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ABSTRACT 

Overall drug response is controlled by pharmacodynamic (PD) phase and 

pharmacokinetic (PK) phase. Over the last twenty years, much greater emphasis has been 

placed in PK phase because its outcome is much easier to measure and model compared 

to that of PD. In fact, PD and its parameters play an important role in controlling drug 

response. This document consists of three studies. The first study demonstrates through 

computer simulations using STELLA (High Performance System) the manner in which 

the main PD parameters influence the dose response relationship. A one compartment PK 

model linked to a sigmoid En.ax model through an effect compartment was used. The 

results show that as the sigmoidicity constant increases the duration of effect gets shorter. 

This parameter also impacts the magnitude of the response where its effect depends on 

the drug concentration and its ratio to the concentration at 50% of the maximum effect 

(EC50) . Also, it was found that as the ECso increases, the response from a given 

concentration gets smaller and the duration of effect gets shorter. When an effect 

compartment is necessary to model drug action, the effect compartment characteristics 

become more prominent as keo decreases. Thus the delay in response gets larger, the 

magnitude of response from a given dose gets smaller and the duration of action gets 

longer as keo decreases. 

The second study was designed to investigate the effect of different sources of variability, 

dose, PK and PD parameters, on drug response through computer simulations using 

STELLA. The different sources of variability were studied separately and in combination 



using a one-compartment PK model linked to sigmoid Emax and linear PD models. The 

results show that in presence of similar amount of variability, the response is much more 

sensitive to variability in PD parameters than variability in PK parameters. It is concluded 

that variability in PD parameters are clinically important and must be taken into account 

in order to use the drug effectively and safely. 

The third study was designed to investigate the optimum sampling design for a PD 

modeling study through computer simulation using an inhibitory Sigmoid Emax model in 

NONMEM (Non-linear Mixed Effect Modeling). The bias and precision of parameter 

estimates were used to judge the performance of various studied designs. The effects of 

population size and level of inter-individual variabi lity were further studied using the 

most optimum design. The experimental design for the determination of the equilibrium 

rate constant associated with an effect compartment was also studied. The most optimum 

design for determination of PD parameters in the absence of an effect compartment was 

found to be the one with the following sampling windows: 0.1-0.5, 0.5-1 and 1-2 EC50 

units. However, in the presence of high inter-individual variability (60%) estimates of 

variability parameters, using the most optimum design, were biased and imprecise. More 

precise estimates of the parameters were obtained with a larger population. The most 

optimum design for the equilibrium rate constant was found to be the one in which two 

samples were taken per individual, but it gave poor estimates of the variability parameter. 

J 
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PREFACE 

This document was prepared in the format of the manuscript plan in accordance to 

section 11 -3 of the Graduate School Manual at the University of Rhode Island. 

This dissertation consists of three manuscripts followed by appendices that include 

additional tables and figures related to the work in the manuscripts. At the end of the 

dissertation, there is a bibliography in whlch all sources used as references in this 

document are cited. 
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MANUSCRIPT I 

THE EFFECT OF PHARMACODYNAMIC PARAMETERS ON DRUG 

RESPONSE 

1.1. ABSTRACT 

Pharmacodynamics (PD) describes the relationship between drug concentration at the site 

of action and the response. Mathematical models have been used to describe this process. 

One of the most widely used models is the sigmoid En.ax model, which incorporates the 

PD parameters of efficacy (Emax), potency (ECso) and sigmoidicity constant (n) . For the 

study of the dose response relationship in vivo a PD model may be linked to a 

pharmacokinetic (PK) model, which describes the dose-plasma concentration time 

relationship. Often, because of delays between the rise and fall in plasma concentration 

and the rise and fall in response, a special effect compartment is necessary to link the PK 

and PD models. 

Despite PD's important role in the dose-response relationship, the application of PD 

parameters to therapeutic drug use is fairly new. This study demonstrates through a series 

of computer simulations the manner in which the main PD parameters (EC50, n and 

equilibrium rate constant (kco)) influence the dose response relationship. Simulations 

were conducted using a one compartment PK model with intravenous input linked to a 

sigmoid Emax model in the presence and absence of an effect compartment. Response was 

assessed in terms of maximum observed effect and duration of effect half-life. The 



response data were simulated using STELLA (High Performance System) with single and 

multiple doses. 

The results show the manner in which the various PD parameters affect the magnitude 

and duration of drug response. As n increases the duration of effect gets shorter. Thus the 

effect dissipates faster at higher values of n. This parameter also impacts the magnitude 

of the response but the effect of n depends on the drug concentration and its ratio to the 

EC50. If this ratio is greater than one, the drug response gets larger as n increases, but if 

this ratio is less than one, the drug response gets smaller as n increases. When this ratio 

equals one, i.e. when the concentration equals to ECso, the response is 50% E.nax and 

independent of the value of n. As predicted, as the EC50, which reflects the potency of 

drug, increases, the potency or sensitivity to the drug decreases and the response from a 

given concentration gets smal ler. Also the effect of the drug decays more rapidly when 

drug concentrations are low relative to the ECso. Thus as the EC5o increases, the effect 

decays more rapidly and the duration of effect associated with a given effect gets shorter. 

When an effect compartment is necessary to model drug action, the effect compartment 

characteristics become more prominent as k.o decreases. Thus the delay in response gets 

larger, the magnitude of response from a given dose gets smaller and the duration of 

action gets longer as k.o decreases. The study demonstrates that the design of rational 

dosing regimens for clinical therapeutics cannot be performed with knowledge of PK 

alone. The true optimization of dosage regimens must also take into consideration the PD 

parameters of the drug. 
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1.2. BACKGROUND: HISTORICAL AND LITERATURE REVIEW ON 

PHARAMCODYNAMICS 

1.2.1. Introduction: 

Pharmacodynamics (PD) is defined as the study of the biological effects resulting from 

the interaction between drugs and biological systems <
1>. Models are used to provide a 

simplified quantitative description of the concentration-response observations in an 

experiment and possibly make predictions for future experiments. Models have been 

developed, based on clinical observations to relate drug concentrations at the site of 

action to the pharmacological response. Although, the concentration at site of action 

drives the response, clinically it is usually impossible to measure this concentration. 

Thus, pharmacological response is usually related to plasma concentration (Cp). This 

approach appears satisfactory when the drug response is direct, receptor site rapidly 

equilibrates with plasma and the receptor interaction and response occurs rapidly. 

However, in some situations, there is a delay between rise and fall in Cp and rise and fall 

in response possibly due to a distribution delay. This may necessitate the link between the 

pharmacokinetic (PK) model and the PD model, using for example an effect 

compartment. 

As early as 1878, Langley suggested that the law of mass action probably governed the 

drug action and Clark extensively developed this theory in the 1920s <
2>. According to 

classical receptor theory, it is assumed that the drug action is proportional to the fraction 
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of receptors occupied. And that maximum effect results when all receptors are occupied 

C
3.•>. Using this assumption, the relationship between the drug effect and its concentration 

is hyperbolic in shape. This hyperbolic function is used to describe the concentration­

effect relationship for many drugs and is now known as the Emax model. The model was 

expanded to incorporate the possibility that more than one drug molecule may bind to 

each receptor. This expanded model is known as the sigmoid Emax model and will be 

discussed in detail later. Clark also used the advantage of the logarithmic transformation 

of the sigmoid Emax model equation to determine the PD parameters by linear regression 

method, which is later, modified to the logarithmic model C4>. 

The PK of most drugs are described as linear. Thus drug distribution and elimination are 

generally first order processes, and under the influence of elimination, Cp falls mono­

exponentially and the half-life is constant. As dictated by receptor theory, the PD of most 

drugs however are most often non-linear and as discussed above the concentration-effect 

relationship may be hyperbolic or sigmoid. Thus, as Cp decays, the effect will not 

necessarily fall in parallel. Thus, the time for the effect to fall by 50% wiII not necessarily 

be equal to the PK half-life. In consequence, clinically useful dosing guidelines cannot be 

based on PK models alone but must incorporate a PD model in order to consider non­

linearity in concentration-effect relationship. A delay caused by the time for tbe drug to 

distribute from the plasma to its site of action may further limit the value of using PK to 

develop dosing guidelines <5>. 
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In recognition of the importance of PD in controlling drug response, the Food and Drug 

Administration (FDA) recently called for PD modeling of clinical data as a component of 

new drug application <6>. The objective of this study is to demonstrate through computer 

simulations the manner in which the PD parameters affect drug response. The results of 

the simulations have been integrated with published reports from literature. 

l.2.2. Pharmacodynamic models used clinically: 

Several PD models have been used clinically to relate drug concentration at the effect site 

to the pharmacological response such as fixed effect model, logarithmic model, Emax 

model and sigmoid Emax model. A Brief description of the characteristics of these models 

is as follows: 

l.2.2.1. Fixed effect model: 

The fixed effect model is the simplest PD model. The effect is considered as a categorical 

not a continuous variable. Thus the effect is either present or absent. The degree of the 

effect is immaterial, what is important is whether or not it occurs. For example, Bellar et 

al <7> collected observations on a series of patients receiving digoxin. The effect was 

defined as the presence or absence of digitalis toxicity. The cumulative response rate for 

therapeutic effect can be compared to the cumulative rate of toxicity or adverse effect of 

a drug in order to obtain a measure of the therapeutic index and therapeutic range of the 

drug. This model has many limitations such as it suggests that all people respond to the 
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drug in the same way. Thus at a specific concentration in the therapeutic range, all people 

are assumed to respond optimally to the drug (SJ_ Additionally, the model does not 

incorporate a graded drug response. 

1.2.2.2. Logarithmic model: 

The logarithmic model relates the drug response (E) to the logarithmic function of drug 

concentration at the site of action (C). 

E = S (log C) + A I.I 

Where: S is a slope parameter, and A is the intercept. This model has the advantage that it 

linearizes the concentration effect relationship predicted by the more complex Err.ax model 

<•>. Nagashima et al <9> used this model to describe the time course of anticoagulation 

effect of warfarin. However, the logarithmic model has some limitations. The 

pharmacological effect cannot be predicted when the concentration is zero because of the 

logarithmic function. Also, it does not predict a maximum effect. Platzer et al <10
> studied 

the PD of beta-blocking actions of bopindolol using the logarithmic model. They found 

that observations were likely to deviate from the predictions of this model at 

concentrations well below or well above the concentration at 50% of the maximum effect 

and resulted in errors in predicting the time course of pharmacological effect. 

Consequently, the Err.ax or sigmoid Emax model, which can describe the whole 

concentration-effect relationship, should be used whenever possible. 
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1.2.2.3. Emu model: 

The Emax model is based on receptor theory where the effect is assumed to be 

proportional to the concentration or the fraction of receptors occupied <4>. The Emax model 

equation is as follows: 

E = 
Emax C 

EC 50 + C 
I.2 

Where: E max is the maximum effect (efficacy) and EC50 is the potency, which reflects the 

sensitivity of organ or tissue to the drug ci q The EC5o is the concentration at 50% of the 

maximum effect. 

This model predicts a hyperbolic concentration-effect relationship (Figure I.I). At low 

concentrations, well below the EC50, the receptors are less saturated and the 

pharmacological action approximates a first order process and the concentration-effect 

relationship is linear. At higher drug concentrations, as receptor saturation is approached 

this relationship starts to be non-linear and the law of diminishing returns is observed. 

This model has many advantages such as: it incorporates a maximwn effect and 

incorporates no effect at zero concentration. Additionally, it can be modified to 

incorporate the situation where more than one drug molecule binds to each receptor (the 

sigmoid Emax model). 
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Oosterhuis et al <12> used the Emax model to study the PD of terbutaline. They studied the 

effect of terbutaline on lung function in I 0 asthmatic patients after subcutaneous dosing 

with 0.75 mg terbutaline where a hyperbolic concentration-effect relation was found . 

Holford et al 1995 <
11

> used the Emax model to study the population PD of romaz.arit (a 

disease modifying anti-rheumatoid agent) to describe the time course of disease progress 

in 164 patients with rheumatoid arthritis. 

When the drug effect is measured as inhibition of a biological phenomenon, the EC5o 

may be referred as IC50 (concentration producing 50% of maximum inhibition). Holford 

<14
> used inhibitory Emax model to study the PD ofwarfarin. When this model was applied 

to the effect of warfarin the value of Emax was assumed to be 100% (i.e. complete 

inhibition of clotting factors synthesis) leaving only one parameter to be estimated (IC5o). 

Also, Lalonade et al <
15

> used the Emax model to study the PD of propranolol as % 

inhibition of exercise heart rate in 9 subjects. They found that at concentration well below 

the EC5o, there was a linear relationship between effect and concentrations. 

1.2.2.4. Sigmoid Emax model: 

The sigmoid Emax model is a modification of the Emax model , which accounts for the 

probability that more than one drug molecule binds to each receptor, using the term n, 

sigmoidicity. The sigmoid Emax model is derived from the Hill equation <14
>_ It has been 

proposed as a useful model to describe the in-vivo relationship between 

dose/concentration and continuous pharmacological effect for many drugs <15
>_ The 
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sigmoid Emax is the most widely used today because it solves all the limitations of 

previous described models. This model predicts a sigmoidal concentration- effect 

relationship (Figure 1.2). The sigmoid Emax model equation is as follows: 

E = _E-"m"'ax"-C_"_ 
ECj0 +C" 

I.3 

The sigmoid Emax model has three PD parameters that control the drug response. These 

parameters are the efficacy CEmax). the potency (EC5o) and the sigmoidicity constant (n). 

As with Emax model, the efficacy and potency are the same as Emax model parameters. The 

efficacy represents the maximum effe~t that occurs when all the receptors are occupied. 

Sometimes the efficacy is assigned a value of I 00%. The EC5o is the concentration at 

50% of the maximum effect and n is the number of drug molecules bound to each 

receptor and it determines the sigmoid shape of the concentration-effect relationship. For 

example if n = l, concentration-effect relationship will be hyperbolic (the Emax model), 

but when n is greater than l the curve becomes sigmoid with a steeper slope in its central 

region as shown in Figure 1.2. If n is less than I, the slope is steeper at low concentration 

and shallower at high concentration <1>. 

Although this model is based on receptor theory it cannot be assumed, even if the 

concentration-effect data fits the model, that the underlying pharmacological process is 

truly described by the model. It must be kept in mind that data drive the model. For 

example, sigmoidicity has been found to be a non-integer in some cases even though the 
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receptor theory would predict it to be always an integer <13
-
2 q When Meffin et al <13> used 

this model to describe the response of patients to tocainide administered for suppression 

of ventricular ectopic depolarizations, non-integer values of n ranging from 2.3 to 20 

were found. These values are unlikely to reflect receptor structure, but do emphasize the 

steepness of the curves. Braat et al <
19

> used this model to study the side effects of 

theophylline (eosinopenia and hypokalemia) where n was found to be 6.22 for 

eosinopenic effect and 6.78 for hypokalernic effect. Minto et al <20> used the sigmoid En.ax 

model (n = 2.51) to study the influence of age and gender on the PD of remifentanil, a 

short-acting opioid. Anderson et al <
21

> studied the preoperative PD of acetaminophen 

analgesia in children where they found that the PD of acetaminophen could be described 

using a fractional sigmoid Emax model that is with n is less than I (0.54) . 

In some cases (for example, heart rate and blood pressure), a baseline response is 

incorporated in the model. The modeled response may be added or subtracted from the 

baseline effect depending upon whether the response is stimulatory or inhibitory. If the 

drug has an inhibitory effect on a physiologic response, such as lowering of the exercise 

heart rate with a beta-blocker, the response is subtracted from the baseline effect. The 

baseline effect (Eo) is the response at zero drug concentration and it is measured in 

absence of drug or during placebo administration. It is added to or subtracted from the 

model equation as follows: 

E max C n 
E = E 0 ±-~=---

EC ~0 + C" 
1.4 
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The Eo can be estimated during modeling process or if it is known it can be substituted 

directly. In the latter case it would be subtracted from the response. Corey et al <22> 

studied PD of azimilide in 119 healthy volunteers where tbey found that the Emax ranged 

from 24 to 28% change in QT0 interval, a measure of the ventricular myocardial 

repolarization, from the baseline. Dias et al <23
> studied the PD of intravenous diltiazem, a 

calcium channel blocker, in 32 patients with atrial fibrillation or atrial flutter using a 

sigmoid Emax model with a baseline response. A strong relation (R2 
= 0.78) was observed 

between plasma diltiazem concentration and percent reduction in heart rate from the 

baseline. Anderson et al <
21> studied the analgesic effect of acetaminophen in 120 children 

undergoing outpatient tonsillectomy using the sigmoid Emax model with a baseline 

response where Eo was fixed at lO(maximum pain score). 

1.2.3. Linking the pharmacodynamic model to the pbarmacokinetic model: 

When the plasma concentration is substituted for concentration in PD equations, the 

underlying assumption is tbat the concentration at the site of action is in equilibrium with 

plasma. It should be emphasized that it is not necessary to assume that plasma 

concentrations are equivalent to effect site concentrations. This former assumption may 

be valid, if the drug effect is direct, receptor site rapidly equilibrates with plasma and the 

receptor interaction and response occurs rapidly. However, sometimes a delay between 

the pharmacological effect and the plasma concentration occurs which manifests itself by 

hysteresis. This delay may be due to the formation of an active metabolite, increased 
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receptor sensitivity, adaptation of some autoregulatory process that initially tries to 

compensate for the drug action, a close relation of the response to the drug concentration 

in peripheral compartment of multi-compartment PK model <24
• 

25l, distributional delay <12
• 

20
• 

21
• 

26
• 

27
) or a cascade of events to produce the response <14

• 
28

""
0>. 

1.2.3.1. Linking the effect to the peripheral compartment of multi­

compartment PK model: 

The pharmacological effect could be related to the concentrations in the peripheral 

compartment if the drug exhibits multi-compartment characteristics for its disposition. 

Wagner et al <
24

> demonstrated that the effects of lysergic acid diethylamide on mental 

performance were more closely related to the predicted peripheral compartment 

concentrations than to plasma concentrations. Reuning et al <
25> showed that the inotropic 

effect of digoxin related more closely to concentrations in the peripheral compartment 

than to those in plasma. However, the use of the peripheral compartment concentrations 

to describe concentration effect relationships has the limitation that the concentration in 

peripheral compartment represents the average concentration among the group of tissues 

that comprise the peripheral compartment and does not necessarily represent the 

concentration at the effect site. 

