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Field-dependent differential susceptibility studies on tetrathiafulvalene-AuS4C4(CF3)&'.
Universal aspects of the spin-Peierls phase diagram

J. A. Northby, ' H. A. Groenendijk, and L. J. de Jongh
Karnerlingh Onnes Laboratorium, University of Leiden, Leiden, The Netherlands

J. C, Bonner
Physics Department, University of Rhode Island, Kingston, Rhode Island, 02881

I. S. Jacobs and L, V. Interrante
General Electric Company, Corporate Research and Development, Schenectady, New York 12301

(Received 26 October 1981)

An applied magnetic field is known to produce novel effects in the phase behavior of magne-

toelastic spin-Peierls systems. Hence we report measurements of the differential susceptibility

(X) and magnetization {M) in fields up to 40 kOe (4 T) on the spin-Peierls compound
tetrathiafulvalene (TTF)-AuS4C~(CF3)~ in the temperature region {1.1 K «T «4.2 K). This

range of field and temperature encompasses an interesting phase region, including the zero-field
spin-Peierls transition temperature T,(0) =2.03 K. The measurements of the differential (ac)
susceptibility provide a more sensitive probe of the transition behavior than magnetization mea-

surements. The first definitive evidence for significant deviations from mean-field critical

behavior appear in these measurements, and the appropriate criteria for determining the precise
location of the transitions are thus provided by the thermodynamic theory of X transitions. Us-

ing the new criteria, qualitative and even quantitative agreement is obtained with current
theories of the field dependence of spin-Peierls transitions. A novel contour plot of X« in the
0-T plane is shown to be useful for the delineation of the global phase-transition behavior. An
investigation of the role of relaxation effects in X„relative to the nature of the phase boun-

daries is conducted. A major feature is the observation of a striking degree of "universality" in

the phase behavior of three spin-Peierls systems, TTF-AuSqC4(CF3) 4, TTF-CuS&C4(CF3) 4, and

methylethylmorpholinium di-tetracyanoquinodimethane fMEM-(TC&Q)2l. These universal

features are preserved through considerable differences in lattice structure and a variation in

T,(0) of a factor of 10.

I. INTRODUCTION

The spin-Peierls (SP) transition is a topic of high
current interest which brings together many subfields
of solid-state physics. '~ This transition marks the
onset, as the temperature is lowered, of a progressive
spin-lattice dimerization in a system of quasi-one-
dimensional (quasi-1D) quantum antiferromagnetic
(AFM) chains embedded in the 3D phonon field of
the lattice. Theoretically the transition is observable
in its simplest form when the magnetic chains are
nonclassical; e.g., Heisenberg or XY in type. In prac-
tice it has been observed experimentally only in good
Heisenberg, spin- —,, systems characterized by g fac-

tors close to the free electron value. By analogy with
the well-known Peierls instability in a 1D metal, it
may be shown that a uniform AFM quantum chain is
unstable with respect to an underlying lattice distor-
tion which dimerizes it into an alternating chain
AFM. A quantum alternating chain AFM is charac-
terized by an energy gap between the nondegenerate

singlet ground state and (a band of) triplet excited
states. ' The gap is dependent on the degree of alter-
nation and vanishes in the uniform chain limit. As
observed experimentally, in zero field, the transition
is second order, and the degree of alternation in-
creases as the temperature is lowered, reaching a
maximum at T =0.

The effect of a magnetic field on an SP system is
quite dramatic and has been the subject of a number
of theoretical papers. " In simple terms, the mag-
netic field lowers the energy of the magnetic excited
levels below the S =0 zero-field ground state, des-
troying the energy gap and altering the character of
the phase behavior. On the experimental side, neu-
tron studies up to about '70 kOe have sho~n that
T, (H) is depressed by application of a magnetic
field. " Magnetization studies have been performed
in significantly higher magnetic fields (up to about
200 kOe) on tetrathiafulvalene (TTF)-CuS4C4(CF3) g

( T, = 11 K)" and on methylethylmorpholinium di-
tetracyanoquinodimethane [MEM-(TCNQ) 2]
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(T, = 18 K)." The data indicate the existence of in-

teresting new phase boundaries in the high-field re-
gion, the nature of which is not yet fully understood.
This is in addition to the second-order phase boun-
dary separating dimerized phase from uniform nonor-
dered phase at lower fields.

In this paper we present and discuss both magneti-
zation and also extensive differential susceptibility
data on (deuterated) TTF-AuS4ti'. 4(CFI)4 ( T, =2.03
K). As a consequence of the much lower value of T,
in this Sp material, 2 correspondingly lower applied
fields are needed to bring about the field-dependent
transitions from the dimerized phase, It is therefore
easier to carry out a study of the differential suscepti-
bility (X) over a large range of relative field. Since
X(H) measures the derivative with respect to the
flcld of tllc M(H) 1118gllctlzatloll curve, I't Is 8 111uc11

more sensitive probe for studying the nature of the
field-dependent transitions. As will be discussed in
detail below, the differential X data give interesting
new information on the nature of the phase transi-
tions in SP systems, and, ln con)unction with 8 thcl'-

modynamic theory of second-order (A.-type) transi-
tions, pl'ovidc prcclsc critcl'18 fol' thc location of thc
magnetic phase boundaries in these materials. Novel
relaxation effects are observed which throw new light
on the character of Sp phases. Last, but not least,
the X data are instructive in an analysis of phase
behavior which reveals some "universa" character
to t11c H Tp118sc d-lagrams of TTF-AuS4C4(CFI)g,
TTF-Cus,c,(CF,), and MEM-(TCNg), .

