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Abstract 

Diabetes mellitus is associated with a reduced responsiveness to 

catecholamines. The reduced responsiveness may be attributable to a 

reduction in beta-adrenoceptor sensitivity to catecholamines. 

Radioligand binding studies demonstrate that chemically-induced diabe

tes reduces beta-adrenoceptor number without altering beta

adrenoceptor drug binding affinities. The present study re-examines 

the effect of chronic (10 weeks) streptozotocin-induced diabetes in 

the rat on beta-adrenoceptor drug binding affinity, using phar

macological techniques, to test the results of the binding studies. 

The study employed two different methods: partial irreversible recep

tor blockade and the use of a partial agonist, to determine beta

adrenoceptor agonist binding affinity and the method of competitive 

antagonism to determine beta-adrenoceptor antagonist binding affinity. 

Diabetes produced no significant differences in the dissociation 

constants (l/affinity) for isoproterenol or for metaproterenol and no 

significant differences in the pAz values for timolol maleate which 

correlates to antagonist binding affinity. Therefore, the study con

firms the results of radioligand binding studies by using intact 

tissue that diabetes does not alter beta-adrenoceptor drug binding 

affinity in cardiac tissue. 
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Diabetes mellitus is associated with a higher incidence of mor

bidity and mortality from cardiac disease than is present in the non

diabetic population (Kannel, 1979). The data suggest that diabetes is 

another discrete cause of congestive heart failure and that a car

diomyopathy is associated with diabetes, as a result of small vessel 

disease, metabolic disorders, or both. These disorders produce struc

tural, functional, and biochemical changes in cardiac tissue (Ledet et 

al., 1979). 

Vascular disease associated with diabetes mellitus is well known 

(Colwell~ al., 1979; Zoneraich ~al., 1980). However, diabetes may 

produce a cardiopathy which is independent of vascular abnormalities. 

In some cases, pathological studies of diabetic human hearts revealed 

patent and atherosclerosis-free large coronary arteries (Hamby ~al, 

1974). Autopsies failed to detect significant obstructive disease of 

the proximal arteries in some diabetic patients succumbing to heart 

failure (Regan~ al., 1977). Several experimental studies (Regan~ 

al., 1974; Miller, 1979; Fein~ al., 1980; Penpargkul et al., 1980; 

Vadlamudi et al., 1982) demonstrated impaired muscle function in both 

chronic (greater than two weeks duration) and acute (usually less than 

one week) chemically-induced diabetic rat hearts. Some of these stu

dies, also, suggest that diabetes decreases diastolic ventricular 

compliance and the rate of relaxation (Regan :=..t al., 1974; Miller, 

1979). Streptozotocin-induced diabetes in the rat produces no signifi

cant cardiac macrovascular disease (Chobanian ~al., 1982), but impairs 

cardiac performance (Vadlamudi et al., 1982). These results suggest 

that diabetes produces a direct alteration of the rat myocardium. 
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A possible consequence of diabetic cardiopathy might be the 

appearance of an ~ltered sensitivity to the positive chronotropic and 

positive inotropic effects of catecholamines (Cavaliere et al., 1980). 

Experimental and clinical evidence suggests that diabetes may also 

alter autonomic control of the myocardium. Clinically, diabetic 

patients exhibit a supersensitivity to cholinomimetic agents and to 

catecholamines; the supersensitivity to the former is more pronounced 

than to the latter (Lloyd-Mostyn and Watkins, 1975). However, hearts 

of two week streptozotocin-diabetic rats are subsensitive to both ace

tylcholine and catecholamines (Foy and Lucas, 1978). Diabetic hearts 

are less sensitive than non-diabetic hearts to carbachol 100 days 

after . the induction of diabetes by streptozotocin, but they are super

sensitive to carbachol at 180 days (Vadlamudi and McNeill, 1983). The 

supersensitivity observed both clinically and experimentally may be 

related to the well known autonomic neuropathy associated with chronic 

diabetes in humans (Watkins and Edmonds, 1983) and experimentally 

diabetic rats (Schmidt~ al., 1981). The possible mechanism for 

diabetes-induced cardiac subsensitivity is less clearly defined. 

The effect of diabetes on cardiac responsiveness to catecholami

nes may vary with the severity of the diabetic state, although the 

evidence is not at all clear. In humans, tachycardia is often asso

ciated with chronic diabetes, primarily due to vagal dysfunction 

(Lloyd-Mostyn and Watkins, 1975). In the rat, experimental chronic 

diabetes most often produces bradycardia (Savarese and Berkowitz, 

1980), but acute diabetes has no effect on heart rate. A reduction 
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in beta-adrenoceptor sensitivity to catecholamines can explain the 

lowered heart rate of the diabetic rat. ~-adrenoceptor number or 

density and drug-binding affinity determine beta-adrenoceptor sen

sitivity to catecholamines. Radioligand binding techniques provide a 

method of assessing beta-adrenoceptor density (Bmax) and drug-binding 

affinity. Diabetes produced a 28% decrease in beta-adrenoceptor den

sity accompanied a 24% in heart rate without any alterations in anta

gonist (H3-dihydroalprenolol) binding affinity (Savarese and 

Berkowitz, 1980). 

Ingebretson ~al. (198la), Heyliger~ al.(1982), and 

Ramanadham and Tenner (1983) confirm that diabetes decreased beta

adrenoceptor density without altering antagonist affinity in rat 

hearts. No direct in vitro studies of the positive chronotropic 

responsiveness of diabetic hearts to catecholamines have been per

formed. Diabetes had no effect on competitive [3H]-DHA binding curves 

by isoproterenol in membrane homogenates suggesting that agonist 

binding affinity is unaltered (Williams~ al., 1983). However, no 

studies on beta-adrenoceptor drug-binding affinities of intact tissue 

have been performed. 

Diabetes alters the mechanical function of the heart, as pre

viously indicated, but apparently not the inotropic responsiveness to 

catecholamines. Ingebretson ~al. (198lb) reported that acute 

alloxan diabetes had no effect on the inotropic response of isolated 

rat hearts to isoproterenol. Heyliger ~ al. (1982) report that 

diabetic papillary muscle exhibited a decreased ability to respond to 
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beta-adrenergic stimulation, based upon the rates of tension develop

ment (positive dF/dt) and relaxation (negative dF/dt). In control 

preparations, isoproterenol produced marked increases in both the 

positive dF/dt and negative dF/dt, whereas, in diabetic preparations, 

the positive dF/dt was unresponsive to isoproterenol and the negative 

dF/dt responded only marginally. 

The questions of cardiac beta-adrenoceptor sensitivity in experi

mental diabetes has not been fully resolved. The depressed responses 

of the papillary muscle preparations from diabetic rats discussed 

above may be explained as an alteration in beta-adrenoceptor sen

sitivity. A reduced beta-adrenoceptor sensitivity can also explain 

the bradycardia which accompanies experimental diabetes. As pre

viously shown, diabetes reduces beta-adrenoceptor sensitivity by 

reducing beta-adrenoceptor density. The possibility of reducing beta

adrenoceptor sensitivity by the reduction of agonist binding affinity 

needs to be reexamined. The functional differences between agonist 

and antagonist binding kinetics (Weiland~ al., 1979; 1980) suggest 

that diabetes may alter agonist binding affinity without altering 

antagonist binding affinity. Agonist-induced desensitization of 

beta-adrenoceptors may reduce the apparent agonist binding affinity 

without altering antagonist binding affinity (Tse~ al., 1978; 

Hoffman and Lefkowitz, 1980; Harden, 1983). Response is a function of 

agonist binding, complete assessment of beta-adrenoceptor sensitivity 

requires characterization of agonist binding affinity (Wessels~ al., 

1978). 
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The original hypothesis of the present study stated that diabetes 

reduces agonist affinity for beta-adrenoceptors in the rat heart. 

The recent observations by Williams~ al., 1983) that eight weeks of 

streptozotocin-induced diabetes had no effect on beta-adrenoceptor 

agonist binding lead to a re-evaluation of the hypothesis. The pre

sent study reexamines the recent findings that diabetes does not alter 

beta-adrenoceptor drug-binding affinity using alternative experimental 

techniques. A decrease in beta-adrenoceptor number plays a major role 

in the diabetic subsensitivy to catecholamines and can help to explain 

the bradycardia which accompanies experimental diabetes in the rat; 

however, the possible role of a reduction in agonist affinity remains 

unclear. This study provides a systematic determination of beta

adrenoceptor agonist and antagonist affinities in normal and experi

mentally-diabetic rat atria. The use .of isolated atria allows 

characterization of both the positive ~ronotropic and positive 

inotropic effects of catecholamines. 