1.2.3.2. Effect compartment method: 
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Sheiner et al <26> developed a method to deal with hysteresis caused by an equilibrium 

delay between the concentration of drug in plasma and its concentration at the effect site. 

They developed a method to estimate the half time for effect equilibration when plasma 

concentrations are not constant. These investigators proposed a model to describe the 

time course of muscle paralysis with d-tubocurarine where they linked the central 

compartment of the PK model with a hypothetical effect compartment by a rate constant 

k10 (Figure I.3). It was assumed that k10 was very small relative to any other rate constant 

in the PK model and consequently a negligible amount of drug entered the effect 

compartment relative to the amount of drug in the other compartments. Because the 

amount of drug that entered the effect compartment was negligible, the amount returning 

to the central compartment from the . effect compartment was negligible and could be 

considered as eliminated directly from the effect compartment. Thus the effect 

compartment did not alter the plasma concentration-time curve. Under these assumptions, 

the specific value of k1e was unimportant, whereas the rate constant for drug loss from the 

effect compartment, k.o, (Figure 1.3) determined the time for the equilibration process 

between central and effect compartments and characterized the equilibration time 

between plasma concentrations and pharmacological effect. The major advantage of the 

effect compartment method was that non-steady state data could be used in conditions 

where a delay existed between plasma concentration and effect. 

Tfelt & Paalzow <27> studied the effect of ergotamine on peripheral arteries, measured as a 

decrease in toe-arm systolic gradients, after intramuscular injection of ergotamine 

tartarate in I 0 subjects with migraine. A delay existed between plasma concentration and 
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the effect. A hypothetical effect compartment model was used, the rate constant for 

equilibration of the drug between plasma and effect site was found to be 0.07 hr ·1
• Thus, 

it took 9.9 hr for the drug to appear at the effect site. Oosterhuis et al <12> studied the effect 

of terbutaline on bronchodilation in asthmatic patients. They found that fitting the time 

course of the effects required an effect compartment in the integrated PK/PD model. The 

equilibration half time was found to be 11.5 minutes. Minto et al <20
> used 3-compartment 

PK model linked to sigmoid Emax model through an effect compartment (k.o = 0.516 min-

1) to study the influence of age and gender on the PK and PD of remifentanil. They found 

that volume of distribution and clearance decreased by approximately 25% and 33%, 

respectively while both EC5o and Keo decreased by approximately 50% over the age range 

of 20 to 85 years while gender had no influence on any PK or PD parameters. So based 

on this study, remifentanil dose should be reduced for elderly people. Anderson et al <
19> 

used a one compartment PK model linked to sigmoid Emax model through an effect 

compartment to study the PD of acetaminophen in children where they found that the 

time for acetaminophen to reach the site of action was 1.6 hr. 

l.2.3.3. Indirect PD model: 

Some drugs exhibit an indirect relationship between their concentrations and their 

pharmacological response. Four indirect, mechanism based models have been proposed 

to model this type of response (Figure 1.4) <
28>. Each of these models assumes that the 

drug either inhibits or stimulates the production (K;n) or dissipation CK.:ui) of factors 

controlling the measured effect <29
>_ Thus, in model 1 the drug inhibits K;n. The action of 
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warfarin is an example of this category of response. Warfarin blocks the synthesis of 

vitamin K dependent clotting factors but has no effect on the degradation of these same 

facto rs. Thus, warfarin concentration may be related to the clotting factors synthesis but 

only indirectly related to the ultimate therapeutic effect (anticoagulation) <14
• 

28
• 

3o-34l_ 

Another example of model I is the cell trafficking effect of the corticosteriod, 

methylprednisolone. This drug causes changes in the cellular trafficking pattern of 

leucocytes, which results in a net movement of the cells from blood to extra vascular 

sites. It appears that the drug inhibits cells returning to the blood without affecting the 

egress of cells from the blood <
35

-
38>. Also, Sun et al <39> used the indirect PD model (!)to 

elucidate the relationships between the events in the molecular cascade that result in 

muscle wasting and fat deposition by methylprednisolone in rats. They found that this 

model was useful for describing the characteristics of time delay in the pharmacological 

action. 

The second indirect response model deals with inhibition of K.,.1 by a drug. An example 

of this model is the effect of pyridostigmine (a cholinesterase inhibitor) on muscular 

response following intravenous injection. Pyridostigmine inhibits the degradation and 

increases acetylcholine concentrations at the neuromuscular junction thus improving 

muscular response <35
>_ Another example of model II is the diuretic effect of furosemide 

following intravenous injection, where it inhibits water reabsorption. 

Model Ill indirect response deals with stimulation of K;n by a drug. An example of the 

application of model Ill is the effect of terbutaline on bronchodilation. Terbutaline 
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increases cyclic adenosine monophosphate (cAMP) in bronchial smooth muscle thus 

increasing bronchodilation as a function of plasma concentrations !35l_ 

Model IV indirect response deals with drug mediated stimulation of Kiut· An example of 

this model is terbutaline-induced hypokalemia. Terbutaline stimulates the 13i-adrenergic 

receptors leading to an increase in the formation of cAMP, and thereby activates the 

cellular membrane sodium-potassium adenosine triphosphate (ATP) pump. The 

hydrolysis of ATP is directly coupled to the transport of sodium ions out of cells and 

influx of potassium ions, resulting in the temporary reduction of plasma potassium levels 

(40) 

1.3. CLINICAL RELEVANCE OF PHARMACODYNAMIC PARAMETERS: 

1.3.l. Introduction: 

The magnitude and duration of response produced by a given dose of a drug is a function 

of the sequential PK and PD phases. Consequently the parameters used to model each of 

the phases are critical in controlling overall drug response and the design of suitable 

dosage regimens to produce optimum outcomes. Over the last 25 years PK principles 

have been universally applied to target specific concentrations or concentration ranges. 

However, owing to the paucity of information on the PD characteristics of drugs, this 

phase has been simplified and condensed down to the concept of the therapeutic range. 

The limitations of this approach combined with the increase in number of sophisticated 
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PD models published in literature are now permitting alternative, more thorough 

approaches to the consideration of PD phase in dose optimization <3>_ 

As these models and their associated parameters become more integrated in clinical 

practice, it becomes critical that practitioners fully appreciate the manner in which PD 

parameters impact response and thus dosage optimization in much the same way that the 

importance of the PK parameters, clearance, volume of distribution and half-life, are 

known. 

This study was designed to demonstrate through computer simulations the impact of the 

major PD parameters, EC50, n and k.:o on the magnitude and duration of drug response. 

The magnitude of response was evaluated by comparing the maximum observed effect 

(MOE) from a series of doses. The duration of effect was assessed by measuring the time 

for the effect to fall by 50% (effect half-life) at different concentrations. Simulations were 

performed using a one-compartment PK model linked to a sigmoid Emax model with and 

without an effect compartment. The goal of the study was to provide practitioners and 

pharmaceutical scientists with information about the PD parameters comparable to that of 

major PK parameters of clearance, volume of distribution and half-life. 

1.3.2. Methods: 

An integrated PK-PD model was constructed in STELLA (High Performance Systems, 

Inc, Hanover, NH). 
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1.3.2.1. Pharmacokinetic Model: 

A one-compartment PK model with a first order elimination rate constant was used. Units 

of time were the half-life (t112). The drug was assumed to have a volume of distribution 

(VD) of 20 L. Thus the drug's clearance would be equal to, VD*0.693/t 112, 13.9 L/t112• 

Simulations were performed using intravenous (IV) single dose and IV multiple doses in 

presence and absence of the effect compartment. Concentration was measured in units of 

EC50. Single IV doses were selected to produce MOE of 25, 50 or 90 % respectively 

when n = 1 and EC50 = 1 in absence of the effect compartment. Multiple IV doses were 

given every elimination half-life to produce MOE at steady state of 25, 50 and 90 % 

respectively when n= l and EC50 =l in absence of the effect compartment. 

1.3.2.2. Pharmacodynamic Model: 

Response data were generated using the sigmoid Emax model. Simulations using different 

values of n (0.5, 1, 2, 3 & 5) and EC50 (0.5 , 1, 2, 3 & 5) were performed in order to 

evaluate the influence of these parameters on the magnitude and duration of response. 

The response data were generated by numerical integration every 0.01 hr. 

I.3.2.3. Effect Compartment Model: 
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In addition to a direct link, the PD model was also linked to the PK model through an 

effect compartment. Illustration of the hypothetical effect compartment is shown in 

Figure 1.3, as mentioned previously. The effect of different equilibrium rate constant, k.o, 

(0.2, 0.4, 0.6, 0.8 & I) on MOE and on the duration of effect half-life was studied [(k1c 

was kept constant at 0.01 elimination half-life"1 (et1n.1
)). The effects of the values of n 

and EC50 on drug response in presence of the effect compartment were studied. 

1.3.3. Results: 

The time for the plasma concentration to fall by 50% (PK half-life) is constant while the 

time for the effect to fall by 50% (PD half-life) varies on the curve and is much longer 

than the PK half-life as shown in Figure 1.5. Moreover, the fall in response gets longer in 

presence of an effect compartment than that in absence of it. 

I.3.3.1. Single IV Dose: 

1.3.3.1.1 Single IV dose with no effect compartment: 

I.3.3.1.1.1. Effect of non the response: 

The effect of different values of n on the response is shown in Table I. I, Figures 1.6 and 

I. 7. As n increases, the slope of the concentration-response curve gets steeper (Figure 

1.6). The parameter n is often referred to as the steepness parameter. As n increases the 
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concentration-response curve becomes steeper. The impact of thi s on the MOE from a 

specific dose depends on the ratio of the concentration to the EC50. If this ratio is less 

than one i.e. at low drug concentration, the MOE from a given dose gets smaller as n 

increases. In contrast, at ratio greater than one, the MOE gets larger with increase in n. 

Note in Figure 1.6, when n is small, very large concentration would be necessary to 

achieve maximum response. When the ratio is equal to one, i.e. when concentration = 

EC50, the effect is 50% Emax irrespective of the value of n. The effect of n on the duration 

of effect is shown in Figure 1.7, where again it can be seen that as n increases, the slope 

of the effect-time curve gets steeper. Thus, as n increases the response dissipates faster 

and the duration of response decreases. Thus, n affects both the magnitude and duration 

of response from a given dose. 

1.3.3.1.1.2. Effect of EC50 on the drug response: 

The manner in which the values of the EC50 influences drug response is shown in Table 

1.2 and Figures 1.8 and 1.9. Changes in the potency or EC50 shift the effect-concentration 

curve along the x-axis (Figure 1.8). As ECso increases, the curve is shifted to the right. 

Thus as EC50 increases, the response from a given concentration decreases. The effect­

time relationship after a standard single dose is also considered (Figure 1.9), it can be 

seen that as EC50 increases, the MOE from a given dose gets smaller and the rate of fa ll 

of effect is more rapid with higher values of EC50. As mentioned earlier, at low 

concentration relative to ECso, the fall in effect with time approximates first order 

process. At high concentration relati ve to ECso however, when the receptors display a 
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greater degree of saturation the rate of fall of effect with time is less than for a linear first 

order process. 

1.3.3.1.2. Single IV dose with an effect compartment: 

The influences of k.o, n and EC50 on drug response were studied when the integrated 

PK/PD model incorporated an effect compartment. The effects of n and EC50 were 

studied at two values of the keo (0.2 and I et112·1). 

1.3.3.1.2.1. Effect of k.o on the drug response: 

The equilibrium rate constant (k.o) quantifies tbe delay between plasma concentrations 

and pharmacological response caused by the time required for drug distribution to its site 

of action. Compared to models where the distribution process proceeds essentially 

instantaneously, tbe MOE from a given dose is less but the duration of action is longer 

(Figure I. I 0). The more significant the delay (i.e. the small the value of the keo), the 

smaller the MOE and the longer the duration of effect. The effect of different k.o on tbe 

MOE and on duration of effect half-life is shown in Table 1.3 and Figure I. I 0 using the 

same doses that gave 25, 50 or 90 % response in absence of the effect compartment when 

n= I and EC5o =I . As expected, there is a delay in the response after dose administration. 

The time for the peak effect gets longer as keo decreases. 
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1.3.3.1.2.2. Effect of n on the response in presence of an effect 

compartment: 

The effect of n on drug response in presence of an effect compartment is shown in Tables 

l.4 and l.5 for k.o of 0.2 and 1 et112·', respectively. The effect of n on the maximum 

response and duration of action is similar to that in absence of the effect compartment. 

Additionally, however n influences the delay for the initial response. The delay in the 

initial response observed in the presence of an effect compartment gets longer as n 

increases. For a given k.0, the time to reach MOE is almost the same irrespective of 

changing n and the dose because it depends only on the value of k.o-

1.3.3.1.2.3. Effect of EC50 on the response in presence of an 

effect compartment: 

The effect of EC50 on drug response in presence of an effect compartment is shown in 

Tables l.6 and l.7 for k.o of 0.2 and 1 et112·
1
, respectively. The delay in the response and 

time to reach MOE are essentially independent of EC50. As expected, the response gets 

smaller and the duration of effect gets shorter as EC5o increases. 

1.3.3.2. Multiple IV Doses: 

Multiple IV doses were given every PK half-life to produce MOE at steady state (7-PK 

half lives) of 25, 50 and 90% respectively when n= l and EC50 = l in absence of the effect 

22 



compartment. The duration of effect half-life could not be studied with multiple dosing 

because at the concentration used the response never fell by 50% during a steady state 

condition. At steady state condition, the maximum Cp fell by half while the drug 

response was only slightly affected by that fall in Cp. In presence of the effect 

compartment, the fall in drug response got much longer than that in absence of the effect 

compartment as shown in Figure l.11. 

1.3.3.2.1. Multiple IV doses with no effect compartment: 

The effects of n and EC50 on drug response in case of multiple dosing were studied in 

terms of MOE. The drug response at initiation of therapy is less than that at steady state, 

because of the accumulation of drug that occurs during the build up to steady state. 

1.3.3.2.1.1. Effect of n on the response: 

The effect of n on drug response using multiple IV doses is shown in Table l.8. The 

manner in which the drug response is affected by n using multiple doses is similar to that 

of single dose where the effect of n depends mainly on drug concentration and its relation 

to ECso-

1.3.3.2.1.2. Effect of EC5o on the response: 
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The effect ofEC50 on the drug response using multiple IV doses is shown in Table l.9. As 

with single IV dose, the MOE gets smaller as EC50 increases for all doses studied. 

1.3.3.2.2. Multiple IV dosing with an effect compartment: 

1.3.3.2.2.1. Effect of k.o on response: 

The effect of different keo on the drug response is shown in Table I. I 0. The EC50 and n 

were kept at I and k1c was kept at 0.0 I et1n" 1
• 

As expected, there was no initial response after dose administration. The delay gets 

longer as keo decreases. Compared to single dose, the magnitude of maximum response is 

slightly affected by the decrease in kco. The fall in drug response is much longer than that 

in absence of the effect compartment as shown in figure I.I I, where the slope of the time­

response relationship in presence of the effect compartment is much shallower than that 

in absence of the effect compartment. 

1.3.3.2.2.2. Effect of n on the response in presence of an effect 

compartment: 

The effect of non the response in presence of the effect compartment is shown in Tables 

I.I I and 1.12 for keo of0.2 and I et1n·1
, respectively. As with single dose, the delay gets 
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longer as n increases and the effect of n on drug response depends on drug concentration 

and its relation to EC50. 

1.3.3.2.2.2. Effect of EC50 on the response in presence of an 

effect compartment: 

The effect of different values of ECso on drug response in presence of an effect 

compartment is shown in Tables 1.13and1.14 for kco of0.2 and I et112•
1
, respectively. As 

with single dose, the MOE from given doses gets larger as EC50 decreases with all doses 

studied. The influence of the effect compartment appeared to be more prominent on the 

impact of EC5o on drug response than that of n. 

1.3.4. DISCUSSION: 

In recognition of the importance of PD in determining the response achieved by a given 

dose of a drug and by extension, the determination of optimum dosage regimen to 

achieve a desired response, PD studies are receiving increased emphasis in various 

branches of pharmaceutical science. The importance of these studies in optimizing drug 

dosage during drug development was recognized and stressed by Reigner et al <41 >. 

Recently PD have been used together with PK studies to optimize clinical trial design. 

More recently, the use of integrated PK/PD models has been proposed as a superior 

method of individualizing doses of drugs in clinical use to achieve the desired therapeutic 
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effect. Traditionally the process of therapeutic drug monitoring aims to have the Cp 

within the therapeutic range, which is an empirically chosen range in which the average 

person would experience optimum response. However, therapeutic drug monitoring uses 

the passive concept of monitoring and fails to explicitly take drug effects into account <3>. 

As PD models aod their associated parameters become more integrated in clinical 

practice, it becomes increasingly important that practitioners fully appreciate aod 

understand the relevance of the various PD parameters to drug response in the same way 

that PK parameters are well related to Cp. For example, it is generally accepted that 

clearance determines the steady state plasma concentration and the value of a 

maintenance dose and that volume of distribution controls the early plasma concentration 

and the value of a loading dose. 

These simulations have demonstrated the clinical importance of the PD parameters, n, 

EC5o and k.o in determining the magnitude and duration of the drug response. It is 

important to understand how the drug response declines with time in the sigmoid Emax 

model as shown in Tables I.I & 1.2 and Figures 1.7 & 1.9. As a result of the non linear 

relationship, the half-life for the decay of response varies and depends on the initial 

response. Also, it is very important to consider the influence of the effect compartment in 

terms of k.o, on the MOE, achieved from a given dose, and on the duration of effect half­

life as shown in Tables 1.3 and l.10. 
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The study of the effect of n on the drug response shows that the effect depends on the 

ratio between drug concentration and EC5o. If this ratio is more than 1, the drug response 

from a given dose gets larger as n increases as shown with single and multiple doses that 

give MOE of90 % at n = I in Tables I. I and l.8 respectively. At concentrations less than 

EC50, the response from a given dose gets lower as n increases as shown with single dose 

and multiple doses that give MOE of 25 % at n = I in Table I. I and Table l.8, 

respectively. When this ratio equals I, i.e. at 50% effect, the MOE is not influenced by n, 

because the effect is independent of n when the concentration at the site of action (C) is 

equal to EC50. The independence of the effect on n at this concentration can be proven 

below: 

At 50% effect, drug concentration= EC5o. 