II. EXPERIMENTAL ASPECTS

Thc experiments werc performed on 8 powdcrcd
sample of 0.5 g of deuterated TTF-AuSqC4(CFl)q
prepared at General Electric R and 0, Schenectady.
The differential susceptibility was measured at Lciden
by means of a mutual inductance technique. The coil
system consists of 8 primary and two secondary coils.
The latter are identical but oppositely wound and are
placed one above the other. Moving the sample from
thc center of one of the secondary coils to thc center
of the other produces a change of the output voltage
directly proportional to X. A steady field up to 40
kOe (4 T) parallel to the ac field is provided by a su-

perconducting solenoid. Temperatures werc mea-
sured by a calibrated carbon resistance thermometer.
This apparatus, in principle, enables simultaneous
measurements to be made of the in-phase (X') and
out-of-phase (X ) components of the complex sus-

ceptibility. However, due to the low density of spins
in the sample, the magnetic signals werc very weak.
Hence only X' could be studied (denoted by X in
%11St follows) S111cc flic X slg1181s werc too sII1811.

The signal-to-noise ratio also inhibited studies of the
frequency dependence of X. All experiments report-
ed below were performed at 1.88 kHz. For one field

sweep (at T = 1.250 K) an additional experiment at
0.94 kHz was performed which showed no detectable
differences from the highcr-frequency data. For
measurements of the static magnetization (M) the
same coil system may be used, in which case the pri-
mary coil is disconnected and the induction voltages
in the secondary arising from sample movement are
integrated electronically to yield the magnetization.

In Fig. 1 we show representative X and M data as a
function of temperature taken at different constant
fields. This figure clearly illustrates the power of the
differential X measurements. Whereas in the case of
the high-field M(T) curves significant features are
not apparent, the corresponding X( T) plots display
pronounced Illaxlllla (R1101118llcs) llldlcatiflg t11c pres-
ence of transitions. Note that the amplitudes of
thcsc maxima 81'c strongly flcld dcpcndcnt 8Qd van-
ish as 0 tends to zero. As will be discussed in some
detail below, the 8=0 transition is better defined as
a maximum in the temperature derivative of X than
by a "kink" of "knee" in the X vs T plot. In mean-
ficld theory, the second-order SP transition both in
zero and 1Q Qonzcl'o field ls given by a kncc cI'i-

tcrion, as calculated theoretically by Bulacvski et al. 7

and Tannous and Caille. ' Our differential X mea-
surements definitively demonstrate the breakdown of
a mean-field picture very close to the transition.

The magnetization and susceptibility data measured
as a function of field at different constant tempera-
tures arc given in Fig. 2. In this type of plot pro-
nounced maxima in the X isothcrms are again ob-
served, and their amplitudes are in this case scen to
be strongly temperature dependent. In the magneti-
zation curves the transitions out of the dimcrizcd
phase are marked by maxima in the slopes of the
M(H) curves. In fact, the X(H) curves are the
derivatives of the M(H) curves (apart from a reser-
vation to be discussed later). We remark, perhaps
superfluously, that such a relationship is not the case
in Fig. 1, as is apparent from the discussion in Sec. IV.

At this point wc should point out that thc low-field

susceptibility measurements were affected by minor
impurity effects, thought to be of ferromagnetic ori-

gin since the contribution is found to saturate in rela-
tively low fields (=3 kOe) and is independent of
temperature. This can be seen in Fig. 2 by the 0=0
intercepts of the X(H) curves. A correction for this
spurious signal (dotted cur~es in Fig. 2) was applied,
and thc same correction was, in fact, applied to the
0=0 data shown in Fig. 1. %c believe that the im-

purity was not present in the sample itself, but that it
arose from the sample holder (resulting, C.g. , from
machining the holder or from impurity oxygen in the
He gas condensing on the holder). It was considered
unnecessary to correct the data for diamagnetism.
The estimated diamagnetic contribution is indicated
in Fig. 1.

The values for the critical fields and temperatures
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FIG. 1. (a) Differential susceptibility curves at various

constant fields as a function of temperature for TTF-

AuS4C4(CF3) 4. The curves for the special high-field region

are sho~n as dashed lines. (b) Magnetization (static) curves

as a function of temperature at several fixed fields for TTF-

AuS4C4(CF3)». The arrows indicate the location of XH( T)

maxima from Fig. 1(a). The dotted curve shows the loca-

tion of the singularity using a mean-field knee criterion.