Several pharmacological procedures exist for the determination of 

agonist affinity. The availability of the beta-adrenoceptor antago

nist Ro 03-7894 (1-(5-chloroacetylaminobenzfuran-2-yl)-2-isopropyl

aminoethanol), which acts irreversibly and selectively with 

beta-adrenoceptors (Nicholson and Broadley, 1978; Rankin and Broadley, 

1982) allows pharmacological characterization by the method of partial 

irreversible receptor blockade (Furchgott and Bursztyn, 1967). The 

method of partial agonists described by Waud (1969) affords an alter

native technique for the determination of agonist afinity for beta-
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adrenoceptors. Construction of Schild plots, using several 

concentrations of a competitive beta-adrenoceptor antagonist, allows 

calculation of antagonist affinities, expressed as pA2 values. The 

present study statistically compares agonist dissociation constants 

(!/Affinity) or antagonist pA2 (-log KB) values from control and 

diabetic rat atria tests for affinity changes produced by diabetes. 

LITERATURE REVIEW 

Induction of Diabetes 

. 
Alloxan and streptozotocin are the most extensively used agents 

for induction of diabetes because the diabetogenic dose is 1/4 to 1/5 

times the lethal dose (Grodsky ~al., 1982). The dose varies con-

siderably among species and with the age and metabolic state of the 

animal. Both alloxan and streptozotocin produce beta-cell necrosis in 

the rat (Ganda ~al., 1976). Streptozotocin appears to be more 

selective than alloxan (Rerup, 1970); the possible reason for this 

might be the high capacity of beta cells to accumulate this agent 

(Srivasta ~al., 1982). Streptozotocin models are thought to be more 

relevant to the human diabetic state than alloxan models, due to meta-

bolic profiles, enzyme concentrations, and histopathology. Alloxan-

induced diabetes is more ketotic than streptozotocin-induced diabetes 

(Mansford and Opie, 1968). 

Due to its instability, streptozotocin is dissolved in 0.1 M 

citrate buffer, pH 4.5 just prior to injection. Streptozotocin is 
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optimally stable at around pH 4 (Rerup, 1970) and its biological half-

life is about 5 minutes, which necessitates an intravenous injection. 

For induction of diabetes, streptozotocin is conventionally admi-

nistered as a single injection (Like and Rossini, 1976). Maximal ele-

vation of plasma glucose is achieved with 60 mg/kg (Ganda ~al., 

1976), but significant increases in plasma glucose occur with 40 

mg/kg. 

Pharmacological vs. Radioligand Binding Techniques for Assessing 
Receptor Characteristics 

Recent reviews (Furchgott, 1978; Tallarida 1981; 1982) compare 

the strengths and drawbacks of pharmacological and radioligand binding 

procedures. In summary, both procedures estimate drug-binding affini-

ties for a specific receptor and the rate and extent of receptor inac-

tivation by irreversible antagonists. However, only a radioligand 

yields an estimate of receptor number or density (Bmax), whereas, a 

pharmacological procedure permits evaluation of the relative effica-

cies of agonists acting upon a receptor to produce a response. 

Radioligand binding procedures require the demonstration of specific 

binding to tissue sites and no effect is measured. Thus, receptor is 

defined differently in each technique. The pharmacological definition 

of receptor has an "operational" meaning, i.e., drug-binding produces 

an effect; whereas the radioligand binding technique requires 

demonstration of a specific binding site or receptor. Typically, 

pharmacological procedures employ isolated tissue and radioligand 

techniques use membrane fractions. 
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The pA2 and the Schild Plot 

The Schild regression (Arunlakshana and Schild, 1959), theoreti

cally, can yield the binding constant (KB) of a competitive antagonist 

for a drug receptor using pharmacological techniques. The x-intercept 

of the Schild regression (pA2) provides an estimate of the binding 

constant under certain conditions (Furchgott, 1972). The pA2 is 

important in classifying receptors (Kenakin, 1982). The pA2 is 

defined as the negative logarithm of the molar concentration of an 

antagonist which reduces the effect of a dose of agonist by half 

(Tallarida ~al., 1979). Figure a shows a Schild plot constructed 

from cumlative dose-response curves in the presence of various con

centrations of a competitive antagonist (see figure b). 



Figure a: Theoretical Sc hjlJ Plot Depicting the 'pA
2 

Value 

' ~ 
0 

~ 
0 

- log(Antagonist Concentration) 

9 

A theoretical Schild Plot, log (DR-1) versus -log [B], consisting 
of a straight line of slope unity and an x-intercept (-log KB or pA ). 
Several antagonist concentrations [B] yield the points for drawing the 
line. 
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Figure b: Cumulative Dose-Response Curves of a Full Agonist Illustrating 
Competitive Antagonism 

A A 1 A' I 
Agonist Concentration 

As the antagonist concentration [B] increases, the dose-response 
curve shifts to the right. The degree of the shift is indicated by 
the dose ratio (DR) of A'/A. Thus, it takes a higher agonist concen
tration, A', to produce the same effect in the presence of antagonist 
than the concentration A, producing the same effect in the absence of 
antagonist. All curves achieve the same maximum effect, since the 
antagonism is surmountable and the curves should be parallel due to 
the competitiveness of the antagonism. The dose ratios (DR), con
verted to log (DR-1), for each antagonist concentration [B], expressed 
as -log [B] yield points for a Schild plot. 
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Based upon the occupation theory (Furchgott, 1972) stating that 

the effect produced by an agonist depends upon the concentration of 

the agonist-receptor complex, the following equation can be derived: 

[A'] - 1 =fil 
TAJ KB 

or log (DR-1) = - log KB + log [B] 

where DR (dose ratio) is defined as [A']/[A], Bis the antagonist 

concentration and KB is the equilibrium binding constant of the anta-

gonist. 

A plot of log (DR-1) versus the negative logarithm of the antago-

nist concentration (-log [B]) in molar units yields a straight line 

with a slope of 1 (Figure a). The x-intercept yields the pAz values 

or the negative logarithm of the equilibrium binding constant of the 

antagonist. 

Agonist Affinity (l/KA): Method of Partial Irreversible Receptor 
Blockade 

The method of partial irreversible receptor blockade (Furchgott 

and Bursztyn, 1967) avoids the assumption of classical receptor theory 

that the full effect requires full receptor occupancy. The method 

requires an antagonist that combines with the same receptor as the 

agonist. The antagonist, by combining irreversibly and selectively 

with the receptor, reduces the free receptor population. If a suf-

ficient number or receptors become inactivated, then the maximum 

response diminishes, based upon .the occupation theory. 

Figure c illustrates the dose-response curves obtained from an 

idealized experiment using partial irreversible receptor blockade. 
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Partial irreversible receptor blockade displaces the dose response 

curve to the right and reduces the maximum response in a dose

dependent manner. This method requires proper washout of the antago

nist to achieve an equilibrium receptor blockade. 



~ 
Figure c: Equal Response to a Full Agonist in the Absence and Presence 

of Irreversible Receptor Blockade 

E 

Agonist Concentration 

Curve II represents the dose-response curve for agonist after 
washout of the irreversible antagonist. Curve II does not achieve the 
maximum response of curve I (pre-antagonist). The irreversible antagonist 
displaces the dose-response curve to the right. Equiactive effects from 
the linear portion of each line E1 and E4 etc., yield pairs of agonist 
concentrations, (A_ ,A' 1 ), (A7 , A1

2), etc. which produce each effect. 
Plotting the reciptccaI valu~s of each pair of agonist concentration, 
(1/A1,1/A' 1), etc. yields a straight-line. 
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By taking equiactive effects lying on the linear portions of both 

curves (see figure c), one obtains pairs of agonist concentrations 

corresponding to each effect; i.e., (A1, A'1), (Az, A'z), •••• (AN, 

A'N)• Plotting each pair of agonist concentrations, expressed as 

their reciprocals (l/A, l/A'), theoretically yields a straight line 

(figure d). After irreversible inactivation of a fraction of recep

tors, a small fraction (q) of receptors remain active. Also, equal 

effects require the same amount of receptor occupancy (E 2 f(AR)). 