Thus E = Emax *C" 
C" + C" 

•c" E = Emax 
C" (l + I) 

E= I 00 I 2 = 50 % regardless of the value of n. 

The value of n varies from drug to drug and from individual to individual. It was found 

that n for tocainide varied from 2.3 to 20 ci si. The study of the effect of theophylline on 

eosinopenia and hypokalemia showed that n varied from 3.9 to 8.5 for the eosinopenic 

effect and 4.2 to 9.4 for the hypokalemic effect <19l. Also, the study of the PD of 

remi fentanil <20l showed that n varied from 1.2 to 3.9. In addition, the study of 

preoperative PD of acetaminophen analgesia in children showed that n varied from 0.3 l 

to 0.77 <21l. Individuals with low n values will experience a greater effect and longer 
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duration of action, at low concentration than individuals with higher n values. 

Conversely, at higher concentration, when the receptors are approaching saturation, 

individuals with low n values will experience lesser response but still experience longer 

duration of action than those with higher n values. 

The study of the effect ofEC50 on the drug response shows that EC50 or potency shifts the 

concentration-response relationship up and down the x-axis as shown in Figure I.8. As 

ECso increases, the drug gets less potent and a smaller response is achieved from a given 

dose as shown in Table 1.2 and Table 1.9 with single and multiple doses, respectively. 

Likewise as the potency decreases, the EC5o increases and the duration of action of the 

drug gets shorter. This is very important clinically, because when EC50 increases or 

decreases it will result in a lower or higher drug response respectively. 

Jonkers et al C
42

> studied the changes over time in the concentration-effect relationship of 

the beta 2-adrenoceptor-agonist, terbutaline. A sigmoid Emax model was used to relate 

drug concentrations to the response. After one week on oral terbutaline the concentration­

effect relationship was shifted to the right with a higher EC50 of terbutaline, which 

resulted in a higher drug concentration to produce a given response. Minto et al C
20> 

studied the influence of age on the PD of remifentanil where they found that age was a 

significant covariate of EC5o. The ECso decreased by approximately 50% for the age 

range studied (20-85 years) as the individual gets older, which resulted in less drug 

concentration was required to produce the drug response in elderly people who were 

more sensitive to the effect of the drug. 
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The equilibrium rate constant (k.o) is associated with effect compartment, which often 

added to account for a delay between the rise and fall in Cp and the rise and fall in 

response. As the value of k.o gets smaller, the time to reach the equilibrium between the 

drug concentration in plasma and its concentration at the site of action gets longer and the 

influence of the effect compartment becomes more prominent as the time to reach the 

equilibrium is very long. This study demonstrated that as k.o decreases the MOE from a 

given dose gets smaller and the duration of response gets longer. This is because the 

smaller the value of k.o, the slower the drug distribution to the effect site and the lower 

the concentration at the site of action from a given dose which results in a lower MOE. 

The duration of action gets longer which may be due to the slower redistribution of the 

drug. For example, a single dose that gives MOE of 90% and duration of effect half life 

of 3.4 elimination half-life (et112) at n = 1 and EC50 =1 in the absence of an effect 

compartment, gives MOE of 80% and duration of effect half life of 3.9 et 112 in presence 

of k.o of 1 et 112·
1 and MOE of 61 % and duration of effect half life of 8 et112 in presence of 

k.o of 0.2 et112·
1
• The time to reach MOE gets longer as k.o increases. For example, a 

single dose that gives MOE of 90% at n = 1 and EC50 = 1 in absence of the effect 

compartment reaches the MOE at 2.44 et112 and 1.15 et112 in presence of k.o of 0.2 and 1 

et 112-
1
, respectively. The time to reach MOE is almost the same for a particular k.o 

irrespective of the dose as shown in Tables 1.3, 1.4, 1.5, 1.6 & 1.7. 

Using multiple IV doses, the MOE gets slightly smaller as k.o decreases. For example, 

multiple doses that give MOE of 90% at n = 1 and EC5o = 1 in absence of the effect 
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compartment, gives MOE of 82% and 86% in presence of an effect compartment of k.:o of 

0.2 and 1 respectively. Contin et al C
43l studied the time course of levodopa Cp and 

pharmacological effect (on finger tapping rate as a measure of motor response) in a 

patient with Parkinson's disease over 4 years of disease progression. There was 

essentially no effect on the drug PK but the onset of drug effect occurred earlier and the 

duration of effect became shorter over the years. This is because k.o gradually increased 

and hysteresis became less pronounced. The half-life of the apparent equilibration 

process decreased from 173 minutes to about 43 minutes C«>. 

Stanski et al <45
) studied the effect of halothane on d-tubocurarine response and found that 

halothane decreased the k.o for d-tubocurarine muscle paralysis and thus delayed the 

onset of muscle paralysis. This was due to halothane-induced reduction in muscle 

perfusion. The magnitude of k.o depends on many factors such as perfusion of the effect 

site, rate of drug diffusion from capillaries to the effect site, blood tissue partition 

coefficient of the drug, rate of drug-receptor association and dissociation, time course of 

subsequent pharmacological response and age <20>. 

The manner in which the values of n and EC50 affect drug response in presence of an 

effect compartment are similar to that as in absence of the effect compartment with single 

and multiple doses. 
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1.3.5. Conclusion: 

The PD parameters namely sigmoidicity constant, potency and equilibrium rate constant, 

influence the magnitude and duration of drug response. It has to be born in mind that the 

overall drug action consists of two phases, PK phase and PD phase. Thus, PD parameters 

should be taken into consideration in evaluating the drug response. Prospective 

implementation of large-scale population PD evaluation is feasible in early drug 

development and this approach generates clinically relevant findings <
46>. The expanded 

use of PK/PD-modeling is found to be highly beneficial for drug development as well as 

applied pharmacotherapy and will most likely improve the current state of applied 

therapeutics <47l_ 
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Table 1.1. Effect of n on drug response using a single IV dose: 

n MOE T112 'MOE T112 'MOE T112 

(%) (et112) (%) (et112) (%) (et112) 

n-0.5 75 4.61 50 3.15 36.6 2.71 

n= I 90 3.44 50 1.58 25 1.22 

n=2 98.8 3.17 50 0.79 10 0.54 

n-3 99.9 3.15 50 0.53 3.58 0.34 

n=5 100 3.15 50 0.32 0.41 0.19 

MOE: maximum observed effect. 
1· 2• 

3 means that the dose used, gives MOE of 90%, 50 % or 25 % respectively when n 
and EC50 = I, in absence of the effect compartment. 
T 112 : duration of effect half-life and et112: is the elimination half-life. 
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Table 1.2. Effect of EC50 on drug response using a single IV dose: 

EC so MOE T1 12 --,-MOE T112 'MOE T112 

(%) (et112) (%) (et112) (%) (et112) 

ECso=0.5 94.7 4.30 66.7 1.99 40 1.41 

ECso=I 90 3.44 50 1.58 25 1.22 

ECso-2 81.8 2.68 33.3 1.31 14.3 1.11 

ECso=3 75 2.31 25 1.21 10 1.07 

ECso=5 64.3 1.91 16.7 1.13 6.25 1.04 

MOE: maximum observed effect. 
1· 2• 

3 means that the dose used, gives MOE of 90%, 50 % or 25 % respectively when n 
and EC5o = I, in absence of the effect compartment. 
T112: duration of effect half-life and et 112: is the elimination half-life. 
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Table 1.3. Effect of k.o on drug response using a single IV dose: 

k.o MOE T112 ,-MOE T112 'MOE T112 

(%) (et112) (%) (et112) (%) (et112) 

k.o=0.2 60.8 8.02 14.7 5.46 5.44 5.29 

k.o=0.4 70.9 5.54 21.3 3.67 8.28 3.38 

k.o-0.6 75.4 4.58 25.4 2.98 10.2 2.74 

k.o=0.8 78 4.2 28.2 2.63 11.6 2.41 

k.o=l 79.7 3.91 30.3 2.40 12.7 2.18 

MOE: maximum observed effect. 
1· 2• 

3 means that the dose used, gives MOE of 90%, 50 % or 25 % respectively when n 
and EC50 = 1, in absence of the effect compartment. 
T 112: duration of effect half-life and et112 : is the elimination half-life. 
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Table 1.4. Effect of non drug response using a single IV dose with an effect compartment of k,0 of 0.2 et112•
1
: 

n Einit MOE Time at T1 12 Einit 'MOE Timeat T112 E;nit 
3MOE Timeat 

(%) (%) MOE (et112) (%) (%) MOE (et112) (%) 
(et112) (et112) 

Dose 1 Dose 2 

n=0.5 11.8 55.5 2.42 13.5 4.28 29.4 2.43 10.5 2.52 

n=2 0.03 70.7 2.46 7.76 0 2.89 2.37 3.24 0 

n=3 0 78.9 2.48 6.91 0 0.51 2.26 2.53 0 

n=5 0 90.0 2.45 6.34 0 0.02 2.27 0.47 0 

E;.;1: effect(%) at 0.01 et112. 
T112: duration of effect half-life and et112 is the elimination half-life. 
1· 2

•
3 means that the dose used, gives MOE of90%, 50 % or 25 % respectively when n and ECio =l, 

in absence of the effect compartment. 
NIA: not applicable. 

(%) MOE 
(et112) 

Dose 3 

19.4 2.43 

0.33 2.18 

0.02 NIA 

0 NIA 

T112 
(et112) 

9.76 

3.4 

NIA 

NIA 
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Table 1.5. Effect of n on drug response using a single IV dose with an effect compartment of k,0 of1.0 et112-
1: 

n Eini1 MOE Time at T112 Einit 'MOE Time at T112 Einit 'MOE Time at T112 
(%) (%) MOE (et112) (%) (%) MOE (et112) (%) (%) MOE (et112) 

(et112) (et112) (et112) 

Dose I Dose 2 Dose 3 

n=0.5 23.1 66.4 1.15 5.44 9.09 39.8 1.16 4.18 5.46 27.6 1.13 3.86 

n= l 8.26 79.7 1.15 3.91 0.99 30.3 1.16 2.4 0.33 12.7 1.14 2.18 

n=2 0.8 93 .9 1.15 3.33 0.0 1 15.9 1.1 5 1.42 0 2.07 1.16 1.3 1 

n=3 0.07 98.4 1.1 5 3.25 0 7.63 1.16 1.06 0 0.3 1 1.1 5 1.02 

n=5 0 99.9 I.OJ 3.37 0 1.54 1.13 0.8 0 O.Ql NIA NIA 

E;0;,: effect(%) at 0.01 et112. 
T 112: duration of effect half-life and et112 is the elimination half-life. 
1· 2• 

3 means that the dose used, gives MOE of 90%, 50 % or 25 % respectively when n and EC5o =1, in absence of the effect 
compartment. 
NIA: not applicable. 
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Table I.6. Effect of EC50 on drug response using a single IV dose with an effect compartment of~ of 0.2 et112·
1: 

EC so Einit MOE Timeat T112 Einit 
2MOE Timeat T112 Eini1 

3MOE Timeat T112 
(%) (%) MOE (et112) (%) (%) MOE (et112) (%) (%) MOE (et112) 

(et112) (et112) (et112) 

Dose 1 Dose2 Dose 3 

ECso=0.5 3.47 75.6 2.41 9.87 0.4 25 .7 2.47 5.86 0.13 10.3 2.4 5.4 

ECso= l 1.77 60.8 2.44 8.02 0.2 14.7 2.47 5.46 0.07 5.44 2.36 5.29 

ECso=2 0.89 43.7 2.45 6.75 0.1 7.94 2.38 5.34 0.03 2.8 2.4 5.16 

ECso=3 0.60 34.1 2.45 6.25 0.07 5.44 2.39 5.25 0.02 1.88 2.27 5.26 

ECso=5 0.36 23.7 2.44 5.81 0.04 3.34 2.43 5.14 0.01 1.14 2.31 5.17 

E;0;, : effect(%) at 0.01 et112. 
T112: duration of effect half-life and et112 is the elimination half-life. 
1· 2• 

3 means that the dose used, gives MOE of 90%, 50 % or 25 % respectively when n and EC50 =I, in absence of the effect 
compartment. 
N/A: not applicable. 
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Table 1.7. Effect of EC50 on drug response using a single IV dose with an effect compartment of k.o of 1 et 112'
1: 

EC so Einit TMOE Time at T112 Einit 
7 MOE Time at T112 Einit 'MOE Time at T112 

(%) (%) MOE (et112) (%) (%) MOE (et112) (%) (%) MOE (et112) 
(et112) (et112) (et112) 

Dose I Dose2 Dose 3 

ECso=0.5 15.3 88.7 1.16 4.7 1.96 46.6 1.1 5 3.85 0.66 22.5 1.15 2.29 

ECso=l 8.26 79.7 1.15 3.91 0.99 30.3 1.16 3.56 0.33 12.7 1.14 2.18 

ECso=2 4.31 66.2 I.I 8 3.22 0.50 17.9 1.15 3.38 0.17 6.77 1.13 2.13 

ECso=3 2.91 56.7 1.17 2.92 0.33 12.7 1.16 3.32 0.11 4.62 1.14 2.09 

ECso=5 1.77 43.9 1.1 5 2.65 0.20 8.01 1.13 3.27 0.07 2.82 I. I 2.12 

E;,;1: effect(%) at 0.01 et112 . 
T 112: duration of effect half-life and et112 is the elimination half-life. 
1· 2· 

3 means that the dose used, gives MOE of 90%, 50 % or 25 % respectively when n and EC50 =!,in absence of the effect 
compartment. 
N/A: not applicable. 



Table 1.8. Effect of n on drug response using multiple IV doses: 

n MOE -'MOE -,-MOE 

(%) (%) (%) 

n=0.5 75 50 36.6 

n= l 90 50 25 

n=2 98.8 50 10 

n=3 99.9 50 3.6 

n=5 100 50 0.41 

MOE: maximum observed effect. 
1
•
2
•
3 means that the multiple doses used, give MOE of90%, 50 % or 25 % respectively at 

steady state when n and ECso = I , in absence of the effect compartment. 
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Table 1.9. Effect of ECso on drug response using multiple IV doses: 

EC so MOE -,-MOE -,-MOE 

(%) (%) (%) 

ECso=0.5 94.8 66.7 40 

ECso=I 90 50 25 

ECso=2 81.6 33.3 14.3 

ECso=3 75 25 IO 

ECso=5 64.3 16.7 6.25 

MOE: maximwn observed effect. . 
1
• 
2

• 
3 means that the multiple doses used, give MOE of 90%, 50 % or 25 % respectively at 

steady state when n and EC50 = I , in absence of the effect compartment. 
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Table 1.10. Effect of kd) on drug response using multiple IV doses: 

k.o MOE -,-MOE -,MOE 

(%) (%) (%) 

k.o=0.2 81.6 33 14.1 

k.o=0.4 85 38.6 17.3 

k.o=0.6 85.7 40 18.2 

k.o=0.8 85.8 40.2 18.3 

k.o= l 85.9 40.2 18.3 

MOE: maximum observed effect. 
1
• 
2

• 
3 means that the multiple doses used, give MOE of 90%, 50 % or 25 % respectively at 

steady state when n and EC50 = 1, in absence of the effect compartment. 
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Table 1.11. Effect of n on drug response using multiple IV doses in presence of an 

effect compartment of k.o of 0.2 et1n-': 

n Einit MOE Einit ,-MOE Einit -,-MOE 

(%) (%) (%) (%) (%) (%) 

n- 0.5 8.75 67.8 3.09 41.2 1.8 l 28.8 

n= l 0.9 1 81.6 0.1 33 0.03 14.l 

n=2 0.01 95.2 0 19.5 0 2.62 

n-3 0 98.9 0 10.6 0 0.44 

n=5 0 99.9 0 2.8 0 0.01 

Einit: effect (%)at 0.01 etin. 
MOE: maximum observed effect at steady state. 
1
• 

2
• 

3 means that the multiple doses used, give MOE of 90%, 50 % or 25 % respectively at 
steady state when n and EC50 = I, in absence of the effect compartment. 
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Table 1.12. Effect of n on drug response using multiple IV doses in presence of an 

effect compartment of k.o of 1 et112·
1: 

n Einit MOE Einit -,MOE Einit -,MOE 

(%) (%) (%) (%) (%) (%) 

n=0.5 17.7 71.1 6.67 45 3.96 32.l 

n=l 4.4 85.8 0.51 40.2 0.17 18.3 

n=2 0.21 97.3 0 31.1 0 4.76 

n=3 0.01 99.6 0 23 .2 0 1.11 

n=5 0 100 0 12 0 0.06 

E;0 ;1: effect (%)at 0.01 et112. 
MOE: maximum observed effect at steady state. 
1· 2• 

3 means that the multiple doses used, give MOE of 90%, 50 % or 25 % respectively at 
steady state when n and EC so = l, in absence of the effect compartment. 
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Table l.13. Effect of EC50 on drug response using multiple IV doses in presence of 

an effect compartment of k.o of 0.2 et, 12•
1
: 

EC so Einit MOE Einit -,-MOE Einit -,MOE 

(%) (%) (%) (%) (%) (%) 

ECso=0.5 1.81 89.9 0.2 49.6 0.07 24.7 

ECso=I 0.91 81.6 0.1 33 0.03 14.1 

ECso=2 0.46 68.9 0.05 19.7 0.02 7.58 

ECso=3 0.31 59.7 0.03 14.1 0.01 5.18 

ECso=5 0.18 47 0.02 9 0.01 3.17 

E;0;1: effect (%)at 0.01 et112. 
MOE: maximum observed effect at steady state. 
1·2

•
3 means that the multiple doses used, give MOE of90%, 50 % or 25 % respectively at 

steady state when n and EC5o =I, in absence of the effect compartment. 
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Table 1.14. Effect of ECso on drug response using multiple IV doses in presence of 

an effect compartment of kd) of 1 et,12-
1

: 

EC so Einit MOE Einit 'MOE Einit 'MOE 

(%) (%) (%) (%) (%) (%) 

ECso=0.5 8.42 92.4 1.01 57.3 0.34 30.9 

ECso=I 4.4 85.8 0.51 40.2 0.17 18.3 

ECso=2 2.25 75.2 0.25 25.1 0.08 10.1 

ECso=3 1.51 66.9 0.17 18.3 0.06 6.94 

ECso=5 0.91 54.8 0.1 11.8 0.03 4.28 

E;.;1: effect (%)at 0.01 et112. 
MOE: maximum observed effect at steady state. 
1
• 

2
• 

3 means that the multiple doses used, give MOE of 90%, 50 % or 25 % respectively at 
steady state when n and EC50 =1, in absence of the effect compartment. 
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Figure 1.1. The concentration-effect relationship of the Emax model 
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Figure 1.2. The concentration-effect relationship of the sigmoid Emax model. 
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Figure 1.3 Schematic representation of a PK model linked to an effect compartment. 

