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Abstract 

The interference between boundary and bulk scattering processes is ana­

lyzed for ultrathin films with random rough walls. The effective collision and 

transport relaxation times for scattering by random bulk and surface inho­

mogeneities are calculated, when possible analytically, in quantum size effect 

conditions. The transport and localization results are expressed via the bulk 

transport parameters and statistical characteristics of the surface corrugation. 

The diagrammatic calculation includes second order effects for boundary scat­

tering and full summation for bulk processes. The interference contribution is 

large in systems with robust bulk scattering and can be comparable, or even 

exceed, the pure wall contribution to the transport coefficients. 

I. INTRODUCTION 

Explosive developments in micro- and nanofabrication, multilayer systems, ultraclean 

materials, etc., resulted in proliferation of ballistic or semi-ballistic films. It is difficult 

to overestimate the role of boundary scattering for transport in such thin films (for early 

reviews see Refs. [1-3]). 

Proper transport theory should not simply combine bulk and surface scattering, but has 

to include the interference between these scattering channels. Usually, this is not done. 

There are two obvious interference mechanisms: simultaneous presence of surface and bulk 

scattering centers within the same "reaction zone" and the correlation (or lack of thereof) 

between consecutive or multiple scattering processes. [Since the localization length in quasi-

2D systems is exponentially large, the paper deals mostly with interference contributions 

to "usual" diffusion. The localization-related phenomena are discussed in the end of the 

paper]. 

The interference should be large in quantum systems. In ultrathin films, the spatial 

confinement of motion perpendicular to the walls leads to the quantum size effect ( QSE) 
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- to the quantization of momentum and to the split of the 3D spectrum E (p) into a set 

of minibands Ej ( q) ( q is the momentum along the film). QSE is responsible for a saw­

like dependence of the conductivity of metal films on the film thickness and/or the Fermi 

momentum irrespective of whether electrons are scattered in the bulk [4] or on the surface 

[5-10]. In non-degenerate semiconductor films with QSE this dependence is more smooth 

because of a more uniform occupancy of quantized states. Though we do not know of 

any direct observation of such saw- or step-like curves in transport measurements without 

magnetic field (with the exception of, maybe, Ref. [11]), QSE has been observed in both metal 

and semiconductor films (see, e.g., Refs. [12,13] and references therein) by scanning tunnel 

microscopy [14], ultraviolet electron spectroscopy, photoemission, and dozens of other optical 

experiments (Refs. [3,15] and references therein). Recently QSE has also been observed in 

confined 3 He at ultralow temperatures [16]. The interference between bulk and surface 

scattering processes in quantized films has not been studied at all though the effect should 

be stronger than in quasiclassical films. 

The interference between various bulk scattering processes in transport is well under­

stood. The interference between the bulk and surface scattering is largely ignored, not 

because it is small, but simply because these processes are usually described by separate 

theoretical techniques. The bulk scattering is described by the collision operator which can 

include the interference between the bulk scattering channels but does not contain surface 

contributions at all. The surface scattering in transport is treated, instead, as a boundary 

condition. The ( quasiclassical) transport equation operates with the distribution functions 

and does not contain particle phases explicitly: all phase-related information has already 

been processed during the derivation of the collision operator. Therefore, whenever the 

boundary scattering is introduced as a boundary condition for the transport equation, the 

boundary - bulk interference is already lost. Thus, the "standard" quasiclassical or quan­

tum transport equation cannot account for the interference between the bulk and boundary 

processes and treats the bulk- and surface-driven relaxations, Tb and Tw, as independent, 
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(1) 

(the same for the mean free paths Leff, Lb, and Lw)· Note, that the bulk term Tb-l in 

this expression can contain the non-Matthiessen's interference between the bulk channels. 

To keep the interference between the bulk and boundary scattering, one should include 

the boundary scattering on the quantum mechanical level preceding the averaging which is 

responsible for the formation of the transport equation. Essentially, one should re-derive the 

transport equation starting from the scattering boundary conditions for the wave functions. 

This requires a simultaneous averaging over bulk and surface inhomogeneities. 

The boundary scattering in thin films has been studied mostly for quasiclassical trans-

port. The most common approaches, which are based on various modifications of the 

Fuchs-Sondheimer description, treat boundary and bulk scattering as independent. The 

experimental deviations from the Fuchs-Sondheimer picture are ascribed to the breakdown 

of the quasiclassical approach, usually without a conclusive identification of the particular 

breakdown mechanism. More sophisticated quasiclassical methods, which can reveal the 

interference, lead to almost intractable integral equations [1,2]. 

The situation seems even worse in QSE conditions. Because of the complexity of the 

transport equation in quantized systems, the bulk-boundary interference has not been stud-

ied, so far, neither analytically nor numerically. The source of complexity is the large 

contribution of the off-diagonal terms. Only if the symmetry of the scattering vertex forbids 

the coupling of the longitudinal (diagonal) transport processes to off-diagonal terms, the 

quantum transport equation assumes the Waldmann-Snider form [17] which is, essentially, 

the result of the simplest quantization of the quasiclassical transport equation. 

Recently, there have been several analytical [18-21] and numerical [22,23] attempts to 

describe transport in quantized films with both bulk and boundary scattering. Analytically, 

the bulk averaging and the averaging over surface inhomogeneities have been performed 

independently and the interference has been lost. The numerical simulations, which are, in 

general, not well suited for study of particle phases, also could not reveal the interference. 
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This is very frustrating because the boundary-bulk interference is intuitively transparent 

and should be large in quantized systems. 

Below we calculate the interference between surface and boundary scattering in transport 

in quantized films. The motivation is the large magnitude of the anticipated effect. The 

best way to reveal this interference is to derive the bulk and boundary collision operators 

simultaneously by the same technique. Bulk transport derivations are routinely done using 

the diagrammatic transport formalism [24,25]. Recently, we developed a similar formalism 

for quantized systems with scattering by random rough walls [26]. Since, by design, the 

derivation of the collision operator for surface scattering has been done in a bulk-like form, 

this formalism is well suited for the simultaneous study of bulk and boundary scattering. 

The interference contribution to the conductivity is expressed below via the bulk trans­

port parameters (the collision and transport relaxation times) and the statistical properties 

of surface roughness (the correlation function of surface inhomogeneities). The simplest way 

of presenting the results is in the form of a relative interference deviation from Eq. (1). As 

expected, the interference contribution in quantized systems is large and, sometimes, even 

exceeds the "pure" wall-driven term in (1 ). 

Though the calculation is formally performed for a single-layer film with impenetrable 

rough walls, the results can be easily expanded to multilayer films with semi-transparent 

rough interlayer boundaries (see the end of Sec. II). The final results are illustrated for 

degenerate electron system such as metal films; the calculation for non-degenerate semicon­

ductors is similar. The extension to other systems can be done in the same way as it has 

been done in Ref. [27] for quantized ballistic systems without bulk scattering. 