From these conditions, the following equation for the line obtained in 

the double reciprocal plot is derived: 

l/A 2 l/q • l/A + 1-q/q • l/KA 

where KA is the dissociation constant of the agonist. The slope 

of the line is the reciprocal value of the fraction of remaining 

receptors (q). The dissociation constant may be determined by 

subtracting one from the slope and dividing the resulting value by the 

y-intercept (see figure d). 
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Figure d: Double Reciprocal Plot of Equipotent Agonist Concentrations in 
the Absence and Presence of Irreversible Receptor Blockade 

.. 

y-int. =((1-q)/q) (l/K) 
A 

I/A' 

msJ/q 

'Illeoretical double reciprocal plot with slope of 1/q and 
y-intercept of (1-q/q)(l/KA), obtained from partial irreversible receptor 
blockade experiments. It "follows that the KA is slope-1/y-intercept. 
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Agonist Affinity (l/KA): Method of Partial Agonists 

The method of partial agonists (Waud, 1969) makes use of the 

large cardiac spare receptor capacity (Venter, 1979) and the fact that 

partial agonists require greater receptor occupancy than full ago

nists. Irreversible antagonists make full agonists act like partial 

agonists, and thereby allow estimation of the full agonist's receptor 

affinity. Since a larger receptor occupancy is required, a partial 

agonist may or may not elicit the tissue's maximum response. 

In this method, one constructs dose-response curve for a full 

agonist followed by a dose-response curve for the partial agonist, 

after restoration of resting levels. Figure 4 shows the concentration 

of each agonist which produce equal responses yield agonist con

centration pairs, (A1, P1) ••• (AN, PN) with A1 representing the full 

agonist concentration and P1 representing the partial agonist con

centration from only the linear portions of each line (Thron, 1970). 

Plotting the reciprocal values of each agonist pair, (l/A, l/P), 

yields a straight-line (figure f) having the following equation: 

where A and P represents the full agonist and partial agonist 

concentration, respectively. The two terms KA and Kp represent 

equilibrium dissociation constants for the full and partial agonists. 

The value obtained by dividing the slope by the y-intercept yields the 

equilibrium dissociation constant of the partial agonist (Kp): 



slope/y-intercept eA/KA • Kp/ep 

eA I epKA 

after cancelling out like terms. 

17 

Kp 
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Figure e: Equal Response to a Full and Partial Agonist 

E 

A p 
Agonist Concentration 

Curve I represents a dose-response curve to a full agonist. 
Agonist concentrations, A , Ar., etc. produces an effect, E , E etc. 
Partial agonist concentrations, P1 , P2 etc. from curve 111 yi~ld the same 
effects, E1, E2 etc. 'Illus, for egch effect, there exists a pair of agonist 
concentrations which can produce the same effect. 



Figure f: Double Reciprocal Plot of Equipotent Agonist Concentrations Using 
Agonists with Different Efficacies 

1/P 

Equiactive agonist concentrations (Ai, Pi) yield reciprocal pairs 
(l/A1 , l/Pi) which yield the following line; 

l/A • eA/ePKA + eA/KA • ~/ep • l/P 

The quotient obtained by dividing the slope ,by the y-intercept 
yields the partial agonist dissociation constant (KP). 
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MATERIALS AND METHODS 

Animals 

Male Sprague-Dawley rats (7 weeks old) were obtained from Charles 

River Breeding Labs (Wilmington, Mass.). Unless otherwise indicated, 

all animals were supplied with food (Purina Rat Chow) and water ad 

libitum and housed under identical conditions throughout the 10-week 

experimental period. 

Experimental Grouping 

The rats were divided into three main groups, designated control 

(CT), streptozotocin-diabetic (STZ), and food restricted control (FR) • 
. . 

The CT and STZ groups were divided into eight subgroups (1-8) and the 

FR group into two subgroups (7-8) of at least 4 rats each. The food 

restricted rats received two pellets of rat chow daily. Five of the 

subgroups (1-5) were used for the study of competitive beta-

adrenoceptor blockade with each subgroup representing a different con-

centration of timolol maleate. The sixth subgroup (6) was used for 

the study of beta-adrenoceptor activation by the partial agonist, 

metaproterenol. The remaining subgroups (7-8) were used to study the 

effect of the irreversible beta-adrenoceptor antagonist, Ro 03-7894. 

The number of rats within each subgroup are shown in Table 1. 



Table 1. Experimental Grouping of Rats 

Timolol Maleate Concentration(M) Partial Agonist Irreversible Antagonist 

10-9 10-8.S 10-8 10
-7.S __ 

MetaEr.oterenol As.corbate Ro 03-7894 
Group '-- SubgrouE 1 2 3 4 s 6 7 8 

(CT) 6 6 6 4 6 6 4 5 

(STZ) 4 4 6 4 6 4 6 4 

(FR) - - - - - - 4 4 

This, table shows the grouping and number of rats used in the study of beta-adrenoceptors. 
CT = Age-matched controls fed ad libitum; STZ = streptozotocin-induced diabetic animals; FR 
age-matched food restricted controls fed 40 grams of rat chow daily. Subgroups 1-4 represent 
timolol concentrations used in the study of reversible antagonism. Subgroup S was used as con
trols for both the reversible antagonism and partial agonist study. The partial agonist, 
metaproterenol, was used with animals in subgroup 6. The remaining subgroups (7-8) were used 
for the study of irreversible antagonism, ascorbate control and Ro 03-7894. 

N ..... 
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Induction of Diabetes 

Diabetes was induced in rats with a single intravenous injection 

of streptozotocin or STZ (40 mg/kg) into a tail vein (Rerup, 1970; 

Like and Rossini, 1976; Ganda ~al, 1976). The STZ was prepared in 

0.1 M citrate buffer, pH 4.5 (40 mg/ml) immediately before injection. 

About 75% of the animals injected with STZ became diabetic and exhi

bited glycosuria. Animals which were injected with STZ, but did not 

subsequently become diabetic, were omitted from the study. Age

matched controls were injected with the citrate vehicle. Four to seven 

days after injection, weekly metabolism and blood pressure recordings 

were initiated. Ten weeks after injection, the animals were sacri

ficed. 

Metabolism Studies 

Beginning one week prior to injection, all rats were placed 

singly into metabolism cages once a week for a period of 24 hours. 

The following measurements were recorded: urine output, the extent of 

glycosuria using enzymatic test strips (Tes-Tape®, Lilly) body weight, 

and food and water consumption. 

Indirect Blood Pressure and Pulse Rate Measurement 

Beginning two weeks prior to injection, systolic blood pressure 

and pulse rates were measured weekly using an indirect tail-cuff 

method. The measurements were made after warming the rat at 34°C for 

20 minutes in a temperature-controlled box. An inflatable cuff was 

placed around the base and a small bulb was placed on the distal por

tion of the tail. The bulb was attached to a pneumatic pulse trans-
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ducer (MK III) which was coupled to an electrosphygmograph coupler 

(Narco 7211) and an E & M type 4 physiograph. Systolic arterial 

pressure was obtained by inflating the tail cuff at pressures 

exceeding 180 mm Hg, then noting the point at which the pulsations 

reappeared during slow pressure reduction. Pulse rates were recorded 

simultaneously by determining the number of pulses per centimeter at a 

set paper speed on the physiograph. The mean of at least three 

measurements was recorded for each animal. The pressure was 

calibrated at frequent intervals using a mercury column manometer. 

Isolated Atria 

Ten weeks after injection, the rats were killed by a blow to the 

head. The chest cavity was opened and the heart was rapidly removed 

and placed in oxygenated buffer at ·room temperature. A blood sa~ple 

was taken from the chest cavity for analysis of serum thyroxine and 

glucose. The blood sample was frozen in liquid nitrogen for later 

analysis. The left and right atria were surgically removed from the 

ventricles. The right atria were tied to tissue hangers by cotton 

thread and the left atria were clamped to stimulating electrodes. 

Both atria were vertically suspended in a 100 ml organ bath containing 

Krebs-Henseleit buffer (composition in llii: NaCl, 120; KCl, 5.6; 

CaCl2·6H20, 2.4; NaH2P04, 1.21; MgS04•7H20, 1.33; Na2EDTA, 0.20; 

NaHC03, 25; and glucose, 10) gassed with 5% C02 in oxygen at 37°C. 

The atria were connected by cotton thread to a tension transducer; 

Narco type A (0.1 - 3 gram sensitivity), and Narco type B (0.1 - 10 

gram sensitivity) for right and left atria, respectively. The 
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resulting tensions were recorded on an E & M type six physiograph. 