57 



I. Inhibition(K;.) 

~--'K'-="';"~--'•~l~R~es_p_o_n_se~~-=Kn"""'ut~~.~ 
ICso . 

II. Inhibition (K.u1) 

~---=K~;~·~~•l~R~es-po~n-se~~---=Kn=::u•,___.. 
. !Cso 

Ill. Stimulation (K;n) 

~~~K~in,__--J•~l~R~es_p_o_n_se~_:----=Kn-=ut,___... 
EC so . 

IV. Stimulation (K.ut) 

Figure I.4. Four basic indirect response models <28l 
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Figure 1.5. The fall in plasma concentration (Cp) and Response (E) with time in absence and presence of effect 
compartment of keO of 0.2 and 1 using single IV dose. 
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Figure 1.6. The concentration-effect relationship of the sigmoid Emax model with different n. 
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Figure 1.7. Effect of sigmoidicity constant (n) on drug response using single IV Dose*. 
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Figure 1.8. The concentration-effect relationship of the sigmoid Emax model with different 

120 , ECSO (n=2) 
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Figure 1.9. Effect of EC50 on the Drug Response Using Single IV Dose*. 

2 3 4 5 
Time (hr) 

6 7 

*: this.dose gave MOE of 

90% at n and ECSO of 1 in 
absence of the effect 
compartment 

8 9 10 



90 

80 -

70 -

60 

~ 
t- 50 _, 

"' 
m 
~ ... ~ 
0 

~ 40 -
a: 

30 -

20 _, 

10 -, 

0 -

0 

Figure 1.10. Effect of the equilibrium rate constant {keO) on drug response using single IV 
dose• 
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Figure 1.11 . The fall in plasma concentration (Cp) and Response (E) with time in absence and presence of effect 
compartment of keO of 0.2 and 1 using multiple IV doses. 
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MANUSCRIPT II 

THE EFFECT OF DIFFERENT SOURCES OF VARIABILITY ON 

THEOPHYLLINE RESPONSE 

Il.1. ABSTRACT: 

Theophylline is widely used in treatment of bronchial asthma. It has a narrow therapeutic 

range and displays wide variability in its pharrnacokinetic (PK) and pharrnacodynamic 

(PD) parameters. As a result, the PK and PD of theophylline have been extensively 

studied and published in the literature. 

In this study, simulated data were used to investigate the effect of variability arising from 

the dose and the intra-individual variability in PK parameters (rate of absorption and 

clearance) and several PD parameters on theophylline plasma concentration and 

response. A one compartment PK model with zero-input linked to linear and sigmoid 

Emax models was used to simulate data. For each set of model parameters, the response 

was measured every 12 hours over a I 0-day period. Hundred replications were performed 

giving a total of 2000 responses. The influence of PK/PD variability on theophylline 

response was studied at low, moderate and high levels of intra-individual variability. The 

effect of variability in dose, PK and PD parameters was studied separately and in 

combination and their impacts on theophylline response were assessed by estimating the 

% coefficient of variation in the response using Excel 2000. 
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The drug response was found to be more sensitive to variability in PD parameters than to 

variability in PK parameters or dose. The drug response was more sensitive to the 

changes in the dose and PK parameters when the sigmoid Emax model was used compared 

to when the linear model was used. In conclusion, variability in PD parameters is 

clinically important and must be taken into account in order to use the drug effectively 

and safely. 
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11.2 INTRODUCTION: 

Pharmacokinetics (PK) is the study of the relationship between the dose of a drug and the 

manner in which its plasma concentrations change over time. Models for PK are used to 

provide a mathematical representation of this relationship and relate the independent 

variables of time and dose to the dependent variable, plasma concentration. In a one 

compartment model the value of plasma concentration is controlled by three PK 

parameters, clearance (CL), volume of distribution and bioavailability factor. 

Pharmacodynarnics (PD) is the study of the biological effects resulting from the 

interaction between drugs and biological systems. Models for PD are used to provide a 

simplified description of the drug action and relate the independent variable of drug 

concentration at site of action to the dependent variable of drug response. 

A thorough understanding of PK and PD is the scientific foundation of clinical 

therapeutics Cl>. Variability in the PK and PD parameters may be small, moderate or large 

depending on the drug and the pathological state of the patient. Variability in PK and PD 

parameters will lead to a variation in the drug response. Drugs used for chronic diseases 

with a proven PK-PD relationship, a small therapeutic range, large PK/PD variability and 

severe adverse effects are likely to be good candidates to study the impact of different 

sources of variability on drug response. An example · of this category is theophylline, 

which has been widely used in the treatment of bronchial asthma. 
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Theophylline has a wide variability in its CL, which controls the steady state plasma 

concentration and is critical for determining the maintenance dose. Theophylline's CL is 

affected by many factors such as diet, disease state and smoking. The resulting variation 

in CL may lead to substantial variation in plasma concentration and drug response. 

Theophylline is mainly eliminated by hepatic metabolism, mediated by cytochrome P450 

liver enzymes <2> (CYP1A2 and 3A4). Diet influences the metabolism oftheophylline for 

example; high-protein, low carbohydrate diets generally metabolize theophylline more 

rapidly, presumably because the diet induces hepatic enzymes (3). Charcoal broiling 

induces CYP1A2, so it increases theophylline's CL <4>. Cigarette smoking increases 

theophylline's CL by 1.5 to 2 times that of non-smokers <
5

•
6>. It was found that the effect 

of smoking appear to last several months after the cigarettes have been discontinued (7). 

Also some diseases affect theophylline's CL. Congestive heart failure reduces 

theophylline's CL to about 40% of normal 18>. Hepatic cirrhosis can significantly reduce 

theophylline's CL. Also severe pulmonary disease significantly reduces theophylline's CL 

16>. It has been found that CL displays 20% <9>, 25% {lo>, 30% (IO) coefficient of variation 

(% CV) in patients with respiratory diseases. There is not much variability in 

theophylline's volume of distribution and it is usually kept at a constant value of 0.5 L/Kg 

(6) 

The rate of drug absorption differs among various slow-release formulations <
11

•
12

> and 

occasionally between lots ( I I } of the same brand. Differences in rates of absorption may 

be clinically important <
13>. Also, dose to dose variation in plasma concentration have 

been observed for some theophylline products, probably as a result of intra-individual 
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variability in gastrointestinal function <
1•>. Food may decrease the rate of absorption of 

theophylline from many sustained release products <15
•
16>. This is probably a result of 

delayed gastric emptying rate where the drug is held in the stomach fo r longer time 

before entering the alkaline medium of small intestine where dissolution is more rapid 

<11>. Food also may cause dumping of large amounts oftheophylline from some sustained 

release products <18
•
19>. This may be due to dissolution of the sustained release film coat 

rapidly at the pH of small intestine after a meal (pH 7.4i18>. 

Theophylline is an example of drug that has a narrow therapeutic range. Traditionally a 

range of I 0-20 mg/L has been used. However, more recently concentrations at the lower 

end of the range have been advocated since there is significant and serious adverse effects 

are more common at higher theophylline concentrations and recent studies indicate that 

10 mg/L is as effective as 20 mg/L <20>. The effect of theophylline on bronchodilation can 

be measured in terms of forced vital capacity (FVC) and peak expiratory flow rate 

(PEFR). However, the FVC is usually used because it assesses ventilatory response as it 

closely reflects the patency of small airways and it represents the spirometric index, 

which is the most reproducible measure. A linear model has been used to describe the 

effect of theophylline on FVC <21 >. A sigmoid Emax model has been used to describe 

theophylline's effect on PEFR <22>. 

The linear model is derived from the Emax model , since when concentrations are small 

relative to the potency (EC50), the Emax model will collapse into a linear model in which 

the effect [E (L)] is proportional to steady state plasma concentration (Cpss)- The linear 
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model, will predict no effect when concentrations are zero but its major limitation is that 

it cannot predict a maximum response. This model can be modified to evaluate data with 

baseline (Eo) as follows: 

E (L) = (m) (Cp,.) + Eo II.I 

Where m is the slope parameter, which will approach the value of the ratio of efficacy to 

potency (EmaxlECso). The baseline effect is tbe response at zero drug concentration and it 

is measured in absence of the drug or during placebo administration. The concentration-

effect relationship using this model is linear. The advantage of linear model is that it can 

be used for some relatively toxic drugs when the Emax cannot be approached <21
•
23>. If the 

Emax can be achieved at concentration that do not cause toxicity, the Emax or the sigmoid 

Emax model would be considered superior models. Examples of the use of the linear 

model in the literature are the study of PD of theophylline on bronchodilation in term of 

forced vital capacity (FVC) <21
> and tbe study of the PD of clonidine on pain threshold, 

blood pressure and salivary flow<23
>_ 

The sigmoid Emax model is a modification of the Emax model tbat accommodates the 

probability that more than one drug molecule, binds to each receptor by using the term 

sigmoidicity. According to sigmoid Emax model , the effect is related to drug concentration 

(C) in the following manner: 

E= Emaxcr 11.2 
EC~0 +CY 
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Where Emax is the efficacy, EC5o is the potency, which reflects the sensitivity of organ or 

tissue to the drug, and y is the sigmoidicity constant, which is the number of drug 

molecules bound to each receptor. Using this model, the concentration- effect 

relationship is sigmoidal in shape. Although this model is based on receptor theory it 

cannot be assumed that it is the basis of drug action. Sigmoidicity has been found to be a 

non-integer in some cases even though the receptor theory would predict it to be always 

an integer <9•
22

•
24

-
26>. Also, this model can incorporate a baseline response (Eo). Examples 

of the use of the sigmoid Emax model in the literature include the study of PD of 

theophylline side effects (eosinopenia and hypokalemia) <9>, the study of PD of 

theophylline bronchodilation in asthmatic patients <22>, the study of the PD of tocainide on 

suppression of ventricular ectopic depolarizations in patients <
24>, the study of the 

influence of age and gender on the PD of remifentanil <25>, the study of the preoperative 

PD of acetaminophen analgesia in children <
26

> and the study of the PD of intravenous 

diltiazem in patients with atrial fibrillation or atrial flutter <27l. 

It has been found that individuals can vary with respect to the baseline, maximum 

response, potency and the slope of the concentration-effect relationship. These are the 

main determinants of PD variability <23
>_ In the past, it was assumed that PK variability is 

primarily responsible for quantitative differences in drug response <29
>_ This is probably 

because PD studies in human were rare until the last couple of decades <30>. Recently, 

several studies have demonstrated that PD variability in humans is large, reproducible 

and usually more pronounced than PK variability <30
•
34

>_ Because of the importance of PD, 
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the Food and Drug Administration (FDA) has recently encouraged the modeling of 

clinical PD data as a component of new drug applications. 

There is a large inter-individual variability in theophylline's PD parameters. The 

parameters associated with the linear model, the baseline and the slope parameter have 

been found to display a 50% and 30% CV, respectively in a population of 56 patients 

with chronic bronchitis <21 >. The % CV for the parameters associated with theophylline's 

sigmoid En.ax model have been found to be 78%, 22%, 38% for potency, maximum 

attainable response (MAE) and the baseline, respectively in a population of 174 asthmatic 

patients <
22>. Looking at the magnitude of theophylline PD variability, it is clear that the 

inter-individual PD variability <21
•
22> is larger than that of PK <9•

10>. 

In this work, theophylline was used as a model drug to study the impact of different 

sources of variability, namely dose in term of content uniformity, PK parameters and PD 

parameters, on its response. The relative impact of different sources of variability on 

theophylline response using published models for the linear <21> and the sigmoid En.ax <22> 

models was compared. 

ll.3 METHODS: 

An integrated PK-PD model of theophylline was constructed in STELLA (High 

Performance Systems, Inc, Hanover, NH) (3Sl . 
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11.3.1. Structural Model: 

11.3.1.1. Pharmacokinetic Model: 

Initially, a one-compartment PK model, with first order gastrointestinal absorption (ka = 

0.09 hr ·1) <
36

> was used. Subsequently, a zero order absorption in which the dose was 

assumed to be absorbed at a constant rate over 12 hours was used. For the study of rate of 

drug absorption, a zero order input with an infusion rate was used in which the infusion 

time was 7.7 hours. 

The model was based on an average 70 Kg individual. The volume of distribution was 35 

L based on 0.5 L/Kg <6>, CL was 2.8 L/hr, based on 0.04 L/kg/hr <9•
10>. The drug was 

assumed to undergo first order elimination; thus its elimination rate constant (k , ) = 0.08 

hr ·1 and its half-life was 8.7 hours. Simulation was based on a 400 mg oral dose of 

theophylline administered every 12 hours. This dosage regimen gave steady state plasma 

concentration of 11.9 mg/L. 

11.3.1.2. Pharmacodynamic Model: 

A. The linear model: 

The effect of theophylline on FVC [E (L)], was described as a linear function of the 

steady state plasma concentration (Cp,.) as in Equation II. I where the slope, m, 
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represents the sensitivity of an individual to theophylline and the intercept, Eo, is the 

untreated (baseline) FVC. The population values for the PD parameters of this model 

were 0.04 L µg ·1 ml form and 1.58 L for Eo <20 

B. The sigmoid Emu model: 

The effect of theophylline on PEFR [E (S)] was described using the sigmoid Emax model 

<22> as follows: 

E(S) = (MAE -Eo)'C' 

EC~0 + C 1 

The Emax in this model is the difference between MAE and Eo. The population mean 

values for the EC50, MAE, Eo and y were 11 mg/L, 477 L/min, 133 L/min and 2.13, 

respectively. 

11.3.2. Variability Model: 

Using the first order absorption model, there were fluctuations in the plasma 

concentration and drug response while the zero input model did not produce fluctuations 

in plasma concentration and response within a dosing interval. Consequently, the zero-

input model was used to show more clearly the impacts of different sources of variability 

on drug concentration and response. The effect of variability in the dose, intra-individual 

PK variability and intra-individual PD variability were studied at steady state condition. 
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Thus, all drug levels and responses were constant. The different sources of variability 

were studied separately and in combination. 

The proportional error (constant coefficient of variation) model was used to describe the 

variability in the dose, PK and PD parameters as follows: 

II .4 

Where Pi is the dose or PK or PD parameter at time j, Pm is the mean dose or population 

mean value of the PK or PD parameter and Epj is a normally distributed random variable 

with an average value of 0. The standard deviation of Epj represents the CV for variability 

in the dose, PK or PD parameter. 

For the dose, the% CV was set at 3, 6 or 10%. For intra-individual PK variability,% CV 

in CL was set at 5, I 0, 15, 20 (9>, 25 (IO>, 30 <10
> or 45% and % CV in the rate of absorption 

was set at 5, I 0, 15, 30 or 45%. For the intra-individual PD variability, % CV for the 

linear model parameters was set at 5, I 0, 15, 30 (21
> or 45% for m and 5, I 0, 15, 50, 45 or 

50% <21
> for Eo. Using the sigmoid Emax model, the % CV for the inter-individual PD 

parameters was set at 5, I 0, 15, 30, 45 or 75% <
22

> for EC50, 5, I 0, 15, 20 <22>, 30 or 45% 

for MAE, 5, 10, 15, 30, 40 <22
> or 45% for Eo and 5, I 0, 15, 30 or 45% for y. 

The response was measured every 12 hours over a IO-day period. Hundred replications 

were performed giving a total of 2000 responses. The plasma concentration and drug 
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response just before the administration of a dose were tabulated and the coefficient of 

variation of the 2000 values was determined. 

11.4. RESULTS: 

A One compartment PK model with first order absorption, in absence of the variability 

model was used to study theophylline's steady state plasma concentrations at different 

doses (250, 300, 350, 400, 450, 500 mg) every 12 hours. A dose of 400 mg of sustained 

release theophylline every 12 hours was selected for the study since in the model used, it 

gave a steady state plasma concentration of 11.9 mg/L, which is near the lower end of the 

therapeutic range (10-20 mg/L) and is.a common therapeutic target. Using the zero input 

model, a dosage regimen of 400 mg of theophylline every 12 hours gave the same plasma 

concentration and drug response as that of the first order absorption model. 

The variability in dose, PK and PD parameters was translated to theophylline response in 

terms of E (L) for FVC and E (S) for PEFR with the linear and sigmoid Emax models, 

respectively. 

11.4.1. Variability in the Dose: 

Variability in the dose resulted in essentially equivalent amounts of variability in plasma 

concentration and E (S), but E (L) was less affected. For example, 6% variability in the 

dose gave 5.78% and 5.48% CV in plasma concentration and E (S), respectively, while % 
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CV in E (L) was 1.29. The effect of variability in dose on plasma concentration and drug 

response is shown in Table II.I. 

11.4.2. Variability in PK parameters: 

Variability in CL resulted in essentially equivalent amounts of variability in plasma 

concentration and E (S), but E (L) was less affected. For example, 45% variability in the 

CL gave 46% and 40.2% CV in plasma concentration and E (S), respectively, while % 

CV in E (L) was 10.65. The effect of variability in CL on plasma concentration and drug 

response is shown in Table Il .2 and Figures II.I , 11.2 and 11.3 for plasma concentration 

and drug response using linear model [E (L)] and sigmoid Emax model [E (S)] , 

respectively. Study of the values reported in literature for the variability in theophylline's 

CL showed that 20% <9>, 25% <10> or 30% (IO) CV in CL resulted in 18.37%, 24.11%, 

28. 12% respectively, in plasma concentration, 4.25%, 5.56% or 6.49% respectively, in 

drug response using linear model and 18.16%, 24.47% or 28.62% CV respectively, in 

drug response using sigmoid Emax model. 

Variability in the rate of drug absorption (Rab,) resulted in slight changes in plasma 

concentration and E (S) and negligible change in E (L). However, high level of variabi li ty 

