longer crack lengths. Also, the resulting residual strengths are purely theoretical 

since the flange steel was provisionally assumed to have infinite yield strength, ζY = ∞, 

for the purpose of comparing a broader range of results. 

 

5.4.2.2 Vertical Edge-crack in Web Plate 

PG-1 through PG-4 and the associated vertical edge-crack configurations (see 

Table 5.4.11) were next employed to validate capacity expressions corresponding to the 
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limit states of flange local yielding, flange local buckling, and web local buckling given 

by (5.2.45), (5.2.49), and (5.2.58), respectively. The expression for the normal bending 

stress distribution between the edge-crack tip and the shifted neutral axis given by 

(5.2.33), and between the shifted neutral axis and the extreme fibers of the compression 

flange given by (5.2.53), were first validated by employing PG-1 through PG-4 and the 

associated vertical edge-crack configurations (see Figure 5.2.10b). The external bending 

moment was set to Mo = 500 kN·m and the corresponding bending stress distribution 

above the vertical edge-crack was numerically calculated. The plots of bending stress 

distributions for each trial girder and associated vertical crack configurations as obtained 

from (5.2.33) and (5.2.53), as well as from the FEA, are shown in Figure 5.4.7. 

 

Table 5.4.11. Trial plate girder geometric properties. 

Plate 

girder 

(PG) 

Web 

thickness, 

tw (cm) 

Crack 

length, 

2a (cm) 

Plate 

girder 

(PG) 

Web 

thickness, 

tw (cm) 

Crack 

length, 

2a (cm) 

PG-1a 0.15 6.0 PG-3a 0.60 6.0 

PG-1b 0.15 12 PG-3b 0.60 12 

PG-1c 0.15 24 PG-3c 0.60 24 

PG-1d 0.15 48 PG-3d 0.60 48 

PG-2a 0.30 6.0 PG-4a 1.20 6.0 

PG-2b 0.30 12 PG-4b 1.20 12 

PG-2c 0.30 24 PG-4c 1.20 24 

PG-2d 0.30 48 PG-4d 1.20 48 
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Figure 5.4.7: Analytical and numerical normal bending stress distributions along the x-axis above the edge-

crack for each trial plate girder. 

 

Given that the analytical bending stress distributions closely correlated to the 

numerical results, PG-1 through PG-4 were next employed to validate the expression for 

the residual bending moment strength corresponding to flange local yielding given by 

(5.2.46). This was achieved by increasing Mo to a magnitude exceeding the yield 

moment, My, and requesting stress history outputs of elements at the extreme outer fibers 

of the compression flange directly above the vertical crack. The critical bending moment 

at which the stresses in these elements exceeded the yield strength was then calculated. 

The residual bending moment strengths for each trial girder and associated vertical crack 
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configurations as calculated from (5.2.46), as well as from the FEA, are listed in Table 

5.4.12. 

 

Table 5.4.12. Analytical and numerical flange local yielding capacities. 

Plate 

girder 

(PG) 

Eq. 

(5.2.46) 

(kN·m) 

FE 

analysis 

 (kN·m) 

Error 

(%) 

Plate 

girder 

(PG) 

Eq. 

(5.2.46) 

(kN·m) 

FE 

analysis 

 (kN·m) 

Error 

(%) 

PG-1a 597.9 598.6 -0.10 PG-3a 2384 2386 -0.08 

PG-1b 595.6 598.6 -0.50 PG-3b 2374 2386 -0.50 

PG-1c 585.5 596.6 -1.86 PG-3c 2334 2386 -2.18 

PG-1d 534.9 595.7 -10.2 PG-3d 2129 2380 -10.5 

PG-2a 1194 1196 -0.17 PG-4a 4749 4754 -0.10 

PG-2b 1190 1196 -0.50 PG-4b 4730 4754 -0.50 

PG-2c 1170 1193 -1.92 PG-4c 4647 4754 -2.25 

PG-2d 1068 1192 -10.4 PG-4d 4233 4752 -10.9 

 

It is observed that a close correlation exists between the analytically and 

numerically calculated flange local yielding strengths. In this case, the resulting 

capacities are always equal to or less than the yield moment, My. This is because (5.2.46) 

inherently outputs stress values equal to or less than the yield strength of the flange steel. 

The numerical buckling simulations employed by the FE analyses are made 

difficult in part by global and local buckling modes overriding intended buckling modes. 

The expression for the bending moment capacity corresponding to flange local buckling 

given by (5.2.50) was indirectly validated by recognizing that the accuracy of (5.2.46) is 

directly dependent upon the accuracy of the stress at the extreme fibers of the 

compression flange, as well as the accuracy of the bending stress distribution given by 

(5.2.33) and (5.2.53). The close correlation between the analytical and numerical bending 

moment capacities associated with flange local yielding signified that the corresponding 

critical stresses at the extreme fibers of the compression flange also exhibited a close 

correlation. Furthermore, given that (5.2.33) and (5.2.53) were previously validated, it 
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was determined that (5.2.50) represents a reasonably accurate expression of the bending 

moment capacity associated with flange local buckling. This is because the flange local 

buckling strength given by (5.2.49) is in part dependent upon the classical plate theory 

buckling strength, which itself is derived for a plate loaded under uniaxial compression. 

In (5.2.49), the uniaxial compression is given by the stresses at the extreme fibers of the 

compression flange directly above the vertical crack in the web. 

Full-scale trial web plates corresponding to PG-1 through PG-4 were next 

employed to indirectly validate the expression for the bending moment capacity 

corresponding to the web local buckling limit state given by (5.2.59). Only the web plates 

were modeled in order to avoid the aforementioned difficulties concerning numerical 

buckling simulations of an overall girder. Each web plate was configured to have fully 

clamped support conditions along the longitudinal edges bordering the flange plates. The 

web plates were modeled using 4-node shell elements. The associated edge-cracks were 

modeled by assigning a seam to a single-line partition. Furthermore, the out-of-plane 

translation of each web plate was restrained except for the region of the embedded plate, 

thus reducing the analysis to that of a fully clamped embedded plate (see Figure 5.2.12a). 

The vertical sides of the embedded plate were then loaded with a unit 

compressive stress distribution in the form expressed by (5.2.53) (see Figure 5.2.12b). 

The first buckling mode stress corresponding to ζcw was then computed and introduced 

into (5.2.56). The bending moment capacity was then calculated by solving (5.2.56) for ζf 

and plugging the result into (5.2.59). The web local buckling capacities for each trial 

girder and associated vertical crack configuration as calculated from (5.2.59), as well as 

from the FE analyses, are listed in Table 5.4.13. 
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Table 5.4.13. Analytical and numerical web local buckling capacities.
a 

Plate 

girder 

(PG) 

Eq. 

(5.2.59) 

(kN·m) 

FE 

analysis 

(kN·m) 

Error 

(%) 

Plate 

girder 

(PG) 

Eq. 

(5.2.59) 

(kN·m) 

FE 

analysis 

(kN·m) 

Error 

(%) 

PG-1a 30.2 27.9 8.24 PG-3a 2422 1780 36.1 

PG-1b 30.4 28.1 8.19 PG-3b 2431 1784 36.3 

PG-1c 31.3 28.5 9.82 PG-3c 2473 1825 35.5 

PG-1d 36.0 35.2 2.27 PG-3d 2708 1994 35.8 

PG-2a 294.1 223.2 31.8 PG-4a 19711 14106 39.7 

PG-2b 295.3 224.6 31.5 PG-4b 19786 14144 39.9 

PG-2c 300.7 227.9 31.9 PG-4c 20126 14602 37.8 

PG-2d 330.9 249.0 32.9 PG-4d 22021 15936 38.2 

a. Assuming ζY = ∞ 

 

As with the tension buckling results for the three-ended crack, the capacities are 

purely theoretical since the flange steel was provisionally assumed to have infinite yield 

strength (i.e. ζY = ∞) for the purpose of comparing a wide range of results. The 

correlation is much more accurate for thinner web plates with lower tw / a ratios. The 

correlation becomes less accurate for web plates possessing higher tw / a ratios. However, 

the divergence in correlation at higher tw / a ratios is determined to be tolerable because 

alternative elastic limit states are likely to govern thereafter. 

Unlike the previously validated capacity expressions, the web local buckling 

capacity expression outputs higher values of critical stresses for longer crack lengths. 

This indicates that the web local buckling strength actually becomes greater with 

increasing crack length. The increase in buckling strength is explained by the nature of 

(5.2.58). As the vertical crack propagates up through the web plate towards the 

compression flange, the embedded plate situated just above the crack tip shrinks. The 

shrinking of the embedded plate therefore serves to increase its buckling strength and the 

corresponding residual bending moment strength. 
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PG-1 through PG-4 and the associated vertical crack configurations (see Table 

5.4.14) were next used to indirectly validate the tension buckling capacity expression 

given by (5.2.79). To achieve this, PG-1 through PG-4 were first employed to confirm the 

accuracy of the transverse compressive stress distribution at the middle of the crack given 

by (5.2.69) along the positive y-axis (see Figure 5.2.13b). The external bending moment, 

Mo, was set such that the far-field tensile stress at the extreme fibers of the web was equal 

to 172.5 MPa. The transverse compressive stress distributions for the trial girders and the 

associated vertical crack configurations obtained using (5.2.69) and the FE analyses 

demonstrated a close correlation (see Figure 5.4.8). 

 

Table 5.4.14. Trial plate girder geometric properties. 

Plate 

girder 

(PG) 

Web 

thickness, 

tw (cm) 

Crack 

length, 

2a (cm) 

Plate 

girder 

(PG) 

Web 

thickness, 

tw (cm) 

Crack 

length, 

2a (cm) 

PG-1a 0.15 4.0 PG-3a 0.60 4.0 

PG-1b 0.15 8.0 PG-3b 0.60 8.0 

PG-1c 0.15 16 PG-3c 0.60 16 

PG-1d 0.15 32 PG-3d 0.60 32 

PG-2a 0.30 4.0 PG-4a 1.20 4.0 

PG-2b 0.30 8.0 PG-4b 1.20 8.0 

PG-2c 0.30 16 PG-4c 1.20 16 

PG-2d 0.30 32 PG-4d 1.20 32 
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Figure 5.4.8: Transverse compressive stress distributions at middle of crack obtained analytically and 

numerically for each trial girder. 

 

 

Having validated the transverse stress distribution given by (5.2.69), FE analyses 

were next employed to indirectly validate the critical far-field tensile stress in the flange 

associated with tension buckling adjacent to the vertical crack given by (5.2.79). Two 

measures were taken to obtain the first mode buckling stress due to the transverse 

compressive stresses adjacent to the vertical crack. First, only the web plates of PG-1 

through PG-4 were modeled. Second, the out-of-plane translation of the web plate 
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besides that of the embedded plate was restrained (see Figure 5.2.17a). Also, 4-node shell 

elements were used to model the trial girder web plates. 

For each trial web plate, the clamped edge along the positive y-axis adjacent to 

the vertical crack was loaded with a unit transverse compressive stress distribution in the 

form given by (5.2.73) (see Figure 5.2.17c). The scaled magnitude of the unit stress 

distribution associated with first mode buckling was then numerically calculated. Given 

that (5.2.73) is directly coupled to ζf, the critical value of ζf corresponding to tension 

buckling was equal to the scaled value. The resulting critical far-field tensile stresses 

obtained from (5.2.79) and the FE analyses are summarized in Table 5.4.15. 

 

Table 5.4.15. Analytical and numerical tension buckling stresses.
a 

Plate 

girder 

(PG) 

Eq.  

(5.2.79) 

(GPa) 

FE 

analysis 

(GPa) 

% 

Error 

Plate 

girder 

(PG) 

Eq.  

(5.2.79) 

(GPa) 

FE 

analysis 

(GPa) 

% 

Error 

PG-1a 4.77 5.83 18.2 PG-3a 76.4 67.2 -13.7 

PG-1b 1.23 1.57 21.7 PG-3b 19.7 22.0 10.5 

PG-1c 0.33 0.43 23.3 PG-3c 5.28 6.61 20.1 

PG-1d 0.10 0.10 0.00 PG-3d 1.55 1.52 -1.97 

PG-2a 19.1 21.2 9.91 PG-4a 305 156 -95.5 

PG-2b 4.93 6.04 18.4 PG-4b 79.0 69.6 -13.5 

PG-2c 1.32 1.72 23.3 PG-4c 21.2 24.1 12.4 

PG-2d 0.39 0.39 0.00 PG-4d 6.18 5.85 -5.64 

a. Assuming ζY = ∞ 

 

 

The correlation between the critical tension buckling stress as obtained from 

(5.2.79) and the FE analyses is much closer for thin web plates possessing lower tw / a 

ratios. The divergence of correlation for web plates possessing higher tw / a ratios is 

tolerable because alternative elastic limit states are likely to govern thereafter. In general, 

it is observed that the critical tension buckling stress as obtained from (5.2.79) is mostly 

conservative. 
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The trial plate girders possessing the thinnest and thickest flanges and webs (PG-1 

and PG-4, respectively) together with the associated vertical crack configurations (see 

Table 5.4.11) were finally employed to indirectly validate the capacity expressions 

corresponding to the limit states of brittle fracture and impending ductile failure given by 

(5.2.82) and (5.2.84), respectively. Specifically, the analytically calculated values of KI 

expressed by (5.2.81) were validated, thus confirming the accuracy of the impending 

ductile failure and brittle fracture capacities. The external bending moment was set to Mo 

= 500 kN·m and the load time period was set to 10 with an increment size of 1. History 

outputs were then requested for the Mode I stress intensity factor. The resulting 

numerically determined values of KI and the corresponding analytically calculated values 

of KI given by (5.2.81) are plotted in Figure 5.4.9 as functions of crack for PG-1 and PG-

2. 
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Figure 5.4.9: Values of KI as obtained from (5.2.81) and FEA for PG-1 and PG-4. 

 

 

The correlation between the numerical and analytical values of KI degrades for 

PG-1 as the crack length increases. The correlation is strongest for shorter crack lengths, 

thus indirectly validating (5.2.82) and (5.2.84) for thinner girders. The discrepancy of the 

correlation for longer crack lengths is irrelevant because limit states such as brittle 

fracture, impending ductile failure, and tension buckling may begin to govern at longer 

crack lengths. In fact, the resulting values of KI greater than KIc are purely theoretical 

since KIc was provisionally assumed to be infinite (i.e. KIc = ∞) for the purpose of 

comparing a wide range of results. The correlation between the numerical and analytical 
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values of KI for PG-4 is in good agreement for all considered crack lengths, thus 

indirectly validating (5.2.82) and (5.2.84) for realistically sized girders. 

 

5.4.2.3 Crack Extending Through One or Both Sides of Tension Flange 

The trial plate girders possessing the thinnest and thickest flanges and webs (PG-1 

and PG-4, respectively) were next used to validate the expression for the transverse stress 

distribution given by (5.2.88) along the positive y-axis for the horizontal crack 

configuration (see Figure 5.2.21). The external bending moment was set to Mo = 500 

kN·m and the transverse stress distributions were numerically calculated for each trial 

girder and associated horizontal crack configuration (see Table 5.4.16). The plots of the 

distributions as obtained from (5.2.88) and the FE analyses are shown in Figure 5.4.10 for 

PG-1 and PG-4. The analytical and numerical results display a closer correlation for PG-

1. For PG-4, the analytical results conservatively predict slightly greater stress 

magnitudes than the FEA results. 

 

Table 5.4.16. Trial plate girder geometric properties. 

Plate 

girder 

(PG) 

Flange 

thickness 

(cm) 

Crack 

length 

(cm) 

Plate 

girder 

(PG) 

Flange 

thickness 

(cm) 

Crack 

length 

(cm) 

PG-1a 0.3 2.0 PG-4a 2.4 2.0 

PG-1b 0.3 4.0 PG-4b 2.4 4.0 

PG-1c 0.3 8.0 PG-4c 2.4 8.0 

PG-1d 0.3 12 PG-4d 2.4 12 
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Figure 5.4.10: Analytical and numerical compressive transverse stress distributions along the positive y-

axis as obtained from PG-1 and PG-4. 

 

Having validated (5.2.88), the trial flange stems were next used to indirectly 

validate the tension buckling capacity given by (5.2.98) considering exceptionally thin 

flange plate thicknesses. The trial flange stem thicknesses are purely theoretical for the 

function of investigating a wide range of buckling capacities. It was found that realistic 

flange plate thicknesses are unlikely to experience tension buckling prior to the advent of 

alternative elastic limit states. As with the vertical crack configuration in the web, each 

flange stem was loaded along the edges of the embedded plates bordering the web plate 

with a unit stress distribution in the form of (5.2.92). The scaled magnitude of the unit 

stress distribution associated with first mode buckling was then numerically calculated. 