Initial diastolic resting tensions of 0.8 and 0.5 grams were applied 

to the left and the right atria, respectively. Resting tensions were 

determined from preliminary length-tension determinations. The left 

atria were driven at 2 HZ with square wave pulses (5 msec) at 1.5 

times the threshold voltage by a Narco stimulator and the right atria 

were allowed to beat spontaneously. Tension (g) and rate (bpm) 

changes were measured from the left and right atria, respectively. 

Serum Analysis 

Blood samples were thawed at room temperature and were allowed to 

clot. The clot was sedimented by centrifugation at 5000 g for 5 minu

tes at 4°C. The supernatant (serum) was decanted for analysis of 

thyroxine and glucose. Hypothyroidism often accompanies the diabetic 

state. An AmerlexN T-4 RIA kit was used to determine serum thyroxine 

levels; the kit has a total range of 0 to 25 ug thyroxine/100 ml. 

Serum was deproteinized with equinormal amounts of barium hydroxide 

and zinc sulfate solutions prior to glucose determination. The solu

tion fraction was obtained by centrifugation at 5000 g for 10 minutes 

and used for analysis of glucose. Glucose was determined enzymati

cally with glucose oxidase and peroxidase (Sigma Kit No. 510). Serum 

glucose was used to estimate the degree of the diabetic state. 

Drug Addition 

Left and right atria from non-diabetic (CT) and diabetic (STZ) 

rats were allowed to stabilize for thirty minutes with frequent buffe! 

changes. The following protocol of drug administration was employed. 
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Three cumulative dose-response curves were generated consecutively per 

atrium. Each curve was obtained by adding dl-isoproterenol directly 

to the buffer, yielding concentrations ranging from lo-10 to lo-6 M, 

in O.S log molar increments (Van Rossum, 1963). The response to each 

concentration of isoproterenol was allowed to stabilize prior to the 

addition of the succeeding concentration (this stabilization period 

never exceeded 60 seconds). After the maximum responses were obained, 

the atria were washed with drug-free buffer solution, at S minute 

intervals for at least 30 minutes, to restore the tension or rate to 

resting levels prior to the generation of the subsequent curve. When 

appropriate, the third curve was generated using the partial beta

adrenoceptor agonist dl-metaproterenol, at concentrations between lo-8 

and lo-4 M, instead of dl-isoproterenol. Only the results of the 

second and third curves were utilized, because previous studies have 

shown that the slope of the first dose-response curve is different 

from those of subsequent curves, and that the slopes of subsequent 

curves are similar (Broadley and Lumley, 1977). 

Antagonist drugs, when necessary, were added to the buffer prior 

to generating the third dose-response curve. timolol maleate was 

added 40 minutes before, and was presenc throughout the generation of 

the third dose-response curve. Ro 03-7894 (3.2 x lo-4M) was added to 

the bath for 30 minutes, then washed out with drug-free buffer for 

four hours, prior to the generation of the third dose-response curve. 

Parallel controls were exposed to an equivalent volume of the solution 

used to dissolve the antagonist, but were otherwise treated iden-
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tically. Stock solutions of isoproterenol, metaproterenol, and timo-

lol maleate were dissolved in 0.1 N HCl, and Ro 03-7894 in ascorbic 

acid solution (1 mg/ml). All drug dilutions were prepared fresh 

daily, and kept on ice. 

Resources 

Drugs: Timolol Maleate from Merck, Sharpe & Dohme 
Ro 03-7894 from Roche Products, Ltd. 
dl-Isoproterenol from Sigma Chemical Co. 
dl-Metaproterenol from Boehringer Ingelheim 
Streptozotocin from Sigma Chemical Co. 

Instruments: E & M Type Six Physiograph 
Narco Type A Tension Transducer 
Narco Type B Tension Transducer 
Narco Stimulator 

Serum 
Analysis Kits: 

Thermomix Circulation Pump and Heater 
E & M (MK III) Pneumatic Pulse Transducer 
Narco (7211) Electrosphygmyograph Coupler 
E & M Type Four Physiograph 

Serum Glucose 510 from Sigma Chemical Co. 
Amerlex T-4 RIA Kit from Amersham Corp. 

DATA ANALYSIS 

Plotting Dose-Response Curves 

Responses were measured as the total rate or contraction fre-

quency (bpm) and total developed tension (g) of the right and left 

atria, respectively, at each agonist concentration. Possible changes 

in the sensitivity of right or left atria to the agonist between the 

second and third curves which might occur in the absence of antagonist 

drugs were accounted for using parallel control atria which were not 

treated with the antagonist (Broadley and Nicholson, 1979). Mean 



.. 

27 

responses of untreated atria to each agonist concentration during the 

generation of the third dose-response curve were expressed as a f rac-

tion of the mean responses to the equivalent agonist concentration 

occurring during the generation of the second dose-response curve. 

These fractions were then applied as correction factors for antagonist 

treated atria. The response to each agonist concentration during the 

second dose-response curve was multipled by the appropriate correction 

factor, to yield a corrected dose-response curve. The effect of the 

antagonist on the third curve was then determined by comparison with 

the corrected second curve. 

The responses were standardized to a percentage maximum response 

scale. Increases in rate or tension above the resting levels were 

expressed as a percentage of the maximum increase. This was calcu-

lated by dividing the individual increase in rate or · tension by the 

maximum rate or tension increase and multiplying the resulting 

quotient by roo%. 

Estimations of agonist potency (EC50 values) were calculated as 

the negative log of the agonist concentration which produced half the 

maximum response. Arithmetic mean values of the EC50 are not normally 

distributed (Fleming et al., 1972), but the logarithmic values are. 

Therefore, pD2 values (-log EC50) were compared by the student's t-

test for normal and diabetic atria. 

Calculation of Antagonist Affinity by Using a Competitive Beta
Adrenoceptor Antagonist: 

pA2 values for the antagonism of isoproterenol-induced positive 
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inotropic and positive chronotropic response by timolol maleate in 

non-diabetic (CT) and diabetic (STZ) rat .atria were calculated by the 

method of Arunlakshana and Schild (1959). Dose-response curves were 

obtained before and in the presence of one of four timolol mealeate 

concentrations (10-9, 10-8.5, 10-8, and 10-7.5M). Uncorrected respon

ses, measured as the increase in tension or rate above resting levels 

at each isoproterenol concentration, were expressed as a percentage of 

their own maximum increase for both the second and third curves. The 

EC50 of each individual curve was then determined. 

As described above, sensitivity changes not due to the antagonist 

were corrected for by comparing the results obtained from control 

experiments receiving no antagonist. Any shift between the second and 

third curve was expressed as a mean (n=6) correction factor (CF = L 

(EC50, curve 3/EC50, curve z)ln. The individual EC50 values of the 

second curves were corrected by multiplication by the mean correction 

factor to yield a corrected EC50 value. The corrected EC50 values 

were used to obtain individual dose ratios (DR = EC50,curve 3/ 

corrected EC50,curvez). Each dose ratio was converted to log (DR-1) 

values. The mean log (DR-1) values (± S.E) were plotted against the 

negative log molar concentration of timolol maleate (-lOg B) for both 

rate and tension responses. Individual log (DR-1) and -log B points 

were used to calculate a regression line (least squares analysis). 

The values of slope, y-intercept, and x-intercept (pAz), with 95% con

fidence limits were calculated (Tallarida, 1979). The pAz values for 

both non-diabetic and diabetic rats were compared using an unpaired 
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Estimation of AgOnist Affinity Using a Partial Beta-Adrenoceptor 
Agonist: 
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Dissociation constants (Kp) for metaproterenol were calculated 

for control (CT) and diabetic (STZ) rat atria by the method of partial 

agonists described by Waud (1969). The atria were exposed to cumula-

tive concentrations of isoproterenol twice with a washing in drug-free 

buffer after each exposure to yield two dose-response curves. A third 

dose-response curve was constructed using cumulative concentrations of 

metaproterenol. The second dose-response curve was corrected as 

described earlier (see "plotting dose-response curve"). The increases 

in rate or tension in response to each isoproterenol concentration 

were plotted as a percentage of the maximum increase. The increases 

in rate or tension in response to each metaproterenol concentration 

were plotted as a percentage of the maximum possible increase, which 

was calculated by subtracting the resting level prior to the third 

dose-response curve from the corrected second dose-response curve 

maximum total rate or tension. 