In Section II we outline our approach and give the equation for the collision relaxation 

time Tef f which includes the interference between the bulk and boundary scattering. The 

diagrammatic derivation of this equation is given in Appendix A. Appendix B contains 

auxiliary equations which can be useful for applications. In Section III we analyze, when 

possible analytically, the interference term in Tef f in different physical situations. In Section 

IV we calculate and analyze the transport time Ttr using the equations of Appendix C for 
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the diffusion propagator. The expressions for the transport time Ttr are more cumbersome 

than those for the collision time Tef f. Both the effective collision and transport times can 

be used for the evaluation of the localization length in quantized quasi-2D films (Sec. IV). 

Section V contains a brief summary of the results. 

II. MAPPING TRANSFORMATION METHOD 

Simultaneous study of bulk and boundary scattering can be done by the mapping trans-

formation method which maps the random boundary scattering problem onto an equivalent 

problem with ideal boundaries and randomly distorted bulk. This approach to ballistic 

transport was suggested first by Tesanovic et al [28] and, later, by Trivedi and Ashcroft [5] 

without an explicit expression for the mapping transformation. Independently, S. Stepa-

niants and one of the authors [29] and, later, Bratkovsky and Rashkeev [30] introduced 

the relevant Migdal-like transformation and performed explicit transport and localization 

calculations for ballistic systems (see also Refs. [26,27] and references therein; similar trans-

formation was also used in Ref. [31] for calculation of the QSE spectrum in rough contacts). 

This method should be modified for a system with bulk impurities u (r - ri), 

H 0 =p2 /2m+U(r), U(r) = I:u(r-ri), (2) 

and two random rough walls, 

x1,2 = ±L/2 =f 6,2 (y, z), (6,2) = 0, (3) 

with the average clearance L. The volume average of the impurity field can be included into 

the chemical potentialµ making (u (r - ri))v = 0. The range of impurity potential is short 

in comparison to the average distance between impurities, r 0 ~ Ni--;),f 3
, and impurities are 

not correlated with each other, 

1 J 2 (u (r - ri) u (r - rj))v = v8ij [u (r - ri)] dri. (4) 
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In contrast to this, the correlation radius of the surface inhomogeneities R which determines 

the decay of the correlation function, 

(ik (Isl) = (ei(s1)6(s1 + s)) = j ei(s1)6(s1 + s)ds1, 

(ik (q) = j ds eiq·s(ik (s) 

(5) 

can be large ( s and q are the 2D vectors in the plane of the wall y, z). Experimentally, this 

correlation function can have various shapes [32,33]. Analytically, we do not have to specify 

the form of this correlator. In numerical examples, we use the Gaussian correlator, 

(6) 

where f shows the scale of inhomogeneities, aik are dimensionless amplitudes. To minimize 

the number of parameters, assume that the correlation radii for both walls are the same, 

Rik = R, while the amplitudes aik can remain different. 

The standard requirement for calculations with the single-particle density matrix is 

PoLef f ~ 1 (Po is the characteristic momentum of particles, Leff is the mean free path; 

here and below n = 1). This is our only restriction on the particle wavelength. The surface 

roughness is assumed to be slight, f ~ L, R (£ and R are the characteristic height and size 

of the surface inhomogeneities), and is described perturbatively. [Transport processes in 

systems with strong roughness, f rv L and/or f ~ R, are trivial: a single collision with the 

wall dephases the particle completely]. There is no restriction on p0 f or p0 R. The bulk scat-

tering is not assumed to be weak. To get useful results for the boundary-bulk interference, 

one should start form a compact description of independent boundary- and bulk-dominated 

transport processes. For the boundary-dominated transport, we use the results [27] for bal-

listic particles in quantized films. For the bulk-dominated scattering in quantized films, a 

compact description exists only in the Born approximation or for a short-range interaction 

radius r0 ~ L, R [elsewhere, the exact transport results contain the full bulk scattering 

vertex r making them useless for applications]. Summarizing, we consider the films with 

PoLeff ~ 1, £, ro ~ L, R, £b. (7) 
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These not very restrictive inequalities should be supplemented by the conditions of the 

quasiclassical motion along the walls and the absence of quantum resonances for quantized 

motion perpendicular to the walls. The former condition is standard. The latter one is 

discussed in detail in Ref. [26] according to which the resonance region is narrow. 

Our diagrammatic technique [26] is based on the mapping transformation r ----+ R, 

x = x + 6/2 - 6/2 y = y, z = z 
1-6/L-6/L' 

which makes both walls (3) fiat, X = ±L/2. 

(8) 

The conjugate momentum transformation p ----+ P identifies the effective random bulk 

distortion V { e1 ,2 } which, in the case of quadratic Hamiltonian (2), has the form [26,29] 

~ P2 ~ ~ e+ ~2 ~ ~ 
H = 2m + U (R) + V + 8U, V = mL Px +Vy+ Vz, (9) 

~ 1 ( (x 1 ) ~ ~ ~ (x 1 ) ~ ) 
Vy,z = 2m ye~y,z - 2e~y,z PxPy,z + Py,z ye~y,z - 2e~y,z Px , 

8U = L [u (S - Si, x - Xi+ e-/2 - e+x/ L) - u (S - Si, x - Xi)], e± = 6 ± 6. 

The Hamiltonian (9) is non-Hermitian. The reason is that the transformation (8) with 

unchanged coordinates along the walls, Y = y, Z = z, changes volume and has the Jacobian 

not equal to 1. In principle, this issue can be addressed by transforming coordinates y, z as 

well. The detailed study in Ref. [26] showed that this more rigorous approach does not have 

any noticeable effect on the results outside the quantum resonance domain. 

The problem with the corrugated walls is now mapped onto the equivalent bulk problem 

with fiat walls, X = ~L/2, and random bulk distortion U + V + 8U (9). Unfortunately, this 

bulk distortion contains not only the term V + 8U, which is proportional to the small wall 

roughness e, but also the purely bulk term U which can be large. Without this large term, 

one could use the transport equation of Refs. [26,27] for QSE systems in the second order 

in the surface distortion e. Here, one needs a different equation, which is still of the second 

order in e but contains the full summation of the impurity terms with U. 

