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Abstract 20 

1. Trees attacked by multiple herbivores need to defend themselves against dynamic biotic 21 

challenges; appropriate responses to one stressor can elicit hormonal responses that are 22 

antagonistic to another. Hemlock (Tsuga canadensis) infestation by hemlock woolly 23 

adelgid (HWA; Adelges tsugae) results in the accumulation of the defensive hormone 24 

salicylic acid (SA). 25 

2. We explored the potential for HWA infestation to interfere with anti-folivore induced 26 

defense signaling and its implications for a native folivore (hemlock looper; Lambdina 27 

fiscellaria). Hemlocks were infested with HWA and/or sprayed with methyl jasmonate 28 

(MeJA); foliar defenses were analyzed and foliage quality for looper larvae was assessed. 29 

3. Both treatments activated foliar defensive traits, including a HWA-mediated increase in 30 

peroxidase activity and accumulation of cell wall-bound phenolics and lignin, and a 31 

MeJA-mediated increase in lipoxygenase activity. The two treatments had an additive 32 

effect on other defensive traits and both treatments negatively affected looper 33 

performance. 34 

4. These results suggest that SA and JA are not strictly antagonistic in conifers and that both 35 

have a role in anti-folivore defense signaling. Our study illustrates the need for a better 36 

understanding of hormone signaling, cross-talk, and induced responses in conifers. 37 

 38 

Key Words conifers; SA-JA antagonism; induced defense signaling; stylet-feeders; defense 39 

induction 40 

 41 

Introduction 42 
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 43 

Conifers (Pinaceae) often dominate temperate, alpine, and boreal forests in the northern 44 

hemisphere (Ralph et al., 2006). This family includes genera of major ecological and economic 45 

importance such as pine (Pinus), spruce (Picae), hemlock (Tsuga), and fir (Abies), and the 46 

ecological success of many conifer species is thought to be linked to their effective defenses 47 

against natural enemies (Bonello et al., 2006; Krokene, 2015). The energetic costs of these anti-48 

herbivore responses make it important that plants be induced only when appropriate (Baldwin, 49 

1998). In conifers, for example, the accumulation of terpene and phenolic metabolites induced by 50 

bark beetle (Coleoptera: Curculionidae) attacks can substantially improve the likelihood of host 51 

survival (e.g., Schiebe et al., 2012). Aside from a few specific systems (e.g., the pine 52 

processionary moth; Thaumetopoea pityocampa), most research addressing induced defense 53 

responses in conifers has focused on pine and spruce interactions with bark beetles; less attention 54 

has been paid to defense against other herbivorous insects (Ralph et al., 2006; Eyles et al., 2010). 55 

 When multiple herbivore species are present, the responses induced by one herbivore can 56 

affect co-occurring species. There are multiple examples of herbivores from different feeding 57 

guilds (e.g., leaf-chewing, stylet-feeding) indirectly affecting each other through their impact on 58 

plant physiology (e.g., Soler et al., 2012). The phytohormones jasmonic acid (JA) and salicylic 59 

acid (SA) play a central role in these induced plant defenses. Chewing insects such as caterpillars 60 

are generally thought to trigger the JA pathway, while stylet-feeding insects often elicit the SA 61 

pathway (Morkunas et al., 2011). Researchers have demonstrated positive interactions (cross-62 

talk) and antagonism between these induced-response pathways that prevent plants from 63 

responding simultaneously to SA- and JA-elicited challenges (e.g., Kroes et al., 2015). However, 64 

this research has mostly been conducted using herbaceous model plants such as Arabidopsis, 65 
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tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum) (e.g., Preston et al., 1999; 66 

O’Donnell et al., 2003; Cipollini et al., 2004) (see Thaler et al., 2012). 67 

 Much less attention has been paid to woody plants. Although SA-JA antagonism has been 68 

demonstrated in Eucalyptus grandis (Naidoo et al., 2013), induced response signaling in woody 69 

plants are likely mediated by signaling molecules that may be at least partly different from those 70 

of herbaceous systems, and in ways that are more complex (Eyles et al., 2010; Zhang et al., 71 