Equiactive concentrations of isoproterenol (A) and metaproterenol 

(P) obtained from the linear portion (Thron, ·1970) of each curve were 

determined. The reciprocal values for each atrium were plotted as 

1/A versus l/p to yield the following line: 

1/ A .. eA • i • l/p + eA 1 

where eA and ep correspond to relative efficacy values for 
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isoproterenol and metaproterenol, respectively. 

The dissociation constant (Kp) for metaproterenol equals the 

slope divided by the intercept, which are obtained from linear 

regression analysis. Dissociation constants for diabetic and normal 

atria were compared to an unpaired Student's t-test. 

Estimation of Agonist Affinity Using An Irreversible Beta-Adrenoceptor 
Antagonist: 

Dissociation constants (KA) for isoproterenol were calculated for 

normal (CT), diabetic (STZ) and food restricted (FR) rat atria by the 

method of irreversible antagonism derived by Furchgott and Bursztyn 

(1967). Individual pre- (2nd curve) and post-antagonist (3rd curve) 

dose-response curves were plotted as described earlier (see "plotting 

dose-response curves") for total responses. The increase in rate and 

tension above the resting levels prior to each dose-response curve 

were plotted as a percentage of the corrected second curve maximum 

increase (the maximum possible increase). This method avoids possible 

misinterpretation arising from any change in the resting levels 

induced by the antagonist. 

Equiactive molar concentrations of isoproterenol obtained before 

[A] and after washout of antagonist [A'] were determined from the 

linear portion of the plot of % corrected second curve maximum 

response versus the negative log concentration (M) of isoproterenol. 

The mean reciprocal(± S.E.) values were plotted as l/A versus 1/A'. 

The following equation was used to determine dissociation constants: 



1 I A = .!..:.9.. • 1 
q KA 

+ 1 
q 
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l/A' 

where q is the fraction of remaining receptors unoccupied by Ro 

03-7894. 

Using linear regression analysis, the mean dissociation constants 

(KA) and fraction of active receptors remaining (q) with 95% con-

fidence limits were calculated as follows: 

KA ,,.. [Slope- I) 
intercept 

, q .. __ l_ 
slope 

Because constants for normal, diabetic, and food restricted rat 

atria were compared using one way analysis of variance (Daniel, 1978). 
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RESULTS 

The Streptozotocin Diabetic Model* 

Differences between streptozotocin-induced diabetic food-

restricted, and control animals are shown in Table 2. The STZ-induced 

diabetic rats exhibited reduced body weight, as did the food-

restricted rats though to a lesser extent, when compared to age-

matched control rats. Polyuria, hyperglycemia, and glycosuria 

accompanied the diabetic state, as well as, polydipsia and polyphagia 

(data not shown). The diabetic state significantly lowered serum 

thyroxine levels compared to the food-restricted group. Normal 

thyroxine levels range from 3-4 ug/dl (Fein~ al., 1980). Diabetes 

produced a slight hypertension and bradycardia. There were no signi-

ficant differences between the potencies (pD2 values) for isoprotere-

nol from control, food-restricted, and diabetic atria. 

Figures 1-3 depict results from weekly monitoring of heart rate, 

blood pressure, and body weight following the injection of strep-

tozotocin or citrate vehicle. Diabete~ produces significant changes 

in all three (bradycardia, hypertension, and reduced body weight) 

within three weeks after injection of streptozotocin and these changes 

persist throughout the ten week experimental period. 

* "Diabetes" will be used to describe the diabetic condition 
induced by streptozotocin injection, with the implicit recognition 
that chemically induced diabetes may differ in some respects from the 
true diabetic state. 
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Table 2: Characteristics of Diabetic and Control Groups 

CT STZ FR 

BW 526 ± 16 413 ± 10* 464 ± 10* 
(n=43) (n=37) (n=9) 

Glu 239 ± 14 651 ± 37* 279 ± 48* 
(n=20) (n=21) (n=5) 

T-4 1.22 ± 0.11** 2.41 ± 0.47 
(n=38) (n=8) 

Urine 0.03 ± 0.01 o.53 ± 0.05* 0.05 ± 0.01 
(n=-23) (n=12) (n=9) 

Urine Glu 0 2 +* 0 
(n=23) (n=12) (n=9) 

BP 136 ± 3 148 ± 2* 
(n=23) (n=12) 

HR 376 ± 9 327 ± 11* 
(n=23) (n=12) 

RA 8.37 ± 0.92 8.28 ± 0.58 8.37 ± 0.26 
pD2 (n=43) (n=-37) (n=9) 

Iso LA 8.51 ± 0.53 8.62 ± 0.44 8.15 ± 0.22 
(n=43) (n=37) (n=9) 

Values represent mean ± 95% confidence intervals. Numbers in parentheses 
represent the sample size. Asterisk (*) means that the value is signi
ficantly different (P (0.05) than the control value; the double 
asterisks means that the value is significantly different than the food 
restricted value. 

Abbreviations 
CT = Age-matched controls fed ad libitum; STZ = Streptozotocin-induced 

diabetes, 10 weeks after the induction of diabetes; FR = Age-matched 
controls on a food-restricted diet; BW = Body weight (grams; Glu = Serum 
glucose levels (mg/ml); T-4 = Serum thyroxine levels (µg/dl); 
Urine =Urine output (ml/g BW); Urine Glu =Urine glucose levels (%); 
BP = Systolic blood pressure (mm Hg); HR= Heart rate (beats per 
minute); pD2 =-log EC50 of the molar concentration of isoproterenol 
producing half the maximal response; RA = Right atria; LA = Left atria. 
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Figure 1: Effect of SI'Z-Induced Diabetes on Heart Rate 

2 3 5 6 7 8 
Time(weeks) after streptozotocin or citrate injection 

Heart rates (± S.E.M.) taken weekly during the 10 week 
experimental period from control ( e ) and diabetic ( • ) rats. A typical 
age-dependent bradycardia developnent occurs in both groups with the diabetic 
rats showing significant reductions within three weeks after injection of 
streptozotocin. Asterisks represents significant differences from control 
at P ~ 0.05. Nunbers in parentheses represent sample size. Time (weeks) 
after streptozotocin or citrate vehicle lies on the abscissa. Heart rate 
expressed as beats per minute (bpn) is shown on the ordinate. 
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Figure 2: Effect of srz-Induced Diabetes on Systolic Blood Pressure 

2 3 4 s 6 7 8 
Time(weeks) after streptozotocin or c itrate injection 

'Ihe mean systolic blood pressure (± S.E.M) taken 
weekly during the JO week experimental period from control( ~ ) and 
diabetic ( II ) rat. A typical age-dependent elevation in blood 
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pressure occurs in both groups with the diabetic rats showing significant 
elevations above control within two weeks after the injection of streptozo
tocin. Asterisks represent significant differences from control at P < 0.05. 
Numbers i« parentheses represent sample size. Time (weeks) after strep
tozotocin or citrate vehicle injection lies on the abscissa. Systolic 
blood pressure (lllTI Hg) is shown on the ordinate. 

9 
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Figure 3: Effect of STZ-lnduced Diabetes and of Food Restriction on Body Weight 

BOdy weight (± S.E.M.) taken weekly for twelve 
weeks. Auin~ls received streptozotocin (STZ) or citrate vehicle (CIT) 
during the second week. Initiation of the food restriction regimen 
occurred during the second week. Asterisks represent significant dif
ferences from control at P < O.OS. Numbers in parentheses represent 
sample size. Time (weeks) Ties on the abscissa. Body weight (grams) 
is shown on the ordinate. • = control; 8 = diabetic; .A. = food 
restriction. 
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Competitive Antagonism of the Responses to Isoproterenol by Timolol 
Maleate 

Figures 4 a-d depict the mean rate and tension dose-response cur-

ves to isoproterenol in the presence of increasing concentrations of 

timolol maleate. Increasing concentrations of timolol maleate (10-9, 

10-8.5, lo-8, and 10-7.5 M) displaced the cumulative dose-response 

curves (control and diabetic) to isoproterenol to the right in 

parallel fashion without significantly (P ~ 0.05) depressing the 

maximum response. Diabetic right atria (figure 4c) had lower resting 

rates (P ~ 0.001) than control right atria (figure 4a), but the maxi-

mum rates were not different. Diabetes did not significantly affect 

the resting or maximum developed tension of left atria (figures 4b and 

d). Figures 5 a-d show the mean increase in rate and tension above 

resting levels, expressed as a percentage of the maximum possible 

increase (determined by subtracting the resting level from the maximum 

response obtained during the pre-antagonist dose-response curve), for 

control and diabetic atria. The dose-response curves for isoprotere-

nol exhibit parallel shifts to the right of the curve generated in the 

absence of timolol maleate in a timolol maleate concentration-

dependent manner. 