The results get cumbersome because of QSE which splits the 3D spectrum E (p) = p2 /2m 

into a set of 2D minibands, Ej (q) = (1/2m) [(7rj/L) 2 + q2
] and leads to a matrix structure 
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of equations. The diagrammatic series with the averaging over the surface inhomogeneities, 

( ... )e, and distribution of impurities, ( ... )v, is analyzed in Appendix A. In the end, the 

effective relaxation time (the imaginary part of the self energy, ~A - ~R) in the second order 

in e and with full impurity summation reduces to ( 4 7)' 

1 
(10) 

where S is the number of occupied or energetically accessible mini bands Ej ( q), and µ, 

depending on the system, is the Fermi energy EF for degenerate fermions, particle energy E 

for single particle systems, temperature for Boltzmann quantum gases, etc. The wall-induced 

transition probability Wjj' ( q, q') is determined by the averaged square of the matrix element 

\IVjj'l 2
\ of the perturbation V (9) and is equal to [26] 

4 

Wjj' ( q, q') = m: L6 ( (11 ( q - q') + (22( q - q') + 2 ( -1 y+j' (12 ( q - q')) j2 j'2. (11) 

QSE is responsible for the replacement of the bulk relaxation time Tb (p) by the times Tp) ( q) 

for individual mini bands Ej. The exact values of TJb) ( q) for thin films are unknown even if one 

knows the exact 3D dependence Tb (p). The expressions for Tp) ( q) in the Born approximation 

are given in Appendix B. 

The first term in Eq.(10) is the purely bulk term. The second one represents the con-

tribution from collisions with the walls renormalized by bulk scattering processes. This 

renormalization is the sought-for interference contribution to the effective relaxation time. 

It is clear from of the diagrams for the self energy in Appendix A that the effective re­

laxation time has the form (10) irrespective of whether the bulk relaxation time Tp) ( q) is 

associated with impurity or particle-particle scattering. [The key is that the first diagram in 

Figure 9 dominates over the second; this is always the case when the interaction potential 

is sufficiently short-range]. 

Formally, the above equations were obtained for ultrathin single-layer films with impen-

etrable external walls. In Ref. [27] we found how to describe, within the same method, 
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the scattering by inhomogeneities of rough interlayer boundaries in ballistic multilayer sys-

terns. In the multilayer case without bulk scattering, the overall surface-related scattering 

probability Wjj' ( q, q') is a sum of contributions from each individual wall plus interwall 

interference terms which disappear if there is no correlation between inhomogeneities from 

different walls. Each such term is given by the correlation function of inhomogeneities on the 

corresponding wall with a simple coefficient that reflects the permeability of the interlayer 

boundary and the overall structure of the system. Straightforward analysis shows that if the 

bulk scattering within all layers is the same, then the effective relaxation time Tt1 f) ( q) is 

still determined by Eq.(10) with Wjj' ( q, q') given not by Eq.(11 ), but by a similar equation 

of Ref. [27] for multilayer systems. If the bulk scattering in different layers is not the same, 

then the calculations should be performed for each layer separately. The final results for 

multilayer systems are qualitatively similar to those for single-layer films but involve addi-

tional parameters such as permeabilities and positions of interlayer boundaries, correlation 

radius and amplitude of inhomogeneities on each boundary, etc. To avoid parameter clutter 

and have the results in the most transparent form, we show the results only for a single-layer 

systems with two rough walls. 

III. RELAXATION TIME 

A. Effective relaxation time 

The "pure" wall relaxation time in ballistic systems [27], 

1 s J dq' 
T(w) = ~1 '.2; Wjj' ( q, q') 8 ( Ej' ( q') - µ) ' 

J J -

(12) 

corresponds to Eq.(10) with TJb) ----+ oo. Thus, the interference contribution T(int) to the 

effective relaxation time T(eff) is determined by the difference of Eqs. (1) and (10): 

(13) 
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The integral in Eq.(13) depends on the relation between three length scales, R, Lb, L. 

The numerator, Wj~) (qj, q') (11), represents a peak in the momentum space q' which is 

centered around qj = (2mµ - (7rj/L) 2)112 
and has the width 1/R . For example, if the 

surface inhomogeneities are Gaussian (6), the zeroth angular harmonic of the scattering 

probabilities (11) over the angle between the vectors q and q' is equal to 

(14) 

( 1F1 is the hypergeometric function). The denominator in the same integrand gives rise to 

another peak of the width 1/ Lb centered around qj'· The separation of these two peaks, 

i.e.! the distance between the points qj and qj', is of the order of lj - j'I /Land involves the 

third spacial scale, L. 

If there is a pronounced hierarchy of these three scales, the integral (15) can be calculated 

analytically. Otherwise, the effective relaxation time Tt1 f) can be calculated numerically 

for any type of the surface correlation function ( ( q, q') provided that the bulk relaxation 

times Tp) are known. 

The bulk scattering time TJb)(q) is defined by the impurity potential u (r) with a short 

range r 0 . This time changes with the change in q on the scale 1/r0 which is slow, Eq.(7), 

in comparison with the rates 1/ R for the correlation decay of Wjj' ( q, q') and 1/ Lb for the 

collision decay of the denominator in Eq.(13). This means that TJb)(q) in Eq.(13) can be 

considered constant. What is more, for systems with a relatively narrow energy distribution 

such as degenerate fermions PFL ~ 1, single-particle systems p0 L ~ 1, Boltzmann systems 

with pyL ~ 1, etc., we need the values of TJeff) only at q = qj. Then Eq.(13) can be 

rewritten as 
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where wj~) IS the zeroth angular harmonic of the transition probability Wjj' (q, q', cos B) 

(11 ). 

The dependence of the bulk relaxation Tp) on the miniband index j is not always available. 

Even in the Born approximation (Appendix B) the exact dependence is known only for large 

indices j ~ 1 or for the short-rang interaction, r 0 ~ l/p0 , L, R, Eq.(7). In these two cases, 

all Tp) are the same, Tp) rv Tb. Since the issue of the dependence of the bulk relaxation 

time TJb) on the band index j in quantized systems in the context of this paper is peripheral 

anyway, we assume in all numerical calculations for T(ef f) that TJb) does not depend on j, 

Tp) =Tb. 

The relative interference contribution (15), (??) can be described by the dimensionless 

parameter X, 

[ l 
(w) 

. _ 1 1 (w) _ Tj 
XJ = (eff) - - Tj - l + (int)' 

T n T 
J J 

(16) 

which is the ratio of two terms in r.h.s. of Eq.(??). The Matthiessen's rule (1), z.e.) the 

lack of interference T(int) ---+ oo ! corresponds to Xj = 1. In the case of Gaussian correlation 

of surface corrugation ( 6), this relative contribution is 

Lj'j'2 [i +2(-1)3+j' a] fdeFj(q)~j'(q) 
Xj = Lj' j'2 [1+2 (-1)3+j' a] Fj (qj') ' 

(17) 

where 

Fj ( q) = [ 1F1 (~, 2, -2qjqR2) + 1 F 1 (~, 2, -2qjqR2)] exp [-R2 
( qj - q)

2 /2] , (18) 

1 1/Tb al2 
~j' (q) = - 2 2' a= ---

27r (ej1 (q)- µ) +(1/2Tb) an+a22 

When Tb---+ oo, the function ~j (q)---+ 8(ej (q)- µ)and x---+ 1. Figures 1 - 3 demonstrate 

that the interference often, but not always, lowers the effective relaxation rate (Xj < 1), i.e.! 