2010). For example, in Norway spruce (Picea abies), white-rot fungus (Heterobasidion 72 

parviporum) infection leads to the parallel induction of both SA and JA pathways (Arnerup et 73 

al., 2011), exogenously applied JAs can enhance pathogen resistance (Kozlowski et al., 1999), 74 

and exogenously applied SA can increase resistance against Ips typographus bark beetles (Krajnc 75 

et al., 2011). It is important to note, however, that hormone signaling complexity has been 76 

reported and discussed in model herbaceous plant systems, as well (e.g., Kazan & Manners, 77 

2008). Generally, however, the signaling hormones involved in woody plant responses, and their 78 

interactions (i.e., cross-talk), remains largely unexplored and many aspects of these processes are 79 

unknown (Eyles et al., 2010; Zhang et al., 2010). Furthermore, the indirect interactions between 80 

herbivorous insects of different feeding guilds via alterations to induced defense responses in 81 

woody plants is also largely unknown, especially for conifers. 82 

 Stylet-feeding arthropods (i.e., mites and insects) are major conifer pests in both 83 

horticultural and forest settings (Cram et al., 2012; Van Driesche et al., 2013) and can be very 84 

damaging during outbreaks (e.g., spruce spider mite [Oligonychus ununguis]; Furniss & Carolin, 85 

1977; Monterey pine needle aphid [Essigella californica]; Hopmans & Elms, 2013). Knowledge 86 

of mechanisms of induced resistance of conifers to stylet-feeding arthropods is relatively lacking 87 

compared to other feeding guilds. Our understanding of how stylet-feeders indirectly interact 88 
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with co-occurring herbivores (e.g., folivores) of conifers via changes in host quality is also 89 

limited. Mattson et al., (1989) reported that balsam twig aphid (Mindarus abietinus) density was 90 

inversely correlated with the survival and development of spruce budworm (Choristoneura 91 

fumiferana); Grégoire et al., (2015) found lower pupal weights in spruce budworm reared on 92 

trees that were symptomatic of balsam woolly adelgid (Adelges piceae) infestation. The authors 93 

of the latter paper hypothesized that this relationship reflected decreased foliar quality, although 94 

they could not detect clear relationships between specific adelgid symptoms, foliar secondary 95 

metabolites, and larval performance (Grégoire et al., 2014; Grégoire et al., 2015). 96 

 Several studies have investigated the metabolic and physiological effects of the invasive 97 

hemlock woolly adelgid (HWA; Adelges tsugae) infestation on eastern hemlock (hemlock; 98 

Tsuga canadensis). There is evidence that HWA feeding causes a hypersensitive-like response in 99 

hemlock involving the foliar accumulation of hydrogen peroxide (H2O2; Radville et al., 2011), 100 

proline (Gómez et al., 2012), and SA (Schaeffer et al., 2018). Adelgid infestation also increases 101 

emissions of methyl salicylate (MeSA), the volatile methyl ester of SA (Pezet et al., 2013; Pezet 102 

& Elkinton, 2014). These physiological effects indicate that HWA infestation induces a 103 

hypersensitive-like, SA-linked response in the foliage of this conifer, and this reaction may 104 

indirectly affect other herbivores by interfering with typical hormonal responses and induced 105 

defenses in hemlock (e.g., Kroes et al., 2015). 106 

We present the results of research evaluating the ability of HWA to interfere with 107 

standard induced defense signaling and expression (tested by applying methyl jasmonate [MeJA] 108 

to plants with and without HWA) and assessing the plant-mediated impact of these treatments on 109 

a native folivore, hemlock looper (looper; Lambdina fiscellaria). The goals of this study were to 110 

(1) assess the impact of both SA-linked defenses via HWA infestation, and JA-linked defenses 111 
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via MeJA application, on the performance of a folivore, and to (2) determine whether HWA 112 

infestation alters the expression of JA-linked defenses and affects the negative impacts of JA-113 

linked defense induction on folivores. We hypothesized that JA-linked responses are more 114 

appropriate anti-folivore defenses than SA-linked responses, and that HWA presence would 115 

attenuate the negative effects of JA-linked responses on looper larvae and on the expression of 116 

