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Ballistic transport in ultrathin films with random 
rough walls 

A.E.Meyerovich t and S.Stepaniants + 
Department of Physics, University of Rhode Island, Kingston, RI 02881, USA 

Abstract. We calculated transport coefficients in thin films in which the particle 

wavelength is comparable to the thickness of the film, and the motion across the 

film is quantized. The perturbative calculations are analytical almost to the very 

end, and result in explicit transparent expressions for the transport coefficients via the 

correlation function of surface inhomogeneities, density of particles, and film thickness. 

The final results are given for Gaussian correlations of the surface inhomogeneities. The 

discrete nature of the spectrum leads to a non-analyticity of transport coefficients as 

a function of particle density and film thickness, especially for degenerate fermions. 

Surface inhomogeneity causes both in-band scattering and interband transitions; 

the role of interband transitions is determined by the correlation radius of surface 

inhomogeneities. The shape of the curves for the dependence of transport coefficients 

on the number of particles and film thickness is determined by the correlation of 

surface inhomogeneities and is not very sensitive to their amplitude. For short range 

correlations, the interband transitions lead to a saw-like shape of the curves. With an 

increasing correlation radius, the interband transitions become suppressed, and the saw 

teeth gradually decrease, reducing, in the end, to small kinks on otherwise monotonic 

curves. Careful analysis of the transition from quantum to semiclassical and classical 

regimes allowed us to improve the accuracy of our previous classical calculations. 

Short title: Ballistic transport in ultrathin films with random rough walls 

August 21, 1998 
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1. Introduction 

Repeated collisions of ballistic particles with rough walls with random inhomogeneities 

restrict particle motion along the walls, and are responsible for the formation of the 

mean free path, quantum interference effects, and localization. Scattering of particles 

and waves by random rough walls is an old and thoroughly studied problem (see books 

[1, 2, 3, 4, 5, 6, 7]). However, most of the existing transport calculations for the 

wall-imposed limitations on the transport coefficients and mean free path along the 

walls, involve either oversimplified models or complicated integro-differential boundary 

conditions (see, e.g.! reviews [8, 9] and references therein). The lack of simple expressions 

for the transport coefficients via statistical characteristics of surface inhomogeneities 

hinders experimental and theoretical work on systems with long free paths. 

Recently we suggested a simple perturbative description of ballistic transport in 

systems with random rough walls [10] (see also [11]). We expressed transport and 

localization parameters such as mobility, diffusion, mean free path, localization length, 

etc.! for ballistic particles directly via the wall profile, namely, via the correlation 

function of wall inhomogeneities. Despite an intensive previous work on transport in thin 

films and channels with rough walls and a large amount of available data, our transparent 

semi-analytical results provide a new explicit link between the transport coefficients 

and the correlation function of surface inhomogeneities (for the latest experimental and 

theoretical results on transport see Refs.[10, 12, 13, 14, 15] and references therein). 

Our calculations were based on a canonical coordinate transformation, similar to 

the Migdal transformation in nuclear physics, which makes the rough boundaries fiat, 

but complicates the bulk equations. This idea was proposed earlier in Refs. [16, 17], 

but was not carried out explicitly. We used an explicit expression for the coordinate 

transformation with the parameters given by the exact profile of the random boundaries. 

This provides an exact reformulation of the transport problem with random rough walls 

as the transport problem with fiat walls and randomly distorted bulk. The arising bulk 

problem can be solved using the standard semiclassical perturbative transport equation. 

The idea to reduce a surface scattering problem to a bulk one has been used 

successfully in other fields, including the electromagnetic and acoustic wave scattering, 

diffraction patterns, wave guides, etc., for several decades (see, e.g., [2, 6, 18, 19, 20, 

21, 22, 23, 24, 25] and references therein). Generally speaking, such a reduction, either 

in the form of direct coordinate transformation or as an expansion in initial boundary 

conditions, is inherent to perturbative calculations for small roughness. 

Our procedure is the first explicit application of such a technique developed 

specifically for ballistic transport in thin films and narrow channels. The calculations are 

analytical almost to the very end. The transparent results express transport coefficients 

directly via the correlation functions of surface inhomogeneities, and can be used for 
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analysis of experimental data or as a basis for further calculations. Apart from the 

transport coefficients, such as mobility and diffusion in different physical systems, the 

method provides a simple tool for the study of wall-induced localization and quantum 

interference effects thus supplementing the localization results of Refs.[2I, 25, 26, 27, I4]. 