decreases the boundary contribution to transport coefficients. 
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B. Interference contribution: numerical results 

Numerical examples of the relative interference contribution Xj to the effective relaxation 

time are given in Figures 1 - 3. Figure 1 shows Xj for three mini bands (j = 1 - thin line; j = 5 

- bold line; j = 9 - dotted line) as a function of p0 R. The thickness of the film in units of l/p0 

is p0 L = 30, and the bulk mean free path PoLb = 100. This value of p0 L corresponds to 9 

energetically accessible minibands. When the bulk mean free path Lb ~ R, L, the situation 

is close to Matthiessen's (x rv 1), but with increasing R the interference effects become 

well-pronounced even though the mean free path is larger than the clearance between the 

walls, Lb/ L = 10. 
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FIGURES 

1.2 

1 

0.8 

Xj 
0.6 

0.4 j=l -

j=5 -

0.2 
j=9 

0 
10 20 30 40 50 60 70 80 90 100 

paR 
FIG. 1. Relative interference contribution Xj, Eq. (16), for j = 1; 5; 9 as a function of the size 

of the surface inhomogeneities paR for paL = 30 and PoLb = 100 

Figure 2 shows the dependence of Xj (j = 1 - thin line; j = 16 - bold line; j = 31 -

dotted line) on p0 £b at p0 R = 50 and p0 L = 100 (31 energetically accessible minibands). 

It is clear that when Lb becomes much larger than L and R, the interference corrections 

disappear and Xj ----+ 1. 

1.2 ~-~--~-~--~--~-~--~-~--, 

1.1 f-

1 f-c.-~~~-~-~~-~~~·~~~~~~-~~~~~~1 

0.9 r-

0.8 f-

0.7 f-

0.6 r-

j=l -
j=l6 -
j=31 . 

0.5 i i i i i i i i 

100 200 300 400 500 600 700 800 900 1000 
Po Lb 

FIG. 2. Relative interference contribution Xj, Eq. (16), for j = 1; 16; 31 as a function of the 

bulk free path PoLb for paL = 100 and paR = 50 
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Figure 3 shows the dependence of Xj (j = 1 - thin line; j = 2 - bold line; j = 3 - dotted 

line) on p0 L at p0 R = 5 and p0 £b = 20. The steps on the curves correspond to the changes 

in number of accessible minibands with increasing p0 L. As in ballistic systems [26,27], these 

singularities are pronounced at smaller p0 R, while their amplitude decreases with increasing 

film thickness p0 L. 

1.05 

, . f--- F>---~--
00.995 ... ·.__ ... ·. · .. :::-.. ··· ... ··.. ···... . 

. 

0.85 

0.8 

0.75 

j=l -
j=2 -
j=3 . 

0.7 ~-~-~--~-~-~--~-~-~--~-' 
10 12 14 16 18 20 22 24 26 28 30 

paL 
FIG. 3. Relative interference contribution Xj, Eq. (16), for j = 1; 2; 3 as a function of the film 

thickness paL for paR = 5 and PoLb = 20 

Under the certain conditions, the interference contribution to the relaxation time can be 

calculated analytically. These results are discussed in the next three subsections. 

C. Interference for large bulk mean free path 

If Lb ~ R, the integrand in Eq.(10) behaves effectively as a 8-function, 

1/ (b) 
Tj' ( ( ') ) -----~-----2 ----+ 27rD Ej' q - µ , 

(Ej' (q') - µ) 2 + (1/2TJ,b)) 
(19) 

and the deviation (15) from the Matthiessen's rule disappears while the wall-induced relax-

ation time is equal to 

1 _ 7r
4 

"'"""' ·2 ·12 (;(O) ( ) ;(O) ( ) ( )j+j' ;(O) ( )) 

7
(w) - 2mL6 L,-J J sn qj, qj' + s22 qj, qj' + 2 -1 s12 qj, qj' . 

J J 

(20) 
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In this limit, the bulk and wall scattering processes are truly independent. 

The summation in Eq.(20) can be performed analytically in two limiting cases. When 

the film thickness is much smaller than the correlation length, R ~ L, the gaps between 

the minibands are so large that the scattering by the surface inhomogeneities cannot cause 

interband transitions and the diagonal elements of the matrix Wjj' are much larger than the 

off-diagonal ones, Wjj' '.::::::'. Djj' Wjj. In this case, 

(21) 

or, for Gaussian correlations, 

(22) 

For long-wave particles, p0 R ~ 1, the scattering cross-section for surface inhomogeneities 

of the size R is a constant independent of momenta (quantum reflection), W ( q - q') '.::::::'. 

W (0), and Eq.(20) becomes 

- 1- = ~1·2 s (S + 1) (2S + 1) (;(O) (0) + ;(O) (0) + 6 ( -l y+s ;(O) (o)) (23) 
7

(w) 6mL6 sn s22 25 + 1 s12 , 
J 

where S is the number of occupied or energetically accessible minibands. The Gaussian 

equivalent is 

1 27rsg2 R2 ·2 ( 6 (-1y+s ) 
T(w) = 3mL6 J S(S+1)(2S+l) an+a22+ 2S+l a12 . 

J 

(24) 

D. Interference for small bulk mean free path 

In all other situations, the interference between boundary and bulk scattering is large. 

When the bulk mean free path is small, Lb ~ R, the numerator in the integrand (15) is a 

peak which is narrow on the scale of the change in denominator, and the denominator can 

be pulled out of the integral, 

(25) 
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This integral is nothing but the Fourier image of Wjj' ( qj, q'), Wjj' ( s) at s = 0: 

_1_ - _1_ - 47r 4 L (Cn (s = 0) + (22 (s = 0) + 2(-1y+j' (12 (s = o))J2j'2
TJ,b) 

T(eff) T(b) - L 2 · 4 ( ·2 ·12)2 ( (b)) 2 + 2L4 (
26

) 
J J J' 7r J - J Tj' m 

The Gaussian equivalent is 

(27) 

When R ~Lb~ p0 L 2 
,....., SL, the scattering-induced transitions between the minibands 

are suppressed, and Eq.(26) reduces to 

1 1 - 47r
4 

( ( - ) ( - ) ( - )) ·4 (b) 

7
(eff) - T(b) - m 2 L 6 (11 S - 0 + (22 S - 0 + 2(12 S - 0 ] Tj , 

J J 

(28) 

or, in the Gaussian case (27) 

(29) 

The non-Matthiessen's nature of these equations is obvious - the wall-driven term in the right 

hand side is strongly renormalized by and is directly proportional to the bulk relaxation time 

Tp). The value of Xj is determined by the ratio of 1/TJeff) - 1/TP), Eqs.(28),(29), to the 

expressions for 1/TJw) from the previous subsection. 