Given that (5.2.92) is directly coupled to ζf, the critical value of ζf corresponding to 

tension buckling was equal to the scaled value. The tension buckling capacities of each 

flange stem and associated horizontal crack configurations as calculated from (5.2.98) 

and the FE analyses are plotted in Figure 5.4.11. 
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Figure 5.4.11: Analytical and numerical tension buckling capacities of trial flange stems considering 

exceptionally thin flange plate thicknesses. 

 

 

The analytically and numerically determined capacities display a reasonable 

correlation. It is noted that the yield strength of the trial flange stems was assumed to be 

infinite (i.e. ζY = ∞) for the purpose of displaying the full extent of the tension buckling 

capacity correlations. The correlation between the analytical and numerical results is 

closest for thin flange stems possessing lower tf / a ratios. The correlation decays for 

higher tf / a ratios. In general, the correlation becomes less accurate for thicker flange 



172 

 

stems. As with the three-ended crack and vertical crack configurations, the divergence in 

correlation at higher tf / a ratios is tolerable because alternative elastic limit states are 

likely to govern from then on. 

The trial plate girders possessing the thinnest and thickest flanges and webs (PG-1 

and PG-4, respectively) along with the associated horizontal crack configurations (see 

Table 5.4.16) were finally employed to indirectly validate the capacity expressions 

corresponding to the limit states of brittle fracture and impending ductile failure given by 

(5.2.100) and (5.2.102), respectively. The external bending moment was set to Mo = 500 

kN·m and the load time period was set to 10 with an increment size of 1. History outputs 

were then requested for the Mode I stress intensity factor. The resulting numerically 

determined values of KI and the corresponding analytically calculated values of KI given 

by (5.2.16) are plotted in Figure 5.4.12 as functions of crack length for PG-1 and PG-4. 
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Figure 5.4.12: Values of KI as obtained from (5.2.16) and FEA for PG-1 and PG-4. 

 

 

The analytically and numerically determined values of KI for PG-1 and PG-4 

display a good correlation for all considered crack lengths. It is noted that the resulting 

values of KI greater than KIc are purely theoretical since KIc was provisionally assumed to 

be infinite (i.e. KIc = ∞) for the purpose of comparing a wide range of results. In view of 

the fact that the brittle fracture and impending ductile failure capacity expressions are 

directly dependent upon the accuracy of KI, the correlation indirectly validates (5.2.100) 

and (5.2.102). 
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5.4.3 FE Validation of Shear Force Capacity Expressions 

5.4.3.1 Diagonal Crack in Web Panel 

 The trial web panel WP-C was first used to validate the expression for the internal 

shear stress distribution given by (5.3.19). The uniform perimeter shear stress was set to 

ηxy,s = 150 MPa, the crack angle set to θ = 45°, and the crack length set to 2a = 40 cm. 

Plots of the internal shear stress distributions were analytically determined using (5.3.19) 

for two arbitrary horizontal paths designated by ηxy,c(x, 25 cm) and ηxy,c(x, 40 cm) (see 

Figure 5.4.12). 

 

 

Figure 5.4.12: Locations of horizontal paths in WP-C for which the internal shear stress distributions were 

analytically and numerically obtained. 

 

The analytically determined shear stress distributions were compared to numerically 

calculated distributions by creating two nodal paths within WP-C in the locations 

designated in Figure 5.4.12. The X-Y data for the in-plane shear stress was then requested 

for each of the nodal paths. The shear stress distributions as obtained from (5.3.19) and 

the FE analyses are plotted in Figure 5.4.13. 
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Figure 5.4.13: Plots of internal shear stress distributions within WP-C along the horizontal paths designated 

in Figure 5.4.12 as obtained from (5.3.19) and FEA. The shear yield strength is temporarily neglected for 

the purpose of displaying the full extent of the stress distributions. 

  

 The analytically and numerically determined shear stress distributions exhibit a 

closer correlation along y = 40 cm than along y = 25 cm. This suggests that (5.3.19) is 

more accurate in describing the mid-field and far-field shear stress distributions than in 

describing the near-field distributions. Nonetheless, (5.3.19) is conservative for both 

cases displayed in Figure 5.4.13. 

 All four trial web panels were next employed to directly validate the capacity 

expression for web local buckling given by (5.3.42). Each trial web panel was loaded 

with a unit uniform perimeter shear stress, ηxy,s = 1 MPa. A linear perturbation buckling 

analysis was then performed on each trial web panel considering different crack lengths 

ranging from 10 cm to 70 cm, in 10 cm increments. The resulting Mode I eigenvalues 

were finally divided by tw to obtain the critical values of ηxy,s associated with buckling. 
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The buckling capacities of the trial web panels as obtained from (5.3.42) with Ne = 100 

and the FE analyses are plotted in Figure 5.4.14 as functions of crack length. 

 

 

Figure 5.4.14: Web panel buckling capacities as calculated from (5.3.42) and FEA. 

 

 It is evident that the analytically and numerically determined web buckling 

strengths demonstrate a relatively close correlation for all crack lengths considered. 

Equation (5.3.42) is slightly more conservative for crack lengths up to 40 cm. 

Conversely, the FE results are slightly more conservative for crack lengths beyond 40 cm. 
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From (5.3.43) and Table 5.4.6, the shear yield strength is approximately ηY = 200 MPa. In 

general, web panel strengths exceeding the shear yield strength are governed by ηY. This 

is the case for the buckling strength of WP-D for shorter crack lengths, as demonstrated 

in Figure 5.4.14. 

 The shear force capacity of a cracked web panel corresponding to the limit state 

of shear yielding is given by (5.3.46). Upon the advent of shear yielding, the perimeter 

shear stress attains the shear yield strength. Given that the trial web panels are loaded 

under pure shear by default, FE analyses were unnecessary to validate (5.3.47). 

 The trial web panels were next employed to indirectly validate the capacity 

expressions associated with brittle fracture and impending ductile failure given by 

(5.3.54) and (5.3.62), respectively. Specifically, the trial web panels were used to confirm 

the accuracy of KI and the web panel brittle fracture strength corresponding to Mode I 

crack loading. Given that θ = 45°, KII remains negligible and the brittle fracture strength 

corresponding to Mode II crack loading approaches ηcr = ∞. FE analyses were thus 

unnecessary to validate KII and the Mode II fracture strength. The Mode I fracture 

strength is analytically determined by solving (5.3.51) for ηxy,s and setting KI = KIc, 

resulting in 

 
a

K Ic
cr




)2sin(
                                                                                           (5.4.2) 

Since (5.3.54) and (5.3.62) are directly dependent upon the accuracy of KI, KII, and the 

Mode I and II web panel brittle fracture strengths, the validation of (5.4.2) serves to 

indirectly validate (5.3.54) and (5.3.62). 

 The web panel brittle fracture strength was first numerically calculated for each 

trial web panel considering Mode I crack loading. This was performed by setting the shell 
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edge load to a ramp load configuration. The magnitude of the shell edge load was set to 

an arbitrary value such that KI exceeded KIc. The total load time period was set to 10 and 

the load time incrementation set to 1. The stress intensity factor was obtained by 

assigning a history output request for KI at the crack front for each load time increment. 

Load scales were then obtained by dividing the load time increments at which KI equaled 

KIc by the total load time period. Lastly, the load scales were multiplied by the final 

magnitude of the shell edge load to obtain the critical magnitudes of perimeter shear 

stress. The Mode I brittle fracture capacities of the trial web panels as obtained from 

(5.4.2) and the FE analyses are plotted in Figure 5.4.15 as functions of crack length. 

 

 

Figure 5.4.15: Web panel brittle fracture strengths as calculated from (5.4.2) and FEA. 

 

 It can be seen that the FE results correlate very well with the analytical results for 

all considered crack lengths. The accuracy of KI and (5.4.2) is thus confirmed, thereby 

providing indirect validation of (5.3.54) and (5.3.62). 
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5.5 Incremental Decay of Capacity Expressions 

5.5.1 Paris-Erdogan Empirical Crack Growth Equation 

The formulated bending moment and shear force capacity expressions (see Tables 

5.4.1 and 5.4.2) are inherently functions of crack length, and may be denoted by Mcr{a} 

and Vcr{a}, respectively. Close inspection of these expressions reveal that the capacity 

decreases with increasing crack length. Given that the far-field cyclic stress induced by 

the fluctuating bending moments and shear forces serves to extend the crack length with 

each load cycle, it can be expected that the corresponding capacity may fall below the 

required capacity when the crack exceeds a critical length, acr. The fluctuating bending 

moments and shear forces may be described by constant-amplitude trigonometric load 

functions (see Figure 5.5.1). 

 

 

Figure 5.5.1: Constant-amplitude trigonometric load functions for (a) bending moment and (b) shear force. 
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The incremental crack extension, da, per load cycle, dN, may be described by the 

Paris-Erdogan crack growth equation given by (Paris & Erdogan, 1963) 

 m

IKC
dN

da


                                                                                               (5.5.1) 

where C and m are material constants, and ∆KI is the range of the stress intensity factor 

expressed as 

aK fI                                                                                                (5.5.2) 

The variable ∆ζf is the range of the far-field stress defined as 

minmax   fff                                                                                 (5.5.3) 

where ζf-max and ζf-min are the maximum and minimum values of the far-field cyclic stress, 

respectively, applied upon the web or flange (see Appendix H: Empirical Crack Growth 

Law). 

 

5.5.2 Incremental Decay of Capacity Expressions 

 The incremental decay of bending moment capacity, dMcr, and shear force 

capacity, dVcr, per load cycle is simply found by subtracting the capacity corresponding 

to a given load cycle from the capacity corresponding to the previous load cycle. Since 

the load cycle is related to the change in crack length by (5.5.1), the decay in bending 

moment capacity is expressed as 

   m

Icrcr
cr KCaMaM

dN

dM
                                                                (5.5.4) 

Similarly, the decay in shear force capacity is expressed as 

   m

Icrcr
cr KCaVaV

dN

dV
                                                                   (5.5.5) 
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Equations (5.5.4) and (5.5.5) represent the slopes of the capacities of a fatigue-cracked 

plate girder plotted as functions of load cycle, N. 

Solving (5.5.1) for dN and integrating from an initial crack length, ai, to a final 

crack length, af, results in an expression for the number of load cycles, ∆N, required for 

the crack to grow across this difference in length. The expression is written as 

 


f

i

a

a

m

I

da
KC

N
1

                                                                                         (5.5.6) 

Substituting (5.5.2) and (5.5.3) into (5.5.6) and resolving the integral results in: 
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                                                  (5.5.7) 

Assuming that the fatigue crack has already propagated through the flange or web plate 

thickness, the crack length constants are taken as ai ≈ 0 and af = a. Using (5.5.7), the 

capacity expressions may be indirectly plotted as functions of N. It can be expected that 

the capacity may fall below the required capacity after a critical number of load cycles, 

Ncr, corresponding to acr. Based upon the presumption that ai ≈ 0, Ncr is the extended 

fatigue life of the plate girder neglecting the load cycles required to propagate the crack 

through the flange or web plate thickness (Osman & Roberts, 1999). 
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6 Results and Discussion 
 

6.1 Overview 

6.1.1 Capacity Expressions as Functions of Crack Length 

 The formulated bending moment and shear force capacity expressions, Mcr = f{Г} 

and Vcr = f{Г}, and the corresponding flange plate and web panel capacity expressions, 

ζcr = f{Г} and τcr = f{Г}, were plotted as functions of crack length for the associated trial 

plate girders, flange stems, and web panels. In general, the capacities decrease with 

increasing crack length. The governing capacity, Mcr, Vcr, ζcr, or ηcr, may fall below the 

required capacity, Mr, Vr, ηcr or ζr, when a critical crack length, acr, is achieved. The 

formulated flange stem and web panel capacity expressions are summarized in Tables 

6.1.1 and 6.1.2, respectively. The flange stem capacity expressions, ζcr = f{Г}, are 

associated with the bending moment capacity of a fatigue-cracked girder: 

 SM crcr                                                                                                        (6.1.1) 

Similarly, the web panel capacity expressions, τcr = f{Г}, are associated with the shear 

force capacity of a fatigue-cracked girder: 

 wwcrcr tdV                                                                                                  (6.1.2) 
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Table 6.1.1. Flange stem capacity expressions (associated with bending moment). 

Crack configuration Limit state Capacity expression 

Three-ended crack 

Tension buckling in 

flange 

 

  Y

f

cr
a

Et
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
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 
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
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
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Horizontal crack 
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Table 6.1.2. Web panel capacity expressions (associated with shear force). 

Crack configuration Limit state Capacity expression 

Diagonal crack in 

web panel 

Web local 

buckling Y

N

r

N

c

rcecrcr

e e

 
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6.1.1.1 Three-ended Crack 

The formulated flange stem capacity expressions given by (5.2.14), (5.2.17), and 

(5.2.22) corresponding to the limit states of tension buckling, brittle fracture, and 

impending ductile failure, respectively, were plotted as functions of crack branch length, 

a, for the trial flange stems and associated plate girders (see Figure 5.2.2) considering a 

wider range of flange plate thicknesses with bf = 35 cm (see Figure 6.1.1). The critical 

plastic region radius, rp,cr, measured from the crack tip at 𝜃 = 0 was taken as rp,cr = tf / 50 

(Shukla, 2005, ch. 4). It can be seen that the governing limit states and associated 

capacities are predominantly attributed to impending ductile failure, thus invalidating the 

brittle fracture limit state. The general trends of the plots indicate that the governing limit 

state transitions to brittle fracture at much thicker flange plate thicknesses. It is noted that 

the impending ductile failure limit state is restricted to the region near the crack tip. As a 

consequence, alternative limit states may not be immediately influenced by the presence 

of the plastic region at the crack tip unless the plastic region becomes extremely large. 

Therefore, alternative limit states such as tension buckling may remain valid despite the 
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occurrence of the impending ductile failure limit state. Nevertheless, tension buckling 

was concluded to be an unlikely limit state for realistic plate girders unless the flange 

stem thickness is exceptionally thin and the crack branch length is relatively long (lower 

tf / a ratios with thinner flange stems). 

 

 
Figure 6.1.1: Trial flange stem capacities plotted as functions of crack branch length. The horizontal 

portions of the plots indicate the yield strength of the flange steel. 

 

 

 

6.1.1.2 Vertical Edge-crack in Web Plate 

The formulated bending moment capacity expressions given by (5.2.46), (5.2.50), 

(5.2.59), (5.2.80), (5.2.83), and (5.2.85) corresponding to the limit states of flange local 
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yielding, flange local buckling, web local buckling, tension buckling, brittle fracture, and 

impending ductile failure, respectively, were plotted as functions of vertical edge-crack 

length, 2a, (see Figure 5.2.8) for each trial plate girder (see Figure 6.1.2). The critical 

plastic region radius, rp,cr, measured from the crack tip at 𝜃 = 0 was taken as rp,cr = tw / 50 

(Shukla, 2005, ch. 4). Impending ductile failure is the governing limit state for all of the 

trial girders, thus invalidating the brittle fracture limit state. If the impending ductile 

failure limit state is neglected, the tension buckling limit state governs for all of the trial 

girders. Furthermore, if the tension buckling limit state is neglected, web local buckling is 

the governing limit state for PG-1 and PG-2. This is reflective of the extremely thin web 

plate thicknesses of PG-1 and PG-2. It can be seen that the web local buckling capacity 

gradually increases with increasing crack length. This phenomenon was previously 

observed by Brighenti (2005a, b, 2009) and Khedmati et al. (2009) in numerical tests of 

centrally cracked plates loaded under compression. The increase in buckling strength 

despite the local increase in bending stresses is in part explained by the shrinking of the 

embedded plate as the vertical crack length increases. 

Neglecting the impending ductile failure, brittle fracture, and tension buckling 

limit states, flange local yielding is the governing limit state for the realistic trial plate 

girders (PG-3 and PG-4). It is observed that the vertical crack must grow to a length in 

the order of 20 - 25 cm before the flange local yielding capacity begins to significantly 

decrease. For instance, a crack length of 2a = 5 cm results in a negligible decrease in 

capacity relative to My, while a crack length of 2a = 40 cm results in a decrease of 7%. 

Several criteria must then be met in order for premature flange local yielding failure to 

occur in this particular type of cracked section (vertical edge-crack in web plate). First, 
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the crack length must be within or exceed the range of 20 - 25 cm. Second, the required 

elastic bending moment capacity, Mr, must be just below the provided capacity, Mcr. 

Third, the impending ductile failure, brittle fracture, and tension buckling limit states are 

neglected. 
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Figure 6.1.2: Trial plate girder bending moment capacities plotted as functions of edge-crack length. The 

horizontal segments of the plots indicate the yield moment capacities. The tension buckling, brittle fracture, 

and impending ductile failure capacities are shown in separate plots for clarity. 