JA-linked defenses, presumably due to hormone signaling interference. 117 

 118 

Materials and methods 119 

 120 

Study System 121 

Hemlock is a structurally-dominant and ecologically-important conifer endemic to eastern North 122 

America, a "foundational species" that creates unique and critical habitat for many terrestrial and 123 

aquatic species (Snyder et al., 2002; Ellison et al., 2005; Orwig et al., 2008). Hemlock woolly 124 

adelgid is an invasive stylet-feeding insect introduced to Virginia in the 1950s (Havill et al., 125 

2006). The invasion of eastern North America by HWA has caused widespread mortality of both 126 

eastern and Carolina hemlock (T. caroliniana) and threatens to extirpate these species from their 127 

native range. The life cycle of HWA specifically, and Adelgidae generally, are detailed 128 

elsewhere (McClure, 1989; Havill & Foottit, 2007); Briefly, HWA is bivoltine, with a holocyclic 129 

lifecycle in its native range but an obligate parthenogenetic lifecycle in its introduced range. 130 

Although the first-instar ‘crawler’ phase can move along branches or be passively dispersed 131 

between trees (McClure, 1990), adults are sessile, settling and feeding at the base of needles on 132 

xylem ray parenchyma cells (Young et al., 1995). Conversely, hemlock looper is native to 133 

eastern North America and feeds on many tree species including eastern and Carolina hemlock 134 
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(Wilson et al., 2016). This insect has been linked to the mid-Holocene decline of hemlocks in the 135 

northeastern United States (Foster et al., 2006) and widespread defoliation events in Maine in the 136 

early 1990s and eastern Canada in the 2000s (discussed in Wilson et al., 2016). Larval 137 

emergence occurs in the late spring and is timed to coincide with bud burst and the production of 138 

new foliage of its conifer hosts (Butt et al., 2010); late-instar larvae are, however, capable of 139 

feeding on older growth (Carroll, 1999). At outbreak densities, the feeding activity of late-instar 140 

larvae can cause rapid needle loss and kill mature trees within two years (Alfaro et al., 1999). 141 

These two herbivores co-occur in the northern portion of the HWA-invaded range and in the 142 

southern portion of the native range of the looper (Wilson et al., 2016). 143 

 144 

Experimental Approach 145 

Approximately 300 hemlock plants were purchased in the spring of 2015 as saplings (0.8-1.0 m 146 

in height) from Van Pines Nursery (West Olive, MI; derived from seed collected in 147 

Pennsylvania). All plants were previously herbivore-free and had not been treated with 148 

insecticides. Potted plants (7.6 liter/2 gallon pot size) were placed outside under shade cloth at 149 

The University of Rhode Island (URI; Kingston, RI, USA), regularly watered, and minimally 150 

fertilized (14:14:14 N:P:K Scotts Osmocote Controlled Release Fertilizer). Plants were 151 

overwintered outside under winter protection fabric (170 g yard-2; Griffin Greenhouse Supplies).  152 

Half of the hemlocks were assigned randomly to the HWA treatment. Each tree in this 153 

treatment was inoculated in late spring of 2015, 2016, and 2017 (timed to coincide with HWA 154 

progrediens crawler emergence) using locally-collected (Mt. Tom State Reservation, MA, USA), 155 

infested hemlock foliage and standard inoculation protocols (Butin et al., 2007). Each potted 156 

plant in the HWA received two branches (approximately 15-20 cm long) with densities ≥ 0.5 157 
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ovisacs cm-1. Plants were annually infested with progrediens generation crawlers as part of 158 

ongoing experimentation at URI and to generate an in-house source of HWA for use in unrelated 159 

experiments. Additionally, reports of deleterious impacts of HWA on hemlock have been 160 

reported mostly in the context of chronic infestation (Radville et al., 2011; Gómez et al., 2012; 161 

Pezet et al., 2013; Pezet & Elkinton, 2014; Schaeffer et al., 2018; Wilson et al., 2018). The other 162 

half of the hemlocks were assigned to the control (no HWA) treatment. To control for 163 

mechanical disturbance, trees in the control treatment were ‘sham inoculated’ with HWA-free 164 

hemlock foliage when trees in the HWA treatment were inoculated with infested foliage. To 165 

insure that control trees remained free of HWA, both infested and uninfested plants were covered 166 

with insect-proof mesh (AG-15 Insect Barrier; Agribon, Johnny’s Selected Seeds, Waterville, 167 