(45%) in the rate of drug absorption resulted in high variation in plasma concentration 

(35.6%). The effect of variability in rate of drug absorption on plasma concentration and 

drug response is shown in Table 11.2 and Figures II.I , 11.2 and 11.3 for plasma 
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concentration and drug response using linear model [E (L)) and sigmoid Emax model [E 

(S)] , respectively. 

II.4.3. Variability in PD parameters: 

A. Variability in the PD parameters of the linear model: 

Variability in drug response increased dramatically by increasing% CV in the intercept. 

On the other hand, increasing the% CV in the slope (m) resulted in a slight increase in% 

CV in the drug response. Of course plasma concentration was not affected at all by the 

changes in any of the PD parameters. The effect of variability in PD parameters on drug 

response using the linear model is shown in Table 11.3 and Figure Il.2 . Study of the 

values reported in literature for the variability in theophylline PD parameters of the linear 

model <
21

> showed that 50% CV in Eo or 30% in m resulted in 37.6% or 6.89% CV in 

drug response, respectively. 

B. Variability in the PD parameters of the sigmoid Emu model: 

Changes in the ECso resulted in almost equivalent amounts of variability in the drug 

response. Variations in the maximum attainable effect (MAE) produced a large amount 

of variability in the drug response. For example 30% CV in MAE produced 41.6% CV in 
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drug response. Changes in the baseline (Eo) resulted in slight changes in the % CV in 

drug response. Changes in the sigmoidicity constant resulted in a very small change in 

drug response. The effect of variability in PD parameters on drug response using sigmoid 

Emax model is shown in Table ll.4 and Figure II.3. Study of the values reported in 

literature for the variability in theophylline PD parameters of the sigmoid Emax model <22> 

showed that 20% CV in MAE, 40% CV in Eu or 75% in EC50 resulted in 27 .17%, 15.59% 

or 49.78% CV in drug response, respectively. 

II.4.4. Combined PK-PD Variability: 

After the effect of variability of each parameter was studied separately, combinations of 

PK and PD variability were studied. The effect of combined PK/PD variability on plasma 

concentration and drug response is shown in Table ll.5 and Figures II. I, ll.4 and II.5 for 

plasma concentration and drug response using linear model [E (L)) and sigmoid Emax 

model [E (S)], respectively. 

Variability in PK parameters resulted in almost same % CV in plasma concentration, 

which was not affected at all by any changes in PD parameters. High level of intra­

individual variability (45% CV) in the rate of drug absorption could not be studied with 

large variability in CL/PD because the simulation was unsuccessfully terminated possibly 

due to division by zero or a value that has become too large to represent <
35>. Using the 

sigmoid Emax model , drug response was much more sensitive to the changes in the PK 
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and PD parameters than that of the linear model. The drug response from the two models 

was much more affected by the changes in PD parameters than that of PK parameters. 

11.4.5. Combination of all sources of variability (Dose, PK & PD): 

Finally, a combination of all sources of variability (dose, PK and PD) was studied. The 

effect of combined variability in dose PK and PD parameters on plasma concentration 

and drug response is shown in Table II.6. 

The addition of variability in the dose to the combined PK/PD variability had very small 

and negligible effects on the variability in plasma concentration and drug response, 

respectively . 

II.5. DISCUSSION: 

Computer simulations have been successfully applied in support of clinical drug 

development for predicting clinical outcomes of planned trials <
37

>_ The use of PK/PD 

models has been found to be useful in analyzing and integrating data from clinical trials 

<
33

>_ In this study, computer simulations were used to investigate the effect of different 

sources of variability, dose, PK and PD parameters, on drug response. 

A dose regimen of 400 mg of sustained release theophylline every 12 hours was chosen 

for this study because it gave a steady state plasma concentration of 11.9 mg/L, which is 
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at the lower end of the therapeutic range. It is clinically important to keep theophylline 

concentration near the lower end of the therapeutic range to avoid its side effects. These 

side effects may occur at concentration of 13 mg/L <39
>_ In addition, this dose gave 

comparable effects to those in literature for the FVC <21> and PEFR <22>. 

The drug input used was designed to mimic a sustained release theophylline preparation 

where the drug was slowly released and absorbed. The half-life of theophylline in this 

study was 8.7 hours, and the dosing interval was 12 hours i.e. the half-life was shorter 

than the dosing interval. Thus, the drug experienced only modest accumulation and under 

these circumstances the effect of variability in dose would he more pronounced. The 

United States pharmacopoeia (USP) <•0> allows 6% variability in the dose. Based on this 

fact, the values for the variability in the dose were chosen fo r this study where a lower 

value than 6% (3%), a higher value than 6% (10%) and 6%CV were used. Variability in 

the dose may result from mixing or weight variation or any other process in the tablet 

formulation. Variability in the dose resulted in almost same amount of variabil ity in 

plasma concentration and drug response, estimated from the sigmoid Emax model, but 

only very slight change in %CV in drug response estimated from the linear model. Thus, 

the linear model appears less sensitive to changes in plasma concentration than the 

sigmoid Emax model. For example, 10% CV in dose resulted in only 2.2% CV in drug 

response, using the linear model but 9.5% CV in drug response using the sigmoid Emax 

model. 
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Whiting et al, <21 > found that variability in both theophylline PK and PD must be taken 

into account if the drug is to be used to its best advantage. When looking at the PK 

parameters, the volume of distribution was kept constant because it had no effect on 

steady state plasma concentration in this model and only a small degree of variability in 

theophylline's volume of distribution is reported in the literature <6>. As mentioned earlier 

in section II.2, theophylline's CL is influenced by many factors. Any drug, disease or 

other factor that can affect the liver enzymes that are responsible for theophylline 

metabolism (Cytochrome P450 IA2 and 3A4) will affect the CL of theophylline. In 

literature, the variability in theophylline CL is in the range of 20-30% <9. IO) for asthmatic 

patients. Based on that, different values for the variability in CL, from 5% to 45%, were 

studied. Variability in CL, resulted in almost same amount of variability in plasma 

concentration and drug response, using sigmoid Emax model , but drug response from the 

linear model was only very slightly affected. For example, 5% and 45% CV in CL gave 

only 1.1 % and 10.7% CV, respectively in drug response using the linear model. 

The rate of drug absorption from sustained release theophylline product is clinically 

important <13> since it differs among various theophylline products <11
•
12> and among the 

lots <
11> of the same brand. In addition, the rate of theophylline release from many 

sustained release preparation is dramatically affected by food, which may cause dose 

dumping <18
•
19

> and results in theophylline toxicity. Also, for other preparations food may 

decrease the rate of theophylline absorption <15
•
16

> by holding the drug for longer time in 

the stomach before going to the intestine where it rapidly dissolves at the alkaline pH of 

the intestinal fluid. In this study, small and moderate intra-individual variability in the 
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rate of drug absorption resulted in slight changes in plasma concentration and drug 

response. However, high level of variability (45% CV) in the rate of drug absorption 

resulted in high variation in the plasma concentrations (36% CV) but the drug response 

estimated from sigmoid Emax model was less affected (16% CV). The drug response 

estimated from the linear model was very slightly affected by the changes in tbe rate of 

drug absorption. 

The intra-individual variability in PD parameters were chosen based on the values 

reported in the literature for these parameters, keeping in mind that intra-individual 

variability is smaller than inter-individual variability. Thus the value of 45% CV was 

considered a high level of variability for this study. Low levels of intra-individual 

variability were also studied such as 5% and l 0%. In other words, low, moderate and 

high levels of intra-individual PD variability were studied to show their impacts on the 

drug response. 

Variability in PD parameters of the linear model, namely the baseline FVC (Eo) and the 

sensitivity of individual to theophylline (slope) are very important factors to be taken into 

account in studying drug response. Variability in Eo resulted in a high variability in drug 

response. For example, 5% and 50% CV in Eo gave 4% and 37.6% CV, respectively in 

drug response. It was found that the drug response estimated from the linear model was 

much more sensitive to the changes in the baseline than any other parameter. Variability 

in the slope (m) resulted in a less variability in drug response than that of Eo. For 

example, 5% and 45% CV in m gave l. l % and 10.2% CV respectively in drug response. 
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Variability in PD parameters of the sigmoid Emax model, namely maximum attainable 

effect (MAE), potency (EC50), baseline (Eo), sigmoidicity constant (y) were found to be 

important determinants of drug response. The drug response estimated from the sigmoid 

Emax model was most sensitive to the variability in MAE, for example 45% CV in MAE 

resulted in 63.03% CV in drug response. Variability in EC50 also affected the drug 

response significantly, but to less extent than that of the MAE, for example 45% CV in 

EC5o resulted in 36.63% CV in drug response. Variability in the baseline affected the 

drug response slightly, for example 45% CV in Eo resulted in 16.85% CV in drug 

response. This is in contrast to the effect of baseline on the drug response using linear 

model where 45% CV in the base!ine resulted in 34.27% CV in drug response. 

Variability in y had a negligible effect on drug response, for example 45% CV in y 

resulted in 3.47% CV in drug response. Of course, none of the PD parameters in sigmoid 

Emax model and linear model had an effect on plasma concentration. By conducting 

analysis of variance test <41
> on the PK/PD parameters that affected drug response, it was 

found that there was a significant difference between these parameters namely CL, rate of 

drug absorption, Eo and m for the linear model and CL, rate of drug absorption, EC50, Eo. 

MAE and y for the sigmoid Emax model at level of significance of0.05 . 

Variability in PD parameters may result from many factors . These factors include 

receptor density and affinity, post-receptor transduction processes, the kinetic 

characteristics of transporters involved in drug transfer between fluids of distribution and 

the biophase (JO) and variation in the baseline response <21 -22>. 
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Combined variabi lity in CL and rate of drug absorption resulted in slight increase in 

%CV in plasma concentration achieved from variability in CL alone. The drug response 

was much more sensitive to the changes in PD parameters than that of PK parameters. 

For example 30% CV in all PD parameters resulted in 23.8 and 53.7% CV in drug 

response from linear and sigmoid Emax models, respectively while same amount of 

variability in PK parameters resulted in 7.74 and 27.2% CV in drug response from linear 

and sigmoid Emax models, respectively. Addition of PK variability to PD variability did 

not cause much difference in% CV in drug response resulted from PD variability alone. 

By looking at the combined PK/PD variability, PD variability was found to be the main 

contributing factor to the changes in the drug response. 

The addition of tablet-to-tablet content variability to the combined PK/PD variability 

resulted in negligible variations in plasma concentration and drug response obtained from 

PK/PD variability alone. For example, 30% CV in PK/PD resulted in 30.8% CV in 

plasma concentration and 24.7 and 56.8% CV in drug response with linear and sigmoid 

Emax model, respectively while addition of 6% variability in dose to this PK/PD 

variability resulted in 31.6% CV in plasma concentration and 25.4 and 57.8% CV in drug 

response with linear and sigmoid Emax model, respectively. 

The drug response estimated using the sigmoid Emax model was much more sensitive to 

the different sources of variability than that of the linear model at all levels of variabili ty 

studied. For example, at low (3% CV in dose and I 0% CV in PK/PD) and high (I 0% CV 
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in dose and 45% CV in PK/PD) levels of variability in dose, PK and PD parameters, % 

CV in drug response was 8.26% & 37.32% for the linear model and 19% & 85.4% for the 

sigmoid Emax model, respectively. 

The linear model was used to study theophylline effect on bronchodilation in terms of 

forced vital capacity. This model was very useful in studying the impact of different 

sources of variability on theophylline response. However, it has some limitations such as 

it cannot define the maximum effect. In practice, it may not be possible to achieve 

concentrations that produce effects approaching the maximum; and therefore the 

maximum effect cannot be known <
42>. Using the linear model, the influence of plasma 

concentration on drug response was much reduced, for example plasma concentrations of 

10 and 20 mg/L resulted in FVC of 1.98 and 2.38 L, respectively. In other words, 200% 

change in plasma concentration resulted in 120% change in drug response, i.e. plasma 

concentration slightly affected the drug response. Consequently the impact of PK 

variability was less pronounced on the drug response. This was not the case with the 

sigmoid Emax model, which was used to study theophylline effect on bronchodi lation in 

term of peak expiratory flow rate. Using plasma concentrations of 10 and 20 mg/L 

resulted in drug response of 154.6 to 268.8 L/min, i.e. 200% change in plasma 

concentration resulted in 174% change in drug response. Consequently, the drug response 

estimated from the sigmoid Emax model was much more sensitive to the variation in 

plasma concentration. Thus, drug response estimated from the sigmoid Emax model was 

more affected by the variability in the dose and PK parameters, than that of the linear 

model. 
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11.6. CONCLUSION: 

Simulation study can reveal the effect of different sources of variabili ty on the plasma 

concentration and drug response. This is very important to be considered in designing a 

PK/PD study. 

From this study, the following conclusions can be drawn: 

I- The impact of the variability in dose and PK parameters on the drug response was less 

when the linear model rather than the sigmoid Emax model was used. 

2- Drug response was more sensitive to the PD variability rather than the PK variability. 

3- In the linear model, drug response was most sensitive to variabi lity in baseline FVC. 

4- ln the sigmoid Emax model , drug response was most sensitive to variability in the 

maximum attainable effect. 

5- Variability in the tablet content resulted in a negligible variability in the response when 

added to the combined PK/PD variability. 
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6- Drug response estimated from the sigmoid Emax model was much more sensitive to 

different sources of variability, dose, PK and PD parameters, than that of the linear 

model. 

In summary, variability in PD of a drug is clinically important and must be taken into 

account in order to use the drug effectively and safely. 

89 



11.7. REFERENCES: 

1. Minto C, Schnider T. Expanding clinical applications of population 

pharmacodynarnic modeling. British Journal of Clinical Pharmacology. 46:321-333, 

1998. 

2. Lohmann SM, Miech RP. Theophylline metabolism by the rat liver microsomal 

system. Journal of Pharmacology and Experimental Therapeutics. 196:213-225, 1976. 

3. Kappas A, Anderson KE, Conney AH, Alvares AP. Influence of dietary protein and 

carbohydrate on antipyrine and theophylline metabolism in man. Clin Pharmacol Ther. 

20(6):643-53, 1976. 

4. Kappas A, Anderson KE, Conney AH, Alvares AP, Effect of charcoal-broiled beef on 

antipyrine and theophylline metabolism. Clinical Pharmacology and Therapeutics. 

23 :445-450, 1978. 

5. Powell JR, Thiercelin JF, Vozeh S, Sansom L, Riegelman S. The influence of 

cigarette smoking and sex on theophylline di sposition. Am Rev Respir Dis . 116(1): 17-23 , 

1977. 

90 



6. Powell JR, Vozeh S, Hopewell P, Costello J, Sheiner LB, Riegelman S. Theophylline 

disposition in acutely ill hospitalized patients. American Review of Respiratory Diseases. 

118(2):229-38, 1978. 

7. Hunt SN, Jusko WJ, Yurchak AM. Effects of smoking on theophylline disposition. 

Clinical Pharmacology and Therapeutics. 19:546, 1976. 

8. Hendeles L, Weinberger M. Theophylline: a "state of the art" review. 

Pharmacotherapy 3:2-44, 1983. 

9. Braat P, Jonkers R, Bel E, Van Boxtel C. Quantification of theophylline-induced 

eosinopenia and hypokalaemia in healthy volunteers. Journal of Clinical 

Phannacokinetics. 22(3): 231-237, 1992. 

I 0. Bachmann K, Schwartz J, Martin M, Jauregui L. Theophylline clearance during and 

after mild upper respiratory infection. Therapeutic Drug Monitoring 9(3):279-282, 1987. 

11. Hendeles L, Iafrate RP, Weinberger M. A clinical and pharmacokinetic basis for the 

selection and use of slow release theophylline products. Clinical 

Pharmacokinetics.9(2):95-135, 1984. 

91 



12. Upton RA, Powell JR, Guentert TW, Thiercelin JF, Sansom L, Coates PE, Riegelman 

S. Evaluation of the absorption from some commercial enteric-release theophylline 

products. Journal of Pharmacokinetics and Biopharmaceutics.8(2): 151-64, 1980. 

13. Weinberger M, Hendeles L, Wong L. Relationship of formulation and dosing interval 

to fluctuation of serum theophylline concentration in children with chronic asthma. 

Journal of Pediatrics.99(1):145-52, 1981. 

14. Rogers RJ, Kalisker A, Wiener MB, Szefler SJ. Inconsistent absorption from a 

sustained-release theophylline preparation during continuous therapy in asthmatic 

children. Journal of Pediatrics. 106(3):496-501 , 1985. 

15. Pedersen S, Moeller-Petersen J. Influence of food on the absorption rate and 

bioavailability ofa sustained release theophylline preparation. Allergy.37(7):531-4, 1982. 

16. Thompson PJ, Kemp MW, McAllister WAC. Slow release theophylline in patients 

with airway obstruction with particular reference to the effects of food upon serum levels. 

British Journal of Disease Chest. 77:293-298, 1983. 

17. Jonkman JHG, Schoenmaker R, Grim berg N. A new in vitro dissolution test for 

controlled-release theophylline tablets. International Journal of Pharmaceutics. 8: 153-6, 

1981 . 

92 



18. Hendeles L, Weinberger M, Milavetz G, Hill M 3d, Vaughan L. Food-induced "dose­

dumping" from a once-a-day theophylline product as a cause of theophylline toxicity. 

Chest. 87(6):758-65, 1985. 

19. Karim A. Theophylline absorption, controlled-release formulations and food. 3'd 

Annual Conference on Current concepts in Biopharmaceutics and Clinical trials, 

University of Maryland, Baltimore, MD, October 1984. 

20. Holford N, Black P, Couch R, Kennedy J, Briant R. Theophylline target 