0 I I I I I I I

0 5 IO I 5 20 25 30 35 40 45
MAGNETIC FIELD ( kOe)

FIG. 2.. (a) Differential susceptibility curves at constant

temperatures as a function of field. Those curves belonging

to the special low-temperature region are shown as dashed

lines. At the lowest field, the dotted lines indicate a correc-

tion for an impurity effect. The arrow is discussed in Sec.
III. (b) Magnetization (static) curves at constant tempera-

tures as a function of field. The arrows indicate the location

of X~(H) maxima from (a).

(H„T,) obtained from the plot in Figs. l and 2 have

been collected in Fig. 3, where they are shown in

comparison with the theoretical predictions of Bray, 6

Bulaevskii et at. ' and Cross."All theoretical predic-

tions give a second-order transition line extending

from T,(0) to a special point (multicritical point)

denoted (H,', T,'). We shall call this boundary the

DU line in what follows, since it separates the (or-

dered) dimerized from the (nonordered) uniform

phase regions. The Bray calculation6 for the DU lines

is equivalent to that of Bulaevskii et al. 7 Hence both

theories, evaluated carefully, "give the same values

for (H,', T,'), namely, pttH, "Iktt =0.7ST,(0) and

T,"=0.54T, (0). Above H,' and below T,
" (high-

field, low-temperature region) Bulaevskii et al.

predict an intermediate (new) phase separating the
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FIG. 3. Magnetic phase diagram for TTF-AuS~C4(CF3)&,
constructed from susceptibility maxima of Figs. 1 and 2,
Theoretical curves of Cross (C), Bray (B), and Bulaevskii
et al. (BBK) are shown along with their respective multicriti-
cal points (starred).

dimerized and uniform phases, The calculated boun-
dary between intermediate and uniform phases (IU
line) is shown in Fig. 3 and is second order. Bu-
laevskii eI: aI. 3 predict the boundary between dimer-
ized and intermediate phases (DI line) to be first or-
der, but are not able to present a precise calculation,
This first-order boundary is therefore shown only
schematically in Fig. 3. The Cross theoretical predic-
tions (also shown in Fig. 3) show strong tluaiitative
similarities to those of Bray-Bulaevskii, The location
of the multicritical point is slightly different, occur-
ring at psH, "/ks =0.69T,(0) and T,"=0.77T,(0).
The DU lines for both theories are very close, but the
high-field IU transition lines show significant differ-
ences. In existing calculations the Cross line asymp-
totically approaches 0.5T, (0) as H ~, whereas the
Bulaevskii line asymptotically tends to a value close
to T =0. However there is some possibility of recon-
ciliation, since the precise location of this line is sens-
itive to details of the assumed phonon spectrum. For
the DI transition between dimerized and intermediate
phases, Cross speculates on the order of the transi-
tion, but gives no calculated values. Hence, we again
show the transition line schematically in Fig. 3.

Regarding the experimental data in Fig, 3 we can
make a @umber of comments. First we note that, as
regards the DU curve, the experimental data are in
between the Bray-Bulaevskii and the Cross results.
%c conclude that, to present experimental accuracy,
the data do not really favor either theory, but are in
gratifying agreement with both, especially since the
only adjustable parameter needed in fitting theory to

the experiment is T,(H = 0), taken to be 2.03 K (see
below). Secondly, the experiment also shows a bifur-
cation of the DU line, emanating from a multicritical
point located at H,'=21.4 +0.2 koe and T,'= (l.4
+0.03) K or at p,sH,'/ks=0. 71T,(0) and
T,'=0.69T,(0). (In later sections, we justify the pre-
cision of the determination of these parameters. )
The experimental T,

"
lies midway between the two

theoretical predictions, as also does the experimental
H,',

The IU line between intermediate and uniform re-
gions needs special discussion. The experimental
points shown are derived on the basis of the
H =23.04, 25.60 and 28.16 kOC X curves in Fig. 1.
Evidence for this phase line is not very apparent in
the plots of Fig. 2. The reasons for this are interest-
ing and will be discussed in a subsequent section
(III). We do note that the experimental data points
lie quite close to the Cross prediction, and the shape
(curvature) of the line, to the extent that it is experi-
mentally defined, is consistent with the shape of the
Cross curve.

%C conclude, therefore, that below T =1.4 K and
above H =21.4 kOe two distinct phase boundaries
(IU and Dl) are present in the experimental (H„T,)
phase diagram which encompass a new intermediate
phase such that magnetization and/or susceptibility
are generally lower than in the immediately adjacent
uniform chain or dimerized regions. The magnetic
measurements, which have been carried out down to
1.1 K [0.54T,(0)], do not show explicit evidence of
first-order character in the DI phase line, but this
possibility is not ruled out, as will be discussed below.