 

 

 

6.1.1.3 Crack Extending Through One or Both Sides of Tension Flange 

 The formulated flange stem capacity expressions given by (5.2.98), (5.2.100), and 

(5.2.102) corresponding to the limit states of tension buckling, brittle fracture, and 

impending ductile failure, respectively, were plotted as functions of crack length, 2a, for 

the trial flange stems and associated plate girders (see Figure 5.2.19) considering a wider 
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range of flange plate thicknesses with bf = 35 cm (see Figure 6.1.3). The critical plastic 

region radius, rp,cr, measured from the crack tip at 𝜃 = 0 was taken as rp,cr = tf / 50 

(Shukla, 2005, ch. 4). As with the three-ended crack and vertical edge-crack 

configurations, impending ductile failure is the governing limit state for all of the trial 

girders. If the impending ductile failure and brittle fracture limit states are neglected, the 

flange stem tensile capacities are overwhelmingly governed by the yield strength, ζY = 

345 MPa, of the flange steel. Hence, the bending moment capacities of the trial girders 

are mostly governed by the yield moment capacities, My. The only exception is when tf = 

0.10 cm, where the tension buckling limit state governs when the crack length exceeds 2a 

= 10 cm. As with the three-ended crack configuration, tension buckling is nevertheless 

concluded to be an unlikely governing limit state for realistic plate girders unless the 

flange stem thickness is exceptionally thin and the edge-crack is relatively long (lower tf / 

a ratios with thinner flange stems). 
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Figure 6.1.3: Trial flange stem tensile capacities plotted as functions of edge-crack length. The horizontal 

portions of the plots indicate the yield strength of the flange steel. 

 

 

 

6.1.1.4 Diagonal Crack in Web Panel 

 The formulated perimeter shear strength expressions given by (5.3.42), (5.3.47), 

(5.3.54), and (5.3.62) corresponding to the limit states of web panel buckling, shear 

yielding, brittle fracture, and impending ductile failure, respectively, were plotted as 

functions of diagonal crack length, 2a, for each trial web panel (see Figure 5.3.2). The 

web panel strengths associated with brittle fracture and shear yielding are independent of 

tw, and are plotted for all four trial web panels (WP-A through WP-D) in Figure 6.1.4 as 

functions of crack length with the crack assumed to propagate at θ ≈ 45° relative to the 
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flange. Conversely, the web panel strengths associated with buckling and impending 

ductile failure are dependent upon tw, and are plotted for each trial web panel in Figure 

6.1.5 as functions of crack length with Ne = 100, rp,cr = tw / 50, and θ ≈ 45° (Shukla, 

2005, ch. 4). 

The limit states of brittle fracture and shear yielding do not govern the perimeter 

shear strength of any of the trial web panels. Web buckling governs the capacity of WP-A 

for all considered crack lengths. Also, web buckling governs the capacity of WP-B for 

crack lengths up to 2a ≈ 19 cm, with impending ductile failure governing thereafter. 

Similarly, web buckling governs the capacity of WP-C for crack lengths up to 2a ≈ 3 cm, 

with impending ductile failure governing thereafter. Impending ductile failure governs 

the capacity of WP-D for all considered crack lengths. 

It is noted that although impending ductile failure is a limit state in itself and 

signifies the invalidation of the brittle fracture limit state, the shear yielding and web 

buckling limit states may remain valid. With this in mind, it is observed that the web 

buckling capacities of the trial panels are significantly degraded with increased crack 

length. The trial web panel buckling strengths are degraded by as much as 30% when the 

crack length reaches 70 cm. 
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Figure 6.1.4: Web panel brittle fracture and shear yielding capacities for WP-A through WP-D. 
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Figure 6.1.5: Web panel buckling and impending ductile failure capacities for WP-A through WP-D. 

 

 

  

6.1.2 Capacity Expressions as Functions of Load Cycle 

The formulated bending moment and shear force capacity expressions, Mcr = f(Г) 

and Vcr = f(Г), and the corresponding flange plate and web panel capacity expressions, ζcr 

= f(Г) and τcr = f(Г) (see Tables 6.1.1 and 6.1.2), were next plotted as functions of load 

cycle for the associated trial plate girders, flange stems, and web panels. The Paris-

Erdogan equation material constants were taken as C = 3.6 x 10
-10

 and m = 3.0 (Bowman, 

2002; Shukla, 2005, ch. 5). Also, the trial girders, flange stems, and web panels were 
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assumed to be loaded by constant-amplitude trigonometric load functions (see Figure 

6.1.6). 

 

 

Figure 6.1.6: Constant-amplitude trigonometric load functions for (a) bending moment, (b) flange tensile 

stress, and (c) web panel perimeter shear stress. 

 

 

The capacity expressions are not inherently functions of load cycle, but may be indirectly 

plotted as such by employing (5.5.7), rewritten here for clarity: 
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For each limit state, the number of load cycles, ∆N, required to propagate a given fatigue 

crack from ai to af were first determined using (6.1.1) considering the range in far-field 
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stress, ∆ζf. The capacity was then plotted as a function of the corresponding load cycles 

considering the branch length, af. 

 In general, the capacities decrease with increasing load cycle. The governing 

capacity, Mcr, Vcr, ζcr, or ηcr, may fall below the required capacity, Mr, Vr, ηcr or ζr, when a 

critical load cycle, Ncr, is achieved. It is noted that Ncr occurs when acr is achieved. If ai ≈ 

0, Ncr is the approximate extended fatigue life of the plate girder neglecting the load 

cycles required to propagate the crack through the flange or web plate thickness (Osman 

& Roberts, 1999). The initial crack length was taken as ai = 0.1 cm for all of the trial 

girders, flange stems, and web panels. 

 

6.1.2.1 Three-ended Crack 

 The flange stem capacity expressions given by (5.2.14), (5.2.17), and (5.2.22) 

were plotted as functions of load cycle for the trial plate girders considering a wider 

range of flange plate thicknesses with bf = 35 cm (see Figure 6.1.7). The constant-

amplitude trigonometric load function was arbitrarily assumed to induce a maximum 

bending moment of Mmax = 180 kN∙m and a minimum bending moment of Mmin = 50 

kN∙m. The governing limit states and associated capacities are identical to when the 

capacities were plotted as functions of crack length (see Figure 6.1.1). 
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Figure 6.1.7: Trial flange stem tensile capacities plotted as functions of load cycle with Mmax = 180 kN∙m 

and Mmin = 50 kN∙m. 

 

 

 

6.1.2.2 Vertical Edge-crack in Web Plate 

The bending moment capacity expressions given by (5.2.46), (5.2.50), (5.2.59), 

(5.2.80), (5.2.83), and (5.2.85) were plotted as functions of load cycle for the trial plate 

girders (see Figure 6.1.8). The load function was arbitrarily assumed to induce a 

maximum bending moment of Mmax = 500 kN∙m and a minimum bending moment of 

Mmin = 200 kN∙m. The tension buckling, brittle fracture, and impending ductile failure 

capacities are shown in separate plots for clarity. As with the three-ended crack 
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configuration, the governing limit states and associated capacities are identical to when 

the capacities were plotted as functions of crack length (see Figure 6.1.2). 
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Figure 6.1.8: Trial plate girder bending moment capacities plotted as functions of load cycle. 

 

 

 

6.1.2.3 Crack Extending Through One or Both Sides of Tension Flange 

The flange stem capacity expressions given by (5.2.98), (5.2.100), and (5.2.102) 

were plotted as functions of crack length for the trial plate girders considering a wider 

range of flange plate thicknesses with bf = 35 cm (see Figure 6.1.9). The applied load 
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function was assumed to induce a maximum bending moment of Mmax = 180 kN∙m and a 

minimum bending moment of Mmin = 50 kN∙m. 

 

 

Figure 6.1.9: Trial flange stem tensile capacities plotted as functions of load cycle. 

 

 

 

6.1.2.4 Diagonal Crack in Web Panel 

The web panel strengths associated with brittle fracture and shear yielding given 

by (5.3.54) and (5.3.47), respectively, are independent of tw, and are plotted for all four 

trial web panels (WP-A through WP-D) in Figure 6.1.10 as functions of load cycle with 

the crack assumed to propagate at θ ≈ 45° relative to the flange. Conversely, the web 
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panel strengths associated with buckling and impending ductile failure given by (5.3.42) 

and (5.3.62), respectively, are dependent upon tw, and are plotted for each trial web panel 

in Figure 6.1.11 as functions of load cycle with Ne = 100, rp,cr = tw / 50, and θ ≈ 45° 

(Shukla, 2005, ch. 4). The applied load function was assumed to induce a maximum shear 

force of Vmax = 600 kN and a minimum shear force of Vmin = 500 kN. 

 

 

Figure 6.1.10: Web panel brittle fracture and shear yielding capacities for WP-A through WP-D. 
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Figure 6.1.11: Web panel buckling and impending ductile failure capacities for WP-A through WP-D. 

 

 

 

6.2 Proposed Design Procedure 

6.2.1 Summary 

 A procedure for designing or otherwise modifying the elastic capacities and 

fatigue lives of plate girders for prescribed through-thickness fatigue crack configurations 

is finally outlined. As was previously mentioned, it may be useful for structural engineers 

to be able to design or otherwise modify the elastic capacities and fatigue lives of steel 
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highway bridge plate girders for presumed through-thickness fatigue crack configurations 

so that the premature occurrence of elastic limit states may be averted in between bridge 

inspection periods. It is not uncommon for design engineers to perform additional checks 

on a structural design even though the design satisfies the code-based requirements. 

Although the formulated capacity expressions (see Tables 6.1.1 and 6.1.2) pertain only to 

elastic limit states, and are not required by the AASHTO LRFD Bridge Design 

Specifications (2010), the expressions may be useful for engineers to perform 

conservative and brief checks on I-shaped transversely stiffened plate girders. 

 The proposed design procedure is described and demonstrated by conducting an 

initial design of an I-shaped plate girder that is part of a theoretical highway bridge using 

the LRFD Bridge Design Specifications (AASHTO, 2010) (see Appendix A: AASHTO 

LRFD Bridge Design Specifications). The formulated capacity and decay expressions are 

then employed to check the governing capacity and fatigue life of the initial girder design 

for prescribed through-thickness fatigue crack configurations and fatigue lives, 

respectively. Various limit states may be neglected or invalidated such as the impending 

ductile failure and brittle fracture limit states. The initial girder design is then modified 

by adjusting the flange thicknesses, web thickness, flange width, and web depth in order 

to satisfy the capacity and decay expression requirements. 

 

6.2.2 Initial Code-based Plate Girder Design 

6.2.2.1 Assumptions 

 The initial design of the I-shaped plate girder is performed with the following 

assumptions regarding a theoretical highway bridge: 
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1. U.S. customary units are employed for compatibility with the AASHTO 

LRFD Bridge Design Specifications (2010). 

2. The bridge is a short-span slab-girder steel highway bridge. 

3. The bridge has two design lanes and is part of a rural portion of the IHS. 

4. The ADTT is approximately 2,000. 

5. The bridge is single-span and is simply-supported. 

6. The bridge is conservatively analyzed as having a non-composite 

configuration. 

7. The superstructure is supported by four girders spaced at s = 5 ft. on-center. 

8. The span length is l =85 ft. 

9. The plate girder considered is an interior girder. 

10. The tension and compression flanges are identical at any location along the 

length of the girder. 

A profile view and cross-section view of the theoretical highway bridge are shown in 

Figures 6.2.1 and 6.2.2, respectively. Also, the geometrical properties, material 

properties, and applied loads of the bridge are listed in Tables 6.2.1, 6.2.2, and 6.2.3, 

respectively. 

 

 

Figure 6.2.1: Profile view of highway bridge superstructure showing lane load and HL-93 design truck. 
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Figure 6.2.2: Cross-section of highway bridge superstructure indicating the girder being considered. 

 

Table 6.2.1. Material properties of theoretical highway bridge. 

Property Value 

Modulus of elasticity of steel, Es 29,000 ksi 

Yield strength of steel, Fy 50 ksi 

Mode I fracture toughness of steel, KIc 180 ksi (in.)2 

Paris-Erdogan constant, C 3.6 x 10-10 

Paris-Erdogan constant, m 3.0 

Poisson‟s ratio of steel 0.3 

Unit weight of steel, 𝛾s 490 pcf 

28-day concrete compressive strength, f’c 5,000 psi 

Unit weight of reinforced concrete, 𝛾c 150 pcf 

Modulus of elasticity of concrete1, Ec 4,290 ksi 

1. For concrete with f’c = 5000 psi and γc = 150 pcf  

(ACI, 2005, sec. 8.5) 

 

 

Table 6.2.2. Geometrical properties of theoretical highway bridge. 

Property Value 

Span length, l 85 ft. 

Girder spacing, s 5 ft. 

Slab thickness1, ts 6 in. 

1. Includes ½ in. wearing surface. 

 

 

Table 6.2.3. Loads applied upon theoretical highway bridge. 

Load Value 

Future wearing surface, pws 20 psf 

Forms, pf 15 psf 

Miscellaneous, pm 2 psf 

Barriers1, wb 150 plf 

1. Approximate load per linear foot upon each girder. 
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The tension and compression flange plates are initially selected to be 16” x 1” 

plates. The web plate is initially selected to be a 50” x 3/8” plate (see Figure. 6.2.3). 

Hence, bf = 16 in., tf = 1.0 in., dw = 50 in., and tw = 0.375 in. 

 

 

Figure 6.2.3: Initial cross-sectional dimensions of the girder being designed. 

 

 

 

6.2.2.2 Live Load 

 The required live load bending moment, LL, is first calculated. An influence line 

is employed to calculate the total critical live load bending moment due to the HL-93 

design truck or design tandem, and the design lane load. The total critical live load 

bending moment is then distributed to the interior girder being designed using a 

distribution factor determined in accordance with the girder line method as specified in 

Section 4.6.2.2.2 of the LRFD Specifications (2010). The maximum bending moment in 

the simply-supported span occurs at mid-span. Therefore, an influence line is developed 

for the bending moment at l/2 as shown in Figure 6.2.4. The maximum magnitude of the 

influence line is given by: 

 .25.21
4

.85

4
ft

ftl
                                                                                        (6.2.1) 
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Figure 6.2.4: Influence line for the mid-span bending moment of the simply-supported girder. 

 

 The HL-93 design truck is first situated along the influence line in the position 

shown in Figure 6.2.5a to induce a critical live load bending moment, MLL,dt. The critical 

live load bending moment is then calculated from the influence line using similar 

triangles, as follows: 

 ftkftkftkftkM dtLL *1250)25.14)(32()25.21)(32()25.14)(8(,           (6.2.2) 

Next, the design tandem is situated along the influence line in the position shown in 

Figure 6.2.5b to induce a critical live load bending moment, MLL,t, and is calculated as 

follows: 

ftkftkftkM tLL *5.1012)25.19)(25()25.21)(25(,                                  (6.2.3) 

Finally, the design lane load is specified to act along the entire length of the girder as 

shown in Figure 6.2.5c to induce the critical design lane load bending moment, MLL,dl, 

and is calculated as follows: 

 ftkftft
ft

k
M dlLL *578)25.21)(85(64.0

2

1
, 








                                            (6.2.4) 
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Figure 6.2.5: Influence line for the mid-span bending moment of the simply-supported girder with (a) HL-

93 design truck, (b) design tandem, and (c) design lane load. 

 

 

The critical live load bending moment due to the HL-93 design truck, MLL,dt = 1250 k∙ft, 

is greater than the live load bending moment due to the design tandem, MLL,t = 1012.5 

k∙ft. Therefore, the HL-93 design truck governs and is combined with the design lane load 

to obtain the total critical live load bending moment, MLL: 

 ftkftkftkMMM dlLLdtLLLL *1828*578*1250,,                            (6.2.5) 

The total critical live load bending moment is next multiplied by a distribution 

factor, g, to distribute MLL to the interior girder being designed. In accordance with the 
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girder line method, g for an interior girder that is part of a slab-girder configuration with 

two or more design lanes is specified as (AASHTO, 2010, sec. 4.6.2.2.2): 

1.0

3

2.06.0

0.125.9
075.0 































s

g

lt

K

l

ss
g                                                            (6.2.6) 

The term Kg is the longitudinal stiffness parameter, specified as 

  2

ggg eAInK                                                                                              (6.2.7) 

where Ag is the gross area of the steel girder, expressed as: 

       275.5050375.0160.12 inininininAg                                              (6.2.8) 

The term n in (6.2.7) is defined as: 

 76.6
4290

29000


ksi

ksi

E

E
n

c

s                                                                               (6.2.9) 

Also, I is the moment of inertia of the girder and is calculated from the initial girder 

cross-sectional dimensions of bf = 16 in., tf = 1.0 in., dw = 50 in., and tw = 0.375 in., 

resulting in I = 24,717 in
4
. Finally, eg is the distance between the centers of gravity of the 

girder and the concrete deck, expressed as: 

 inininin
t

t
d

e s
f

w
g 29

2

6
0.1

2

50

22
                                             (6.2.10) 

Substituting (6.2.8), (6.2.9), (6.2.10), and I = 11,530 in
4
 into (6.2.7) results in: 

     4224 4556092975.502471776.6 ininininK g                                  (6.2.11) 

Finally, substituting (6.2.11) into (6.2.6) results in: 

 
  

49.0
6850.12

455609

85

5

5.9

5
075.0

1.0

3

42.06.0

















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








inft

in

ft

ftft
g                           (6.2.12) 
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The final live load bending moment upon the internal girder being designed is then 

expressed as: 

   ftkftkgMLL LL *7.89549.0*1828                                               (6.2.13) 

A dynamic load allowance, IM, is also applied to the final live load bending 

moment. For components of the superstructure besides the deck joints, the final live load 

bending moment is increased by 33% (AASHTO, 2010, p. 3-30): 

   ftkftkLLIM *6.295*7.89533.033.0                                              (6.2.14) 

 

6.2.2.3 Dead Load 

The required dead load bending moments are next calculated by considering the 

self-weight of the steel girder, the concrete deck, and additional load including forms, 

miscellaneous load, barriers, and future wearing surface. The weight per linear foot of the 

girder, concrete deck, forms, miscellaneous items, and barriers are designated as wDC. 