concentration in severe airways obstruction. Clinical Pharmacokinetics. 25(6): 495-505, 

1993. 

21. Will ting B, Kelman AW, Struthers AD. Prediction of response to theophylline in 

chronic bronchitis. British Journal of Clinical Pharmacology. 17:1-8, 1984. 

22. Holford N, Hashimoto Y, Sheiner L. Time and theophylline concentration help 

explain the recovery peak flow following acute airways obstruction. Clinical 

pharmacokinetics. 25 (6):505-15, 1993. 

23. Prochet H, Piletta P, Dayer P. Pharmacokinetic-pharmacodynamic modeling of the 

effects of clonidine on pain threshold, blood pressure, and salivary flow. European 

Journal of Clinical Pharmacology. 42:655-62, 1992. 

93 



24. Meffin P et al, Response optimization of drug dosage: antiarrhythmic studies with 

tocainide. Clinical Pharmacology and Therapeutics. 22:42-57, 1977. 

25. Minto C, Schnider T, Egan T, Youngs E, Lemmens H, Gambus P, Billard V, Hoke J, 

Moore K, Hermann D, Muir K, Mandema J, Shafer S. Influence of age and gender on the 

pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. 

Anesthesiology 86(1): 10-23, 1997. 

26. Anderson B, Holford N, Woollard G, Kanagasundaram S, Mahadevan M. 

Perioperative pharmacodynamics of acetaminophen analgesia in children. Anesthesiology 

90(2): 411-21, 1999. 

27. Dias V, Weir S, Ellenbogen K. Pharmacokinetics and pharmacodynamics of 

intravenous diltiazem in patients with atrial fibrillation or atrial flutter. Circulation 86(5): 

1421-28, 1992. 

28. Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanyl versus 

alfentanil. Comparative pharmacokinetics and pharmacodynamics in healthy adult male 

volunteers. Anesthesiology 84:821-33, 1996. 

29. Knott C, Reynolds F, Therapeutic drug monitoring in pregnancy: rationale and 

current status. Clinical pharmacokinetics. 19:425-33, 1990. 

94 



30. Levy G. Predicting effective drug concentrations for individual patients. Clinical 

pharmacokinetics. 34( 4):323-333, 1998. 

31 . Lernrnens HJM, Dyck JB, Shafer SL, Stanski DR. Pharmacok.inetic­

pharmacodynamic modeling in drug development: application to the investigational 

opoid trefentanil. Clinical Pharmacology and Therapeutics. 56:261-71 , 1994. 

32. Mandema JW and Stanski DR. Population pharmacodynamic model for ketorolac 

analgesia. Clinical Pharmacology and Therapeutics. 60:619-35, 1996. 

33 . Pitsiu M, Parker EM, Aarons L? Rowland M. Population pharmacokinetics and 

pharmacodynarnics of warfarin in healthy young adults. European Journal of 

Pharmaceutical Sciences. 1:151-7, 1993. 

34. Tiseo PJ, Thaler HT, Lapin J, lnturrisi CE, Portenoy RK, Foley KM. Morphine-6-

glucur-onide concentrations and opoid-related side effects: a survey in cancer patients. 

Pain 61 :47-54, 1995. 

35. STELLA II Technical Documentation. High Performance System, Inc. 1993. 

36. Physicians' Desk Reference (PDR). Oradell, NJ Medical Economics Co. 52 ed, 

pp.2928-34. 1998. 

95 



37. Gieschke R, Reigner B, Steimer J, Exploring clinical study design by computer 

simulation based on pharmacokinetic/pharmacodynamic modeling. International Journal 

of Clinical Pharmacology and Therapeutics, 35(10) 469-74, 1997. 

38 . Reigner B, Williams P, Patel I, Steimer J, Peck C, van Brummelen P, An evolution of 

integration of pharmacokinetic and pharmacodynamic principles in clinical drug 

development. Clinical Pharmacokinetics. 33: 142-152, 1997. 

39. Jacobs MH, Senior RM, Kessler G. Clinical experience with tbeophylline: 

relationships between dosages, serum concentration, toxicity. JAMA. 235(18): 1983-6, 

1976. 

40. The United States Pharmacopoeia (USP 23) And National Formulary (NF 18). 

Rockville MD, United States Pharmacopeial Convention, INC. pp.1838-39, 1995. 

41. Montgomery D, Design and analysis of experiments. 4th edition, pp. 67. John Wiley 

& Sons, 1997. 

42. Holford N, Sheiner L, Understanding the dose-effect relationship: Clinical application 

of pharmacokinetic-pharmacodynamic models. Clinical Pharmacokinetics. 6:429-53, 

1981. 

96 



Table 11.1. Variability (% CV) in dose and its influence on plasma concentration 

(Cp) and drug response using linear IE (L)] and sigmoid Emax [E (S)] models: 

%CVinDose %CVinCp %CVinE(L) % CV in E (S) 

3 2.76 0.65 2.76 

6 5.78 1.29 5.48 

10 9.28 2.22 9.25 

The response was measured every 12 hours over a 10-day period. Hundred replications 
were performed giving a total of 2000 responses. 
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Table 11.2. Variability (% CV) in PK parameters (clearance (CL) and rate of drug 

absorption (Rabs)) and its influence on plasma concentration (Cp) and drug response 

using linear [E (L)] and sigmoid Emax [E (S)] models: 

%CVin %CVinCp % CV in E (L) % CV in E (S) 
PK resulted from resulted from resulted from 

Change Change Change Change Change Change 
in CL inRA in CL inR.bs in CL inRA 

5 4.74 1.05 1.09 0.29 4.59 0.9 

10 9.35 1.45 2.23 0.39 9.23 1.22 

15 13.92 2.09 3.21 0.53 14.19 1.74 

30 28.12 5.66 6.49 1.48 28.62 4.16 

45 45.99 35.56 10.65 3.67 40.19 16.04 

The response was measured every 12 hours over a 10-day period. Hw1dred replications 
were performed giving a total of2000 responses. 
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Table 11.3. Variability (% CV) in PD parameters of the linear model and its 

influence on drug response: 

%CVinPD % CV in E (L) resulted % CV in E (L) resulted 
parameter from change in Eo from change in m 

5 3.96 1.15 

IO 7.58 2.32 

15 11.67 3.45 

30 22.90 6.89 

45 34.27 10.24 

The response was measured every 12 hours over a 10-day period. Hundred replications 
were performed giving a total of2000 responses. 
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Table II.4. Variability(% CV) in the PD parameters of the sigmoid Emax model and 

its influence on the drug response: 

o/oCVinPD % CV in E (S) % CV in E (S) % CV in E (S) % CV in E (S) 
parameter resulted from resulted from resulted from resulted from 

change in ECso change in Eo change in MAE change in y 

5 4.93 2.00 6.99 0.38 

IO 9.79 3.87 13.8 0.77 

15 14.55 5.87 21.01 l.l 9 

30 27.42 11.68 41.57 2.31 

45 36.63 16.85 63.03 3.47 

The response was measured every 12 hours over a I 0-day period. Hundred replications 
were performed giving a total of2000 responses. 
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Table 11.5. Variability (% CV) in PK and PD parameters and their influences on 

plasma concentration (Cp) and drug response using linear [E (L)] and sigmoid Emu 

(E (S)] models: 

%CV %CVinCp % CV in E (L) %CVinE(S) 

10% in PK 9.37 2.39 8.13 

10% in PD NIA 8.04 17.54 

10%inPK&PD 9.37 8.21 18.75 

30% in PK 30.28 7.74 27.21 

30%inPD NIA 23.76 53.73 

30% in PK& PD 30:84 24.67 56.79 

45%inPD NIA 34.57 77.76 

45%in PK (CL) & PD 45.99 35.93 82.19 

NIA: not applicable. 
45% CV in PK/PD was studied using 45% CV in CL only (with no variability in rate of 
drug absorption) together with 45% CV in all PD parameters. 
The response was measured every 12 hours over a 10-day period. Hundred replications 
were performed giving a total of 2000 responses. 
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Table II.6. Variability (% CV) in dose, PK and PD parameters and their influences 

on plasma concentration (Cp) and drug response using linear [E (L)l and sigmoid 

Emu [E (S)J models: 

%CV %CV inCp %CV in E(L) % CV in E(S) 

3% in dose, 10% in 

PK&PD 9.98 8.26 19.06 

6% in dose, 30% in 

PK&PD 31.63 25.4 57.77 

10% in dose, 45% 

in PK (CL) & PD 47.00 37.32 85.39 

45% CV in PK/PD was studied using 45% CV in CL only (with no variability in rate of 
drug absorption) together with 45% CV in all PD parameters. 
The response was measured every 12 hours over a IO-day period. Hundred replications 
were performed giving a total of2000 responses. 
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Figure 11.1. Effect of variability in PK parameters on plasma concentration {Cp). 
50 

45 

40 

35 

Q. 30 
PK (combined) 

u 
0 .!: 25 -w > u 

~ 20 ~ 

15 -

10 Rate of absorption 

5 -

0 
0 5 10 15 20 25 30 35 40 45 50 

Sources of Variability (%CV) 



40 

35 

30 
<11 
Cl) 
c 
8. 25 
Cl) 

0 
<11 

0:: ... 
g> 20 . 
0 
·= > 15 
u 
~ . 

10 . 

5 

0 

0 

Figure 11.2. Effect of variability in PK and PD parameters on drug response using linear model 
(separate). 
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Figure 11.3. Effect of variability in PK and PD parameters on drug response using sigmoid 
Emax model (separate). 
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Figure 11.4. Effect of variability in PK and PD parameters on drug response using linear model 
(combined). 
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Figure 11.5. Effect of variability in PK and PD parameters on drug response using sigmoid 
Emax model (combined). 
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MANUSCRIPT III 

STUDY DESIGNS FOR PHARMACODYNAMICS 

lll.l. ABSTRACT 

Simulation studies are useful for providing convincing objective evidence of tbe merits of 

a proposed study design and analysis. In this study, data were simulated and used to 

investigate the optimum sampling design for a pharmacodynamic (PD) modeling study. 

The various designs were evaluated by consideration of tbe bias and precision of tbe PD 

parameters and tbeir associated variability parameters. 

Response data were simulated from concentration input data for an inhibitory sigmoid 

Emax model using NONMEM (Non-linear Mixed Effect Modeling) from a population of 

l 00 individuals. Subsequently, tbese data were used to estimate tbe PD and variability 

parameters using tbe first order conditional method (FOCE) in NONMEM. The 

estimation step was based on tbe population of I 00 individuals each providing three 

concentration-effect data sets from specific concentration-sampling windows. Four sets 

of concentration sampling windows were initially investigated. The accuracy of 

parameter estimates, obtained after l 00 replications was assessed using mean and 

standard deviation of percent prediction error as measures of bias and precision, 

respectively. The effects of population size and level of inter-individual variability were 

further studied using tbe most optimum design. The optimum design for the 
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determination of the equilibrium rate constant associated with an effect compartment was 

also studied. Response data were also simulated from time input data for an inhibitory 

sigmoid En.ax model. The equilibrium rate constant and its variability parameter were then 

estimated using the first order method (FO) in NONMEM. Two designs were 

investigated. 

The most optimum design for determination of PD parameters in the absence of an effect 

compartment was found to be the one with low concentration input in which samples 

were taken from the following concentration windows: 0.1-0.5, 0.5-1 and 1-2 EC50 units. 

However, in the presence of high inter-individual variability (60%) estimates of 

variability parameters, using the most optimum design, were biased and imprecise. More 

precise estimates of the parameters were obtained with a larger population. All designs 

failed to give accurate estimates of the variability in the sigmoidicity parameter. The most 

optimum design for the equilibrium rate constant was found to be the one in which two 

samples were taken from the following sampling windows: 0.25-l.5 and l.5-3 

equilibrium half-life units (using 50 individuals) but it gave poor estimates of the 

variability parameter. In conclusion, accurate estimates of all PD parameters were 

obtained when samples were taken from 0.1-0.5, 0.5-1 and 1-2 EC50 units. Increasing the 

level of inter-individual variability to 60% in the most optimum design gave precise 

estimates of all PD parameters but variability parameters were poorly estimated. Accurate 

estimates of the equilibrium rate constant were obtained but not of its variability 

parameter. 
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IIl.2. INTRODUCTION 

In drug development, the application of population phannacodynamic (PD) modeling can 

help increase understanding of the quantitative relationships among drug-input patterns, 

patient characteristics, and drug response. This approach is useful when wishing to 

identify factors that affect drug behavior, or explain variability in a target population. The 

population approach can be used to estimate population parameters in many phases of 

clinical drug development, where information is gathered on how drug will be used in 

subsequent stages of drug development <1>. The population approach is designed to take 

advantage of observational, randomly obtained data. It can be used to analyze sparsely 

sampled data (24>. lt, also, encompasses the identification and measurement of variability 

during drug development and evaluation. 

The design of a PD study is critical in determining the accuracy of parameter estimates, 

especially when data are sparse <5-6>. When designing a population study, practical design 

limitations such as sampling times, number of samples per individual, and number of 

individuals should be considered. Also, it is important to consider factors such as the 

clinician-time, the time spent by the patient in the clinic, especially if the study is 

conducted on an outpatient basis, and the sampling assay cost. Consequently, a study 

design that involves taking as few samples as possible from each individual is preferable. 

Simulation is a useful tool to provide convincing objective evidence of the merits of a 

proposed study design and analysis (7). Simulation enables the pharmacometrician to 
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better predict the results of a population study and to choose the study design that will 

best meet the study objectives <8•
13

>_ 

Several PD models have been used to describe the drug pharmacological response. These 

models describe the relation between the drug response (dependent variable) and its 

concentration (independent variable). The sigmoid Emax model has been proposed as a 

useful model to describe the in vivo relationship between dose/concentration and 

continuous pharmacological effect for many drugs <14
>_ This model has three PD 

parameters, namely efficacy (Emax), potency (EC50) and sigmoidicity constant (y) that 

control the drug response. Using this model, the concentration- effect relationship is 

sigmoidal in shape. The sigmoid Emax model has the advantage over other PD models in 

that it incorporates the sigmoidicity constant, which is the number of drug molecules 

bound to each receptor. Although this model is based on receptor theory it cannot be 

assumed, even if the concentration-effect data fits the model, that the drug response is 

truly described by the model. It must be kept in mind that data drive the model. For 

example, sigmoidicity has been found to be a non-integer in some cases even though the 

receptor theory would predict it to be always an integer <15
•
18>. In some cases a baseline 

response (E0) can be incorporated in the model. If the drug has an inhibitory effect on a 

physiologic response, such as reduction of the heart rate or reduction of the number of 

eosinophils, the model equation is subtracted from the baseline effect. 

The inhibitory sigmoid Emax model has been widely used to describe the PD of many 

drugs such as suppression of ventricular ectopic depolarizations by tocainide<15>, 
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theophylline's induced eosinopenia and hypokalemia<16>, percent reduction in heart rate by 

diltiazem from the baseline<19
> and reduction of the pain score by the analgesic effect of 

acetaminophen<13>_ 

ln early PD studies, investigators often made the assumption that drug concentrations 

measured in plasma were in equilibrium with those at the effect site. This assumption 

may be valid, if the drug effect is direct, receptor site rapidly equilibrates with plasma 

and the receptor interaction and response occurs rapidly . However, sometimes a delay 

between the pharmacological effect and the plasma concentration occurs <20>. 

Sheiner et al 1979 (20) developed a hypothetical effect compartment to model the time lag 

between the pharrnacokinetic (PK) and PD responses by estimating the half-time for 

effect equilibration when plasma concentrations are not constant. These investigators 

proposed a model to describe the time course of muscle paralysis with d-tubocurarine 

where they linked the central compartment of the PK model with a hypothetical effect 

compartment. The rate constant (k1c) for the effect compartment was very smal l relative 

to other rate constants in the PK model and its specific value was unimportant in 

determining the drug response. On the other hand, the rate constant for drug loss from the 

effect sites, k.o, characterized the equilibration time between plasma concentrations and 

pharmacological effect. 

The effect compartment method has been widely used to link PK and PD models of many 

drugs that exhibit a distributional delay. Examples of the use of the effect compartment 
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model in the literature are, the study of the effect of ergotamine on peripheral arteries 

where k.o is 0.07 hr-1
, with an equilibration time of9.9 hours <21 >, the effect ofterbutaline 

on bronchodilation where the equilibration time is 11.5 minutes <22>, the influence of age 

and gender on the PD ofremifentanil, where the k.o is found to be 0.516 min·' <17> and the 

study of the PD of acetaminophen in children where the equilibration time equals to 1.6 

hr (18). 

In population studies, the variability in parameters and the search for factors controlling 

variability is also an important focus. A lot of information in the literature is available on 

the study designs for PK <1
•
7
•
9

·
12

•
23

•
31>. However, there is very little information about the 

study designs for PD. Only too often major emphasis is placed on the PK, rather than on 

PD, however plasma concentration (the PK output) is no more than a surrogate for the 

pharmacological and/or clinical effects, which require information about the PD of the 

drug <32
>_ The incorporation of PD in drug development leads to a more informative drug 

development program especially in identification of drug dosage regimens for optimal 

therapeutic outcome through strategies for individualization of dosage <33
>_ Recognition of 

PD importance on drug response recently increases. Failure to appreciate the magnitude 

of variability in PD of a drug can compromise fixed dose clinical trial outcomes making 

the drug appear less effective or more toxic <34
>_ 

The objectives of this study were: ( 1) To determine the optimum sampling design of a PD 

study. (2) To study the effect of total sample size on the accuracy of parameter estimates. 

(3) To study the effect of high level of inter-individual variability on the accuracy of 
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parameter estimates. (4) To determine the optimum sampling design of the equilibrium 

rate constant using the effect compartment method. 

In this study, response data were simulated from concentration input data to determine 

the accuracy of PD and variability parameters with different sampling designs. The effect 

compartment model was used to link a one compartment PK model with the inhibitory 

sigmoid Emax, model to study the optimum sampling design for the equilibrium rate 

constant where the response data were simulated from time input data. 

111.3. METHODS 

111.3.1. Simulation of response data from concentration input data: 

An integrated PD model oftheophylline was constructed in NONMEM (version 5) (Non-

linear Mixed Effect Modeling) <35>. 

111.3.1.1. Pharmacodynamic Model: 

An inhibitory sigmoid Emax model, as shown in Equation III.I , was used to simulate 

response data from concentration input data. 

Ill. I 
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Where E is the drug response, Eo is the baseline, Emax is the drug efficacy, which is the 

maximum drug effect, C is the drug concentration and EC50: is the drug concentration at 