ME, USA; 90 %light transmission). At the time of experimentation, densities of adult 168 

progrediens HWA (with ovisacs) were approximately 0.5 HWA cm-1 on infested trees and 169 

control trees were confirmed HWA-free via visual inspection. No quantitative data on plant 170 

growth or condition were taken, but visual inspection showed that infested plants were roughly 171 

the same size as uninfested plants, but the foliage was not the characteristic bright-green of 172 

healthy, uninfested plants such as those in the uninfested treatment. 173 

Following the spring 2017 inoculation, twenty trees in the HWA treatment and twenty 174 

trees in the control treatment were assigned randomly to one of two elicitor treatments (n = 10 175 

per treatment): JA-induced (via MeJA) or constitutive (carrier solution only). MeJA was first 176 

dissolved in a minimal amount of absolute ethanol (~ 0.5 ml) and then suspended in 0.1% (v:v) 177 

Tween 20 carrier solution to produce a 1 mM concentration of MeJA (Sigma; St. Louis, MO). 178 

This resulted in four 10-replicate treatments (40 total plants; used in bioassays and in chemical 179 

analyses). The appropriate elicitor solution was applied with an atomizer until plants were 180 
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saturated once every week; preliminary experimentation determined the elicitor concentration 181 

used (Rigsby unpublished data). Two rounds of elicitor treatments were applied prior to the use 182 

of foliage in the bioassay (detailed below), and three rounds of elicitor treatments were applied 183 

during the bioassay. Elicitor applications were never made fewer than four days prior to the 184 

removal of foliage from plants and placing foliage in jars for the looper feeding bioassay. This 185 

was done to prevent any direct impact of MeJA on larvae. After five elicitor treatments, two 186 

randomly selected branches were removed from each plant, wrapped in aluminum foil and stored 187 

at -80°C for chemical analyses. Needle tissue was later separated from stems, ground in liquid 188 

nitrogen, partitioned into tubes (see below), and stored at -30°C until analysis. 189 

 190 

Defense Responses 191 

Equipment and Reagents We were interested in how our treatments broadly altered the chemistry 192 

and physiology of hemlock and therefore elected to utilize more general analytical methods. 193 

Bradford assay dye concentrate was purchased from BioRad (Hercules, CA, USA), and 194 

polyvinylpolypyrrolidone (PVPP; 25 μm average particle size) was purchased from The Vintner 195 

Vault (Paso Robles, CA, USA). All other reagents and standards were purchased from Sigma (St. 196 

Louis, MO). Spectrophotometric assays were performed in Greiner UV-Star® 96 well plates 197 

(Monroe, NC, USA). Plates were read using a SpectraMAX M2 Multi-Mode microplate reader 198 

(Molecular Devices, Sunnyvale, CA, USA) in the RI-INBRE facility (University of Rhode 199 

Island; Kingston, RI). 200 

 201 

Defensive Enzymes To extract native protein, 200 mg tissue was reacted with 1.5 ml 50 mM 202 

NaPO4 (pH 6.8) containing 10% (w:v) PVPP, 5% (w:v) Amberlite XAD4 resin (pre-203 
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conditioned), and 1 mM EDTA on ice for 20 min and the 10,000 g supernatant (5 min, 4°C) was 204 

recovered and used as the source of enzymes. The guaiacol-oxidizing (ε470 = 26.6 mM-1 cm-1) 205 

activity of peroxidase (POX) was quantified according to Cipollini et al., (2011). The activities 206 

of chitinase (CHI) and lipoxygenase (LOX; ε234 = 23,000 M-1 cm-1; modifying to accommodate a 207 

96-well microplate format) were quantified according to Rigsby et al., (2016). 208 

 209 

Secondary Metabolites and H2O2 For soluble phenolic metabolites (total soluble phenolics, 210 

hydroxycinnamic acids, flavonoids, and proanthocyanidins), 200 mg tissue was twice-extracted 211 

in 0.5 ml methanol for 24 hrs and the supernatants were pooled. Total soluble phenolic levels 212 

were quantified using a modified Folin-Ciocalteau procedure described by Cipollini et al., (2011) 213 

against a standard curve of gallic acid. Hydroxycinnamic acids were quantified with Arnow’s 214 

reagent against according to St-Pierre et al., (2013) against standard curve of chlorogenic acid. 215 