III. SUSCEPTISII.ITY CONTOUR PLOT

The extensive nature of the experimental X vs T
and X vs H data allow us to present a new kind of
plot for illustrating phase behavior generally, and for
delineating phase boundaries. In Fig. 4 wc show con-
tour lines of constant susceptibility (solid curves) in
the H-T plane. The plot extends only down to about
0.5 T,(0) owing to present experimental limitations.
A major feature of interest is an essentially flat
"shelf" (shown shaded). In the H Tregion of the-
shelf, transition (precursor) effects have disappeared
and we are in a uniform chain region. Over the
ranges of temperature and field studied the uniform
chain susceptibility is constant since both ks T,(H)
and g psH, (T) are very small compared to J~„(from
Ref. 2, JA„/ks =68 K). The dashed curve clearly
corresponds to a "ridge" in the susceptibility con-
tours. It is also equivalent to the DU transition line
of Fig. 3 continued through the special point
(H,",T,") into the DI line, down to 1.1 K. Thus
phase boundar1cs arc dcflncd by ridges 1Q thc X con-
tour plot. The high-field IU phase boundary (see
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t t t
the isotherm crosses thc IU line at a very small angle
in this case, in which case the peak will not be
resolved since substantial broadening will occur. A
similar phenomenon can be inferred from data re-
ported for thc metamagnctic compound
CoBr2 2Hqo, '

50

25

l.4 I.6 I.B 2.0
rEMpERAruRE (K)

FIG. 4. Contour plot of ac differential susceptibility in the
0-T plane for TTF-Aus4C4(CF3)4 (solid lines). Ridges in

the contours are shown as dashed or dot-dashed lines and
correspond to phase boundaries. Values of X are in (arbi-
trary units) such that 1 arb. unit corresponds to 1.89 &10~
emu/mole.

Fig. 3) appears in Fig. 4 as a dash-dot line emanating
from (H,",T,") Note that aga. in it is characterized by
a ridge in the susceptibility contours, although this
time the ridge is less sharply defined than for thc DU
and Dl branches. The special point (multicritical
point) H,",T,", shown by the star in Fig. 4, appears as
an overall peak of maximum susceptibility in the en-
tire H-T plane.

This contour plot illustrates why the high-field jU
phase line is visible only in the X( T) plots of Fig. 1

and not in the X(H) plots of Fig. 2. The constant
field plots of Fig. 1 cross the high-field IU phase
ridge at a pronounced angle (almost perpendicular)
and the effects of the ridge are clearly manifest. In
Fig. 2 the pronounced maxima observed correspond
to crossing the DU linc and the DI linc at high and
low relative temperatures, respectively. It can be in-
ferred from Fig. 2 that the IU line could only have
been crossed by the X(H) field sweep at T=1.250 K.
The crossing point is indicated by the small arro~
(i). Although no separate peak is seen, there is a
substantial shoulder for H & H~I for this particular
isotherm (compare the curves for T =1.11 and
T =1.50 K). This may be attributed to the fact that

IV. THERMODYNAMIC DISCUSSION

The interesting question of the criteria to be used
in defining SP phase transitions over a range of tem-
perature and field, and the novel appearance of thc X

plots in general, is best discussed in terms of a ther-
modynamic theory of second-order phase transitions
(h. transitions). " " The rationale for discussing our
experimental results in the light of such a theory ar-
ises from the fact that the H =0 specific heat shows a
characteristic anomaly, and the X data do indicate
second-order (X) transitions along the DU line.

Theoretically one assumes that the specific heat at
constant field CH =—T(BS/BT) H has a singularity at
the field-dependent critical temperature, i.e, , along
the DU line of the 8-T phase diagram. By thermo-
dynamic arguments it then follows that the isother-
mal susceptibility Xr = (BM/BH)s as well as the
quantity (BM/BT) 0 will display the same anomalous
behavior as CH. By contrast, the adiabatic suscepti-
bility xs —=(BM/BH)s, the specific heat at constant
magnetization C~—= T(BS/BT)~, and the slope of
the DU line itself (BH/BT)), = (BH/BT) s, will

remain finite (display a much weaker singularity)
along the DU line. From thc thermodynamic theory
it follows that (Bxs/BT) H = —(CH/T) (B'T/BH )s.
Thus, although Xq sho~s only a weak anomaly along
the DU line, its temperature derivative will display a
strong singularity (since the quantity (B T/BH )s, as
well as CH, diverges along the DU line). As H tends
to zero, M 0 and therefore Xq Xq and takes on
its characteristics, It follows that the experimental
criterion for defining T, (H) at low fields should be
the temperature of the maximum slope of the X(T)
curves. If this criterion is followed, the value of
T,(0) obtained is (2.03 +0.02) K, which agrees with
specific-heat studies as a function of field under~ay
at Leidcn. Within the errors there appears to be no
difference between our value for the deuterated com-
pound and that reported in thc literaturc2 20 for non-
deuterated TTF-AusqC4(CF3) 4 ( T, =2.06 K) . Note
that use of the mean-field "knee" criterion would
yield a value for T,(0) a few percent higher.