50% of the Emax (potency). Gamma (y): is the sigmoidicity constant. 

Data were simulated based upon the population PD parameters of theophylline-induced 

eosinopenia <16
> as follows: Eo = 183/µL, Emax = 371 µL, ECso = 5.06 mg/Landy= 6.22 

111.3.1.2. Statistical Model: 

An exponential model was used to describe the inter-individual variability in all PD 

parameters as follows: 

S; =Sm • (EXP(TJe;)) III.2 

Where, S; is the estimate for a PD parameter in the ith individual, Sm represents the 

population mean value of this parameter and T]e; is a normally distributed random variable 

with an average value of 0 and variance of o}. 

Intra-individual variability (Residual error) was also described by exponential error 

model as follows: 

III.3 
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Where, Eij is the observed effect for the ith individual at time j, Emij is the model­

predicted effect for the ith individual at time j and Eij is the residual error that represents 

the difference between the observed response and the model predicted response. Eij is a 

normally distributed random variable with an average value of 0 and variance of cr2
. 

For the residual error, the formula for the exponential model was written in NONMEM 

control file as follows: 

Response = Log (E)+ E III.4 

As a result, the simulated response values were in the log form . Consequently, the data 

had to be protected from zero to avoid error resulting from log zero, by using IF-ELSE 

statement. 

When the exponential model is used to describe inter-individual and intra-individual 

variability, ro and cr may be regarded as approximate coefficients of variation. The 

coefficient of variation of the inter-individual variability was chosen to be 30% for all PD 

parameters. The coefficient of variation of the residual error was chosen to be at the 

moderate variability level of25% <21>. 

IIl.3.1.3. Data: 
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For each design studied, a data set was created based on 100 "individuals" each of whom 

contributed three samples. Thus, one data set consisted of 300 observations of response 

data. 

IH.3.1.4. Sampling Schedules: 

Initially, four basic designs were investigated using windows of increasing 

concentrations. To mimic a real life situation, in which it is unrealistic to take samples at 

exactly the same concentration for each individual, sampling windows were used <
9>. The 

sampling windows for each of the four basic designs are shown in Table III. I. In Design 

1 and 2, samples were taken at low to moderate concentration levels. While in Design 3 

and 4, samples were taken at moderate to high concentration levels and high 

concentration levels, respectively. In order to generalize the results to any drug, not 

specifically theophylline, the designs were created based on EC50 units. 

111.3.1.5. Data Simulation: 

For each design of the basic designs, 3 random concentration points from within the 

appropriate sampling window were generated for each individual in Excel. The 

corresponding response data were then simulated using NONMEM. For each scenario, 

100 data sets were replicated. The PRED type model <35> was used to simulate the effect 

data directly from concentration input data. 
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111.3.1.6. Effect of Changing Total Sample Size: 

As outlined above, initially each data set consisted of I 00 individuals and I 00 

replications. Once the most optimum design was identified, the effect of total sample size 

was further studied using population of 50, 200 and 1000 "individuals". The total number 

of observation data was 150, 600 and 3000 with 50, 200 and 1000 individuals, 

respectively. 

111.3.1.7. Effect oflncreasing Inter-individual Variability: 

Initially inter-individual variability in PD parameters was set at 30% for the basic four 

designs. Additionally, the performance of the most optimum design was further assessed 

at a level of inter-individual variability of 60%. 

111.3.1.8. Parameter Estimation: 

For each simulated data set, estimation of PD parameters (ECso, Emax, Eo and y) and 

variability parameters (variability parameter in EC50 (roEcso), variability parameter in Emox 

(roEmax), variabil ity parameter in Eo (roEo) and variability parameter in y (roy) was carried 

out in NONMEM using the first order conditional estimation method (FOCE). Although 

this method is time consuming compared to the first order (FO) method, it is the only 

way to get accurate estimates for the variability parameters using exponential error model 

(JS) 
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111.3.1.9. Bias and Precision of Parameter Estimates 

The accuracy of the estimates from each data set were evaluated using the percent 

prediction error (%PE) as described by the following equation: 

%PE= 9•m -e,ru, *100 
etruc 

111.5 

Where 8,;m is the estimated population value of the parameter from one simulated data set 

and 81ruc is the true population value for the parameter. The %PE was calculated for the 

100 simulated data sets in each scenario. The mean and standard deviation of%PE were 

used to measure bias and precision of parameter estimates respectively. A mean of %PE 

for a parameter estimate $ 15% was accepted as being unbiased <11 >. A standard deviation 

of%PE for a parameter estimate$ 35% was accepted as being precise <11 >. 

III.3.2. Simulation of response data from time input data: 

An integrated PK/PD model of theophylline was constructed using NONMEM. A one-

compartment PK model was linked to the inhibitory sigmoid Emax PD model through an 

effect compartment. 
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111.3.2.1. Pharmacokinetic Model: 

A one-compartment PK model with intravenous bolus input was used. Response data 

were simulated following a single dose of 300 mg based upon the population PK/PD 

parameters of theophylline induced eosinopenia. The values used for PK parameters were 

2.75 L/hr for clearance (CL) and 28.4 L for volume of distribution (VD) <16>. 

III.3.2.2. Effect Compartment Model: 

The inhibitory sigmoid Emax model, as previously described in Section IIl.3.1.1 was 

linked to the PK model through an effect compartment with equilibrium rate constant, 

k.o, of 2.04 hr" 1 
<
16

> to account for the lag between plasma concentration and 

pharmacological response. 

III.3.2.4. Statistical Model: 

A proportional model was used to describe the inter-individual variability in all PK and 

PD parameters as follows: 

0; = Sm * (I +!)a;) III.6 
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Where, 9; is the estimate for a PD parameter in the ith individual, 9m represents the 

population mean value of this parameter and lje; is a normally distributed random variable 

with an average value ofO and variance ofco2
. 

Intra-individual variability (Residual error) was described by exponential error model as 

in Equation Ill.3. 

The coefficients of variation of inter-individual variability and residual error were chosen 

to be at 30% and 25%, respectively. 

III.3.2.5. Data: 

Two designs were studied as shown in Table III.2. Designs A consisted of 100 

individuals, each of whom contributed one sample. Thus, one data set consisted of 200 

observations of response data. Design B consisted of 50 individuals, each of whom 

contributed two samples. Thus, one data set consisted of 150 observations of response 

data. 

Ill.3.2.6. Sampling Schedules: 

The sampling times in the two designs were chosen from the range of three equilibrium 

half lives (3 keo) since distribution would be 90 % complete by three half lives. Again, 

sampling windows were used to mimic a real life situation, in which it is very difficult to 
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take samples at exactly the same time for each individual. The sampling windows for 

Design A and B are shown in Table Ill.2. In Design 1, one sample was taken per 

individual while two samples per individual were taken in Design B. In order to 

generalize the results to any drug, not specifically theophylline, the designs were created 

based on equilibration half-life units. 

III.3.2.7. Data Simulation: 

For design A and B, 1 and 2 random time points from within the appropriate sampling 

windows, respectively, were generated in Excel. The corresponding response data were 

then simulated using the ADV AN 3 subroutine <35
> in NONMEM. For each scenario, 100 

data sets were replicated. 

111.3.2.8. Parameter Estimation: 

At the beginning of this study, the FOCE method was used for the estimation step but it 

took a very long time (more than 3 hours) for each run due to the structural complication 

of this method with the complex model, ADV AN 3, used. Also, an enormous amount of 

overflow error was encountered which delayed the runs remarkably. Thus the estimation 

of the equilibrium rate constant (k.o) and its variability parameter was carried out in 

NONMEM using the FO method with each simulated data set. 
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The accuracy of the estimates from each data set was evaluated using %PE as described 

by Equation Ill.5, Section Ill .3.1.9. 

III.4.RESULTS 

III.4.1. PD Parameters: 

Bias and precision of parameter estimates were used to judge the performance of the 

designs studied where a mean and standard deviation of %PE for a parameter estimate ~ 

15% and 35% was accepted as being unbiased and precise, respectively <11 >. 

Design I gave unbiased estimates of all PD parameters; however y was only just achieved 

unbiased status (Tables III.3 & IIl.5 and Figures III.I & III.3). Design 2 and 3 gave 

unbiased estimates of EC50, Emax, Eo, but slightly biased estimates of y (Tables III.3 & 

Ill.5 and Figure Ifl. l) Design 4 gave unbiased estimates of EC50, Emax, and marginally 

biased estimate of y but the estimate of Eo was highly biased (Tables III.3 & III.5 and 

Figure III. I). 

All basic designs gave precise estimates of all PD paran1eters except Design 4, which 

gave a highly imprecise estimate of Eo, but other parameters were precise. The precision 

of parameter estimates of the four basic designs is shown in Tables Ill.4 & III .5 and 

Figure 111.2. 
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111.4.2. Variability Parameters: 

All basic designs gave unbiased estimates of the variability parameter in ECso (roEcso). 

Design 1 gave biased estimates of the variability parameter in Emax (OlEmax), Design 2 

gave marginally unbiased estimates of ffiEmax and Design 4 gave biased estimates of the 

variability parameters in Eo (roEo). 

Regarding the precision of the parameter estimates, Designs I and 2 gave imprecise 

estimates of ffiEmax · Designs 3 and 4 gave imprecise estimates of OJEcso- All but Design 4 

gave precise estimates of ffiEO· All designs failed to give accurate (unbiased and precise) 

estimates of the variability parameter in y (roy). Estimate of the residual error (cr) was 

unbiased and precise with all the basic designs studied. 

From the initially studied four designs, Design 1 was found to be the most optimal 

design. It was the only design to give accurate (unbiased and precise) estimates of all PD 

parameters. However, it did give inaccurate estimates of OlEmax and roy. Consequently, it 

was further studied for the effect of total sample size and the effect of increasing inter­

individual variability on the accuracy of the parameter estimates. 

111.4.3. Effect of Total Sample Size: 

The effect of sample size was studied by using the most optimum design with 50, 100, 

200 and 1000 individuals. The bias of PD and variabi li ty parameters appeared to be the 
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same for all population sizes, with the exception of the estimation of y which became 

more biased as the population size increased. By looking at the confidence intervals for 

the bias of y estimates with different sample sizes, it was found that as the sample size 

increased, the confidence intervals got smaller. The confidence intervals for bias of y 

were 4.31, 2.62, 1.88 and 0.64 with sample sizes of 50, I 00, 200 and 1000 individuals, 

respectively. 

All estimates of PD parameters were precise with all population sizes studied. Increasing 

population size resulted in more precise estimates of the variability parameters. For 

example, reducing sample size to 50 individuals resulted in marginally imprecise (35.5%) 

estimates of the variability parameter .in EC50 (roEcso) and increasing population size to 

1000 individuals resulted in precise estimates of the variability parameter in Emax (roEmax) · 

However, increasing total sample size failed to give precise estimates of the variability 

parameter in y (ro,). Estimates of the residual error were precise with all sample sizes 

studied. Effect of total sample size on bias and precision of parameter estimates is shown 

in Table Ill .6 & Figure III.4 and Table 111.7 & Figure 111.5, respectively . 

III.4.4. Effect of Increasing Inter-individual Variability: 

When inter- individual variability was increased from 30 to 60%, the most optimum 

design still resulted in unbiased and precise estimates of EC5o, Emax and Eo. Although 

estimate of y at the higher level of inter-individual variability was still precise, its 

estimate was biased. Increasing inter-individual variability to 60% resulted in very biased 
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and imprecise estimates of all variability parameters. Estimates of the residual error were 

biased but precise with this high level of inter-individual variability. This was the only 

design, from the eight designs studied, to give biased estimate of the residual error. The 

effect of increasing inter-individual variability to 60% on bias and precision of parameter 

estimates is shown in Table III.8 & Figure III.6 and Table 111.9 & Figure III.7, 

respectively. 

111.4.5. Effect Compartment Parameter Estimates: 

Both Designs A and B gave unbiased and precise estimates of the equilibrium rate 

constant, k,0, but its variability parameter (co) was very poorly estimated. Design B gave 

more precise and unbiased estimates of k.o than that of Design A. Estimates of the 

residual error (cr) were biased and imprecise with Design A and slightly biased and 

precise with Design B. The bias and precision of parameter estimates of Designs A and B 

are shown in Tables III. I 0 & III. I I, respectively and Figures III. 8, III.9 & III . I 0. 

III.S. DISCUSSION 

The magnitude and duration of drug response is controlled by the PK and PD phases. The 

determination of clinically useful guidelines thus must account for the parameters of each 

phase and also any link models necessary to account for delays in the distribution of drug 

from the plasma to the site of action <36>. The expanded application of PK/PD models has 

been found to be highly beneficial for establishing doses used during drug development. 
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In recognition of the value of PD's importance, the FDA recently called for PD modeling 

of clinical data as a component of new drug application <34
>_ Additionally, the increased 

availability of more sophisticated PD alternatives to the therapeutic range is anticipated to 

improve the effectiveness of applied therapeutics <37
>_ 

In the past, it was assumed that PK variability is primarily responsible for quantitative 

differences in drug response (3&). The probable reason for this assumption is that PD 

studies in human were rare until the last couple of decades <34>. Several studies have 

demonstrated that PD variability in humans is large, reproducible and usually more 

pronounced than PK variability <34
• 

39
""

2>. Failure to appreciate the magnitude of PD inter­

individual variability of a drug can compromise fixed dose clinical outcomes, making the 

drug appear less effective or more toxic <
34>. Thus, it is important to quantify PD 

variability and try to identify patient covariates in population studies. 

The application of the population approaches to drug development is recommended in 

several FDA guidance documents <
43

•
44>. Prospective implementation of large-scale 

population PD evaluation is feasible in early drug development and this approach 

generates clinically relevant findings <45>. The population approach can be applied in 

situations where extensive sampling is not done on all or any of the participants <44
>_ It can 

use sparse data collected during the course of other studies <26>. One major task in clinical 

pharmacology is to determine the PK/PD parameters of a drug in a patient population. 

The software NONMEM is commonly used to model response data to build population 

PK-PD models that characterize the relationship between a patient's PK-PD parameters 
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and other patient specific covariates such as the patient's pathological, physiological 

conditions and concomitant drug therapy <46>. 

When planning a population PD study, several aspects must be given careful attention. 

These include the primary objectives of the study, the PD characteristics of the drug 

under study, number of subjects required, number of samples per subject, and timing of 

these samples and the cost of collecting and analyzing samples <28
• 
43

•
44>. 

Simulation studies are ideal tools to investigate different design issues prior to execution 

of the study and are useful for selecting the study design that will best meet study 

objectives. In this study, the ability of various PD designs to provide accurate parameters 

estimates was investigated by simulating drug response data from concentration and time 

input data using inhibitory sigmoid Emax model. It is important to simulate the response 

data directly from concentration input not time input since the PD model describes the 

concentration-effect relationship and the effect is independent of time. With the effect 

compartment model , the response data has to be simulated from time because in this 

model time is an important variable to describe the lag between plasma concentration and 

pharmacological response. The designs used to investigate the accuracy of the parameter 

estimates differed in their sampling windows. The use of sampling windows ensures that 

samples are taken at random. This has been shown in the past to be a robust design 

<
8

•
25

•
26>. The use of random sampling can protect against misspecification of the 

underlying structural model and situations where a single model is not adequate for all 

individuals. Paran1eter estimates obtained from the different designs were evaluated in 
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terms of bias and precision. It has been shown that estimates of bias and precision give 

better descriptions of predictive performance than correlation coefficients and/or the 

regression of predictions on true values <47
>_ Bias is the degree to which the typical 

prediction is either too high or too low and precision is a measurement of the typical 

magnitude of error about a true value <43
>_ 

The FOCE method was used in the estimation step. This method requires more computer 

time to perform an analysis especially with large data sets or/and complex structural 

models. It was very difficult to use this method with sigmoid Emax model. It has been 

shown that the sigmoidicity constant causes a lot of problems in the estimation step and 

results in many overflow errors <35>, such as a division by zero or floating point overflow. 

In the present study, in some cases more than 600 runs were necessary to get 100 correct 

runs without an overflow error. Also, the use of the FOCE method causes an unsuccessful 

termination of the simulation step for many runs <
10>. However, this method provides 

more accurate estimates of the variability parameters <10
•
35>. 

Initially, three basic designs were investigated. These designs differed in their 

concentration inputs as follows: Design 1 had concentration samples up to 2 EC50 units 