E. Interference in ultrathin films 

In ultrathin films, L ~ R, Lb, the distance between two peaks for j # j' is much larger 

than their width, and the integrals (15) vanish except for j = j'. If j = j', both peaks are 

centered around the same value of qj = qj' and 

For Gaussian correlations, assuming that qjR ~ 1 for all mini bands Ej, direct integration 

yields 
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1 1 47r9/2[2 J4T(b) 

(eff) - (b) = 2 6 
1 (an+ a22 + 2a12) Xj exp (xn (1- erf (xj)), (31) 

T T m L 
J J 

Rm 2 ix ( ) x j = (b) , erf ( x) = ;-;;; exp - t2 dt. 
23/2q T V 7r 0 

J J 

When L ~ R, the condition qjR ~ 1 can be violated only in the case of the single-band 

occupancy or, in multiband situations, for the highest miniband qs. 

IV. TRANSPORT TIME AND DIFFUSION COEFFICIENT 

Transport and localization parameters contain the transport time Ttr rather than the 

effective relaxation time Tef f of Section III. In quantized systems with S occupied or ener-

getically accessible mini bands Ej ( q), the diffusion coefficient D is expressed via Ttr as 

_ 1 / 2) Ttr ~ 2 [ ( .1 )2] 1/2 
D='.22\q Ttr=

2 2 S~qj, qj= 2mµ- 7r] L . 
m m j=l 

(32) 

Particle mobility (conductivity) can be easily obtained from Eq.(32) using the Einstein 

relation. The diffusion coefficient D (E) and the mean free path £ = 2D /v determine the 

localization length R for particles with energy E [34,35,27] 

R (E) = £ (E) exp [c.p (E)], c.p (E) = 7rmS (E) D (E). (33) 

The transition from the relaxation time TJef f) to the transport time Ttr can be performed 

by solving the transport equation. Under usual circumstances, this cumbersome procedure 

results in a routine replacement [25,24] of the zeroth angular harmonics of the scattering 

probabilities in expressions for T by the difference of the zeroth and first harmonics, i.e., 

in addition of the transport factor (1 - cos B) to the integrands. Our problem is more 

convoluted because of the matrix character of the equations and the angular dependence 

of T in the denominators of the integrands (10). The proper diagrammatic procedure is 

described in Appendix C and is based on the realistic assumption that the bulk scattering 

vertex depends mainly on the angle between momenta of colliding particles. Even in this 

case, the solution of the matrix transport equation requires an inversion of large matrices 
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of rank S. Since the transport equation contains an entangled combination of matrices that 

describe the interstate transitions caused by the bulk and boundary scattering, the inversion 

problem restricts analytical calculations of the transport time Ttr in comparison with the 

effective collision time Tef f in Section III. 

According to Appendix C, Eq.(63), the transport time can be expressed via the angular 

harmonics of the wall scattering probability W (11) and bulk collision and transport times 

.. , 
J,J J 

(34) 

Further calculation requires the inversion of the matrix Y jj'. Figures 4 - 6 provide the 

numerical examples of the deviation Xtr of the effective transport time from the one given 

by the Matthiessen's rule for independent bulk and boundary scattering, 

(35) 

where the "Matthiessen's" transport time Ttl\( is determined by Eq.(34) but without bulk-

boundary interference, 

[ l-1 [ ( ) i-1 M _ 2 1 1 1 m (1) 
Ttr - L qj L qj - + (;;y Djj' - -s - -2 wjj' (qj, qj1) qj'· 

. . ., Tb T· a Tb 
J J,J J 

(36) 

The Matthiessen's rule corresponds to Xtr = 1. This definition of Xtr is similar to the relative 

interference contributions Xj to collision time, Eq.(16), in Section III. The difference Xtr - 1 

is the ratio of the interference contribution to the "pure" wall-driven transport time; when 

Xtr - 1 > 1, as in Figure 6, the interference term dominates over the "pure" wall-driven 

contribution. 

Figures 4 - 6 illustrate this relative interference contribution Xtr· Figure 4 shows Xtr as a 

function of the correlation radius of the surface inhomogeneities p0 R for the inhomogeneities 
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with the amplitude p0 f = 0.1, bulk mean free path p0 £b = 10, and the ratio of the bulk 

transport time to the bulk collision time Ttbr/Tb = 1.5. The three curves describe films of 

three different thicknesses: thin line - p0 L = 5 (only the first miniband is energetically 

accessible); bold line - p0 L = 10 (three minibands are accessible); dotted line - p0 L = 20 

(six mini bands are accessible). 

0.9 

0.8 

Xtr 0.7 

0.6 

0.5 

paL = 5 
paL = 10 
paL = 20 

2 4 6 8 10 12 14 16 18 20 
paR 

FIG. 4. Relative interference contribution to transport time, Xtri Eq. (35), as a function of the 

size of the inhomogeneities paR for pof = 0.1, PoLb = 10, Tfr/Tb = 1.5, and three values of the film 

thickness, paL = 5; 10; 20. 

Figure 5 presents Xtr as a function of the bulk mean free path p0 £b under the condition 

that the ratio of bulk transport and collision times does not change, Ttbr/ Tb = 1.5. The 

amplitude of the inhomogeneities is p0 f = 0.1, the surface correlation radius is p0 R = 10, 

and the film is either p0 L = 5 (thin line; only the first miniband is energetically accessible) 

or p0 L = 20 (bold line; six mini bands are accessible). With increasing bulk mean free path 

the interference effects disappear, x ----+ 1. 
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1 r-

0.8 r-

0.6 r-
Xtr 

0.4 r-

0.2 r-

0 _l 

- -------------------
-- ----------------1 

_l _l _l 

paL = 5 
paL = 20 

10 20 30 40 50 60 
Po Lb 

FIG. 5. Relative interference contribution to transport time, Xtri Eq. (35), as a function of 

the bulk free path PoLb at constant ratio Tfr /Tb = 1.5. The inhomogeneities are characterized by 

paR = 10, pof = 0.1; the film thickness is paL = 5; 20. 

Figure 6 shows Xtr as a function of the film thickness p0 L for the inhomogeneities with 

the amplitude p0f = 0.1, bulk mean free path p0£b = 20, and the ratio of the bulk transport 

and collision times Ttbr /Tb = 1.5. The two curves correspond to two different correlation radii 

of the surface inhomogeneities: thin line - p0 R = 50; bold line - p0 R = 20. The singularities 

reflect to the change in number of energetically accessible minibands with increasing film 

thickness. 
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Xtr 
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paR = 20 
paR = 50 
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'; 

_l 

5 10 15 20 25 30 35 
paL 

FIG. 6. Relative interference contribution to transport time, Xtri Eq. (35), as a function of the 

film thickness paL for pof = 0.1, PoLb = 20, Tfr/Tb = 1.5, and two values of the correlation radius, 

PoR = 20; 50. 