Let us further investigate the interesting situation
where T, (H) for low fields is derived from peaks in
(BXr/BT) whereas at higher fields, T, (H) is derived
from peaks in X( T) itself. Consider the thermo-
dynamic relation

xr —xs ——(CH/T)(BT/BH), ' .
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Since both Xs and (BT/BH)s are nonanomalous
along the DU line, it follows that XT will display a

peak similar to that in CH. However, the-amplitude
of the peak in XT will decrease and eventually vanish
for H 0. This is precisely what is observed experi-
mentally. It is interesting to note that a similar situa-
tion arises in the case of ordered 3D antiferromag-
nets. ' There the zero-field antiferromagnetic order-
ing temperature, T~ is defined as an inflection point
in the plot of XT vs T, i.e., a singularity appears in

(BXr/BT)H o rather than in Xr itself. As the field
increases, a peak progressively develops in XT. This
has been observed by direct calculation as well as ex-
perimentally. '8 ' %e therefore note that although
the magnetoelastic SP antiferromagnetic chain and
the regular 3D antiferromagnet represent two com-
pletely different physical systems, and accordingly
have characteristically different forms for the X

curves, general aspects of the phase behavior are re-
markably equivalent. This should indeed be expect-
ed, since it follows from basic thermodynamics and
the shape of the phase boundary. '

%e also point out that similar thermodynamic ar-

guments yield the criteria to be used in defining the
DU transition from the isothermal Mr(H) or isofield

MH( T) magnetization curves. Obviously, since

Xr =—(BM/BH) r, the transition in not too small

fields is defined by the maximum slope of the isoth-
ermal magnetization curves. This is illustrated by the
Mr(H) curves in Fig. 2, where the arrows (f) indi-

cate the temperatures at which the X~ maxima are
found to occur. Secondly, since (BM/BT)H
= —(CH/T) (BT/BH) s it follows that for the isofield

curves the transition is also defined to be the tem-

perature of maximum slope. In Fig. 1 the vertical ar-

rows (f) indicate the temperature of the XH(T) maxi-

ma. They are indeed seen to correspond to tempera-
tures of maximum slope of the MH( T) curves.

Finally we note that since for not-too-small fields,
the singularity in XT reflects the singularity in CH,
the reverse is also true. Previous experimental SP
specific-heat data, have been analyzed in terms of
mean-field cusps, as theoretically calculated, for ex-
ample, in Ref. 9. Specific-heat experiments on TTF-
AuS4C4(CF3)4 at Leiden, at present in a preliminary

stage, show anomalies which should be analyzed in

terms of (rounded) h. anomalies. Conversely, the
consistency of the form of the CH and XT anomalies
provides a test of experimental data.

V. RELAXATION PHENOMENA

In the preceding we have discussed the expected
properties of Xr(H), XH(T), Mr(H), and MH(T)
and we should now consider which of these quantities
are in fact measured experimentally. Whereas the
magnetization measurements are necessarily isother-

mal (dc), the susceptibility is measured with an ac
technique and the result can yield either XT or X~, or
indeed some intermediate quantity. The decisive fac-
tor in this problem is the ratio of the ac frequency to
the relevant relaxation time. The latter will in gen-
eral depend on both temperature and field, and may
in fact show anomalies at the field-induced transi-
tions. '8 Clearly, the nature of the susceptibility will

be important for the interpretation of the X-contour
plot described above. In the absence of an extensive
frequency study, '6's we resort to a direct test (for a

limited set of experimental conditions). The dc mag-

netization measurements of Fig. 2 are sufficiently de-
tailed to permit a direct evaluation of XT by differen-
tiation of M with respect to H. XT evaluated this way

may then be compared with the observed X„. Alter-

natively, a new set of magnetization isotherms may
be constructed by integrating X„(H). The various
sets of curves may then be examined for consistency
with expected behavior.

Hence, in Fig. 5, we show the X„vs H curve for
T =1.759 K in comparison with the Xr(H) derived
from the M(H) curve at T =1.76 K. The close
agreement between these two curves demonstrates
that for this temperature, X„is in fact the isothermal
susceptibility (Xr). This tells us that the frequency cu

of 1.88 kHz at which the X„measurements were per-
formed, is low with respect to the inverse relaxation
times v in this region, i.e., that the condition
co~ &( 1 obtains. This region is therefore character-
ized by a very short ( &10 ' s) relaxation time, even
when the second-order DU phase boundary is

crossed. This result is unusual in comparison with

observed phenomena in 3D ordered antiferromag-
nets, '8 for which the relaxation time goes through a

pronounced maximum at the second-order boundary
and may reach values of the order of 10 '—1 s. It
may reflect the fact that in the ideal magnetoelastic
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FIG. S. Comparison of field dependence of differential
susceptibility, X„, at 1.759 K with the isothermal susceptibil-

ity, (dMT/dH), obtained by differentiating the static mag-

netization data of 1.76 K.
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SP system, the spins remain paramagnetically disor-
dered in the dimerized phase, i.e., the ordering is
manifested in the conformation of the lattice and not
accompanied by long-range magnetic correlations.

On the other hand, the equivalent comparison X„
at T=1.11 K and Xr derived from M(H) at T =1.10
K, as shown in Fig. 6, presents a strong contrast.
Clearly X„is no longer isothermal when the DI line
is crossed, as well as for a substantial region of
higher field. We make a preliminary observation that
the field region where X„&X~ corresponds roughly
to the estimated field region spanned by the inter-
mediate phase at this temperature. The experimental
limitation in detecting X" signals does not allow us to
establish whether fully adiabatic conditions have been
attained. Nevertheless, it is important to emphasize
here that the most striking feature of this field re-
gion, namely, the DI phase boundary, is unambigu-
ously indicated as an anomaly in both susceptibilities
Xy and X„.