Design 3 had concentration samples up to 5 EC5o units and Design 4 had concentration 

samples up to 16 EC50 units. Design 1 gave unbiased and precise estimates of all PD 

parameters but it gave imprecise and biased estimates of ffiEmax · Thus, it would seem that 

good estimates of ©Emax might require high concentration samples. The samples from the 

design that gave imprecise estimate of ffiEmax were only 2 ECso units. Consequently, 
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Design 2 was studied in which 2 samples windows were the same as Design 1 but the 

third window was slightly higher than that of Design I (1-2 EC50 and 1-3 ECso in Design 

3 and 4, respectively). All parameter estimates of Design 2 were like that of Design I 

regarding the terms bias and precision, except estimates of y and WEmax, where Design 2 

gave biased estimate of y and marginally unbiased and better but still imprecise estimates 

of WEmax than that of Design I. Thus, by looking at the accuracy of parameter estimates, 

Design 1 was found to be the most optimal design for a PD study because it gave precise 

and unbiased estimates to all PD parameters and the variability parameters in EC50• Eo 

and residual error. Design I has the advantage of using samples of low concentration 

level, which made it optimum for narrow therapeutic range drugs. However, this design 

had few disadvantages such as: it gave imprecise and biased estimates of WEmax, possibly 

due to the low concentration input, and eoy, which may be due to the inaccurate estimates 

of WEmax· The variability parameter in y might be more sensitive than any other parameter 

to the inter-individual variability as none of the designs investigated in this study was 

able to get accurate estimates of Wy. 

In general, PK/PD parameters are estimated more accurately than the variability 

parameters. Al-Sanna et al <
7
> and Ette et al <

23
> found that the population PK fixed-effect 

parameters were efficiently estimated but the inter-individual variability parameters were 

inaccurate and imprecise for most of the sampling schedules. 

The most optimum design identified in this study, was used to study the effect of total 

sample size on the accuracy of the parameter estimates. Increasing sample size to 1000 
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individuals gave more precise estimates of all PD and variability parameters. Increasing 

total sample size resulted in biased estimates of y. By conducting hypothesis testing on 

the population means C43> for the bias of y estimates with different sample sizes (level of 

significance of 0.05), it was found that as the total sample size increased the power to 

reject the null hypothesis that y estimate is unbiased increased. Also, the confidence 

intervals for bias of y were wide for population sizes of 50 and 100 individuals ( 4.31 and 

2.62, respectively) compared with that for population sizes of 200 and 1000 individuals 

(1.88 and 0.64, respectively). Therefore small sample size had a little power to detect a 

departure from the null hypothesis that the estimate is unbiased. Thus as the total sample 

size increased, the confidence intervals got smaller and the power to detect the bias 

increased. 

Inter-individual variability in PD may result from variability in receptor density and 

affinity, formation and elimination kinetics of endogenous ligands, postreceptor 

transduction processes, Homeostatic responses, the kinetic characteristics of transporters 

involved in drug transfer between fluids of distribution and the biophase and variability 

in the baseline (Eo) among population C34l_ It is important to identify and quantify the 

variability in PD parameters for the clinical safety and effectiveness of drug use C34
>_ 

When the inter-individual variability was increased from 30% to 60%, the precision and 

bias of PD parameters was the same, except that of y where the estimate was biased. 

However at this higher level of inter-individual variability, all variability parameters were 

very poorly estimated. Sun et al 1996 (II) found that there was an increase in bias and 
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imprecision in parameter estimation as inter-subject variability was increased. Increasing 

inter-individual variability in the most optimum design resulted in biased estimate of the 

residual error. This may be due to the difficulty in partitioning error between inter and 

intra individual variability at this high level of inter-individual variability. Ette et al C6l 

found that positively biased estimates of residual variability were obtained irrespective of 

the sample size used (30 to 1000 subjects) at coefficient of variation of 60% or more. 

It is accepted that for a fixed sample size, PK/PD parameters are estimated more 

accurately than the associated variability parameters <6•
23

•
28>. This was confirmed here in 

this study at both levels of inter-individual variability (30% & 60%). When inter­

individual variability was low, Design I gave accurate estimates of all PD parameters but 

two of the variability parameters were poorly estimated. When the inter-individual 

variabi lity was high (60%), the most optimum design gave accurate estimates of almost 

all PD parameters but it failed to give accurate estimates to any of the variability 

parameters. 

The equilibrium rate constant determines the onset of drug action and the duration of the 

pharmacological effect. Conlin et al C
49l studied the PD of levodopa in patients with 

Parkinson's disease over 4 years of disease progression. They found that the onset of drug 

effect occurred earlier and the duration of effect became shorter over this four-year 

period. They found that keO gradually increased with disease progression and hysteresis 

became less pronounced. The equilibrium half-life decreased from 173 minutes to about 

43 minutes <50>. In a study of the influence of age on PD of remifentanil <11>, it was found 
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that age was a significant covariate of k.o, which decreased by approximately 50% for the 

age range of20-85 years. 

The magnitude ofk.o depends on many factors such as perfusion of the effect site <51 >, rate 

of drug diffusion from capillaries to the effect site, blood tissue partition coefficient of 

the drug, rate of drug-receptor association and dissociation, time course of subsequent 

pharmacological response and by age cm 

In present study, both designs A & B gave precise and unbiased estimates of k.,0. 

However, Design B in which 2 samples were taken from each individual of 50 subjects 

gave more precise and unbiased estimates of k.o than that of Design A in which one 

sample was taken from each individual of I 00 subjects. Estimates of the variability 

parameter in k.o were very poor for both designs. Estimates of the residual error (cr) were 

precise with Design B and imprecise with Design A. This is in accordance with the work 

of Ette et al <
29>. They used half (50 subjects) the total number of subjects required for 

accurate parameter estimation with the one sample per subject design and doubling the 

total number of observations per subject. They found that with one observation per 

subject, the design yielded biased and imprecise estimates of inter-individual variability, 

and residual variability could not be estimated. Obtaining a second sample from each 

subject gave better estimates of the residual error, because it facilitated the partitioning of 

inter-subject variability and residual intra-subject variability, by introducing information 

about the latter. Two samples from 50 individuals appeared to be enough to get accurate 

estimate of one parameter. Breant et al (JO) found that two samples from each individual 

133 



of 15-20 patients were enough to perform a reasonable population analysis to get accurate 

estimates of two parameters (CL and VD). They also found that the values of the PK 

parameters were very similar to those obtained with 3 to 5 blood levels and with more 

patients. 

Large inter-individual variability in keO has been found for many drugs, for example the 

percent coefficient of variation in k.o of acetaminophen in children undergoing outpatient 

tonsillectomy is 131% CISJ and that oftheophylline induced eosinopenia is 191% <16>. The 

variability parameter in keO was very poorly estimated in this study, possibly because the 

percent coefficient of variation in k.o used was very small (30%) compared to the real one 

(191 %) <16
> or may be due to misspecification of the error model used. 

III .6. CONCLUSION 

Simulating a planned study offers a potentially useful tool for evaluating and 

understanding the consequences of different study designs. Simulation can reveal the 

effect of input variables and assumptions on the results of a planned population PD study. 

From this work, the following general conclusions on a PD study design can be drawn: 

1. Optimal sampling and pre-experiment simulation is a useful tool for designing 

informative population study <24J_ 
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2. Design l , in which concentration samples were taken from the following sampling 

windows: O.l-0.5, 0.5-l and l-2 EC50 performed best overall and it was considered to be 

the most optimum design for a PD study specially its input concentration was low which 

is suitable for a narrow therapeutic range and potent drugs. 

3. Increasing the total sample size improved the accuracy of the parameter estimates. 

4. When inter-individual variability was increased to 60%, with the exception of the 

sigmoidicity constant's estimate which was biased, accurate estimates of all PD 

parameters were found. The variability parameters were very poorly estimated. 

5. All the designs failed to give accurate estimates of the variability parameter in the 

sigmoidicity constant. 

6. Accurate equilibrium rate constant estimates were obtained with the two designs 

studied, however Design B in which 2 samples were taken per individual with total 

sample size of 50 individuals performed better. 

7. Both Designs A and B gave very poor estimates of the variability parameter in the 

equilibrium rate constant. 

In summary, Design I was considered to be the most optimum design for studying the PD 

parameters, namely efficacy, potency, baseline response and sigmoidicity constant. 
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Design B was considered to be the most optimum design for studying the equilibrium rate 

constant but it gave poor estimates of the variability parameter. 
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Table IIl.l. Sampling windows for the four basic designs: 

Design Sampling Windows (EC50 units) 

(I) (2) (3) 

I 0.1 - 0.5 0.5 - 1 1 - 2 

2 0.1 - 0.5 0.5 - 1 1 - 3 

3 0.1 - 0.5 1 - 2.5 3-5 

4 1 -4 6 -9 13 - 16 
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Table 111.2. Sampling windows for Designs A & B: 

Design Sampling Windows (Equilibrium half life units) 

(I) 

A 1.5 - 3 

B 0.25 - 1.5 

Design A: only one sample was taken per individual. 
Design B: two samples were taken per individual. 
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Table lll.3. Percent bias of parameter estimates using the four basic designs: 

Design EC so Em ax Eo y OlECSO ffiEmax OlEO 

I -0.5 1 0.54 -0.73 -14.98 -5.15 -25.77 -1.27 

2 -3 .24 0.81 0.11 -19.26 -5. 12 -14.41 -0.75 

3 -0.72 I.I -0.13 -17.86 -10.4 -0.42 -1.64 

4 -1.3 0.82 432.7 -15.5 1 -10.16 -0.05 56.52 

Based on 100 replications. 
Design 1: Samples were taken at 0.1-0.5, 0.5-1 and 1-2 EC50 units. 
Design 2: Samples were taken at 0.1-0.5, 0.5-1 and 1-3 EC5o units. 
Design 3: Samples were taken at 0.1-0.5, 1-2.5 and 3-5 ECso units. 
Design 4: Samples were taken at 1-4, 6-9 and 13-16 EC50 units. 
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Oly 

35.39 

74.63 

33.76 

33.13 

CJ 

6.87 

4.52 

3.94 

0.49 



Table Ill.4. Percent precision of parameter estimates using the four basic designs: 

Design EC so Emax Eo y 0JEC50 00Emax OlEO 

I 4.73 12.6 4.1 13 .35 22.91 62.11 22.22 

2 5.06 7.35 4.35 11.74 25.5 41.45 23.76 

3 8.39 4.22 4.25 15.99 37.55 26.82 27.57 

4 33.4 3.45 2104 31.55 68.01 18.7 283 .2 

Based on I 00 replications. 
Design I: Samples were taken at 0.1-0.5, 0.5-1 and 1-2 EC50 units. 
Design 2: Samples were taken at 0.1-0.5, 0.5-1and1-3 EC50 units. 
Design 3: Samples were taken at 0.1-0.5 , 1-2.5 and 3-5 EC50 units. 
Design 4: Samples were taken at 1-4, 6-9 and 13-1 6 EC50 units. 
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Oly cr 

161.3 18.66 

185 22.3 

178.7 20.92 

263.6 12.27 



Table 111.S. Bias and precision of parameter estimates using the four basic designs: 

Parameters Bias Precision 

2 3 4 2 3 4 

EC so 

Em ax 

Eo + + 

y + + + 

<.tlEC50 + + 

CUE max + + + 

<.tlEO + + 

<.tly + + + + + + + + 

CJ 

Based on I 00 replications. 
(-) means unbiased or precise, ( +) means biased or imprecise. 
Design I : Samples were taken at 0.1-0.5 , 0.5- 1 and 1-2 EC50 units. 
Design 2: Samples were taken at 0.1-0.5 , 0.5-1 and 1-3 ECso units. 
Design 3: Samples were taken at 0.1-0.5, 1-2.5 and 3-5 EC50 units. 
Design 4: Samples were taken at 1-4, 6-9 and 13-1 6 EC50 units. 
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Table 111.6. Effect of total sample size on percent bias of parameter estimates: 

Sample EC so Emax Eo y OlECSO C0Emax OlEO Oly cr 

Size 

50 -1.43 -0.02 1.16 -13.21 -4.82 -34.58 -10.6 36.11 7.4 

100 -0.51 0.54 -0.73 -14.98 -5.15 -25.77 -1.27 35.39 6.87 

200 -0.81 -1.86 -0.1 -19.49 -1.46 -27.59 -1.8 1 36.52 6.36 

1000 -1.17 -1.76 -0.2 -20.34 -0.78 -34.44 -2.85 58.27 6 

Using Design 1 in which samples were taken at 0.1-0.5, 0.5-1 and 1-2 EC50 units. 
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Table lll.6. Effect of total sample size on percent precision of parameter estimates: 

Sample EC so Em ax Eo y OlECSO C0Emax OlEO Oly cr 

Size 

50 5.96 19.44 5.58 22 35.5 75.26 28.39 261 25.5 

JOO 4.73 12.57 4.1 13 .35 22.9 62. 11 22.22 16 1.3 18.7 

200 3.67 9.87 3.14 9.58 25.4 65.7 41.1 111 13.5 

1000 1.59 3.87 1.25 3.26 7.1 8 21.93 7.64 58.46 6.55 

Using Design l in which samples were taken at 0.1 -0.5, 0.5-1 and 1-2 EC50 units. 
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Table III.8. Effect of increasing inter-individual variability (UV) on percent bias of 

parameter estimates: 

IIV EC so Em ax Eo y OlECSO ffiEmax OlEO Oly cr 

60% 4.14 -4.69 -1.02 -32.05 225.7 203.85 311.17 101.35 22.85 

30% -0.51 0.54 -0.73 -14.98 -5.15 -25.77 -1.27 35.39 6.87 

Using Design 1 in which samples were taken at 0.1-0.5, 0.5-1 and 1-2 EC50 units. 
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Table lll.9. Effect of increasing inter-individual variability (IIV) on percent 

precision of parameter estimates: 

!IV EC so Em ax Eo y WECSO C0Emax WEo Wy (J 

60% 12.8 24.96 7.06 15.14 103.9 191.58 73.2 200.75 23.53 

30% 4.73 12.57 4.1 13.35 22.91 62.12 22.22 161.32 18.66 

Using Design I in which samples were taken at 0.1-0.5, 0.5-1 and 1-2 EC50 units. 
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Table 111.10. Percent bias of k<-0 and variability parameter estimates using Design A 

&B: 

Design k.o co (J 

A -9.33 l.56E+o8 19.34 

B -8.71 l.55E+l0 -17.25 

Design A: one sample was taken between 1.5-3 equilibrium half-life units. 
Design B: two samples were taken, the first one between 0.25-1.5 equilibrium half-life 
units and the second one between 1.5-3 equilibrium half-life units. 
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Table III.11. Percent precision of ~ and variability parameter estimates using 

Design A& B: 

Design k.o (J) cr 

A 29.71 l.48E+09 99.72 

B 26.21 l.4E+l I 28 .80 

Design A: one sample was taken between 1.5-3 equilibrium half-life units. 
Design B: two samples were taken, the first one between 0.25-1.5 equilibrium half-life 
units and the second one between 1.5-3 equilibrium half-life units. 

156 



Figure 111.1. Percent bias of parameter estimates using the four basic designs. 
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Figure 111.2. Percent precision of parameter estimates using the four basic designs. 
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Figure 111.3. Percent bias and precision of parameter estimates using Design 1. 
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Figure 111.4. Effect of total sample size on percent bias of parameter estimates. 
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Figure 111.5. Effect of total sample size on percent precision of parameter estimates. 
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Figure 111.6. Effect of increasing inter-individual variability on percent bias of parameter 
estimates 
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Figure 111.7. Effect of increasing inter-individual variability on percent precision of parameter 
estimates 
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Figure 111.9. Percent precision of keO & variability parameter estimates using Designs A and B. 
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Figure 111.10. Percent bias and precision of parameter estimates using Designs A and B. 
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Figure A.1. The effcet of n on drug response using single IV dose* in presence of an effect 
compartment of keo=0.2. (Manuscript I) 
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Figure A.2. The effcet of n on drug response using single IV dose• in presence of an effect 
compartment of keo=1. (Manuscript I) 
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Figure A.4. The effect of EC50 on drug response using single IV dose• in presence of an 
effect compartment of keo=1. (Manuscript I) 
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Figure A.3. The effect of EC50 on drug response using single IV dose* in presence of an 
effect compartment of keo=0.2. (Manscript I) 
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Figure A.5 Drug response vs time with different multiple IV doses at n and EC50 of 1. 
(Manuscript I) 
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Figure A.6. Drug concentration vs time with different multiple IV doses at n and EC50 of 1. 
(Manuscript I) 
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Figure A.7. Concentration-effect relationship using the linear model. (Manuscript II) 
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Figure A.8. Steady state plasma concentrations at different theophylline doses. (Manuscript 
II) 
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Figure A.9. NONMEM control file of the pharmacodynamic model (PRED model): 
(Manuscript III) 

$PROBLEM SIMULATION OF POPULATION DATA 
$INPUT ID CON EF=DV 
$DATA PD.DAT 

$PRED 
C50=THETA(l)*EXP(ETA(I)) 
EMAX=THETA(2)*EXP(ETA(2)) 
EO=THETA(3)*EXP(ETA(3)) 
GAMMA=THETA( 4)*EXP(ET A( 4)) 

IF (EMAX.GT.EO) EXIT I I 
TY = EO-(EO-EMAX) * CON**GAMMA I (CON**GAMMA + C50**GAMMA} 

IF (TY.LE.O) THEN 
LTY=-10000 
ELSE 
LTY=LOG(TY) 
ENDIF 
Y=LTY+EPS(l) 

$THETA (0,5.06) (0,37) (0,183) (0,6.22) 
$OMEGA 0.09 0.09 0.09 0.09 
$SIGMA 0.0625 
$SIMULATION(3575821) SUBPROBLEM= IOO;SEED 1-7 DIGITS 
$ESTIMATION METHOD=! MAX=5000,PRINT=5 NOABORT 
$COVARIANCE 
$TABLE ID CON DV FILE=P I .out 
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Figure A.10. NONMEM control file of the effect compartment model (ADV AN 3): 
(Manuscript III) 

$PROBLEM SIMULATION OF POPULATION DATA 
$DAT A KeO.DA T 
$INPUT ID TIME DOSE=AMT DV 
$SUBROUTINES ADV AN3 

$PK 
CL=THETA(l)*(l +ETA(!)) 
V l=THETA(2)*(1 +ETA(2)) 
Sl =VI 
K=CLN I 
K12=0.001 *K 
K21=THETA(3)*(1 +ETA(3)) 
EMAX=THETA(4)*(1 +ETA(4)) 
C50=THETA(5)*(1 +ET A(5)) 
EO=THETA(6)*(1 +ETA(6)) 
S2=Sl *K12/K.21 
GAMMA=THETA(7)*(1 +ETA(7)) 

$THETA (0,2.75) (0,28.4) (0,2.04) (0,37) (0,5.06) (0,183) (0,6.22) 
$OMEGA 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
$ERROR 

TY=EO-(EO-EMAX)*F**GAMMN(F**GAMMA+C50**GAMMA) 

IF (TY.LE.O) THEN 
LTY=-10000 
ELSE 
L TY=LOG(TY) 
ENDIF 

Y=LTY+EPS(l) 

$SIGMA 0.0625 
$S!MULATION(2190998) SUBPROBLEM=IOO;SEED 1-7 DIGITS 
$ESTIMATION MAX=5000,PRINT=5 NOABORT 
$COY ARIAN CE 
$TABLE ID TIME AMT DV FILE=Kl .out 
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