Occasionally, the interference contribution to the transport time can be calculated ana-

lytically. 

A. Single-band systems 

Inversion is a non-issue for single-band systems. Physically, the single-band situation 

corresponds either to systems with one quantized state E1 ( q) = E1 + q2 /2m, such as for 

particles adsorbed on or bound to the wall, or to multiband systems in which the gaps 

between the minibands are large in comparison to the particle energy, E ~ 1/mL2
, and only 

the first miniband is energetically accessible. 

For single-band particles, Eq.(34) yields 

(37) 

This integral can be calculated explicitly in the same limiting cases as in Section III. 

Large bulk mean free path. If the bulk mean free path is large, Lb ~ R, the 

denominator behaves effectively as the 8-function (19) and 
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(38) 

where the last expression was calculated for the Gaussian correlation of inhomogeneities. 

Small bulk mean free path. In the opposite cas, Lb ~ R, the numerator in the 

integrand (37) is a narrow peak and 

(39) 

where in the calculation of the integral for the Gaussian correlation function it was important 

Short-wave particles. If the particle momentum is large, q1R ~ 1, the integral (37) 

for the Gaussian correlation function yields the result similar to Eq. (31) , 

( 40) 

B. Ultrathin films 

Calculations can also be performed analytically for ultrathin films, L ~ R, Lb. Though 

in this case all the matrices can be inverted analytically, the general expressions are too 

cumbersome to be given here. The complications arise from the fact matrix ljj' in Eq.(34) 

consists of the sum of the term with the diagonal matrix Wjj' and the index-independent 

term l/a1 S. If the correlation function is Gaussian, the resulting transport time is 

( 41) 
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C. Long-wave particles 

The last analytical case is the case of long-wave particles p0 R ~ 1, when all the scattering 

probabilities are constant, and the transport time has the same structure as Eq.(41) with 

1 7r4j2 [ 6 ( -1 )S+j l 
Qj =Tb+ 

6
mL6 S (S + 1) (2S + 1) (11 (O) + (22 (O) + 25 + 

1 
( 12 (O) . ( 42) 

(in this case, all Wj~) = 2W (0), W(1l = 0 and the inversion is similar). In the Gaussian 

case, (ik ( q = 0) should be replaced by 27raikf2 R 2
• 

V. SUMMARY 

In summary, we calculated the effective collision and transport times in ultrathin quan-

tized systems with boundary and bulk scattering. The results describe transport and local-

ization in ultrathin films with QSE. Scattering by the surface inhomogeneities is strongly 

renormalized by bulk scattering processes which are responsible for the repeated returns of 

particles to the walls. With the exception of the nearly ballistic regime, strong interference 

of bulk and boundary scattering invalidates description of these two scattering channels as 

independent relaxation processes. Under certain conditions, the interference contribution to 

transport can even exceed the "pure" wall term. 

Exact results require the information on the bulk scattering vertex in quantized films 

which is not always available. A more technical difficulty is the matrix nature of equations 

for quantized systems. Often, these two issues can be accurately resolved. Elsewhere, it 

is possible to introduce reasonable approximations. The main approximation - the form of 

the bulk scattering vertex - is not germane to the main goal of this paper, namely, to the 

incorporation of boundary scattering into the bulk transport theory. 

The effective collision and transport times are expressed explicitly via the bulk relaxation 

times and statistical parameters of the surface corrugation. Under certain conditions, such as 

for ultrathin system, nearly ballistic particles, and for robust bulk scattering, the analytical 

expressions for the effective time are quite simple and can be used without specifying the form 

24 



of the surface correlation function. Elsewhere, the effective time is calculated numerically 

for the Gaussian correlation of surface inhomogeneities. 

To avoid parameter clutter, the numerical examples are given for the simplest single­

layer films. The extension of the results to multilayer films, non-degenerate semiconductors, 

non-uniform internal potentials, etc., is straightforward and can be done in the same way 

as in Ref. [27] for purely ballistic quantized films with corrugated surfaces. 

Our quantum results on boundary - bulk interference are simpler, except for the quan­

tum resonance region [26], than the quasiclassical integral equations. In the semi-ballistic 

limit, the quantum results are preferable even for relatively thick films: In contrast to the 

quasiclassical picture, the quantum approach includes the interference between particles 

scattered by different walls. It also eliminates the divergencies, which are inherent to qua­

siclassical ballistic systems and are caused by a disproportional contribution from particles 

with momenta directed along the walls. 

The main conclusion is that the transport calculations for quantized films, performed 

with independent bulk and wall scattering, are often wrong. These results should and can 

be modified so that to include interference. 
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VII. APPENDIX A. DIAGRAMS FOR THE SELF-ENERGY AND RELAXATION 

TIME 

Self-energy diagrams are built of the free-particle Green's functions and three types of 

interaction, V, 8U, and U, Eq.(9), following the usual rules of the diagrammatic technique. 

The volume averaging over the distribution of impurities and the averaging over the sur­

face inhomogeneities can be done using the standard method [24-26]. The result should 

contain the full summation over the impurity diagrams, but be only of the second order in 

surface inhomogeneities. This means that the relevant diagrams include U in all possible 

configurations, but only two vertices corresponding to either V or 8U. 

Without boundary scattering, the integral equation of Figure 7 a expresses the (retarded) 
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G-function with bulk impurity scattering Q(i) (bold line) via the free-particle Green's func­

tion G(o) (thin line) and the interaction with impurities U (cross) in all orders. 

The addition of the perturbation V results in the diagram of Figure 7 b in which the 

shaded line is the Green's function G for the perturbation V + U, the bold line is Q(i), 

and the star is V. Since the diagrams with an odd number of the "stars" V vanish after 

averaging over the surface inhomogeneities e, the diagrammatic equation in Figure 7 b is 

equivalent to the one in Figure 7 c. 

Averaging [25,24,26] is done by connecting of crosses and stars between themselves (by 

dashed lines, as in Figure 8). The wall inhomogeneities are assumed to be small and one 

should consider the diagrams with no more than two stars. For impurities we perform the 

full summation beyond the Born approximation and, therefore, take into account in \ Q(i)) v 

the multicross diagrams such as, for example, in Figure 8 a! b. 

When p0 £ ~ 1, scattering does not renormalize the particle energy and results only in 

the formation of the mean free path and relaxation time. The same condition allows one 

to disregard all the diagrams with the intersecting dashed lines, as the ones in Figure 8 b! c, 

in comparison with the ones with the non-intersecting lines and multiline connections such 

as in Figure 8 a [24]. The explanation is that the angular integration for the intersecting 

diagrams gets restricted to a small solid angle irrespective of whether the intersecting lines 

have the same interaction sources, as crosses in Figure 8 b, or different sources, as crosses 

and stars in Figure 8 c. 