Figures 6a and b depict Schild plots constructed from the mean 

log (DR-1) values shown in Table 9 (see appendix) for right and left 

atria, respectively. Regression analysis of the individual log (DR-1) 

values for the appropriate timolol maleate concentration yields the 

pAz value and slope for each line. Table 3 shows the mean pAz values 
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(± 95% confidence interval) and slopes (± 95% confidence interval) 

for each Schild plot shown in figures 6a and b. Diabetes had no 

effect on either the slope of the Schild plot or the estimate of anta

gonist binding affinity (pAz) in either right or left atria. The slo~ 

pes of the individual Schild plots do not vary significantly from 

unity. 
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Figure 4 a-d: Effect of Tirnolol Maleate on the Absolute Response of Non
Diabetic and Diabetic Rat Atria to Isoproterenol 
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Figure 4 a-d: Effect of Timolol Maleate on the Absolute Response of 
Non-Diabetic and Diabetic Rat Atria to Isoproterenol 

41 

Mean cumulative dose-response curves (± S.E.M.) to dl-isopro
terenol in the presence of various concentrations of timolol maleate 
from control (a and b) and diabetic (c and d) rat atria. The curves 
represent the mean rate (± E.E.M.) and tension (± S.E.M.) response at 
each isoproterenol concentration. The mean diabetic resting rate (c) 
is significantly (P <0.001) lower than the mean control resting rate 
(a). A thirty minute incubation period without or with timolol 
maleate preceded the generation of each curve. The concentrations of 
timolol maleate: (•) no timolol maleate present, (o) lo-9 M, (•) 
10-8.S M, ( D ) lo-8 M, and (A) lo-7 .S M. Numbers in parentheses 
represent the sample size • 

. . 

Figure 5 a-d: Effect of Timolol Maleate on the Relative Response of 
Non-Diabetic and Diabetic Rat Atria to Isoproterenol 

Mean cumulative dose-response curves (± S.E.M.) to dl-isopro
terenol in the presence of various concentrations of timolol maleate 
from control (a and b) and diabetic (c and d) rat atria. The curves 
represent the mean increase in rate (a and c) and tension (b and d) 
above the resting levels plotted as a percentage of the maximum 
increase for each isoproterenol concentration. Increasing timolol 
maleate concentrations shift the dose-response curve to isoproterenol 
further to the right without depressing the maximum response. The 
concentrations of timolol maleate are: (•) no timolol maleate pre
sent, (o) 10-9 M, (•) lo-8.S M, (D) lo-8 M, and(&) lo-7.S M. 
Numbers in parentheses represent the sample size. 
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Figure 5 a-d: Effect of Timolol Maleate on the Re'lative Response of 
Non-Diabetic and Diabetic Rat Atria to Isoproterenol 
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Effect of Diabetes on the Schild Plots of Rat Atrial Responses to 
Isoproterenol in the Presence of Various Concentrations of 
Timolol Maleate 

J 
Right Atria 

I 
(n a 18 

9.0 · 8.s a.o 1.s 

- log(Timolol Maleate) (M.) 
Schild plots from control ( e ) and diabetic( • ) rat atria, obtained 

by plotting the mean log(DR-1) values (± S. E.M. ) from tables 3a and 3b versus 
the negative logarithm of the timolol maleate concentration(M). Figure 6a 
represents the right atria and figure 6b represents the left atria. Re
gression analysis of the Schild plots is depicted in table 4. Numbers in 
parentheses represen t the sample size . 
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Figure 6 a-~ Effect of Diabetes on the Schild Plots of Rat Atrial Responses t.o 
I~oproterenol in the Presence of Various Concentrations of 
TllllOlol Maleate 
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Schild plots from control ( e ) and diabetic ( • ) rat atria, obtained 
by plotting the mean log(DR-1) values (± S.E.M.) from tables 3a and Jb versus 
the negative logarithm of the timolol maleate concentration(M). Figure 6a 
represents the right atria and figure 6b represents the left atria. Re
gression analysis of the Schild plots is depicted in table 4. Numbers in 
rxH·entheses represent the sample size . 
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Table 3: Schild Plot Analys i s 

Right Atria Left Atria 

pA2 m a_ m 

CT (n=22) 9.13 ± 0.09 1.16 ± 0.18 8 .9S ± 0.03 1.18 ± 0 .2S 
STZ (n=l8) 8.98 ± 0.12 0.94 ± 0.21 9 .14 ± 0.21 1.02 ± 0.40 

Mean pA2 values (± 9S% confidence interval) of right and left 
atria from control and diabetic rat atria. No significant differences 
(P > O.OS) exist between the pA2 values from control and diabetic 
atria. The mean slopes (± 9S% confidence interval) do not differ from 
unity. The number in parentheses represent the sample size. 

Irreversible Antagonism of the Responses to Isoproterenol by 
Ro 03-7894 

.. 
Ro 03-7894 (3.24 x lo-4 M) is used as an irreversible beta-

adrenoceptor antagonist, and displaces the dose-response curves to 

isoproterenol to the right and reduces the maximum response (Nicholson 

and Broadley, 1977). Figures 7 a-f depict the mean dose-response cur-

ves, expressed as a percentage of the maximum possible increase, for 

rate (a,c,e) and tension (b,d,f) from control (a and b), food 

restricted (c and d), and diabetic (e and f) atria. Ro 03-7894 signi-

ficantly reduced the resting rates and tensions (P ,S. O.OS) and reduced 

the maximum rate and tension responses of rat atria to isoproterenol 

(Table 4). Neither diabetes nor food restriction significantly 

altered the effects of Ro 03-7894 rat atrial dissociation constants 

for isoproterenol (Table 4). Therefore, neither diabetes nor food 

restriction alters beta-adrenoceptor agonist binding affinity. The 

fraction of unoccupied receptors (q) were not significantly different 

(P > O.OS) between experimental groups, but exhibited a high degree of 

variability (Table 4). 
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Table 4: Antagonism by Ro 03-7894 and the Effect of Diabetes on the 
Dissociation Constants for Isoproterenol 

Group % Max KA (nM) .9.. 

Ri~ht Atria 
CT (n=6) 60.8 ± 5.0 18.2 ± 15.4 .095 ± .030 
STZ (n=4) 67.5 ± 7.6 15.3 ± 7.8 .114 ± .051 
FR (n=4) 56.0 ± 5.5 17.3 ± 5.4 .021 ± .004 

Left Atria 
CT (n=6) 33.8 ± 7.4 16.9 ± 5.3 .057 ± .026 
STZ (n=4) 70.5 ± 12.0 26.8 ± 12.2 .202 ± .090 
FR (n=4) 40.0 ± 4.0 10.7 ± 3.5 .117 ± .023 

Mean dissociation constants (± S.E.M.) for isoproterenol of car
diac beta-adrenoceptors. No significant differences (P >0.05) exist 
between dissociation constants from control, food-restricted, and 
diabetic atria. The fraction of unoccupied receptors (q) within 
experimental groups are not significantly different (P >0.05). The 
post-antagonist maximum responses (% max) are significantly (P (0.05) 
reduced from the maximum possible response. Numbers in parentheses 
represent sample size. 



a . 

b. 
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Figure 7 a-f: Effect of Ro 03-7894 on the Relative Response of Non-Diabetic, 
Food Restricted, and Diabetic Rat Atria to Isoproterenol. 
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Figure 7 a-f: Effect of Ro 03-7894 on the Relative Response of 
Non-Diabetic, Food-Restricted, and Diabetic Rat Atria 
to Isoproterenol 

Mean dose-response curves (± S.E.M.) to isoproterenol in the 
absence (solid points) and presence (open points) of 3.24 x io-4 M 
Ro 03-7894, after a 30 minute incubation period followed by a 4 hour 
washout period. The presence of Ro 03-7894 displaces the dose
response curve to the right and reduces the maximum response. Figures 
a,c,e, represent the positive chronotropic response and figures b,d,f 
represent the positive inotropic response to isoproterenol. Pre
antagonist curves were corrected from controls as described in text. 
• = control animals, • = diabetic animals, & = food-restricted ani
mals. Numbers in parentheses represent the sample size. 
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Diabetic and Non-Diabetic Atrial Responsiveness to Isoproterenol and 
to Metaproterenol 

Metaproterenol produces parallel dose-response curves shifted to 

the right of dose-response curves produced with isoproterenol. 