Total flavonoids were quantified according to the procedure described by Chang et al., (2012) 216 

against a standard curve of quercetin. Proanthocyanidin content was estimated according to the 217 

acidified butanol method (Engstöm et al., 2014). The lack of affordable standards and issues with 218 

using purified standards in the proanthocyanidin assay (Schofield et al., 2001) required that we 219 

express tissue levels as Abs550 g
-1 FW. Lastly, methanol soluble terpene levels were quantified 220 

using H2SO4 according to Ghorai et al., (2012) against a standard curve of linalool. 221 

Tissue pellets left over from the extraction of soluble phenolics were washed twice with 222 

methanol and cell wall-bound phenolics were extracted via esterification (de Ascensao & Dubery 223 

2003) and quantified by way of the total phenolic content procedure described previously using 224 

gallic acid as standard. The tissue pellets were then subjected to the lignin extraction and 225 

quantification procedure described by Cipollini et al., (2011) using spruce lignin as standard. 226 
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 Needle H2O2 levels were estimated according to the KI procedure described by Rigsby et 227 

al., (2016) using H2O2 as a standard curve. 228 

 229 

Looper Bioassay 230 

In early spring 2017, we obtained looper eggs from a colony maintained at the Canadian Forest 231 

Service’s Laurentian Forestry Centre (Québec City, QC, Canada). Movement of the eggs from 232 

Canada to the United States, and our subsequent work with them, was covered under APHIS 233 

permit P526P-14-01875. The eggs were placed on arrival in a growth chamber (15oC, 75% RH, 234 

16L/8D cycle) and monitored daily for hatching. Upon hatching, a 15-cm stem section was 235 

clipped from each of the treated plants and stuck in a moistened piece of floral foam within a 0.8 236 

L Ball Mason jar. Each plant provided all of the foliage for a given jar throughout the experiment 237 

and contained both current-year foliage and foliage produced in past years. The APHIS permit 238 

necessary to work with these larvae required that they be contained in a biological control 239 

facility, and the potted plants used in these experiments were too large to bring into the facility 240 

and be placed in environmental chambers. This necessitated the use of clipped foliage in jars 241 

rather than larvae being directly placed on plants. Larvae were assigned randomly to jars as they 242 

hatched until each jar contained six looper larvae. Each jar was covered with a fine white mesh 243 

(0.5 mm; nylon) to allow ventilation but prevent escape. Jars were kept in the growth chamber, 244 

changing their position daily within the growth chamber to account for possible microclimatic 245 

differences. Each jar was cleaned weekly by adding a new stem section, replacing the floral 246 

foam, and removing all waste from the jar. Foliage was never placed into jars within 48 hrs of 247 

being sprayed with elicitor. 248 
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We conducted weekly survival assays by removing all foliage and floral foam from the 249 

jar and transferring living larvae into clean jars with new foliage and floral foam. Larvae were 250 

monitored until pupation, at which point the date of pupation was noted and the pupa weighed. 251 

Data on the six looper larvae per jar was averaged to generate a per-jar mean for each of the 40 252 

replicates. 253 

 254 

Data Analysis 255 

Plant chemical and physiological parameters were analyzed via a two-way analysis of variance 256 

(ANOVA) with HWA, MeJA application, and the interaction as predictors. If a significant 257 

interaction was found, a Tukey test was used to separate means. For the bioassay experiment, 258 

looper survival, pupal weight, and time to pupation were statistically treated similarly to Wilson 259 

et al., (2016). Briefly, data were inspected for normality (Shapiro-Wilk test) and homoscedacity 260 

(Bartlett’s test) (all response variables satisfied these requirements), and then a repeated 261 

measures-ANOVA was used to analyze the effect of HWA, MeJA application, and their 262 

interaction. The effect of the same predictors on time to pupation and pupal weights were 263 

analyzed using a two-way ANOVA. The statistical program R was used for all analyses (R 264 