The remaining diagrams contain one dashed star line (V-V) with all possible impurity 

(cross) lines either above or below, but not intersecting it. The summation of all impurity 

lines below the V-V line yields immediately the bold impurity line \ Q(i)) v· Then the sum 

of all remaining diagrams with the non-intersecting impurity lines outside and above the 

V-V (star-star) line leads to the equation of Figure 9 for the self-energy function~ where 

r is the full bulk (impurity) scattering vertex. 

Here, the first term in the right hand side is the self-energy with bulk impurities and 
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without any boundary scattering, 

R 1 
Im~1 = - (b) . 

2Tj ( q) 
( 43) 

The second term is the sum of all diagrams in which the wall scattering line V-V is the 

outside line, 

I "R = I ~ J Wjj' ( q, q') dq' 
m u2 m ~ (b) 2 ' 

j'=l W - Ej' ( q') + µ + i /2Tj 1 ( q') (27r) 
( 44) 

with the wall-induced transition probability Wjj' ( q, q') from Ref. [26]: 

4 

Wjj' ( q, q') = m: L
6 

( (11 ( q - q') + (22( q - q') + 2 ( -1 y+j' ( 12 ( q - q')) j 2 j'2. ( 45) 

The last diagram includes the diagrams with impurity lines both above and below the 

V-V line and is very complicated. If p0£b ~ 1, the full vertex r does not differ from the 

irreducible one, r ~ r. This latter vertex in the momentum space changes on a large scale 

1/r0 (the interaction radius r 0 is often small, Eq.(7)). The zeroth angular harmonic of the 

irreducible impurity vertex gives the impurity relaxation time, 

( 46) 

Direct calculation of the diagram for slowly varying (almost constant) vertex shows that the 

contribution of this diagram is negligible in comparison with ( 44) when p0 £b ~ 1. If the 

inequality (7) does not hold - r 0 is not small or p0 £b is not large - the computation of this 

third term requires, as an input, an accurate model for the impurity vertex rjj' ( q, q'). 

When the conditions (7) are met, the last diagram in Figure 9 can be disregarded. As 

a result, the averaging over impurities, ( ... )v and surface inhomogeneities ( ... )e, reduces the 

effective relaxation time (the imaginary part of the self energy, ~A - ~R) to 

1 
( 4 7) 

It is clear that if one operates in terms of the relaxation time Tp)( q) without specifying its 

form, there is no difference between impurity scattering and other bulk scattering mecha-

nisms, such as particle-particle collisions, as long as the interaction potential is sufficiently 

short-range. 
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As for the diagrams with the interaction 8U, lengthy analysis shows that these diagrams 

can be disregarded when 

( 48) 

In this paper, we do not consider the anomalous region in which 8U is important though in 

this region the deviation from the Matthiessen's rule (1) is more profound than elsewhere. 

The only physical situation in which one can observe these anomalous effects is L / S ~ Lb ~ 

(L/Sj2) (L2 /S2 R2
) at L2 /S 2R2 ~ j2. Since the wall contribution can be observed only for 

not very small bulk free paths, Lb ~ L, this condition is too restrictive and the anomalous 

region, in which the diagrams with 8U prevail, is narrow. Though the wall contribution in 

the anomalous region is very unusual and its interference with the bulk terms is large, the 

chance to observe this ultra-quantum situation is rather slim, at least for electrons. For 

long-wave photons or phonons the chances are higher. 

VIII. APPENDIX B. BULK RELAXATION TIMES IN QUANTIZED FILMS 

The explicit form of the volume average of the Green's function with impurity scattering 

\ Q(i))v in thin films with QSE differs from its bulk analog [24] even for perfect walls. This 

complicates the evaluation of the relaxation times TJb) ( q) in quantized mini bands even when 

the whole function Tb(P) in unrestricted bulk is known. We will give the expressions for 

T?)(q) in the ladder (Born) approximation. As above, one can disregard the diagrams with 

the intersecting lines such as in Figure 8 b if p0 L ~ 1, and the only important diagrams 

not taken into account by the ladder series are the multiline connections such as the ones in 

Figure 8 a. Standard ladder calculation for a thin film with perfect walls yields 

i/T(b) (q) = _ Nimp Lf dq' luj'+j (q' - q)l
2 + (1 + Djj') luj'-j (q' - q)l

2 
( 49) 

J L j' (27r) 2 -Ej1(q')+µ+iO 

The integral in Eq.(49) contains the imaginary part (relaxation), and the real part which is 

responsible for the line shift (mean field). The real part is small in parameter l/p0 L ~ 1, 

the peak is narrow, and 
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(b~ = 7rNimp Lf dq'28(Ej' (q') - µ) (luj'+j (q' - q)l2 + (1 + Djj') luj'-j (q' - q)l2). 
Tj (q) L j' (27r) 

(50) 

The transition to the standard expressions for unrestricted bulk geometry is simple. In 

thick quasiclassical films with high quantum numbers j ~ 1 the summation in Eq.(50) can 

be replaced by the integration over Px = 7r j / L from 0 to oo. The transformation Px ----+ -px 

in the second term in the integrand allows one to rewrite the integral as a single integral 

from -oo to oo and reduces it to 

1 pom j 2 
Tb (p) = Nimp (27r)2 lu (IPo - Pl)I dD, (51) 

where p0 = (2mµ )1
/

2
, and n is the solid angle between p and p 0 . The interaction range 

r 0 is short, Eq.(7), and in u (IPo - Pl) one can replace IPI by p0 making Tb a momentum-

independent constant. In metals, this equation reduces to a standard bulk expression for 

the relaxation time on the Fermi surface, 

1 PFm 11 
2 - = Nimp-- lu (PF (1 - cos B))I d cos e. 

Tb 27r -1 
(52) 

For the same reason, the dependence of Tp)(q) on q in Eq.(50) is very slow, and the 

relaxation times Tp) can be considered constant, 

(53) 

IX. APPENDIX C. TRANSPORT TIME 

In transport phenomena, the observable is the transport time Ttr rather than the collision 

T of Appendix A. Under the usual circumstances, the difference between these two times 

reduces to a factor (1 - cos B) in the integrands responsible for the angular averaging. In our 

case, this is not so because of, first, the quantization of motion and, second, the presence of 

two scattering mechanisms of different nature, U and V. 

32 



In bulk transport theory, the diagrams for the two-particle Green's function (or, after 

one integration, for the density propagator P (p; w, k) ) reduce to the equation [25] 

(w-k·p/m+i/T)P(p;w,k) = [GA(O;p)-GR(w;p+k)] x (54) 

[1 + j dp' dr (p, p'; w, k) P (p'; w, k)] . 
(27r) 

Integration leads to the cooperon diagram and, in the end, defines the diffusion coefficient 

D (or the transport time Ttr) as a pole in the density response function, 

J dp [ i-1 --dP(p;w,k)cx: -iw+D(w,k)k2 , 
(27r) 

where, normally, one should consider w, k----+ 0 in the argument of D. 