Figures 8 a-d depict the mean dose-response curves obtained with 

isoproterenol and then with metaproterenol producing the same maximum 

response (Pi 0.05), but requiring higher concentrations to produce 

the maximum response. 



Figure 8 a-d : Relative Response of Non-Diabetic and Diabetic Rat 
Atria to a Full (Isoproterenol) and Partial 
(Metaproterenol) Agonist. 
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Mean cumulative dose-response curves (± S.E.M.) to isoproterenol 
(solid symbols) and metaproterenol (open symbols) from control (a and 
b) and diabetic (c and d) atria. The lines represent the mean 
increase in rate (a and c) and tension (band d), plotted as a percen
tage of the maximum possible increase. The mean resting levels are 
the same (P > 0.05) for the isoproterenol and metaproterenol. No 
significant reduction (P > 0.05) in the maximum responses occur when 
metaproterenol is the agonist. Table 6 contains the EC50 value for 
each curve. Numbers in parentheses denote sample size • 

. . 
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The mean EC50 values of isoproterenol and metaproterenol for left 

and right atria are compared in Table 5. The EC50 values of metapro-

terenol are one hundred-fold higher than those of isoproterenol. 

Table 5: Comparison of Agonist Potencies (EC50 Values) between 
Isoproterenol and Metaproterenol for the Positive 
Chronotropic and Positive Inotropic Response for Non
Diabetic and Diabetic Rat Atria 

Right Atria 

Iso2roterenol Meta2roterenol 

CT ~n=S~ (3.37 ± 0.6l)x10-§ (2.72 ± o.06)x10-j 
STZ n•4 3.77 ± 0.10 x10- 2.70 ± a.so x10-

Left Atria 

Isoproterenol Metaproterenol 

CT ~n=S~ [3.25 ± o.s11x10-§ [4.36 ± 0.43]x10-7 
STZ n•4 8.20 ± 1.21 x10- [S.33 ± l.OO]xl0-7 

Mean EC50 values (± S.E.M.) of isoproterenol and metaproterenol, 
obtained from control and diabetic atria. Isoproterenol is about one 
hundred times more potent than metaproterenol. EC50 values from 
diabetic atria do not differ significantly (P > 0.05) from control 
atria. Numbers in parentheses denote sample size. 

Individual experiments yielded pairs of agonist concentrations 

which produce the same rate or tension response. Plotting the 

reciprocals of each pair as l/[isoproterenol] versus 

l/[metaproterenol] for each experiment yields straight-lines. 

Regression analysis of these lines provides values for the slope, y-

intercept, and correlation coefficient. The quotient of the slope 

divided by the y-intercept equals the dissociation constant for 

metaproterenol. Table 6 contains dissociation constants for metapro-

terenol from control and diabetic atria. No significant differences 
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(P > 0.05) were observed between control and diabetic atria. Diabetes 

does not alter metaproterenol binding affinity. 



Table 6: Effect of Diabetes on the Dissociation Constants for 
Metaproterenol 

IC (µM) -11eta 

Right Atria Left Atria 

CT (n=5) 5.06 ± 3.24 0.50 ± 0.14 

STZ (n=4) 5.20 ± 2.55 1.55 ± 1.49 

58 

Mean dissociation constants (± S.E.M.) for metaproterenol binding 
to beta-adrenoceptors from control and diabetic atria. No significant 
differences (P >0.05) exist between dissociation constants from right 
or left atria. Numbers in parentheses denote sample size. 
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DISCUSSION 

The results of the present study did not support the original 

hypothesis that diabetes reduces beta-adrenoceptor agonist binding 

affinity in rat atria. These findings are in agreement with radioli

gand binding studies recently reported by Ingebretson ~al. (1983) 

and Williams~ al. (1983), showing that neither acute nor chronic 

diabetes affected cardiac beta-adrenoceptor binding curves. 

STZ-induced diabetes did not alter the estimated dissociation 

constants for isoproterenol or metaproterenol in the present study. 

The values for the dissociation constants for isoproterenol obtained 

in the present study agree closely with those reported for guinea pig 

atria (Table 7) and those of Williams~ al. (1983), using control 

(51 ± 15 nM), food restricted (70 ± 11 nM), and STZ-induced diabetic 

(78 ± 24 nM) rat hearts. The value for the dissociation constants for 

metaproterenol closely correspond with published values using guinea• 

pig atria and different pharmacological techniques (Table 8). 
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Table 7: Dissociation Constants for Isoproterenol (Guinea Pig Atria) 

~so (nM) 

Right Atria Left Atria Source 

37.7 ± 14.5 28.0 ± 6.9 Broadley and Williams, 1982, 1983 
(n=5) (n=8) 

a. 90.7 ± 36.0 84.7 ± 14.0 Broadley and McNeill, 1983 
(n=9) (n=9) 

b. 29.0 ± 13.0 23.0 ± 7.0 
(n=4) (n=4) 

c. 38.0 ± 18.0 24.0 ± 23.0 Broadley and Nicholson, 1980 
(na4) (n:s4) 

Kiso values are the means ± S.E. mean calculated through the use 
of irreversible receptor blockade by Ro 03-7894, (a) 7.6 x lo-4 M, 
(b) 6.4 x lo-4 M, or (c) 3.24 x lo-4 M with a 3 hour washout period. 
Numbers in parentheses denote sample size. 

Table 8: Dissociation Constants for Metaproterenol (Guinea Pig Atria) 

K. (µM) -Neta 
Right Atria 

8.4 ± 2.5 
(n=6) 

5.4 ± 2.1 
(n=6) 

4.2 ± 2.0* 
(n=4) 

10.0 ± 2.2 
(n=4) 

Left Atria 

4.3 ± 1.3 
(n=4) 

7.6 ± 2.9 
(n=8) 

14.7 ± 8.3* 
(n=4) 

2.4 ± 1.3 
(n=4) 

Source 

Broadley and Williams, 1982, 1983 

Williams and Broadley, 1983 

Broadley and Nicholson, 1980 

KMeta values are the means ± S.E. mean calculated through the use 
of irreversible receptor blockade by Ro 03-7894 (7.6 x lo-4 M) with a 
3 hour washout period. Asterisks signify the use of functional anta
gonism with carbachol to calculate the dissociation constant. Numbers 
in parentheses denote sample size. 
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Values for dissociation constants have a large variability 

(Broadley and Nicholson, 1978). This variability reduces the sen

sitivity of statistical tests in distinguishing differences between 

dissociation constants. The magnitude of the variability in the pre

sent study is similar to those reported in the studies cited in Table 

8. 

The estimations of the fraction of unoccupied receptors (q) 

varied, which limits the ability to detect changes in beta

adrenoceptor number. There were no significant differences between 

any of the estimates of the fraction of unoccupied receptors. 

Furthermore, no specific trend in the estimates occurs: for right 

atria, the food restricted group had the lowest estimates (0.02), but 

for left atria, the control group had the lowest estimates (0.057). 

The irreversible antagonist, theoretically, inactivates the same 

number of beta-adrenoceptors and a reduction in beta-adrenoceptor 

number would be reflected by lower estimates of the fraction of unoc

cupied receptors. If diabetes does reduce beta-adrenoceptor number, 

then the estimations of the fraction of unoccupied receptors in diabe

tic atria should be lower than those in control atria. However, 

atrial size can influence the estimation of the fraction of unoccupied 

beta-adrenoceptors, since a larger tissue will contain greater amounts 

of beta-adrenoceptors, and atrial size was an uncontrolled variable. 

The variations in atrial size limits the usefulness of the estimation 

of the fraction of unoccupied receptors. 

Diabetes does not alter antagonist binding affinity of cardiac 
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beta-adrenoceptors. Several radioligand binding studies (Savarese and 

Berkowitz, 1980; Ingebretson ~al., 1981; Heyliger~ al., 1982) 

demonstrate that chronic diabetes had no effect of [H3]-DHA binding 

affinity in · rat ventricular tissues. The present study confirms by 

alternative methodology that antagonist binding affinity of cardiac 

beta-adrenoceptors is not affected by diabetes. The pA2 values for 

timolol maleate from control and diabetic atria were not significantly 

different from each other (Table 3). The estimates of the pA2 values 

are consistent with those found by other investigators (Dreyer and 

Offermeier, 1980). The pA2 value equals the negative logarithm of the 

antagonist's dissociation constant when the slope of the Schild plot 

is unity (Tallarida ~ al., 1979). None of the slopes of the Schild 

plots differed significantly from each other. Thus, the antagonist 

binding affinities are the ·same in control and diabetic atria. 