Development Core Team, 2017). 265 

 266 

Results 267 

 268 

Hemlock Foliar Defense Responses 269 

Defensive/Antioxidant Enzyme Activities Adelgid infestation increased the activity of both POX 270 

and CHI, but not LOX (Table 1). Elicitor application increased the activity of CHI and LOX, but 271 
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not POX (Table 1), and there was no significant HWA x elicitor interaction for any enzyme 272 

activity (Table 1). 273 

 274 

Metabolites Adelgid infestation and MeJA application significantly impacted all classes of 275 

soluble phenolics (Table 1). HWA and MeJA both tended to have an additive effect on all 276 

phenolic categories; the HWA x elicitor interaction was nonsignificant for all of the soluble 277 

phenolic classes (Table 1). HWA infestation increased the cell-wall-bound phenolic content of 278 

foliage, but there was no effect of MeJA or the HWA x elicitor interaction (Table 1). Adelgid-279 

infested plants also contained more lignin, and although there was no main effect of MeJA, there 280 

was an interactive effect between HWA infestation and MeJA application on lignin content 281 

where MeJA application appeared to attenuate the HWA-caused increase in lignin. Methanol-282 

soluble terpene content of foliage was not influenced by HWA infestation or elicitor treatment 283 

with terpene content remaining constant between treatment combinations (P > 0.05 for all; Table 284 

1). Lastly, needle H2O2 content was elevated by HWA infestation and decreased by MeJA, but 285 

there was no significant interactive effect. The H2O2 content of foliage was highest in the 286 

infested-control treatment and lowest in the uninfested-MeJA treatment (Table 1). 287 

 288 

Herbivore Responses  289 

HWA infestation reduced the survival of looper larvae over time (F1, 434 = 5.49, P = 0.0196; Fig. 290 

1A), and there was a trend (albeit insignificant; P = 0.0999)  towards HWA increasing pupal 291 

weight (F1, 36 = 2.86, P = 0.0999; Fig. 1B). While MeJA did not affect larval survival (F1, 434 = 292 

0.73, P = 0.39; Fig. 1A), it did decrease weight at pupation (F1, 36 = 7.26, P = 0.0107; Fig. 1B). 293 
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The HWA x elicitor interaction affected neither larval survival nor pupal weights (P > 0.05). 294 

Time to pupation was not affected by any predictor variable (P > 0.05). 295 

 296 

Discussion 297 

 298 

We found that changes in hemlock physiology associated with an invasive herbivore and with 299 

elicitor application affected both secondary chemistry and the response of a native 300 

herbivore. Although our initial hypothesis of HWA/MeJA (i.e., SA/JA) antagonism was 301 

generally not supported, the physiological responses of hemlock that we observed appear partly 302 

mediated by both SA and JA pathways. Such antagonistic responses are important since plants 303 

often must respond to simultaneous or sequential challenges (Ponzio et al., 2013). Moreover, our 304 

results are consistent with the ability of stylet-feeding insects to manipulate plant physiology via 305 

induced defenses linked to this cross-talk in ways that can dramatically alter host quality for 306 

other herbivores (e.g., Inbar et al., 1999). Historically, there has been little research specifically 307 

addressing JA-SA cross-talk and indirect herbivore effects in woody plants. The hemlock-HWA 308 

system provides an excellent model for better understanding these indirect interactions as chronic 309 

HWA infestation results in SA induction and a hypersensitive-like response in its host (Radville 310 

et al., 2011; Gómez et al., 2012; Pezet et al., 2013; Pezet & Elkinton, 2014; Schaeffer et al., 311 

2018). We had expected that both HWA infestation (SA induction) and MeJA (JA induction) 312 

would induce changes in hemlock chemistry and physiology and would affect looper 313 

performance, but that simultaneous challenge would result in hormonal signaling interference 314 

that would compromise the induction and expression of appropriate anti-folivore defenses, 315 

ultimately positively influencing looper larvae. 316 
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We found certain defensive traits to be distinctly elicited by one treatment, some of 317 

which were predictable. LOX activity was positively affected by MeJA application, for example, 318 

and HWA infestation had a positive impact on H2O2 accumulation. These traits are associated 319 

with their respective signaling responses as LOX has a direct role in JA synthesis (Beckers & 320 