These two comparisons (at 1.76 and 1.1 K) do not
tell us where, i.e., at what temperature, the cross
over from isothermal to nonisothermal behavior in

X„ takes place. Some information on this effect may
be obtained by examining a family of magnetization
curves derived by integrating X„(H). Curves are

available at four temperatures and are shown in Fig.
7, By comparison with the directly measured mag-
netization curves of Fig. 2, we might expect that
these curves should converge to a common line at
the highest fields of these experiments. This condi-
tion is met satisfactorily for T =2.1, 1.759, and 1.50
K, but fails notably for the curve for T =1.250 K.
The "missing magnetization" is attributed to a
failure of the condition X„=X~. The onset of the
inequality X„(X~ must thus occur between 1.5 and
1.250 K. It is particularly tempting to associate it
with the special point T,

' at 1.4 K.
We have already noted that our X-contour plot has

the special feature that the special point (H,",T,") is
an absolute maximum, and further it is observed to
occur at the junction of the three ridges defining the
DU, DI and IU phase boundaries. We deduce that
the onset of the inequality X„(X~ with decreasing T
or increasing H beyond (H,",T,') could explain the
observed decreasing X,„. This feature is of great
utility for a precise determination of the location of
T,
'

(and also H,"). Figure 8 shows a plot of the am-
plitude of the susceptibility peak versus the tempera-
ture along the DUand DI phase boundary lines.
Along the DUline, X,„ increases as Tdecreases, in
agreement with our previous thermodynamic argu-
ments. Along the DI line, however, X,„progres-
sively decreases with decreasing temperature, attri-
butable to an increasingly longer relaxation time
along this boundary. The intersection of the loci of
X,„along the DU and DI lines presumably locates
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FIG. 7. Field dependence of magnetization as derived by
integration of differential susceptibility curves for various
temperatures.
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I I I I I nevertheless, first order, we may'8 well associate with
it a new, rather slow, relaxation mechanism associat-
ed with transfer processes or nucleation effects
between the two coexisting phases. This mechanism
could explain the rather abrupt onset of the condition
X„&Xr and the "missing magnetization" (see Fig.
7) would correspond to the typical magnetization
discontinuity associated with the first-order transi-
tions, which would not be observable in X„. It could
equally well be attributable to a continuing series of
small jumps or discontinuities in magnetization as the
field increases through the intermediate phase region.
Such a phenomenon may be closely related to current
theoretical ideas on multiphase phenomena'4 and
"staircase" phenomena. 9 ""

VI. UNIVERSAL PHASE DIAGRAM

~ Xac (CONST. T)
+ Xsc (CONST, H )

~ XT = dMT/dH

I I I I I I

I.O i.2 i.4 l.6 I.8 2.0
TE MPE RATUR E (K)

FIG. 8, Magnitude of susceptibility peaks, X«, along the
DUand DI phase boundary lines. Also shown are two X«
peak points which agree with X«above T, and depaj. 't below

T,'. The discrepancy leaves questions which are difficult to
resolve owing to the sparseness of X«data.

the onset of X„&Xr and hence locates (H, , T, ) at
T,'= l.4+0.03 K, corresponding to 0,=21.4 +0.2
kOe, in agreement with, but more accurately than,
the determinations from Fig. 3 and 4.

It is often difficult to understand the magnitudes
and microscopic mechanisms of relaxation processes.
The existing literature for ordered as opposed to
paramagnetic systems does not appear to be as well
developed. However, the dramatic change occurring
over a narro~ range of parameters in this experiment
suggests a reasonably simple explanation. Theory
suggests that the DI line is a line of first-order phase
transitions. %'e might therefore expect to see hys-
teresis phenomena in the magnetic measurements.
Such phenomena have, indeed, been observed in the
magnetization measurements on the SP sister com-
pounds TTF-CuS4C4(CF3) 4 (Ref. 13) and MEM-
(TCNQ) 2,

"but not in TTF-AuS4C4(CF3)4, at least
down to —1.1 K [—0.54T,(0)]. If the DI line is,

The precision susceptibility measurements on
TTF-AuC4Sq(CF3) 4, which reveal non-mean-field
characteristics of the SP transitions, have led us to
re-examine previous experimental phase boundary
data on TTF-CuSqC4(CF3)4 (Ref. 13) and MEM-
(TCNQ)2. ' The data, reanalyzed along the lines dis-
cussed in the section on thermodynamics, are plotted
in Fig. 9, along with the new "Au" data, in terms of
reduced variables H/T, (0) and T/'l, (0). The phase
boundaries for "Cu" and "MEM" differ quite con-
siderably (up to a 15'/o maximum) from those previ-
ously published, in consequence of the new criteria
used in defining the transition points. The mutual
and individual consistency of the data on the three
materials is greatly improved. For instance, for
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FIG. 9. Composite normalized phase diagram for TTF-
AuS4C4(CF3)4, TTF-CuS4C4(CF3)4 and {MEM-TCNQ) 2