The weight per linear foot of the future wearing surface is designated as wDW. 

The weight of the girder, wDC,g, per linear foot is calculated with the following 

formula: 

 

ft

k
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ft
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           (6.2.15) 

where γs is the unit weight of steel as listed in Table 6.2.1. 

The weight of the concrete deck, wDC,d, per linear foot is determined with the 

following formula: 
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  
ft

k

ft
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ft
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ftftstw csdDC 375.03751505
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3, 

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

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
                           (6.2.16) 

where ts is the slab thickness, s is the tributary width of the interior girder being designed, 

and 𝛾c is the unit weight of reinforced concrete as listed in Table 6.2.1. It is noted that the 

tributary width of the interior girder being designed is the girder spacing, s. 

 The combined weight of the forms, miscellaneous items, and barriers, wDC,m, per 

linear foot is determined with the following formula: 
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          (6.2.17) 

where pf is the load from the forms, pm is the load from miscellaneous items, and wb is the 

load from the barriers, as listed in Table 6.2.3. The total load per linear foot of the girder, 

concrete deck, forms, miscellaneous items, and barriers is then calculated as: 

ft

k

ft

k

ft

k

ft

k

wwww mDCdDCgDCDC

763.0215.0375.0173.0

,,,





                                                  (6.2.18) 

The weight of future wearing surface, wDW, per linear foot is determined with the 

following formula: 

  
ft

k

ft

lb
ft

ft

lb
spw wsDW 100.0100520

2









                                          (6.2.19) 

where pws is the weight of future wearing surface as listed in Table 6.2.3. 

 The maximum bending moment in a uniformly loaded simply-supported span 

occurs at mid-span, and is given by: 

 
8

2wl
M                                                                                                         (6.2.20) 
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where M is the bending moment at mid-span, w is the uniform load per unit length, and l 

is the span length. Substituting wDC = 0.735 klf and wDW = 0.100 klf into (6.2.3) with l = 

85 ft. results in the final dead load bending moments, DC and DW: 

 

 
ftk

ft
ft

k

DC *1.689
8

85763.0
2











                                                          (6.2.21) 

 

 
ftk

ft
ft

k

DW *3.90
8

85100.0
2











                                                          (6.2.22) 

 

6.2.2.4 Load Combinations 

The final live load and dead load bending moments are next combined into the 

Strength I load combination, specified as: 

IMLLDWDC pp 75.175.1                                                                (6.2.23) 

where γp for DC is taken as 1.25 and γp for DW is taken as 1.50 (AASHTO, 2010, sec. 

3.4.1). Substituting (6.2.13), (6.2.14), (6.2.21), and (6.2.22) into (6.2.23) results in the 

required factored bending moment, Mu, associated with Strength I for the girder being 

designed: 

 
     

  ftkftk

ftkftkftkM u

*6.3081*6.29575.1

*7.89575.1*3.9050.1*1.68925.1




                        (6.2.24) 

 

6.2.2.5 Design for Strength Limit State 

The strength of the girder being designed must be sufficient to resist the effects 

from the load combination given by (6.2.24). This requirement is given by (A.4.1) and is 

rewritten here for clarity: 
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ncflbu Fff 
3

1
                                                                                         (6.2.25) 

where fl is the bending stress due to lateral bending. The term fbu is the bending stress in 

the compression flange due to Mu, taken as, 

 
S

M
f u

bu                                                                                                        (6.2.26) 

The elastic section modulus, S, is determined based upon the initial girder cross-sectional 

dimensions of bf = 16 in., tf = 1.0 in., dw = 50 in., and tw = 0.375 in., resulting in S = 951 

in
3
. Substituting (6.2.24) and S = 951 in

3
 into (6.2.26) results in: 

 
  

ksi
in

ftk
fbu 9.38

951

12*6.3081
3

                                                                 (6.2.27) 

For simplicity, fl is taken as equal to zero. 

The nominal flexural resistance of the compression flange, Fnc, is first determined 

for the local buckling limit state (see Appendix F: Classical Plate Theory). The 

slenderness ratio, λf, for the compression flange is first determined: 

 
0.8

0.12

16

2


in
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t

b

fc

fc

f                                                                             (6.2.28) 

where bfc is the compression flange width and tfc is the compression flange thickness. The 

slenderness ratio, λpf, for a compact flange is next calculated: 

 15.9
50

29000
38.038.0 

ksi

ksi

F

E

yc

s

pf                                                    (6.2.29) 

where Fyc is the yield strength of the compression flange steel. It can be seen that λf = 8.0 

< λpf = 9.15, and thus the compression flange is compact (i.e. the flange will not buckle 

prior to yielding). The flexural resistance of the flange is then specified as 

 ychbnc FRRF                                                                                                 (6.2.30) 
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The terms Rb and Rh are taken as equal 1.0. Substituting Rb and Rh into (6.2.30) results in: 

     ksiksiFnc 50500.10.1                                                                         (6.2.31) 

 The nominal flexural resistance of the compression flange is next determined for 

the lateral torsional buckling limit state (AASHTO, 2010, sec. 6.10.8.2.3). The unbraced 

length, Lb, of the girder being designed is assumed to be less than the limiting unbraced 

length, Lp, such that lateral torsional buckling is prevented and Fnc is equal to (6.2.31). 

The governing flexural resistance of the compression flange is thus Fnc = 50 ksi. 

 Substituting fl = 0, (6.2.27), and (6.2.31) into (6.2.25) results in 

 ksiFksif ncfbu 509.38                                                               (6.2.32) 

where the resistance factor for flexure is taken as Ф=1.00 (AASHTO, 2010, sec. 6.5.4.2). 

The strength requirement specified by (6.2.25) is therefore satisfied and the initial girder 

cross-sectional dimensions of bf = 16 in., tf = 1.0 in., dw = 50 in., and tw = 0.375 in. are 

adequate for the Strength I load combination. 

 

6.2.3 Modification of Initial Design for Prescribed Crack Configurations 

 The initial girder cross-sectional dimensions are next modified by adjusting tf, bf, 

tw, and dw in order that the elastic bending moment capacity of the girder is sufficient for 

prescribed fatigue crack configurations and fatigue lives. This requirement is essentially a 

form of (A.2.2) and is expressed as 

 crr                                                                                                           (6.2.33) 

where ζr is the required bending stress in the flanges due to Mu, as expressed by (6.2.26). 

Based upon the initial girder cross-sectional dimensions of bf = 16 in., tf = 1.0 in., dw = 

50 in., and tw = 0.375 in., it was determined that: 
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ksifbur 9.38                                                                                         (6.2.34) 

as expressed by (6.2.27). The term ζcr in (6.2.33) is the governing flange stem capacity, 

ζcr = f(Г), and is in part dependent upon the prescribed fatigue crack configurations. 

The prescribed fatigue crack configurations include the three-ended crack, the 

vertical edge-crack in the web, and the horizontal crack in the tension flange (see Figure 

6.2.6). The corresponding prescribed branch lengths, ai, are listed in Table 6.2.4. Also, 

the prescribed fatigue life for each crack configuration is specified to be 70 days to 

provide ample time for the cracks to be detected and arrested. The number of load cycles 

induced within the girder being designed over a 70 day period is expressed in the form of 

(A.5.3), given as: 

   SLADTTnN 70                                                                                       (6.2.35) 

where n is the number of stress cycles per truck passage, and (ADTT)SL is the average 

daily truck traffic for a single lane. Given that the single-span simply-supported 

theoretical highway bridge has two design lanes with ADTT = 2,000, it is determined that 

n = 1.0 and (ADTT)SL = 1,700, resulting in a prescribed fatigue life of (AASHTO, 2010, 

secs. 3.6.1.4, 6.6.1.2.5): 

    12750017000.175 N                                                                        (6.2.36) 

 

 

Figure 6.2.6: Prescribed fatigue crack configurations indicating branch lengths, ai: (a) Three-ended crack, 

(b) vertical edge-crack in web, and (c) horizontal crack in the tension flange. 
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Table 6.2.4. Prescribed branch lengths. 

Branch, ai Length (in) 

a1 6.0 

2a2 8.0 

2a3 6.0 

 

 

 

6.2.3.1 Design for Prescribed Crack Length 

The formulated flange stem capacity expressions listed in Table 6.1.1 are initially 

plotted as functions of crack branch length considering the material properties listed in 

Table 6.2.1. The plots are displayed for the three-ended crack, the vertical edge-crack in 

the web, and the horizontal crack in the tension flange in Figures 6.2.7, 6.2.8, and 6.2.9, 

respectively. Each plot indicates the required flange stress, ζr = 38.9 ksi, and the 

prescribed branch length, ai. 

 

 

Figure 6.2.7: Capacities for three-ended crack configuration. 
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Figure 6.2.8: Capacities for vertical edge-crack configuration. 

 

 

Figure 6.2.9: Capacities for horizontal crack configuration. 
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 The impending ductile failure limit state is the governing limit state for all three 

crack configurations. Therefore, the brittle fracture limit state is invalidated for all three 

configurations. Assuming that the growth of the plastic region at the crack tip is largely 

localized, the impending ductile failure limit state may be neglected and employed only 

to indicate the invalidation of the brittle fracture limit state. The governing flange stem 

capacities considering the three-ended crack and horizontal crack configurations thus 

remain greater than ζr = 38.9 ksi when the branch lengths achieve a1 = 6.0 in. and a3 = 

6.0 in., respectively (see Figures 6.2.7 and 6.2.9). Therefore, the initial girder cross-

sectional dimensions of bf = 16 in., tf = 1.0 in., dw = 50 in., and tw = 0.375 in. are 

sufficient for carrying the required load considering the three-ended crack and horizontal 

crack configurations. 

 The governing flange stem capacity considering the vertical edge-crack 

configuration falls below ζr = 38.9 ksi before the branch length achieves 2a2 = 8.0 in. 

(neglecting the impending ductile failure and brittle fracture limit states) (see Figure 

6.2.8). The governing elastic capacity is associated with tension buckling in the web. 

Therefore, the initial web plate thickness is slightly increased to tw = 0.50 in. in order to 

satisfy (6.2.33). The increase in the web plate thickness results in a modified elastic 

section modulus of S = 1001 in
3
 and a modified approximate required flange stress of ζr 

= 36.9 ksi. The modified capacities for the vertical edge-crack are displayed in Figure 

6.2.10. 
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Figure 6.2.10. Modified capacities for vertical edge-crack configuration. 

 

 

 

6.2.3.2 Design for Prescribed Fatigue Life 

From (6.2.36), the prescribed fatigue life is N = 127,500 load cycles. The cyclic 

stresses within the flange plates induced by the fluctuating bending moments may be 

approximated by a constant-amplitude trigonometric load function (see Figure 6.2.11). 

The maximum flange stress is equivalent to the required flange stress, such that ζmax = ζr 

= 38.9 ksi. The minimum flange stress, ζmin, is induced by only the dead load effects. 

Considering only the dead load bending moments, DC and DW, in (6.2.24), the factored 

dead load moment becomes Mu,DL = 996.8 k*ft. Substituting Mu,DL = 996.8 k*ft and S = 

951 in
3
 into (9.2.26) results in: 



219 

 

  
ksi

in

ftk

S

M DLu
6.12

951

12*8.996
3
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min                                                    (6.2.37) 

The stress range, defined by (5.5.3), is then calculated as: 

ksiksiksi 3.266.129.38minmax                                         (6.2.38) 

 

 

Figure 6.2.11: Constant-amplitude trigonometric load function for flange stress. 

 

 

The formulated flange stem capacity expressions listed in Table 6.1.1 are plotted 

as functions of load cycle, N, considering the material properties listed in Table 6.2.1 and 

the stress range, ∆ζ = 26.3 ksi, given by (6.2.38). The plots are displayed for the three-

ended crack, the vertical edge-crack in the web, and the horizontal crack in the tension 

flange in Figures 6.2.12, 6.2.13, and 6.2.14, respectively. Each plot indicates the required 

flange stress, ζr = 38.9 ksi, and the prescribed fatigue life length, N = 127,500 load 

cycles. 
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Figure 6.2.12: Capacities for three-ended crack configuration. 

 

 

 

Figure 6.2.13: Capacities for vertical edge-crack configuration. 
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Figure 6.2.14: Capacities for horizontal crack configuration. 

 

 

 Neglecting the impending ductile failure limit state, the flange stem capacities for 

all three crack configurations remain above ζr = 38.9 ksi before the prescribed fatigue life 

of N = 127,500 is achieved. The initial girder cross-sectional dimensions are sufficient 

for the prescribed fatigue life, and are inadequate for the prescribed crack lengths. The 

final girder cross-sectional dimensions are thus the modified dimensions given by bf = 16 

in., tf = 1.0 in., dw = 50 in., and tw = 0.50 in. 

 

6.2.4 Conclusions 

 In conclusion, an I-shaped plate girder was designed in accordance with the 

AASHTO LRFD Bridge Design Specifications (2010). The girder was assumed to be part 

of a theoretical highway bridge possessing the properties listed in Tables 6.2.1, 6.2.2, and 

6.2.3. The formulated bending moment capacity expressions listed in Table 6.1.1 were 

employed to modify the initial girder cross-sectional dimensions considering prescribed 
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through-thickness fatigue crack configurations and a prescribed fatigue life. Specifically, 

the expressions were plotted as functions of fatigue crack length and load cycle. Each 

plot was then analyzed to ensure that the capacities remained greater than the required 

capacity at least until after the prescribed crack length or prescribed fatigue life was 

achieved. 

It was determined that the initial web plate thickness of tw = 0.375 in. was 

inadequate to satisfy the tension buckling limit state for the vertical edge-crack 

configuration with 2a2 = 8.0 in. The web plate thickness was therefore slightly increased 

to tw = 0.50 in. in order to satisfy this requirement (see Figure 6.2.15). This increase 

results in a 33% increase in the weight and gross area of the web plate. 

 

 

Figure 6.2.15: Initial cross-sectional dimensions of the girder being designed. 
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7 Conclusions 
 

The objective of this research was to develop theoretical expressions for the 

bending moment and shear force elastic limit states of fatigue-cracked, I-shaped, 

transversely stiffened, steel plate girders. The formulation of the expressions, and their 

subsequent validation by way of FEA, served to contribute a set of preliminary design 

equations supported by theoretical and numerical bases, of which was concluded to be 

fundamentally absent from the literature (see Chapter 4). The formulated expressions 

demonstrated that various elastic limit states influence the overall strength of a girder at 

varying scales, and are dependent upon the geometric and material properties of the 

girder, as well as the fatigue crack configuration. Ultimately, it was demonstrated in 

Section 6.2 that the preliminary design equations may be useful for engineers to perform 

brief checks on plate girders for prescribed fatigue crack configurations and fatigue lives. 

The series of preliminary design equations corresponded to various elastic limit 

states (yielding, elastic buckling, brittle fracture, and impending ductile failure) and 

considered various fatigue crack configurations observed in the literature (three-ended 

crack, vertical-edge crack in web, horizontal crack in tension flange, and diagonal crack). 

The formulation of the expressions employed various theories from solid mechanics 

including elasticity theory, linear elastic fracture mechanics, classical plate theory, and 

the principle of stationary potential energy. The expressions are inherently approximate 

owing to the fact that several approximations and simplifications were employed when 

deriving the expressions. In general, the use of these approximations and simplifications 

were necessary in order to reduce an otherwise complex configuration to a more general 

configuration, while maintaining a line of continuity to the actual arrangement. Each 
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approximation and simplification was therefore employed based upon a rational line of 

reasoning. A common approximation employed throughout this research was to assume 

that a fatigue crack configuration residing within the finite confines of a plate girder was 

approximately identical to a similar crack configuration residing within an infinite plate. 