Diabetes is a heterogenous disease state; other complications 

such as hypothyroidism (Fein~ al • ...L 1980; Pittman~ al., 1981·; 

Penpargkul ~al., 1981; Malhorta ~al., 1981), hypertension 

(Christlieb, 1973; Igarashi ~al., 1978; Kawashima et al., 1978; 

Factor~ al., 1981; Sasaki and Bunag, 1982; Hayashi et al., 1983) or 

hypotension (Pfaffman, 1980; Jackson and Carrier, 1981; 1983), brady

cardia (Savarese and Berkowitz, 1980) may accompany the diabetic 

state. In the present study, streptozotocin produced a diabetic state 

characterized by glycosuria, polyuria, polyphagia, polydipsia, and 

reduced body weight. Bradycardia and a slight hypertensive effect 

accompanied the diabetic condition. The diabetic rats exhibited 
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decreased serum thyroxine levels (hypothyrodism) and increased serum 

glucose levels (hyperglycemia). 

The presence of other disease states suggests that alterations in 

the diabetic myocardium may not have a single underlying cause-and-

effect relationship, but instead may be due to a multiplicity of fac-

tors. It appears highly unlikely that streptozotocin itself could 

have produced the reductions in beta-adrenoceptor number. 

Streptozotocin is void of cardiotonic effects at a tissue and sub-

cellular level (Fein .!:E. al., 1980; 1981). However, hypothyroid ani-

mals have been shown to contain a decreased number of cardiac 

beta-adrenoceptors with alterations in antagonist (DHA) binding affi-

nity (Ciaraldi .!:E. al., 1977; Mcconnaughey .!:E. al., 1979; Chang .!:E. al., 

1982). Ischac .!:E. al. (1983) found that hypothyroidism had not effect 

on agonist potency (pAz), produced bradycardia, and had no effect on 

maximum responses to isoproterenol. Furthermore, in general, hyper-

tension can cause a reduction in beta-adrenoceptor number without 

altering [H3]-DHA binding affinity (Williams .!:E. al., 1977; Woodcock .!:E. 

al., 1979). Because diabetes reduces both alpha- and beta-

adrenoceptor density and hypothyroidism increases alpha-adrenoceptor 

density, Williams .!:E. al. (1983) discounts hypothyroidism as the pri-

mary cause of the reduction in beta-adrenoceptor density seen in 

diabetes. Furthermore, Williams et. al. (1983) found that diabetes 

had no effect on muscarinic receptor number which suggests that 

alterations in adrenergic receptors are specific. Fein .!:E. al. (1980) 

considers it unlikely that hypothyroidism produced the altered mecha-



64 

nics exhibited by diabetic papillary muscle because of the lack of 

correlation between the free T4 index and the altered mechanical pro-

perties. Bhalla~ al. (1980) found no difference in beta-

adrenoceptor number between control and spontaneously hypertensive 

rats, instead they found a reduced affinity of beta-adrenoceptors for 

isoproterenol. The altered metabolic status of diabetic rats may also 

produce changes in beta-adrenoceptor sensitivity. Increased plasma 

lipid content can reduce cardiac beta-adrenoceptor number without 

affecting antagonist binding affinity (Wince and Rutledge, 1981). 

Certain cardiac disease states such as ischaemia (Feuvray ~al., 

1979) and heart failure (Bristow~ al., 1982) have been associated 

with a reduction in beta-adrenoceptor number without alterations in 

[H3]-DHA binding affinity. It has already been noted that diabetics 

have a higher incidence of mortality from heart disease than the non-

diabetic population (Kannel, 1979). Ischaemia and heart failure are 

often the end results of heart disease. Thus, diabetes may predispose 

the heart to congestive heart failure in part by reducing beta-

adrenoceptor number without altering affinity. 

Food restriction does not reproduce the cardiac alterations which 

occur with diabetes (Fein~ al., 1980; Penpargkul ~al., 1981; 

Malhorta ~al., 1981). The present study shows that caloric depriva-

tion induced by restricting food intake did not alter the dissociation 

constants for isoproterenol. Williams ~al. (1983) also demonstrated 

that caloric deprivation did not produce the alterations in beta-

adrenoceptors that occur in the diabetic state. 
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In summary, the present study confirms that chronic diabetes does 

not affect cardiac beta-adrenoceptor binding affinities for agonists 

or antagonists. Diabetes lowered the basal heart rate, but had no 

affect on the maximum chronotropic responses to isoproterenol or 

metaproterenol. In addition, diabetes had no affect on agonist poten

cies (EC50) for positive chronotropic and positive inotropic respon

ses. The methodology examined the maximum response and receptor 

binding characteristics and did not quantitate the time course of the 

response. The reduced responsiveness to catecholamines in vivo may 

result from a slower formation of agonist-receptor complexes due to 

the reduction in beta-adrenoceptor number which has been demonstrated 

by radioligand techniques (pharmacological techniques used in the pre

sent study cannot quantitate receptor number). Thus, chronic diabetes 

does not alter beta-adrenoceptor-drug binding characteristics, but may 

influence the effect of drug-receptor binding. 
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APPENDIX 

Table 9 contains the mean EC50 values, obtained from corrected 

pre-antagonist and post-antagonist dose-response curves to isoprotere

nol in the presence of different timolol maleate concentrations, and 

the mean values of the logarithm (dose ratio minus one (± S.E.M.)), 

obtained from the individual dose ratios from each set of atria. The 

table also includes the timolol maleate concentration (M) present 

during the generation of the post-antagonist curve. 



Table 9: 
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Schild Plot Points from STZ-induced Diabetic and Normal 
Rat Atria 

Mean EC50 values from corrected pre-antogonist dose-response cur
ves to isoproterenol (see "Plotting Dose-Response Curves") and from 
post-antagonist dose-response curves to isoproterenol for each con
centration of timolol maleate (M) for right and left atria. Corrected 
pre-antogonist and post-antogonist EC50 values yield a dose ratio 
(DR) for each timolol maleate concentration, which is converted to the 
log (DR-1) value. The table shows the mean log (DR-1) values 
(±S.E.M.), which represent the ordinate values for the Schild plot. 
The values for both control (CT) and diabetic (STZ) atria are shown. 
Numbers in parentheses denotes the sample size • 

. . 
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Table 9: Schild Plot Points from STZ-induced Diabetic and Normal 
Rat Atria 

Right Atria 

CT 

STZ 

Timolol Maleate 
Concentration (M) 

lo-9 (n=6) 

lo-8.5 (n .. 6) 

lo-8 (n ... 6) 

lo-7.5 (n:s6) 

lo-9 (n=4) 

lo-8.5 (n=4) 

lo-8 (n•4) 

lo-7.5 (n--4) 

Left Atria 

CT 

lo-9 (n,.6) 

lo-8.5 (n ... 6) 

lo-8 (n .. 6) 

lo-7.5 (n=6) 

Mean EC50 (nM) 
Corr. Pre-Antag. 

Curve 

2.88 

1. 79 

2.93 

1.61 

3.48 

2.85 

5.23 

2.12 

8.36 

10.3 

9.64 

4.94 

Mean EC50 (nM) 
Post-antag. 

Curve 

5.89 

10.6 

57.4 

152 

6.55 

9.04 

40.3 

74.3 

11.3 

36.1 

137 

377 

Mean log 
(DR-1) 

0.20 ± 0.07 

0.73 ± 0.09 

1.21 ± 0.10 

2 .oo ± 0.07 

0.09 ± 0.08 

0.36 ± 0.18 

0.84 ± 0.06 

1.51 ± 0.05 

0 .08 ± 0.08 

0.35 ± 0.13 

1.07 ± 0.06 

1.86 ± 0.04 
----------~------------------------------------------------------

STZ 

lo-9 (n .. 4) 

lo-8.5 (n=4) 

lo-8 (n .. 4) 

lo-7.5 (n=4) 

7 .oo 

4.36 

6.46 

5.12 

8.52 0.13 ± 0.07 

32.4 0.65 ± 0.22 

151 1.22± 0.15 

576 1.62 ± 0 .36 
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