powders. The normalized scales are H/T, (0) and

T,(H)/T, (0). Where possible, transitions are located by
peak values of (8M/8T)H or (8M/8H) 1. (or Xae) For
normalization, the values chosen for T,(0) are 2.03, 10.3,
and 18,0 K for the compounds as listed. The line designated
(a) represents mean-field estimates for the high-field phase
boundary (for Cu) from data using a 10-MW solenoid
(Hm, „=200kOe). The solid and dashed lines represent
theoretical curves as in Fig. 3.
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MEM-(TCNQ)2 we now deduce T, (H 0) =18 K,
in much better agreement with the heat-capacity
result T,(0) =17.7 K23 than the value of 19 K previ-
ously deduced using the "knee" criterion and the
MH(T) plots. ' Most importantly, one observes that
the three materials now show a universal behavior
for the DU line, which, as discussed in Sec. II for
Au, is in very good agreement with the two major
theories of Bray-Bulaevskii, ' and Cross-Fisher. A
similar conclusion of universality is obtained from
data along the Dl line (but note that the "theoreti-
cal" lines for this boundary are schematic as in Fig.
3). The greatest interest and challenge to current
theory lies in data for the high-field IU phase line. A

reanalysis of the high-field magnetization data on
TTF-CuS4C4(CF3)4 in terms of (imprecisely located)
inflection points in the MH(T) vs H curves for fields

up to 155 kOe yields an IU boundary which is sug-
gestively in agreement with the IU transition data for
the gold member of the family. We note that there is
considerable scatter because only magnetization, not
susceptibility, measurements are available for TTF-
CuS4C4(CF3) 4 at this time. [For MEM-(TCNQ) 2,

only a single high-field data point is at present avail-

able, but that also is not inconsistent, within experi-
mental accuracy, with "gold" and "copper. "] The
curve marked (a) on Fig. 9, for copper, was derived
from high-field data at 10 MW dissipation, using the
"knee criterion. " This criterion essentially locates
the boundary of the susceptibility "shelf" (see Fig. 4).

One feature of the phase behavior of the three
compounds that is definitely nonuniversal is the oc-
currence of hysteresis in the demagnetization curves
for the "Cu" and "MEM" compounds. This hys-

teresis starts in the vicinity of the DI line and extends
well into the new, intermediate phase. The hysteresis
persists all the way up to (H,",T,') for MEM-
(TCNQ)2, up to T/T, (0) =O.S3 for TTF-
CuS4C4(CF3)4 and has not so far been observed in

TTF-AuS4C4(CF3)4 down to a relative temperature
T/T, (0) =0.54, the present experimental low-

temperature limit. Further relaxation studies, as dis-

cussed in Sec. V, may throw light on the nature of
the DI line and the hysteretic phenomenon.

So far we have not discussed the nature of the
high-field intermediate phase. Current theories
predict that the dimerized phase remains stable in

nonzero applied field until the Zeeman energy over-
comes the "pinning" energy associated with lattice
Umklapp effects. At the appropriate critical field,
H,", therefore, the lattice is expected to enter (a) an
incommensurate phase, i.e., such that the periodicity
of the spin configuration bears no relation to the
underlying lattice distortion6 " 9 or, possibly, (b) a se-

quence of higher-order commensurate phases.
These current theories predict a universal character to
the SP phase diagram, i.e., that there should be scal-

ing of the phase diagram with respect to the single

parameter T,(0).
Clearly, the existing experimental data on three

compounds, two with essentially the same lattice
structure, and one [MEM-(TCNQ) 2] with quite dif-
ferent lattice structure, are in rather dramatic agree-
ment with current theories. However, magnetic stud-
ies do not unambiguously determine the microscopic
nature of, say, the high-field phase. Microscopic
probe techniques, e,g. , neutron scattering, are re-
quired. Hence we briefly discuss two additional pos-
sibilities for the phase behavior of SP systems and,
particularly, the nature of the high-field phase. The
current theories so far discussed assume the phase
behavior is completely determined by interchain
spin-phonon interactions, and neglect interchain mag-
netic coupling entirely. In fact, the probable situation
is that in SP systems the nature of the stable phase is
determined by a competition between spin-spin and
spin-phonon types of interaction. It is now known
that for quasi-1D antiferromagnets the ordering tem-
perature (to a 3D ordered spin array) is initially
enhanced by an applied field, whereas for SP sys-
tems the reverse is the case, as we see from Figs. 3
or 9. The possibility therefore exists that at some
nonzero field, the magnetic interchain coupling be-
comes dominant and the high-field intermediate
phase may correspond to 3D AFM ordering. The ap-
preciable hysteresis observed in TTF-CuS4C4(CF3)4
and MEM-(TCNQ)2 is certainly consistent with a
first-order transition between a lattice-dimerized,
spin-disordered phase, and a uniform lattice, spin-
ordered phase. " Further, it is reasonable that the
onset of 3D AFM ordering should occur at 0,' when
the field has overcome the "pinning" or commen-
surability energy of the lattice, at which point the
chains regain a substantial magnetization. Further
experiments are now underway to test the apparent
universality of T,

'
emerging from our current

analysis. Universality of T,
'

is difficult to reconcile
with the occurrence of a 3D ordered magnetic phase.