This approximation was deemed to be appropriate because the scale of the fatigue crack 

was assumed to be relatively small when compared to the scale of the overall girder. 

Therefore, the actual local stress field around the crack in the girder would be essentially 

identical to the local stress field around the similar crack in the infinite plate. Moreover, it 

was presumed that one of the elastic limit states would be exceeded prior to the scale of 

the fatigue crack growing to such a size that the infinite plate approximation would be 

invalidated. 

Another common approximation employed throughout this research was the 

combined use of the concept of an embedded plate and the Rayleigh-Ritz method to 

determine the tension buckling strength of cracked regions of a plate girder. The concept 

of the embedded plate was employed to define the approximate local region of a girder 

adjacent to a through-thickness crack undergoing local buckling. The embedded plate 

was generally presumed to be rectangular in area, and the embedded edges were 

presumed to be fully clamped except for the edge formed by the crack (Brighenti, 2005a, 

b, 2009; Minor & Woodward, 1996; Paik et al., 2005). The use of an embedded plate 

greatly simplified the determination of the tension buckling strength by reducing the 

configuration to that of elastic buckling of an isolated plate. The actual transverse 

compressive stress distribution in the cracked region of a girder was then approximated 

by applying an external transverse compressive stress distribution upon the embedded 
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plate. The external stress distribution itself was obtained from the infinite plate 

approximation. Using the Rayleigh-Ritz method, the external stress was coupled to an 

assumed out-of-plane displacement function, which itself satisfied the support conditions 

of the embedded plate. The elastic buckling strength of the embedded plate was then 

determined and coupled to the corresponding critical bending moment strength of the 

girder. Although this research focused upon plate girders, the general procedure for 

determining the tension buckling strength of a cracked web plate or flange plate could 

have theoretically been employed with any thin, cracked, plate-like structure loaded 

under tension. 

The FEA procedure served to provide direct and indirect numerical validation of 

the formulated expressions. The FEA validations directly demonstrated that the infinite 

plate approximation for determining the local stress field around a crack was 

overwhelmingly accurate. Additionally, the FEA validations directly demonstrated that 

the infinite plate approximation for determining the stress intensity factor and plastic 

region size at the crack tip was reasonably accurate for shorter crack branch lengths. 

These particular validations were direct in that the FEA procedure employed the full-size 

trial plate girder models. Conversely, the FEA validations indirectly demonstrated that 

the combined use of the concept of an embedded plate and the Rayleigh-Ritz method to 

determine the tension buckling strength was reasonably accurate. These particular 

validations were indirect in that the FEA procedure employed the trial web plate and 

flange plate models instead of the full-size trial plate girder models, and employed similar 

approximations used in the analytical derivation of the tension buckling expressions. The 

embedded plate approximation was used in the FEA validations by restraining the out-of-
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plane movement of the trial web plates and flange plates except for the regions of the 

embedded plates. Also, the FEA validations made use of the external stress distribution, 

itself obtained from the infinite plate approximation, to load the embedded plate. 

However, the subsequent eigenvalue buckling analysis was performed numerically. 

 Overall, the FEA procedure provided verification that the output from the 

formulated capacity expressions is for the most part in good agreement with the 

numerical output. In general, the predicted capacities obtained from the formulated 

expressions were found to be slightly more conservative than the capacities obtained 

from FEA. In other words, the formulated expressions predicted lower values of residual 

girder strength than as predicted from FEA. In some cases, the formulated expressions 

demonstrated close correlation with FEA for shorter crack branch lengths before 

diverging at longer crack branch lengths, with the FEA results being more conservative. 

In these cases, the divergence between the analytical and FEA results was deemed to be 

tolerable because the divergence occurred at longer crack branch lengths, at which point 

alternative elastic limit states would begin to govern the residual girder strength. In other 

cases regarding buckling, the correlation between the formulated expressions and FEA 

was closest for lower plate thickness-to-crack length ratios with thinner plate thicknesses. 

The correlation then diverged at higher plate thickness-to-crack length ratios. Again, the 

divergence between the analytical and FEA results was deemed to be tolerable because 

alternative elastic limit states would begin to govern the residual girder strength at higher 

plate thickness-to-crack length ratios. 

The plots of the preliminary design equations as functions of crack length and 

load cycle demonstrated that various elastic limit states influence the overall strength of a 
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girder, and are largely dependent upon the fatigue crack configuration. The impending 

ductile failure limit state was found to be the most common governing limit state. 

However, the impending ductile failure limit state is highly localized in that the formation 

of the plastic region around a crack tip remains relatively small when compared to the 

overall scale of a plate girder. Similarly, the tension buckling limit state is highly 

localized in that the scale of buckling of the region of plate adjacent to a through-

thickness crack is relatively small when compared to web panel buckling or lateral-

torsional buckling. Furthermore, it was shown that tension buckling is possible only in 

configurations with lower plate thickness-to-crack length ratios with thinner plate 

thicknesses. On the contrary, the flange local yielding limit state may lead to the 

formation of a plastic hinge in the flange, which may adversely influence the stability of 

an overall plate girder. Similarly, the flange and web local buckling limit states may lead 

directly to the instability of an overall girder (Basler & Thurlimann, 1960a). Taken as a 

whole, the various elastic limit states influence the overall strength of a fatigue-cracked 

plate girder at varying scales; certain limit states may be neglected in favor of more 

detrimental limit states. 

The contributions from this research could be extended upon in several ways. The 

residual strength of alternative cracked beam-like structures such as hot-rolled T-beams, 

L-beams, and box girders could be investigated. Additional fatigue crack configurations 

could also be investigated. Empirical or theoretical correction factors accounting for the 

influence of residual stresses induced by welded boundaries could be developed. Finally, 

expressions could be formulated for the ultimate residual strength of fatigue-cracked 
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girders. These ultimate residual strength expressions could then be validated using both 

FEA and experimental procedures. 
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Appendix A: AASHTO LRFD Bridge Design 

Specifications 
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A.1 Background 

 The authority over highways in the U.S. rests primarily with the state 

governments rather than the federal government (Oglesby & Hicks, 1982, p. 11). As 

such, the development of standards for the design, construction, and maintenance of 

highway bridges was originally the responsibility of individual state highway 

departments. The emergence of the automobile and the consequent expansion of the 

national highway system in the early 20
th

 century encouraged the need for a national 

highway bridge design standard (AASHTO, 2010). As a result, engineers from each state 

highway department collaborated to establish the American Association of State 

Highway Officials (AASHO) in 1914 as a non-governmental organization to set technical 

standards for the design of highway infrastructure (Oglesby & Hicks, 1982).  

AASHO developed and published the first national bridge design standard in 

1931 entitled Standard Specifications for Highway Bridges and Incidental Structures 

(henceforth referred to as the Standard Specifications) (AASHTO, 2010). Successive 

editions of this standard were published every four to six years and were updated to keep 

pace with the advancement of the theory and practice of bridge design along with the 

advent of new construction materials (Taly, 1998). All of the state highway departments 

adopted the Standard Specifications along with specific amendments which varied from 

state to state. As such, the Standard Specifications became the legal set of standards by 

which highway bridges were to be designed (Salmon et al., 2009, p. 20). AASHO‟s name 

was expanded in 1973 to the American Association of State Highway and Transportation 

Officials (AASHTO) to reflect the growing scope of the organization‟s responsibilities 

with respect to the development of transportation infrastructure standards (Oglesby & 
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Hicks, 1982, p. 28). Subsequent highway design standards developed by the organization 

were henceforth published under the name of AASHTO. 

The early editions of the Standard Specifications employed the allowable stress 

design (ASD) philosophy, also known as the working stress design (WSD) philosophy 

(Taly, 1998). A key disadvantage of this philosophy is that the factor of safety used to 

compute the allowable stresses in a structural member or element is fixed and therefore 

does not take into account the variability of the nominal design strength or applied loads 

(Barker & Puckett, 1997, p. 99). Extensive research conducted in the 1960s and 1970s led 

to the development of an alternative design philosophy termed the load and resistance 

factored design (LRFD) philosophy, also known as the limit states design philosophy 

(Tonias, 1995). The LRFD philosophy essentially requires that the factored nominal 

resistance of a structural member or element be designed to withstand various factored 

load combinations. AASHTO first incorporated the LRFD philosophy into a new 

highway bridge design standard in 1994 called the LRFD Bridge Design Specifications 

(Taly, 1998). As of the present time (2013), individual state highway departments are in 

the process of transitioning from the ASD based Standard Specifications to the LRFD 

Specifications (Withiam, 2003; AASHTO, 2010). 

 The LRFD Bridge Design Specifications (2010) require that the structural 

members and elements of short-span steel highway bridges be able to sufficiently resist a 

variety of factored load combinations corresponding to different limit states. The load 

combinations consist of various types of factored loads such as dead loads, vehicular live 

loads, vehicular dynamic loads, wind loads, and earthquake loads (AASHTO, 2010, pp. 

3-7, 3-8). The limit states represent defined boundaries of structural usefulness and 
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include service, strength, fatigue and fracture, and extreme event (AASHTO, 2010, pp. 3-

8 – 3-11). The service limit state refers to the requirement of structural members and 

elements to satisfy certain serviceability restrictions, such as limiting excess deformations 

or vibrations, under specific load combinations (AASHTO, 2010, p. 3-10). The strength 

limit state is the requirement of structural members and elements to satisfy certain 

strength restrictions, such as preventing the level of induced stresses from exceeding the 

elastic or plastic limit, under specific load combinations (AASHTO, 2010, pp. 3-9, 3-9). 

The fatigue and fracture limit state refers to the requirement of structural members and 

elements to be able to limit crack growth and prevent fracture due to specific load 

combinations (AASHTO, 2010, p. 3-11). Finally, the extreme event limit state is the 

requirement of a bridge structure to sufficiently resist extreme event load combinations 

relating to earthquake loads, ice loads, and collision loads (AASHTO, 2010, p. 3-9). The 

factored load combinations are essentially an effort by the LRFD Bridge Design 

Specifications (2010) to encompass the complex loading spectrum that a bridge may 

experience over its lifetime. 

 

A.2 LRFD Design Philosophy 

Many researchers such as Cornell (1969), Ellingwood, Galambos, MacGregor, & 

Cornell (1980), Galambos (1981), Pugsley (1966), and Ravindra & Galambos (1978) 

carried out research which led to the development and codification of the LRFD 

philosophy. The research investigated and reinforced the concept that different types of 

loads contribute varying proportions to the overall load applied upon a structural member 

or element throughout its lifetime (Ellingwood et al., 1980; Galambos, 1981). 
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Additionally, it was shown that the capacity of a structural member or element to resist 

applied loads varies depending upon the type of strength being considered, its 

configuration, material properties, and inherent flaws (Ellingwood et al., 1980; 

Galambos, 1981; Taly, 1998, p. 100). It was found, however, that the variation of applied 

loads and corresponding variation of resistance of a structural member or element 

nonetheless exhibits statistical regularity (Ellingwood et al., 1980). 

 The underlying principle of the LRFD philosophy is that the factored nominal 

resistance of a structural member or element is designed to withstand a range of factored 

load combinations. This principle may be expressed as (Ellingwood et al., 1980) 

Factored resistance ≥ Factored loads                                                            (A.2.1) 

This statement may also be expressed by the following formula (Ellingwood et al., 1980) 

 
i

niin QR
1

                                                                                               (A.2.2) 

where Ф is the resistance factor or strength reduction factor, Rn is the nominal design 

strength of a structural member or element, γi is the load factor, and Qni is the load effect. 

The resistance factor serves to reduce the nominal design strength of the structural 

member or element. Conversely, the load factor serves to increase or otherwise modify 

the magnitude of a specific load effect. The summation indicates that several load effects 

and corresponding load factors may be combined to form a particular factored load 

combination (AASHTO, 2010). In this way, both the load effects and nominal design 

strength may be adjusted depending upon their statistical variation, with the purpose of 

ensuring a functionally sufficient and safe design (Galambos, 1981). 

As previously mentioned, the level of uncertainty of load effects induced upon a 

structural member or element varies depending upon the type of loading being considered 
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(Ellingwood et al., 1980; Galambos, 1981). LRFD takes this into account by assigning 

specific load factors to each type of load effect such that the probability of the actual load 

effect exceeding the factored load effect is acceptably low. For instance, the uncertainty 

of dead load is less than that of live load (Galambos, 1981). As a result, LRFD assigns a 

load factor to dead load which magnifies its effect by a lesser percentage than does a load 

factor applied to live load. 

In a similar manner, the accuracy of the nominal design strength of a structural 

member or element as predicted from theory varies depending upon several factors, one 

of which is the type of strength being considered (Galambos, 1981). As such, LRFD 

assigns a specific resistance factor to each type of design strength in order that the 

probability of the actual design strength being less than the factored design strength is 

acceptably low. For example, the nominal bending strength of a structural member or 

element is more accurately predicted from beam theory than is its nominal compression 

strength as predicted from column theory (Galambos, 1981). Therefore, LRFD assigns a 

resistance factor which reduces the bending strength by a lesser percentage than the 

resistance factor applied against the compression strength. 

Research conducted by Ellingwood et al. (1980) sought to provide tangible 

probability based load and resistance factors for buildings and other structures. The 

research was conducted as part of the development of American National Standards 

Institute (ANSI) Standard A58 entitled Building Code Requirements for Minimum Design 

Loads in Buildings and Other Structures. Recommended load combinations and load 

factors were derived for various types of loads including dead, occupancy live, snow, 

wind, and earthquake loads. Additionally, resistance factors were derived for various 
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building materials including structural steel, reinforced and prestressed concrete, 

masonry, and aluminum. The derivations were essentially a summary of design formats 

from the then current design codes and specifications such as the National Building Code 

of Canada (NBCC) and ACI Standard 318. 

The LRFD philosophy has been adopted by numerous design codes and 

specifications throughout the U.S. Beginning in 1985, ANSI Standard A58 was published 

as American Society of Civil Engineers (ASCE) Standard 7 (Ellingwood, 2001). ASCE 

Standard 7, in turn, was later adopted by reference by various design standards such as 

the American Institute of Steel Construction (AISC) Specification for Structural Steel 

Buildings (2005), ACI Standard 318 (2005), and the International Code Council (ICC) 

International Building Code (IBC) (Ellingwood, 2001). The load and resistance factors in 

the LRFD Specifications (2010) are based upon reliability indices that were calibrated 

from designs of numerous existing and hypothetical bridges (Taly, 1998, p. 98). 

 

A.3 Load Cases and Load Combinations 

 The LRFD Bridge Design Specifications (2010) provides a codified procedure for 

determining the load cases, load factors, and load combinations used for designing the 

members and elements of bridge structures. The dead load and vehicular live load are the 

two primary load cases. Additional load cases include but are not limited to vehicular 

dynamic loads, wind loads, earthquake loads, water loads, ice loads, and earth pressure 

loads. The dead load includes the self-weight of the members and elements of the bridge 

structure as well as additional permanent loads such as utilities, earth cover, wearing 

surface, future overlays, and planned widening (AASHTO, 2010, p. 3-16). 
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In general, the vehicular live load is derived from a combination of a design truck 

or design tandem, and a design lane load (see Figure A.3.1) (AASHTO, 2010, p. 3-19). 

The design truck is designated as HL-93 and consists of one 8 kip front axle and two 32 

kip rear axles. The 8 kip front axle is spaced 14 ft. from the first 32 kip rear axle. The two 

32 kip rear axles may be spaced over a distance ranging from 14 ft. to 30 ft. in order to 

produce the most critical load effect (AASHTO, 2010, p. 3-23). Alternatively, the design 

tandem consists of two 25 kip axles spaced at 4 ft. (see Figure A.3.1b). The design lane 

load consists of 0.64 klf loaded along the longitudinal direction of the lane and uniformly 

distributed across a 10 ft. lane width. For strength design, influence lines are generally 

employed to determine the critical position of the HL-93 design truck and the design lane 

load over the span of the superstructure. The associated critical live load bending moment 

is then calculated using the girder line method as specified in Section 4.6.2.2.2 of the 

LRFD Specifications (2010). In this method, distribution factors are calculated and used 

to distribute the critical live load bending moment to a single internal or external girder. It 

is noted that the multiple presence factor is already taken into account when using the 

girder line method. 

 

 

Figure A.3.1. Design lane load superimposed with the HL-93 design truck. 

 



237 

 

 The effects of the various load cases are combined into several load combinations 

corresponding to specific limit states (AASHTO, 2010, sec. 3). The limit states related to 

strength are concerned with the elastic and ultimate strength of members and elements of 

bridge structures. The LRFD Specifications (2010) specifies a total of five load 

combinations associated with the strength limit state, termed Strength I through Strength 

V. As an example, a form of the Strength I load combination is given by 

 CEIMLLDWDC pp 75.175.175.1                                                  (A.3.1) 

where DC is the dead load of structural components and nonstructural attachments, DW is 

the dead load of wearing surfaces and utilities, LL is the vehicular live load, IM is the 

vehicular dynamic load allowance, and CE is the vehicular centrifugal force. Also, the 

term γp is a load factor for permanent loads and is specified by the LRFD Specifications 

(2010). 