Spoel, 2006) and H2O2 accumulation is associated with SA signaling both upstream and 321 

downstream of SA (Herrera-Vásquez et al., 2015). Intriguingly, POX activity and cell wall-322 

bound phenolic and lignin accumulation were positively affected only by HWA infestation. 323 

Peroxidases use H2O2 as a co-substrate to polymerize phenolics and monolignols, which serve to 324 

scavenge H2O2 (Tenhaken, 2014). The extent to which the HWA-mediated increase in POX 325 

activity, cell wall-bound phenolic, and lignin accumulation is an antioxidant response to H2O2 326 

accumulation or an SA-linked anti-herbivore response remains to be determined. We also found, 327 

however, that certain defensive traits were not strictly regulated by one induction treatment or 328 

the other, and these responses appeared to be additive rather than antagonistic (i.e., CHI activity 329 

and soluble phenolics). One defensive trait (methanol-soluble terpene content) was not 330 

influenced by either treatment, though this is not necessarily surprising as it has been shown that 331 

conifers may not accumulate foliar terpenes following herbivore attack (e.g., Litvak & Monson, 332 

1998). Additionally, the use of methanol to extract terpenes, as per this assay method (Ghorai et 333 

al., 2012), may limit the interpretation of the results of this assay as methanol is a relatively poor 334 

solvent for non-polar terpene species. 335 

One of the more important and interesting results of this study, confirming the findings of 336 

previous researchers (Radville et al., 2011), is not only that hemlock accumulates H2O2 when 337 

infested with HWA, but also that H2O2 did not accumulate when plants were sprayed with 338 

MeJA. Hydrogen peroxide has a variety of functions in plants in addition to being a co-substrate 339 
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for POX enzymes (Cheeseman, 2007), including roles in stress response-signaling (Orozco-340 

Cárdenas et al., 2001; Morkunas et al., 2011; Petrov & Van Breusegem, 2012). For example, 341 

H2O2 accumulation resulted in the identification of 82 H2O2-responsive proteins in leaves of 342 

seedling hybrid poplars (Populus simonii × Populus nigra) (Yu et al., 2017). Hydrogen peroxide 343 

has also been shown to both amplify and antagonize SA signaling/accumulation (Peleg-344 

Grossman et al., 2010; Petrov & Van Breusegem, 2012). The ultimate implications and impacts 345 

of H2O2 accumulation in hemlock foliage remain unknown, but are likely consequential as H2O2 346 

accumulation could have any of the described effects in hemlock or others. Furthermore, the 347 

interaction between H2O2 and JA, and specifically the fact that JA pathway activation (via MeJA 348 

application) results in a reduction in H2O2 levels regardless of HWA infestation, suggests that 349 

antioxidant mechanisms are part of JA pathway elicitation. 350 

The effects of our treatments on hemlock foliar defenses and the ultimate impacts on 351 

looper larvae were mixed. Our hypothesis that JA-linked responses are appropriate anti-folivore 352 

defenses was supported; our hypothesis that HWA infestation would interfere with standard anti-353 

folivore (i.e., JA) induced defense signaling and would attenuate the negative effects of JA-354 

linked responses on looper was not supported. For example, MeJA application reduced looper 355 

pupal weights, but did not affect looper survival, while HWA did not significantly impact pupal 356 

weights or larval survival. This suggests that induced defense signaling is more nuanced than 357 

simple JA-SA antagonism in hemlock, and that both hormones likely have roles. The notion that 358 

extensive JA-SA cross-talk exists in plant biotic stress response signaling is not novel (e.g., 359 

Smith et al., 2009), but these findings highlight the complex nature of this cross-talk and how 360 

additional complexity can be introduced when plants are attacked by multiple herbivores 361 