In quantized films with two types of scattering, Eq.(54) has the matrix form 

( 
k · q i ) . _ [ ( i)A ( i)R l w--+ (efj) Pj(q,w,k) - Gj (q)-Gj (q) X 

m T· 
J 

(55) 

(56) 

[
1 + 2= j dq' 2 (rjj' ( q, q') + wjj' ( q, q')) pj, ( q'; w, k)] , 

j' (27r) 

where G)i) are the Green's functions with impurity scattering and w = k = 0 in all appro­

priate places. Then the matrix equation for the density response function becomes 

J dq L ejj' --2 Pj' ( q; w, k) = m, 
j' (27r) 

(57) 

where the effective frequencies e are defined as 

e .. _ · k' 'Y'(O) k2 qjqj' 'Y'(l)-1 
JJ' - -zwu11 1 + i jj' + 

2
m 2 i jj' , (58) 

Djj' m~ jq'dq' Wjj'(qj,q',cosB)/TJ,b)(q') 
Yjj' ( qj, qj', cos B) = (fJ) - -I'jj' (qj, qj', cos B) - -- 2 , 

T/ 2 47r (Ej' (q') - µ) 2 + (1/2TJ,b)(q')) 

1)~;1 ) are the zeroth and first angular harmonics of the functions Y jj' (cos B) over the angle 

qq', and 1/TJeff) is given by Eq. (47). The Ward identity ensures that 

(59) 

The diffusion coefficient can be calculated either from the matrix 8jj' 
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L ejj' ex: -iw + D (w, k) k2
• 

.. , 
J,J 

(60) 

or, alternatively, from the kinetic (transport) equation for the first angular harmonic n)1l of 

the distribution function 8nj ( q; w, k) of particles in the miniband j: 

(
dnj) (1) = - '"''Y'(1) (1) 
dt ~ i JJ'nJ, . 

j' 

(61) 

with the help of the diffusion current 

(62) 

Both methods require the inversion of the matrix r)~I to get the transport time (diffusion 

coefficient (32)) 

.. , 
J,J 

(63) 
J 

The inversion of r)~I (58) cannot be performed unless the bulk scattering vertex rjj' ( q, q') 

is known. Since we are not interested in the details of bulk scattering anyway, we should try 

to exclude this vertex from the equations for the effective transport time (63) by replacing 

it by observables - bulk relaxation and transport times. 

Without the surface scattering term W in Eq.(58), the effective scattering probability 

(frequency) is mf /2. The only reasonable way to proceed is to assume that r jj' ( q, q') is a 

slowly varying function of momenta and discrete indices and, therefore, depends mostly on 

the angle between the vectors q and q'. This assumption is justified when the interaction 

radius r 0 is the smallest spatial scale in the problem, Eq. (7). Such vertex can be expanded 

in angular harmonics with constant coefficients, 

rjj' ( q, q') = ~ r(o) + f(l) cos e + ... (64) 
2 

where, since q is a 2D vector, we use the Fourier, and not Legendre, expans10n. The 

analogous 3D expansion would include the expansion over the angle between 3D vectors 

(Ttj/L,q) and (Ttj'/L,q'), 
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2. "'/L2 I 

rjj' ( q, q') = r(o) + f(l) 7r ]] + q. q + ... 
V(7rj/L)2 + q2j(7rj'/L)2 + q'2 

(65) 

The collision relaxation time, according to Appendix A ( 46), is expressed via the zeroth 

harmonic of the irreducible vertex as 

1 1 ~(O) - = -Smr . 
Tb 2 

(66) 

Now Eq. ( 61) without W can be solved analytically. The bulk transport time is expressed, 

as it should be, only via the zeroth and first harmonics of the vertex: 

Tb = T [1 + f(l) (Lqj)2] 
tr b f(O) - f(l) Sl:qJ . (67) 

This equation is a bit cumbersome because the quasi-2D quantized films differ from both 

truly 2D or 3D systems. In truly 2D systems, when there is only one quantized level, S = 1, 

the sums disappears and Eq.(67) reduces to the standard "transport" form 

(68) 

In the opposite case of large number of levels, when the summation can be replaced by the 

integration, Eq.(67) reduces to 

- = - r( l - r( l 1 + =- - - 1 1 mS (~ 0 ~ 1 ) [ f( 1
l (37r

2 
) l-i 

Tlr 2 f(O) 8 
(69) 

That this is still not a 3D equation because we used Eq.(64) and not (65). In a truly 

quasiclassical 3D case with the expansion over Legendre polynomials, the last factor in 

Eq.(69) becomes 1. 

Using Eqs.(66), (67), one can replace the harmonics of the vertex r in the expressions 

for Y)~i in Eq.(63) for the effective transport time with both bulk and boundary scattering 

via the observables Tb and Ttbr· Then the equation for the effective transport time Ttr acquires 

the form (34). 
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X. FIGURE CAPTIONS FOR FIGURES 

Figure I.Relative interference contribution Xj, Eq. (16), for j = 1; 5; 9 as a function of 

the size of the surface inhomogeneities p0 R for p0 L = 30 and p0 £b = 100 

Figure 2. Relative interference contribution Xj, Eq. (16), for j = 1; 16; 31 as a function 

of the bulk free path p0 £b for p0 L = 100 and p0 R = 50 

Figure 3. Relative interference contribution Xj, Eq. (16), for j = 1; 2; 3 as a function of 

the film thickness p0 L for p0 R = 5 and PoLb = 20 

Figure 4. Relative interference contribution to transport time, Xtr, Eq. (35), as a function 

of the size of the inhomogeneities paR for pof = 0.1, PoLb = 10, Ttbr/Tb = 1.5, and three values 

of the film thickness, p0 L = 5; 10; 20 

Figure 5. Relative interference contribution to transport time, Xtr, Eq. (35), as a func­

tion of the bulk free path p0 £b at constant ratio Ttbr/ Tb = 1.5. The inhomogeneities are 

characterized by p0 R = 10, p0 f = 0.1; the film thickness is p0 L = 5; 20 

Figure 6. Relative interference contribution to transport time, Xtr, Eq. (35), as a function 

of the film thickness paL for pof = 0.1, PoLb = 20, Ttbr/Tb = 1.5, and two values of the 

correlation radius, p0 R = 20; 50 

Figure 7. Dyson equation for a) impurity scattering; b) and c) impurity and surface 

scattering 

Figure 8. Different types of averaged interaction diagrams. a) multiline connection; 

b) two intersecting second-order lines for impurity interaction; c) intersecting lines with 

impurity and wall scattering. 

Figure 9. Main diagrams for the self-energy with the averaged wall scattering in the 

second order (two stars connected by the dashed line), the exact dressed impurity Green's 

functions (bold lines)' and vertex r. 
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