Alternatively, the load combinations related to fatigue and fracture limit states are 

termed Fatigue I and Fatigue II, and are concerned with infinite and finite fatigue life, 

respectively. The load combination corresponding to Fatigue I is given by 

CEIMLL 50.150.150.1                                                                              (A.3.2) 

and the load combination corresponding to Fatigue II is given by 

CEIMLL 75.075.075.0                                                                             (A.3.3) 

For the case of the Fatigue I and II load combinations (A.3.2 and A.3.3), the HL-93 

design truck is specified to have a constant spacing of 30 ft. between the 32 kip axles. 

This specific configuration is referred to as the fatigue load (AASHTO, 2010, p. 3-28). 
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A.4 Strength Limit State 

The flexural strength of composite I-shaped girder sections in negative flexure 

and non-composite I-shaped girder sections is specified by Section 6.10.8 of the LRFD 

Specifications (2010). In general, the load effects within the girder as obtained from the 

Strength I through Strength V load combinations must be equal to or less than the 

factored nominal strength of the girder. This requirement is essentially a form of (A.2.2) 

and is expressed as 

ncflbu Fff 
3

1
                                                                                          (A.4.1) 

where fbu and fl are the flange stresses, Φ is the resistance factor for flexure, and Fnc is the 

nominal flexural resistance of the flange. The flange stresses are calculated from the 

Strength I through Strength V load combinations. The nominal flexural resistance of the 

flange is then calculated for the limit states of local buckling and lateral torsional 

buckling as specified in Section 6.10.8.2 of the LRFD Specifications (2010). The local 

buckling strength of the flange is dependent upon whether the flange is compact, 

noncompact, or slender (see Appendix F: Classical Plate Theory). The lateral torsional 

buckling strength of the girder is dependent upon its unbraced length. It follows that the 

governing flange strength is the lower strength of the two limit states. 

 

A.5 Fatigue and Fracture Limit State 

The fatigue and fracture mechanism of a structural member or element is largely 

dependent upon cyclical load applications (Shukla, 2005, p. 153). In this sense, the 

magnitudes of load effects are alone not sufficient for a complete fatigue and fracture 

analysis (AASHTO, 2010, p. 3-28). The LRFD Specifications (2010) specifies a 
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simplified procedure for ensuring the safe design of structural members and elements for 

the fatigue and fracture limit state (sec. 6.6). In this procedure, the live load stress range 

induced within a structural member or element must be equal to or less than a specified 

stress range in order to prevent fatigue and fracture failure. This requirement is 

essentially a form of (A.2.2) and is expressed as 

   nFf                                                                                                  (A.5.1) 

where ∆f is the live load stress range induced by the Fatigue I or Fatigue II load 

combinations, and γ represents the load factor associated with the fatigue load 

combinations. The term (∆F)n is a specified limiting stress range dependent upon the type 

of structural detail being analyzed (AASHTO, 2010, sec. 6.6.1.2.3). 

For infinite fatigue life, (∆F)n is equivalent to a threshold stress range, (∆F)TH, 

dependent upon the type of structural detail being analyzed. If the induced live load stress 

range corresponding to the Fatigue I load combination is less than (∆F)TH, then the 

structural detail theoretically has an infinite fatigue life. For finite fatigue life, (∆F)n is 

defined as 

 
3

1











N

A
F TH                                                                                              (A.5.2) 

where A is a constant dependent upon the type of structural detail being analyzed. The 

term N is the number of stress cycles induced within the structural detail over a 75-year 

design life, defined as 

     SLADTTnN 75365                                                                                (A.5.3) 

where n is the number of stress cycles per truck passage, and (ADTT)SL is the average 

daily truck traffic for a single lane. The (ADTT)SL is generally a percentage of the 
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average daily truck traffic (ADTT) traveling in one direction over the bridge (AASHTO, 

2010, sec. 3.6.1.4). The ADTT is in turn a fraction of the average daily traffic (ADT) 

traveling in one direction over the bridge. If the induced live load stress range 

corresponding to the Fatigue II load combination is less than (∆F)TH as defined by 

(A.5.2), then the structural detail theoretically has a 75-year fatigue life. 
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Appendix B: Bridge Inspection and Evaluation 
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B.1 Overview 

The state departments of transportation are required by the FHWA to periodically 

inspect and report the condition ratings, appraisal ratings, deficient statuses, and 

sufficiency ratings of all highway bridges in their respective states belonging to the NHS, 

state highway systems, and networks of local roads and streets (OLA, 2008, pp. 30-32). 

These inspections are carried out under the FHWA National Bridge Inspection Program 

(NBIP) (CRS, 2007, p. 8). Bridges excluded from inspection requirements are those that 

are federally or tribally owned, or that have spans of less than 20 ft. (CRS, 2007, p. 8). 

A condition rating is a measure of the current condition of a structural member or 

element of a bridge relative to its original as-built condition (OLA, 2008, p. 30). 

Conversely, an appraisal rating is a measure of the current condition of a structural 

member or element of a bridge relative to the currently accepted design and construction 

standards (OLA, 2008, p. 30). The deficient status and sufficiency rating pertain to the 

eligibility of a bridge to receive HBP funds for its replacement or rehabilitation (CRS, 

2007, p. 7). The state departments of transportation are generally required to inspect and 

report these ratings to the FHWA every 24 months (CRS, 2007, p. 8). The FHWA uses 

this data to maintain the condition criteria for bridges listed in the NBI. 

The national standard for inspecting and reporting condition ratings, appraisal 

ratings, deficient statuses, and sufficiency ratings of highway bridges is the FHWA 

Bridge Inspector’s Reference Manual (BIRM) (CRS, 2007, p. 8). The FHWA National 

Bridge Inspection Standards (NBIS) provides the basis for the BIRM (FHWA, 2009). 

The NBIS incorporates by reference the AASHTO specification entitled Manual for 

Bridge Evaluation (AASHTO, 2011). The Manual for Bridge Evaluation, in turn, 



243 

 

references the national standard for inspecting and reporting appraisal ratings of highway 

bridges entitled Recording and Coding Guide for the Structure Inventory and Appraisal 

of the Nation’s Bridges (henceforth referred to as the Recording and Coding Guide) 

published by the FHWA (OLA, 2008, p. 30). Individual state departments of 

transportation base their bridge inspection regulations upon the BIRM (CRS, 2007, p. 8). 

Condition ratings for bridges assessed in accordance with the BIRM range from 0 

to 9. A rating of 0 represents a failed bridge which is out of service and is irreparable, 

while a rating of 9 represents a bridge in excellent condition (USDOT, 2010, p. 3-11). 

Likewise, appraisal ratings for bridges assessed in accordance with the BIRM range from 

0 to 9. A rating of 0 represents a closed bridge and a rating of 9 represents a bridge 

condition exceeding desirable criteria (USDOT, 2010, p. 3-13). 

The BIRM is also used by the state departments of transportation to classify a 

bridge as structurally deficient, functionally obsolete, or non-deficient. A bridge is 

classified as being structurally deficient if its members and elements are found to have 

been deteriorated or damaged to a certain degree as determined by the BIRM. A bridge 

classified as being structurally deficient does not necessarily signify that it is unsafe and 

may imminently collapse (USDOT, 2010, p. 3-10). However, it does indicate that the 

bridge may require extensive repairs. 

A bridge is classified as being functionally obsolete if its functional capacity is 

unable to accommodate the current functional demand (USDOT, 2010, p. 3-10). In most 

cases, the functional capacity refers to the traffic capacity allowed by the geometry of the 

bridge deck while the functional demand refers to the current traffic demand (CRS, 2007, 

p. 2). However, functional capacity and functional demand may also refer to the 
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underclearance of a bridge and the current underclearance requirements, respectively 

(CRS, 2007, p. 2). It is important to note that structural deficiency takes priority over 

functional obsolescence (USDOT, 2010, p. 3-15). Bridges classified as structurally 

deficient, functionally obsolete, or both, are ultimately listed as being deficient (FHWA, 

2011). Bridges not classified as structurally deficient, functionally obsolete, or both, are 

listed as non-deficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



245 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C: Structural Steel 
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C.1 Production 

Structural steel is produced by combining iron ore with other raw materials 

including coke, limestone, and chemical additives. The raw materials are placed in a blast 

furnace and heated to a molten state during which they undergo a smelting process to 

separate the iron from the ore. The coke and limestone combines with the ore and various 

other impurities to form slag which collects on the top of the molten iron and is removed. 

Additionally, the coke serves to add carbon to the molten iron (Barker & Puckett, 1997, 

p. 703). 

At this stage the molten iron has been separated from the ore and is transferred to 

an oxygen furnace. Scrap metal, additional alloying elements, and various fluxes are then 

added to the molten iron at which point the materials are reheated (Jackson, 1969, pp. 9-

13). Oxygen is then blown through the molten iron to initiate a process of oxidation 

which, with the assistance of the fluxes, removes excess elements from the iron, namely 

silicon, carbon, and phosphorus (Jackson, 1969, pp. 2-5). The oxidation process 

essentially transforms the molten iron into liquid steel which is then formed into slabs, 

blooms, or billets through a continuous casting process (Barker & Puckett, 1997, pp. 703-

705). The slabs, blooms, or billets are then hot-rolled to form various structural shapes 

such as wide flange sections or plates conforming to ASTM A709 or AASHTO M270 

(Salmon et al., 2009, p. 12; AASHTO, 2010, p. 6-24). 

 

C.2 Engineering Properties 

Structural steel is classified based upon its material properties (yield strength, 

ultimate tensile strength, ductility, hardness, toughness, and corrosion resistance) 
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(Blodgett, 1966, p. 2.1-1; Barker & Puckett, 1997, p. 702). For the purpose of most 

structural applications, it is generally appropriate to assume that the material properties of 

structural steel are homogenous (Sadd, 2009, p. 80). Additionally, the stress-strain 

behavior of structural steel is nearly the same to that of an ideally linear elastic material 

in compression, tension, and shear for small deformations (Beer et al., 2006, p. 54; Sadd, 

2009, p. 79). Furthermore, structural steel is isotropic, meaning that its stress-strain 

behavior is identical in all directions (Sadd, 2009, p. 80). Hence, structural steel behaves 

nearly the same to that of an ideally linear isotropic elastic material. 

The yield strength refers to the maximum strength at which a material behaves 

elastically under load (Blodgett, 1966, p. 2.1-3; Salmon et al., 2009). The uniaxial yield 

strength, ζY, corresponds to a one-dimensional state of normal stress, and the shear yield 

strength, ηY, corresponds to a one-dimensional state of shear stress. The stress-strain 

curves of most structural steels are nominally linear up until the proportional limit, which 

is in the local vicinity of the yield point (Blodgett, 1966, p. 2.1-3). For most structural 

steels, the proportional limit and the yield point are generally assumed to be identical 

(Sadd, 2009, p. 78). The yield point may be further distinguished between an upper yield 

point and a lower yield point, although the lower yield point is considered to be the actual 

yield strength (Beer et al., 2006, p. 53). Since structural steel behaves nearly the same to 

that of an ideally linear isotropic elastic material, its uniaxial yield strength is 

theoretically identical in both tension and compression (Beer et al., 2006, p. 54). The 

uniaxial yield strength of most structural steels ranges from ζY = 36 to ζY = 100 ksi 

(Salmon et al., 2009, p. 36). The shear yield strength is generally some fraction of the 

uniaxial yield strength. Multiaxial states of stress are commonly induced within the 
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members and elements of a structure and thus a more general criterion is required to 

define yielding (Salmon et al., 2009, p. 44). The most commonly accepted criterion is the 

Mises yield criterion. 

The linear portion of the stress-strain curve is referred to as the elastic region and 

indicates the range of strain and corresponding stress at which a deformed material will 

return to its original shape after it is unloaded (Beer et al., 2006, p. 57).  In this region, 

the stress-strain relationship for both normal stress and shear stress obeys Hooke‟s law up 

until the proportional limit. For uniaxial normal stress and normal strain, Hooke‟s law is 

expressed as 

 E                                                                                                            (C.2.1) 

It can be seen that the normal stress, ζ, is directly proportional to the normal strain, ε. The 

slope of the uniaxial normal stress-strain curve in the elastic region is referred to as the 

modulus of elasticity, or Young‟s modulus, E. The modulus of elasticity for all grades of 

steel is approximately 29,000 ksi (Salmon et al., 2009, p. 42). 

The uniaxial normal stress-strain curve for structural steel can be obtained 

through tension testing of specimens. A standard test method for tension testing of 

metallic specimens is published by ASTM entitled E8 - Standard Test Methods for 

Tension Testing of Metallic Materials. It is noted that there are two types of stress-strain 

curves, namely the engineering stress-strain curve and the true stress-strain curve 

(Salmon et al., 2009, p. 42). Whereas the former uses stress and strain values based on 

the initial geometric properties of the specimen, the latter uses the instantaneous 

geometric properties. Phenomena observed during uniaxial tension testing of metallic 

specimens such as necking are indicative of the ductile nature of structural steel at normal 
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temperatures, and are further discussed by Jones (2009, sec. 2.2) and Salmon et al. (2009, 

sec. 2.4). 

For one-dimensional shear stress and shear strain, Hooke‟s law is expressed as 

 G                                                                                                            (C.2.2) 

As with the uniaxial normal stress-strain curve, the shear stress, η, is directly proportional 

to the shear strain, γ, in the elastic region. The slope of the one-dimensional shear stress-

strain curve in this zone is called the modulus of rigidity, or shear modulus, written as G 

or μ (Beer et al., 2006, p. 91). The modulus of elasticity and modulus of rigidity are 

referred to as elastic constants for linear isotropic elastic materials. Three other elastic 

constants include the bulk modulus, k, Poisson‟s ratio, ν, and Lamé‟s constant, λ. Only 

two elastic constants are necessary for characterizing a material since all five elastic 

constants are interconnected through a series of relations. The elastic constants and their 

relations are further discussed by Sadd (2009, ch. 4). 

The portion of the stress-strain curve beyond the elastic region is called the plastic 

region and indicates the range of strain and corresponding stress at which a material 

exhibits plastic, or ductile, behavior (Beer et al., 2006, p. 109). In this zone, a material 

retains permanent deformation after it is unloaded. Additionally, the linear stress-strain 

behavior is no longer valid in the plastic region. For structural steel specimens loaded 

under uniaxial tensile stress, increasing values of strain beyond the yield point results in 

an ideally constant value of stress, i.e. the yield strength, being induced in the specimen 

(Salmon et al., 2009, p. 42). In reality, the stress begins to increase again at even higher 

values of strain in a separate zone referred to as the strain hardening zone (Salmon et al., 

2009, p. 42). Strain hardening continues until the induced stress attains a maximum value 



250 

 

referred to as the ultimate tensile strength. The induced stress then decreases until the 

specimen fractures. Brittle materials such as glass and cast iron exhibit very little 

deformation in tension beyond the elastic zone and prior to fracture (Jones, 2009, p. 62). 

Conversely, structural steel is a ductile material because it exhibits large deformations in 

the plastic and strain hardening zones prior to fracture. In some cases, however, structural 

steel may exhibit brittle properties in low-temperature environments or when loaded in a 

multiaxial state of tensile stress (Barker & Puckett, 1997, p. 717). 

Material toughness is a measure of the amount of energy a material can absorb 

prior to fracture (Barker & Puckett, 1997, p. 702). The area beneath the uniaxial stress-

strain curve represents the strain energy density, or resilience, of a material (Jones, 2009, 

p. 63). Brittle materials usually have a low toughness while ductile materials usually have 

a high toughness, though this is not always the case (Jones, 2009, pp. 62-64). A related 

material property called the fracture toughness is concerned with the ability of a material 

containing a crack to resist fracture. 

Based upon the aforementioned material and engineering properties, structural 

steels commonly used for steel highway bridges may be separated into three general 

classes: carbon steels, high-strength low-alloy steels, and alloy steels (Taly, 1998, pp. 

118-121). Carbon steels have a carbon content ranging between 0.15 - 0.29% and 

demonstrate well-defined yield points. High-strength low-alloy steels also have well-

defined yield points albeit typically have higher yield strengths than carbon steels ranging 

between 40 – 70 ksi. Alloy steels usually have a carbon content of up to 0.20% and have 

yield strengths ranging between 80 – 110 ksi (Salmon et al., 2009, sec. 2.1). 
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Appendix D: Theory of Elasticity 
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D.1 Background 

Mechanics of materials and the theory of elasticity may be used to analyze the 

internal behavior of steel plate girders in response to external or internal loads. These two 

theories have several differences, however. According to Ugural (1999), mechanics of 

materials “uses assumptions based on experimental evidence along with engineering 

experience to make a reasonable solution of the practical problem possible,” while the 

theory of elasticity “concerns itself largely with more mathematical analysis of the 

„exact‟ stress distribution on a loaded body” (p. 4). A mechanics of materials approach 

may be more practical for certain engineering applications because of its use of average 

stresses and simplified definitions of strain (Ugural, 1999, p. 4). A more rigorous 

approach using the theory of elasticity may be better suited for engineering problems 

requiring exact distributions of stress and strain. Despite being termed as an “exact” 

theory, the theory of elasticity nonetheless employs several approximate assumptions 

such as modeling solids as a continuum and the use of small deformation theory (Sadd, 

2009, pp. 34-37). Furthermore, as its name suggests, the theory of elasticity is only valid 

for elastic analyses of solids. 