A very recent approach which takes account of
nonlinear effects is a soliton picture. By analogy
with polyacetylene, where the spatial alternation has
two possibilities for its location and solitons are
domain walls separating the two types of bond alter-
nation configuration, soliton excitations in SP sys-
tems may be regarded as boundaries between regions
where the strong-weak exchange alternation reverses.
More generally, solitons may be pictured as localized
distortions away from the dimerized state. If solitons
are reasonsible for the DI transition and the I phase
constitutes another periodicity (commensurate or in-
commensurate), then the relevant soliton is the tran-
sition region (domain wall) between portions which
have these two periodicities. Using nonlinear solu-
tions within the Cross-Fisher boson-algebra approach,
it is observed that the soliton creation energy de-
creases linearly with applied field. Hence the field at
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which the soliton energy goes to zero marks a transi-
tion from commensurate to incommensurate
phases. 28 This Nakano-Fukuyama theory is therefore
a modification of the basic Cross-Fisher picture. The
soliton picture has its appealing features, but present
calculations give a value of (H,', T,') which is low in

comparison with experiment. However, it cannot be
ruled out by present experiment; and subsequent,
more microscopic techniques such as neutron scatter-
ing, NMR, or EPR experiments, are needed to distin-
guish between various theories.

VII. SUMMARY AND CONCLUSIONS

In this paper we have examined the effect of an

applied magnetic field on the spin-Peierls compound
TTF-AuS4C4(CF3)4, with emphasis on differential
susceptibility in addition to magnetization measure-
ments. Since the susceptibiHty is the derivative (in
field) of the magnetization, it follows that differential
susceptibility studies provide a much more sensitive
probe of magnetic phase behavior than magnetization
studies. The feasibility of accurate susceptibility mea-
surements is greatly enhanced by the much lower
zero-field transition temperature (and corresponding-
ly lower transition fields) of TTF-AuS4C4(CF3)4 ln

comparison with the previously investigated com-
pounds TTF-CuS4C4(CF3) 4 and MEM-(TCNQ) 2.

For these two compounds only magnetization mea-
surements have been possible so far. Our new

higher-sensitivity, measurements demonstrate devia-
tions from mean-field behavior in terms of the form
of critical singularities along the phase boundaries
consistent with the Ginzburg criterion. This is in

contrast with previous measurements on spin-Peierls
systems where such deviations have not been unam-

biguously observed.
Using criteria for the definition of phase transitions

in spin-Peierls systems in accordance with a theory of
transitions more general than mean field, an extend-
ed phase diagram for TTF-AuS4C4(CF3) 4 is obtained.
It is striking that all aspects of this phase diagram,
which includes low-field (dimerized) and high-field
(intermediate) phases are in both qualitative and

reasonable quantitative agreement with current
theories, particularly that of Cross and Fisher, ex-
tended by Cross.

The precision of the differential susceptibility mea-
surements, coupled with the extensive (high density
of) available data points, have permitted us to con-
struct a novel contour plot of susceptibility values in

the H-T plane. This turns out to be a useful tool for
delineating global phase behavior in a complex (e.g. ,
multicritical) system and may well find application in

other systems.
In general, in studies of the ac differential suscepti-

bility, usually carried out at one or more frequencies,
it is important to examine thc role of relaxation ef-

fects on the susceptibility behavior. We have found
that the vicinity of the DU phase boundary is charac-
terized by rather short relaxation times, so that X„is
properly an isothermal susceptibility. On the other
hand, DI transitions to the intermediate phase region
are associated with much longer relaxation times,
suggestive of first-order transitions.

Thc understanding developed from an examination
in detail of the global phase behavior of TTF-
AuSQC4(CF3) 4 has proved fruitful in a reexamination
of previous results in other compounds. This has led
to the development of a composite phase diagram in
(reduced) field-temperature space for three com-
pounds; TTF-CuS4C4(CF3)4 and MEM-(TCNQ)2, in
addition to TTF-AuS4C4(CF3)4. These compounds
belong to very different lattice structures and span a
factor of 10 in zero-field transition temperature. The
results demonstrate a significant degree of universali-
ty not only for thc boundaries of the lower field
dimerized region, and suggest universality also for
the boundary of the intermediate and uniform
phases. This finding legds ~eight to theories of
spin-Peierls phase behavior which ignore spin-spin in-
terchain coupling. Nevertheless, it is important and
interesting to investigate the possibility of spin-spin
(conventional) antlferromagnetlc ordering af. high
fields in these systems. The possibility that a signifi-
cant role is played by solitonic excitations has not yet
been fully investigated theoretically or experimental-
ly. Further, definitive, information is most likely to
come from microscopic probe techniques, such as
neutron scattering experiments, some of which are
presently underway.
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