(Nguyen et al., 2016).  362 
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In this study, we demonstrated that HWA induces defense responses involving phenolic 363 

metabolites and antioxidant/defensive proteins, that these responses are not necessarily the same 364 

in MeJA-induced plants, and that some responses were additive (e.g., phenolics). The treatment-365 

associated physiological effects on hemlock foliage had mixed effects on looper larval 366 

performance, where survival was negatively impacted by HWA infestation and MeJA 367 

application negatively impacted pupal weight. Our results only partly supported our initial 368 

hypotheses that JA-linked responses are more appropriate anti-folivore defenses, and that HWA 369 

infestation would benefit folivores by interfering with standard anti-folivore (i.e., JA-linked) 370 

hormonal signaling. It is possible that the infestation level of our plants (0.5 HWA cm-1), while 371 

ecologically relevant, may not have been enough to result in our hypothesized effects. Our 372 

results illustrate how HWA-mediated plant defense induction can alter the suitability of this 373 

conifer for other co-occurring herbivores but also emphasize the need to further study multi-374 

stress interactions and physiological antagonism in conifers. 375 
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Figure 1. Response of hemlock looper to HWA infestation and MeJA application. (A) Average 596 

number surviving looper larvae (± 1 SE) through time that fed on foliage of plants from the four 597 

treatments. (B) Mean pupal weight in mg (± 1 SE) of hemlock looper larvae fed foliage of plants 598 

from the four treatments. 599 
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Table 1. The effect of HWA-infestation, MeJA-application, and the interaction on enzyme activities and metabolites that were 614 

quantified. F- and P-values (significant values are in bold) are the results of a two-way ANOVA using HWA-infestation, MeJA-615 

application, and the interaction as predictor variables. Different letters indicate significant differences between treatment combinations 616 

according to a post-hoc Tukey test, and no letters indicate no significant treatment differences. 617 

                      

Response Variable Uninfested Infested 

HWA-

Infestation 

MeJA-

Application Interaction 

Enzyme Activities Control MeJA Control MeJA 

F1, 

36 P F1,36 P F1,36 P 

Peroxidase (POX) 

157.2 

(19.2) 

182.6 

(40.7) 

329.4 

(67.3) 

393.1 

(122.1) 6.8 0.013 0.4 0.547 0.1 0.795 

Chitinase (CHI) 

0.22 

(0.04)b 

0.33 

(0.05)b 

0.62 

(0.10)a 

0.86 

(0.10)a 33.6 

< 

0.001 5.1 0.030 0.7 0.422 

Lipoxygenase (LOX) 

74.2 

(15.3)ab 

92.5 

(10.1)ab 

69.4 

(6.9)b 

126.3 

(20.4)a 1.1 0.313 7.1 0.011 1.9 0.179 

           
Metabolites           

Total Soluble Phenolics 

78.1 

(4.8)c 

101.8 

(3.3)b 

99.5 

(5.8)b 

131.0 

(6.4)a 23.6 

< 

0.001 27.9 

< 

0.001 0.6 0.457 

Hydroxycinnamic 

Acids 

35.8 

(1.5)b 

54.9 

(4.5)a 

47.6 

(3.9)ab 58.3 (2.6)a 4.3 0.046 19.3 0.001 1.5 0.232 

Flavonoids 

50.6 

(2.2)b 

66.1 

(2.0)a 

62.1 

(3.4)a 70.1 (1.6)a 10.7 0.002 24.2 

< 

0.001 2.5 0.124 

Proanthocyanidins 0.6 (0.1)c 1.4 (0.1)b 

1.2 

(0.17)b 1.8 (0.2)a 11.7 0.002 22.4 

< 

0.001 0.2 0.650 

Cell Wall-Bound 

Phenolics 

10.0 

(1.5)b 

13.4 

(1.8)ab 

22.1 

(6.0)a 

18.1 

(2.1)ab 6.7 0.014 0.0 0.919 1.3 0.258 

Lignin 3.8 (0.2)b 

4.5 

(0.2)ab 4.9 (0.3)a 4.5 (0.2)ab 7.3 0.011 0.4 0.532 5.8 0.021 

Methanol-Soluble 

Terpenes 2.8 (0.4) 2.5 (0.1) 3.1 (0.1) 2.8 (0.2) 1.9 0.177 1.8 0.186 0.0 0.918 
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H2O2 

65.7 

(11.9)ab 

15.2 

(3.3)b 

133.6 

(39.1)a 

39.9 

(13.6)b 4.3 0.047 13.1 0.001 1.2 0.285 
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