A comprehensive history of the development of the general equations of elasticity 

has been presented by Love (1892), Timoshenko (1983), and Todhunter (1886, 1893). 

These equations were developed over a period of centuries and include the constitutive 

equations, the equilibrium equations, the compatibility equations, and the relations 

between strain and displacement. The earliest contributions to elasticity theory were 

made in the 17
th

 and 18
th

 centuries by such scientists and mathematicians as Hooke, 

Marriotte, Euler, and Coulomb, along with the Bernoulli family of Swiss mathematicians 
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(Love, 1892). Much of the foundational relations and formulations of elasticity were 

developed in the 19
th

 century by such scientists and mathematicians as Navier, Young, 

Cauchy, Lamé, Lagrange, Poisson, and Saint-Venant (Todhunter, 1886). These relations 

and formulations were consolidated into a general theory of elasticity which can lead to 

exact solutions of stress, strain, and displacement fields in three-dimensional or two-

dimensional solids. 

As Love (1892) points out, the first major breakthrough leading to the general 

equations was the discovery of Hooke‟s law in 1660 which states that the strain of an 

elastic solid is directly proportional to the applied stress (pp. 2-3). Hence, Hooke‟s law, 

with further experimental development by Marriotte in 1680, came to be recognized as 

the constitutive equation relating stress and strain (Love, 1892, p. 3; Todhunter, 1886, p. 

6). This relationship allowed Jacob, John, and Daniel Bernoulli, along with Euler and 

Coulomb, to develop their theories regarding elastic curves and the bending behavior of 

beams in the 18
th

 century (Timoshenko, 1983, pp. 25-36, 49-50). The development of the 

modulus of elasticity by Young in 1807 had major implications for the theory of elasticity 

(Todhunter, 1886, p. 81-82). Whereas the ratio of applied stress and corresponding strain 

in Hooke‟s law was originally understood to be dependent upon the geometry of the solid 

of interest, the introduction of the modulus of elasticity allowed Hooke‟s law to be 

applicable to the material of the elastic solid itself and independent of its geometry 

(Askeland & Phulé, 2006, p. 198). 

 In subsequent decades, further relations and formulations regarding stress and 

strain were developed. The theories of stress and strain were initially formulated by 

Cauchy, Lamé, and Saint-Venant in the 1820s and 1830s (Love, 1892, pp. 6-7; 
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Todhunter, 1886, p. 835). Cauchy was the first to discover that the stresses and strains at 

any location within a solid body could be described in terms of three normal stresses and 

corresponding normal strains along with three shear stresses and corresponding shear 

strains (Love, 1892, p. 6; Todhunter, 1886, p. 320). Work by Saint-Venant in the 1830s 

further advanced the theories concerning shear stress and shear strain (Todhunter, 1886, 

pp. 836-837). 

Work by Navier in the 1820s involved the development of a molecular hypothesis 

in which he described the small scale “intermolecular” behavior of solids under external 

or internal loads (Love, 1892, p. 8). Through this work he developed the equations of 

equilibrium in terms of the differential displacements which must hold true at any 

location within a solid body as well as at its surface (Love, 1892, p. 7; Todhunter, 1886, 

p. 133). In the late 1820s, Poisson, Cauchy, and Lamé developed the equilibrium 

equations in terms of stresses by following a slightly different method than Navier (Love, 

1892, pp. 8-10; Todhunter, 1886, pp. 326, 546-547). Further work by Saint-Venant 

concerning strain and displacement led to the development of the conditions of 

compatibility in 1860, which ensure that a solution to a problem of elasticity results in a 

continuous displacement field (Sadd, 2009, p. 41; Todhunter, 1893, p. 74). 

 

D.2 Formulation of the General Equations of Elasticity 

It can be seen that the stress, strain, and displacement fields in a solid can be 

derived given a set of boundary conditions along with the constitutive equations, the 

equilibrium equations, the compatibility equations, and the strain-displacement relations. 

There are two general solution formulations which depend upon the order in which the 
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general equations of elasticity are solved for and whether the general equations are 

expressed in terms of stresses or displacements (Timoshenko & Goodier, 1951, ch. 2). In 

the stress formulation, the general equations are expressed in terms of stresses. The stress 

field, then, must satisfy the equilibrium equations and the Beltrami-Michell compatibility 

equations (Sadd, 2009, pp. 97-98). The strain and displacement fields can then be derived 

from the stress field through the use of the constitutive equations and the strain-

displacement relations, respectively. The stress formulation is used when the boundary 

conditions are given as stresses (Sadd, 2009, p. 97). In the displacement formulation, the 

general equations are expressed in terms of displacements (Sadd, 2009, sec. 5.4). The 

displacement field must satisfy the Navier equilibrium equations and the Saint-Venant 

compatibility equations. The strain and stress fields can then be derived from the 

displacement field by using the strain-displacement relations and constitutive equations, 

respectively. The displacement formulation is used when the boundary conditions are 

given as displacements (Sadd, 2009, p. 98). 

A fully three-dimensional elastic analysis of a structure may become extremely 

complex. A two-dimensional analysis is oftentimes sufficient to obtain approximate 

results (Sadd, 2009, p. 135). Two similar sets of general equations of elasticity are 

derived by reducing a three-dimensional analysis to an approximate two-dimensional 

analysis (Donnell, 1976, pp. 104-106; Flügge, 1962, ch. 37). In the plane strain 

formulation, no normal strain or shear strain is assumed to occur in the out-of-plane 

direction. In the plane stress formulation, no normal stress or shear stress is assumed to 

occur in the out-of-plane direction. The general equations for both the plane strain and 
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plane stress formulations may be expressed in terms of stresses or displacements for the 

stress formulation and displacement formulation, respectively (Sadd, 2009, pp. 135-140). 

Barber (2010), Donnell (1976), Flügge (1962), Jones (2009), Love (1892), 

Meguid (1987), Timoshenko & Goodier (1951), and Sadd (2009) present derivations of 

the general equations of elasticity along with various applications. For a two-dimensional 

stress formulation with zero body forces, the equilibrium equations reduce to the stresses 

relating to in-plane directions within a solid. The equilibrium equations are identical for 

both plane strain and plane stress formulations and are expressed as (Barber, 2010, p. 26) 
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Likewise, the Beltrami-Michell compatibility equations, which are the Saint-Venant 

compatibility equations expressed in terms of stresses, reduce to one relation concerning 

the stresses relating to in-plane directions. For zero body forces, the Beltrami-Michell 

compatibility equation is identical for both the plane strain and plane stress formulations, 

expressed as (Meguid, 1989, p. 24) 
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The two-dimensional stress field may be expressed in terms of the Airy stress 

function, F(x,y). The Airy stress function is formulated such that the resulting stress field 

identically satisfies the equilibrium equations, the Beltrami-Michell compatibility 

equation, and applicable boundary conditions (Meguid, 1989, p. 23). The following form 
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of the two-dimensional stress field identically satisfies the equilibrium equations 

(Donnell, 1976, p. 111): 
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Substituting (D.2.4) into (D.2.3) results the governing biharmonic equation of 

elasticity for both plane strain and plane stress formulations, expressed as (Sadd, 2009, 

sec. 7.5) 

02
4

4

22

4

4

4
4

















y

F

yx

F

x

F
F                                                              (D.2.5) 

The formulation of an Airy stress function that satisfies the governing biharmonic 

equation and applicable boundary conditions results in a stress field, given by (D.2.4), 

which identically satisfies equilibrium and compatibility. For plane strain, the out-of-

plane shear stresses vanish, while the out-of-plane normal stress is expressed in terms of 

the in-plane normal stresses and Poisson‟s ratio, given by (Sadd, 2009, p. 136) 

  
yxz                                                                                                (D.2.6) 

Conversely, for plane stress, the out-of-plane normal stress and shear stresses vanish. 

The strain and displacement fields may be derived from the stress field by 

employing the constitutive and strain-displacement relations, respectively. For plane 

strain, the out-of-plane normal strain and shear strains are zero. The constitutive 

equations in terms of stresses for plane strain are given by (Sadd, 2009, p. 148) 
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For plane stress, the out-of-plane shear strains are zero, while the out-of-plane normal 

strain is expressed in terms of the in-plane normal stresses, Poisson‟s ratio, and Young‟s 

modulus. Hence, the constitutive equations in terms of stresses for plane stress are given 

by (Sadd, 2009, p. 139) 
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The strain-displacement relations for plane strain are expressed as 
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Also, the strain-displacement relations for plane stress are expressed as 
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D.3 Solution Methods 

The inverse method or semi-inverse method may be used to determine an 

appropriate Airy stress function. A solution may be found in the form of polynomials, 

power functions, or Fourier methods (Donnell, 1976, sec. 3.3; Flügge, 1962, ch. 37; Sadd, 

2009, secs. 8.1, 8.2). The Michell solution may be employed for problems formulated in 

polar coordinates such as in half space problems (Sadd, 2009, sec. 8.3). For torsion 

problems, the stress field is expressed with the Prandtl stress function (Sadd, 2009, sec. 

9.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



260 

 

 

 

 

 

 

 

 

 

 

 

Appendix E: Principle of Stationary Potential 

Energy 
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E.1 Rayleigh-Ritz Energy Method 

The stability of a plate girder is largely dependent upon the local buckling 

capacities of the individual plates from which a plate girder is fabricated. The 

determination of the elastic plate buckling strength using classical plate theory (see 

Appendix F: Classical Plate Theory) may be extremely difficult to obtain when the 

boundary conditions are complicated, such as when considering the effects of a crack 

(Ugural, 1999, ch. 3). The plate buckling strength may be approximately determined 

using the Rayleigh-Ritz energy method. 

The Rayleigh-Ritz method employs the principle of stationary potential energy to 

approximate the buckling stress when complex boundary conditions are present (Vinson, 

1974, ch. 6). In this method, the buckled shape of a plate is assumed to take on a form 

described by an assumed displacement function. The displacement function satisfies the 

geometric boundary conditions and includes an arbitrary set of variables, Ai, which 

control the shape of the displacement function (Vinson, 1974, ch. 6), in the form 
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where n is the number of degrees of freedom of the displacement function. The total 

potential energy, П, of the plate is then expressed as (Vinson, 1974, ch. 6) 
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where W is the strain energy density function, V is the volume of the plate, Ti are the 

applied surface tractions, ui are the displacements caused by the tractions, and S is the 

surface over which the tractions are applied. 
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The variation in total potential energy with respect to Ai is set to zero such that 

(Vinson, 1974, ch. 6) 

0


iA


                                                                                                           (E.1.3) 

It follows that the external stress enabling this equilibrium is the buckling stress. The 

compressive stress fields induced or influenced by a crack as determined by the 

Westergaard function method (see Appendix G: Linear Elastic Fracture Mechanics) may 

be approximated by an external stress. The Rayleigh-Ritz method may then be used to 

determine the critical value of the external stress associated with buckling. 
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Appendix F: Classical Plate Theory 
 

 

 

 

 

 

 

 

 

 

 
 



264 

 

F.1 Background 

The internal behavior of thin plates in response to external load may be analyzed 

using a specific application of the broader theory of elasticity (see Appendix E: Theory of 

Elasticity), variously known as the classical small-deflection theory of thin plates, the 

Kirchhoff-Love theory of plates, or classical plate theory. Plates are defined as nominally 

two-dimensional flat structures having a small thickness compared to the other 

dimensions, and are capable of carrying and distributing loads in two directions to 

applicable external supports (Ventsel & Krauthammer, 2001, p. 1). Classical plate theory 

employs a series of simplifying assumptions which reduce a mathematically rigorous 

three-dimensional theory of plates to a two-dimensional formulation (Donnell, 1976, p. 

160). It turns out that classical plate theory yields accurate results for plates with 

relatively small thicknesses and for small deflections (Ugural, 1999, p. 71-73).  However, 

the solutions of classical plate theory become less accurate as the plate thickness 

increases, at which point the problem turns into a three-dimensional formulation 

(Timoshenko & Woinowsky-Krieger, 1959, p. 2). 

Love (1892), Taly (1998), Timoshenko (1983), Todhunter (1886, 1893), and 

Ventsel & Krauthammer (2001) present histories of the development of classical plate 

theory. The historical developments concerning the theory of elasticity (see Appendix E: 

Theory of Elasticity) are inherently intertwined with the mathematical foundations of 

classical plate theory. Euler in 1766 first investigated and discussed the behavior of 

vibrating membranes (Todhunter, 1886, p. 55). His method was to model thin membranes 

as two series of simply supported elastic threads oriented perpendicular to each other 

such that they resembled a two-dimensional surface. In 1787, Chladni conducted 
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experiments concerning the vibrations of plates and observed the patterns produced by 

fine powder placed upon the vibrating plates (Todhunter, 1886, p. 411). James Bernoulli 

in 1788 unsuccessfully attempted to formulate a theoretical basis to explain the results 

obtained by Chladni (Todhunter, 1886, p. 73; Ventsel & Krauthammer, 2001, p. 4).  

In 1813, Germain formulated a rather inaccurate governing equation of plates in 

terms of displacements, which was subsequently corrected by Lagrange (Ventsel & 

Krauthammer, 2001, p. 5). Cauchy, Poisson and Navier later derived the Germain-

Lagrange governing equation of plates using the recently developed general equations of 

elasticity. In 1850, Kirchhoff set forth a series of simplifying assumptions which 

effectively allowed the forces and bending moments applied upon a thin plate to be 

expressed in terms of the displacement of the middle surface (Donnell, 1976, p. 160; 

Ventsel & Krauthammer, 2001, p. 5). Love (1888) extended upon Kirchhoff‟s plate 

theory with work pertaining to the vibration of thin plates now known as the aforesaid 

Kirchhoff-Love theory of plates or classical plate theory. Numerous other contributions 

to plate theory were later made by Timoshenko, G.H. Bryan, von Karman, and many 

others as outlined by Taly (1998, sec. 9.5.1) and Ventsel & Krauthammer (2001, sec. 

1.2). 

 

F.2 Formulation of the General Equations of Classical Plate Theory  

Derivations of the general equations of classical plate theory along with various 

applications have been presented by Barker & Puckett (1997), Donnell (1976), Salmon et 

al. (2009), Taly (1998), Timoshenko & Woinowsky-Krieger (1959), and Ugural (1999). 

It can be seen that the stress, strain, and displacement fields of thin elastic plates can be 
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derived using the displacement formulation. That is, the strain and stress fields are 

derived from the displacement field through the use of the strain-displacement and 

constitutive equations expressed in terms of displacements. The displacement field is 

expressed with a displacement function in much the same way that the stress field is 

expressed with the Airy stress function in the stress formulation (Ugural, 1999, p. 74). 

The forces and bending moments applied upon a thin elastic plate can be related to the 

displacement of the middle surface by using the simplifying assumptions set forth by 

Kirchhoff (Donnell, 1976, p. 160). These assumptions are stated as (Timoshenko & 

Woinowsky-Krieger, 1959, p. 1) 

1. There is no deformation in the middle plane of the plate. This plane remains 

neutral during bending. 

2. Points of the plate lying initially on a normal-to-the-middle plane of the plate 

remain on the normal-to-the-middle surface of the plate after bending. 

3. The normal stresses in the direction transverse to the plate can be disregarded. 

These assumptions are collectively known as the Kirchhoff hypotheses and are valid for 

homogeneous, linear isotropic elastic, thin plates (Ugural, 1999, p. 72). 

In accordance with the Kirchhoff hypotheses, the engineering strain-displacement 

relations reduce to (Ugural, 1999, p. 74) 
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where the variables u, v, and w are the displacements of points on the middle plane of a 

thin elastic plate corresponding to the x, y, and z-directions. The normal strain and shear 

strains relating to the out-of-plane direction vanish in accordance with the second 

Kirchhoff hypothesis. 

Integrating the shear strain-displacement relations relating to the out-of-plane 

direction and solving for u and v gives (Ugural, 1999, p. 74) 
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The values of uo and vo correspond to the rigid body displacement of the plate which, for 

thin plates, are based upon the displacement of the middle plane of the plate.  However, 

the values of uo and vo vanish in accordance with the first Kirchhoff hypothesis.  

Substituting (F.2.2) and (F.2.3) into (F.2.1) relating to the in-plane directions results in 

the strains expressed in terms of the vertical displacement, w(x,y), given by (Ugural, 

1999, p. 74) 
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The middle plane of the plate undergoing flexure will take on a curved shape with 

varying values of vertical displacement throughout the plate. Likewise, the corresponding 

slope angles of the middle plane of the plate will also vary throughout the plate. The rate 

at which the slope angles vary along a given plane is called the curvature of the plate and 

is equal to the reciprocal of the radius of curvature. From (F.2.4), the curvatures of the 

middle plane of the plate can be expressed as (Ugural, 1999, p. 75) 
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Substituting (F.2.5) into (F.2.4) results in the strain-curvature relations for thin elastic 

plates given by (Ugural, 1999, p. 75) 

 xx z        yy z        xyxy z 2                                                     (F.2.6) 

The stresses in the out-of-plane direction vanish in accordance with the third 

Kirchhoff hypothesis. Hence, the plate is in a state of plane stress (Donnell, 1976, p. 

168). The constitutive equations for plane stress expressed in terms of strain are given by 

(Donnell, 1976, p. 106) 
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Substituting the strain-curvature relations given by (F.2.6) into (F.2.7) gives (Salmon et 

al., 2009, p. 285) 
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The stress field varies throughout the thickness, t, of the plate, and may be 

integrated from –t/2 to t/2 to produce stress resultants in the form of bending moments 

given by (Ugural, 1999, p. 78) 
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where the constant, D, is the flexural rigidity of the plate given by (Barker & Puckett, 

1997, p. 297) 
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where E is the modulus of elasticity, ν is Poisson‟s ratio, and t is the plate thickness. It 

can be seen that the bending moments are expressed in terms of the modulus of elasticity, 

Poisson‟s ratio, the plate thickness, and the curvatures of the middle plane of the plate. 

The curvatures are themselves expressed in terms of the vertical displacement of the 

middle plane of the plate. 

The bending moments, along with out-of-plane loading, p, and vertical shear 

forces, Q, must satisfy equilibrium along each axis of the plate. Summing the stress 

resultants in the x, y, and z-directions and removing like terms results in the following 

equilibrium equations (Salmon et al., 2009, p. 287) 
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Solving for Qx and Qy in (F.2.11)2 and (F.2.11)3 and substituting the results into (F.2.11)1 

gives the differential equation of equilibrium for thin elastic plates shown by (Ugural, 

1999, p. 82) 
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Substituting (F.2.5) and (F.2.10) into (F.2.9), and substituting the results into 

(F.2.12) results in the governing differential equation of thin elastic plates for out-of-

plane loading, expressed as (Taly, 1998, p. 938) 
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The general form of the governing differential equation takes into account all load cases, 

shown as (Chajes, 1974, sec. 6.2) 
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where Ni are in-plane edge loads. 

 

F.3 Solution Methods 

The inverse method or semi-inverse method may be used to determine an 

appropriate displacement function. A solution may be found in the form of polynomials, 
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trigonometric functions, and Fourier methods (Donnell, 1976, secs. 4.4, 4.5; Timoshenko 

& Woinowsky-Krieger, 1959). Solutions to numerous plate problems are provided by 

Timoshenko (1936) and Timoshenko & Woinowsky-Krieger (1959). The displacement 

function must satisfy the governing differential equation of thin elastic plates given by 

(F.2.14) and applicable boundary conditions. The stress and strain fields may then be 

derived from the constitutive equations for plane stress given by (F.2.8) and the strain-

curvature relations given by (F.2.6). 

 

F.4 Application to Elastic Buckling 

Buckling is directly related to the stability of a structure subjected to load. 

Stability, in turn, is the ability of a structure to maintain static equilibrium when subjected 

to load, where the applied load is generally compressive in nature. The load at which 

static equilibrium can no longer be maintained in the original structural configuration is 

called the critical load or buckling load. Hence, buckling is the loss of stability and 

stiffness, and may be accompanied by a drastic increase of deformations. Physically, the 

structure transforms into a buckled shape to maintain equilibrium. Mathematically, 

buckling implies the bifurcation of the equilibrium equations. Elastic buckling occurs 

when the stresses throughout a structure remain below the material yield strength. 

Conversely, inelastic buckling occurs when a portion of the stresses throughout a 

structure exceed the material yield strength. 

The elastic buckling strength of a thin elastic plate may be determined by 

employing the semi-inverse method to formulate an appropriate displacement function 

satisfying (F.2.14) and applicable boundary conditions. The general form for the elastic 



272 

 

buckling strength is derived by considering a uniformly distributed compression load 

along the edge of a simply supported thin elastic plate (see Figure F.4.1), expressed as 

tFP crX                                                                                                          (F.4.1) 

where Fcr is the elastic buckling stress and t is the plate thickness. Satisfying equilibrium 

and solving for the out-of-plane loading due to plate bending gives (Salmon et al., 2009, 

p. 288) 
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Substituting (F.4.2) into (F.2.13) results in 
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Figure F.4.1: Simply supported thin elastic plate loaded by uniformly distributed uniaxial compression 

load, Px. 

 

It is assumed that the plate is simply supported along the edges parallel to the 

direction of load. Therefore, the boundary conditions are such that the out-of-plane plate 

displacements are zero along these edges, expressed as 
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A displacement function of the following form satisfies (F.4.4) and (F.4.5) (Salmon et al., 

2009, p. 289) 
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where m is the aspect ratio given by 
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and α is defined as 
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and β is defined as 
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Solving for the constants C1, C2, C3, and C4 using the boundary conditions given by 

(F.4.4) and (F.4.5), and isolating Px results in (Salmon et al, 2009, p. 289) 
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Substituting the flexural rigidity of the plate given by (F.2.10) into (F.4.10), plugging the 

result into (F.4.3), and solving for the elastic buckling stress results in (Salmon et al., 

2009, p. 289) 
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where b is the plate width and k is a constant dependent upon the boundary conditions. 
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It is noted that (F.4.11) is general and therefore represents the elastic buckling 

stress of any thin elastic plate. For the present case of a plate loaded under uniform 

compression and with simple supports along the edges parallel to the load, k is given by 

(Taly, 1998, p. 944) 
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The width-to-thickness ratio, b/t, in (F.4.11) is called the slenderness ratio and is typically 

denoted by λ. Setting the elastic buckling stress given by (F.4.11) equal to or greater than 

the material yield strength, Fy, and solving for b/t results in (Taly, 1998, p. 948) 

  yF

Ek

t

b
2

2

112 





                                                                                  (F.4.13) 

Thin elastic plates with slenderness ratios satisfying the requirement expressed by 

(F.4.13) do not buckle elastically prior to yielding, and are classified as compact (Salmon 

et al., 2009, sec. 6.16.). Thin elastic plates that satisfy (F.4.13) and fail due to inelastic 

buckling are classified as noncompact. Finally, thin elastic plates that do not satisfy 

(F.4.13) may buckle elastically prior to yielding, and are classified as slender. 
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Appendix G: Linear Elastic Fracture Mechanics 
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G.1 Westergaard Function Method 

The presence of a crack within a loaded plane elastic structure introduces local 

disturbances in the stress field which complicates the determination of a suitable stress 

function. The Kolosov-Muskhelishvili complex potential method employs stress 

functions expressed in terms of complex variables (Sun & Jin, 2012, sec. 3.2). A 

particular subset of the complex potential method is the Westergaard function method in 

which the Airy stress function is expressed in terms of the Westergaard stress function, 

Z(δ), as (Westergaard, 1939) 

ZyZF ImRe                                                                                           (G.1.1) 

for Mode I loading, where 
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and δ is the complex variable δ = x + iy. In accordance with the Cauchy-Riemann 

differential equations, the substitution of (G.1.1) into the form of the two-dimensional 

stress field given by (D.2.4) results in the stress field about a crack for Mode I loading, 

given by (Westergaard, 1939) 
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In essence, the stress field about a crack is found by determining an appropriate 

Westergaard stress function, and the corresponding strain and displacement fields are 

calculated from the constitutive equations and strain-displacement relations, respectively. 

The determination of the stress field about a crack then allows for the elastic limit states 

of a fatigue-cracked plate girder to be analyzed. For the case of buckling limit states, the 
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stress field about a crack may be used to determine regions of a plate under compression, 

and the associated elastic buckling strength may be calculated using classical plate theory 

(see Appendix F: Classical Plate Theory) or energy methods (see Appendix E: Principle 

of Stationary Potential Energy). 

 

G.2 Near-tip Solution 

 The limit states of brittle fracture and impending ductile failure may be analyzed 

by investigating the stress field near the tip of a crack (Irwin, 1957; Sun & Jin, 2012, sec. 

3.4). For Mode I loading, the localized stress field is determined by employing a 

Westergaard stress function in the form (Meguid, 1989, sec. 4.3) 

2

I

I

K
Z                                                                                                     (G.2.1) 

where the coordinate axes have been shifted to the crack tip (Irwin, 1957; Sun & Jin, 

2012, sec. 3.4). The term KI controls the magnitude of stresses near the crack tip and is 

called the stress intensity factor (Meguid, 1989, ch. 4). The stress intensity factor is given 

by (Shukla, 2005, ch. 3) 

agfK fI )(                                                                                         (G.2.2) 

where ζf is the far-field opening mode stress and a is half the length of a central crack 

(see Figure G.2.1). The term f(g) is a correction factor used to modify the theoretical 

stress intensity factor to account for the geometry of a crack as well as the finite geometry 

of a structure (Shukla, 2005, ch. 3; Sun & Jin, 2012, sec. 3.6). Theoretical stress intensity 

factors and correction factors for different loading configurations, structure geometries, 

and crack geometries have been given by Tada, Paris, & Irwin (2000). 
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Figure G.2.1: Central crack of length 2a residing within an infinite plate subjected to far-field uniaxial 

tensile stress. 

 

Whereas the energy release rate characterizes the potentiality of crack propagation 

in terms of energy at the crack tip, the stress intensity factor characterizes this in terms of 

stress at the crack tip. For plane stress, the stress intensity factor for Mode I loading is 

related to the energy release rate by (Shukla, 2005, ch. 2) 

GEK I                                                                                                       (G.2.3) 

and for plane strain (Shukla, 2005, ch. 2) 
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Equations (G.2.3) and (G.2.4) imply that just as a crack will grow when the energy 

release rate equals or exceeds a critical value, brittle fracture will occur when KI equals or 

exceeds a critical value, denoted by KC, called the fracture toughness (Shukla, 2005, ch. 

4; Sun & Jin, 2012, secs. 1.2, 2.3). The fracture toughness is dependent upon the material 

properties and thickness of a structure, and can only be experimentally determined 

(Shukla, 2005, p. 41). Experimental values of the stress intensity factor may be 

determined through such methods as the optical method of photoelasticity and the 

shadow method of caustics (Shukla, 2005, ch. 7). 
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For plate-like structures with thin to medium thicknesses, the fracture toughness is 

dependent upon the plate thickness (Rolf & Barsom, 1977, sec. 3.2). Loaded thin plate-

like structures are under a state of plane stress, as assumed by the third Kirchhoff 

hypothesis (see Appendix F: Classical Plate Theory). Conversely, loaded plate-like 

structures with medium thicknesses are under a mixed-mode condition with the outside 

region under a state of plane stress and the inside region under a state of plane strain 

(Meguid, 1989, p. 187). For both of these conditions, the stress distribution around a 

crack is dependent upon the plate thickness. It follows that the corresponding fracture 

toughness is also dependent upon the plate thickness. At a certain critical thickness, 

loaded plate-like structures come predominantly under a state of plane strain and the 

fracture toughness becomes relatively constant and independent of the thickness 

(Askeland & Phulé, 2006, pp. 224-226). This constant value of fracture toughness is a 

unique material property called the plane strain fracture toughness denoted by KIc 

(Askeland & Phulé, 2006, pp. 224-226) (see Figure G.2.2). 

 

 

Figure G.2.2: Schematic of fracture toughness plotted as a function of plate thickness. 

 

A standard test method for fracture toughness testing of metallics is specified in 

ASTM E399 - Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness 

KIc of Metallic Materials. The fracture toughness may also be indirectly calculated by 
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using the Charpy V-notch (CVN) test as specified in ASTM E23 Standard Test Methods 

for Notched Bar Impact Testing of Metallic Materials (Wright, 2002). 

The fracture toughness characterization holds true as long as the plastic region at 

the crack tip remains small at fracture, as is the case for brittle materials (Meguid, 1989, 

ch. 6). Brittle materials have low fracture toughness and thus the plastic region always 

remains small up until fracture. Conversely, ductile materials have high fracture 

toughness and the plastic region may become quite large prior failure. The presence of a 

large plastic region invalidates the fracture toughness characterization for ductile 

materials, and the impending ductile failure must be described using elasto-plastic 

fracture mechanics (EPFM) (Meguid, 1989, ch. 6; Rolf & Barsom, 1977, ch. 16). 
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Appendix H: Empirical Crack Growth Law 
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H.1 Paris-Erdogan Empirical Crack Growth Equation 

The vehicular live load effects induced within a plate girder may be idealized as 

constant-amplitude (see Figure H.1.1) or variable-amplitude trigonometric functions of 

time (Miki, Murakosi, & Sakano, 1987). For the case of a constant-amplitude stress 

function of time, the stress range is the difference between the maximum and minimum 

stresses, expressed as 

minmax                                                                                              (H.1.1) 

It follows that the stress intensity factor (see Appendix G: Linear Elastic Fracture 

Mechanics) of a crack in a girder also changes as a function of time. In general, the range 

of the Mode I stress intensity factor is the difference between the maximum and 

minimum magnitudes of KI, expressed as 

 min,max, III KKK                                                                                       (H.1.2) 

 

 

Figure H.1.1: Constant-amplitude trigonometric load function. 

 

Preexisting cracks in a plate girder can slowly propagate under cyclic stresses 

even when the maximum stress intensity factor never exceeds the fracture toughness of 

the girder steel (Meguid, 1989, p. 243). The rate of crack growth can be described by the 

fatigue crack growth rate curve, which describes the rate of crack extension per stress 

cycle as a function of the logarithmic range of the stress intensity factor (see Figure 
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H.1.2). The fatigue crack growth rate curve may be divided into three distinct sub regions 

(Kohout, 1999). Region I represents the range of the stress intensity factor in which a 

crack initially forms at a threshold value, ∆Kth, and experiences very little initial growth. 

Region II represents the range of the stress intensity factor in which a crack experiences 

slow growth over the fatigue life of the girder. Region III is where the maximum stress 

intensity factor exceeds the fracture toughness resulting in brittle fracture. 

 

 

Figure H.1.2: Typical fatigue crack growth rate curve (Meguid, 1989, p. 248, fig. 7.4). 

 

The portion of the fatigue crack growth rate curve in Region II may be described 

by an empirical growth relation given by Paris & Erdogan (1963) 

 m

IKC
dN

da
                                                                                               (H.1.3) 

where C and m are experimentally determined material constants. Equation (H.1.3) is 

known as the Paris-Erdogan empirical crack growth equation. The crack growth rate is 

overwhelmingly dependent upon the range of the stress intensity factor. Other factors 
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may also influence the crack growth rate such as the mean stress and environmental 

factors as discussed by Frost (1962) and Wei (1970). However, these other factors are 

considered to be of secondary importance when the maximum stress intensity factor is 

much lower than the fracture toughness (Hertzberg & Nordberg, 1969). 

Other empirical crack growth equations have been developed such as that given 

by Forman, Kearney, & Engle (1967) 

KK

K

dN

da

c

nm









                                                                                            (H.1.4) 

where, 

 
K

K


 max                                                                                                         (H.1.5) 

and Kmax is the maximum stress intensity factor, Kc is the fracture toughness, and m and n 

are material constants. 
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Appendix I: FEA Models 
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I.1 Plate Girder Models 

Herein are figures of the trial plate girder models (PG-1 through PG-4) described 

in Section 5.4.1.1: 

 

 

Figure I.1.1: Profile view of typical trial plate girder model with representative crack configuration located 

at mid-span (a) without mesh and (b) with mesh. 

 

 

 

Figure I.1.2: Cross-section view of typical trial girder model. 
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Figure I.1.3: Profile view of typical trial girder model configured as a cantilever loaded under pure bending 

with the deformation scale set to 100. 

 

 

 

Figure I.1.4: (a) Refined mesh around a representative crack configuration with (b) the mesh at the crack 

tip. 
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I.2 Web Panel Models 

 Herein are figures of the trial web panel models (WP-A through WP-D) described 

in Section 5.4.1.2: 

 

 

Figure I.2.1: Profile view of typical web panel model with representative diagonal crack configuration 

located at the bottom left corner. 
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Figure I.2.2: Typical web panel model loaded under pure shear showing (a) the shear stress contours 

around the diagonal crack and (b) the first mode buckled shape with the deformation scale set to 25. 
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