Since we are interested in slight roughness, the calculation of the "classical" mean free 

path should precede and serve as a basis for the calculation of the (small) quantum 

interference effects and (weak) localization with (exponentially) large localization length. 

[In the case of strong roughness, the transport problem is simple: the mean free 

path becomes equal to the film thickness with the obvious consequences for transport 

coefficients. Other problems for strong roughness, such as quantum interference effects 

or wave patterns for wave scattering, remain non-trivial]. 

In this paper we study ballistic transport in very thin films with quantized motion 

of particles across the film, Px rv jn/ L (L is the average distance between the walls, j 
is the quantum number). The quantization is important for electron transport in ultra­

thin pure metal films and for microfiows and microdevices (see Ref. [28] and references 

therein). In thin films with discrete levels for motion across the film, the change in 

particle density N and/or film thickness L causes the redistribution of particles between 

these levels. In Fermi systems at T ----+ 0 this is a non-analytical step-like process which 

should lead to singularities in the dependence of the transport coefficients on the density 

of particles or film thickness. The density dependence of the transport coefficients should 

become more and more smooth with increasing temperature even for a distinctly discrete 

energy spectrum. 

Similar singularities in transport in ultra-thin films have already been described 

for scattering on bulk impurities [29], and have been qualitatively suggested in Ref. [I 7] 

for scattering by rough walls. [Note, that this saw-like effect is a purely "classical" 

transport result that has nothing in common with ID quantization of conductance for an 

effectively ID motion of particles through a narrow contact [I 4, 27]]. Recent perturbative 

approach to a similar problem [I5] included bulk attenuation, but disregarded the role of 

the correlation radius R and missed the operator xfJx in the perturbation (this operator 

is inherent to such problems [I6] and is responsible for interlevel transitions). As we will 

see, the value of the correlation radius R and the interlevel transitions define the shape 

of the dependence of transport coefficients on film thickness and/or particle density. 

In the next Section we present general perturbative equations for quantized 

transport in thin films with rough boundaries. In Sec.3 we study transport singularities 

for degenerate fermions at T = 0. In Sec.4 we analyze transport at finite temperature, 

and calculate the transport coefficients in the Boltzmann temperature range. The results 

ensure a consistent transition from discrete to continuous expressions, and improve 

the accuracy of our previous calculations [10] for continuous spectrum in the classical 

and semi-classical limits. The improved results for classical transport are given in the 
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Appendix. The final results are presented for the Gaussian correlation of the surface 

inhomogeneities; similar calculations can also be done for other types of correlation 

functions. 

2. Transport of particles with quantized motion across the channels 

We will consider a film (channel) of the average thickness L with rough boundaries 

x = L/2 - 6(y, z) and x = -L/2 + 6(y, z). The small boundary inhomogeneities, 

6 (y, z) , 6 (y, z) ~ L, are random functions of coordinates s = (y, z) along the 

boundaries, (6) = (6) = 0. The correlation function (ei(s1 )6(s2 )) depends only on the 

distance between points ls1 - s2 I and not on coordinates themselves, 

(1) 

Our approach is based on the canonical coordinate transformation r ----+ R, p ----+ P, 

X=L[x-(6(y,z)-6(y,z))/2] Y=y Z=z 
L - (6(y, z) + 6(y, z)) ' ' 

(2) 

which makes the walls fiat, X = ±L /2, and is responsible for the following change in 

the form of the bulk Hamiltonian H = p2 /2m: 

~ f5 2 ~ ~ ~ ~ e ~2 
H = 2m + Vx +Vy+ Vz, Vx = mL Px, (3) 

17; = 2~L [ e~PxPy + f5xe~f5z] - 4~ [ ( e;y - e~y) PxPy + Px ( e;y - e~y) Pz] 

where e = 6 + 6 and ~ is similar to f;; see [10] for details. The randomness of 

inhomogeneities, (6,2 ) = 0, leads to the randomness of the bulk distortion V, \if) = 0. 

Thus, the transformation (2) reduces the transport problem between rough walls to an 

equivalent transport problem with ideal specular walls, W(L/2) = W(-L/2) = 0 and 

distorted bulk Hamiltonian (3). The latter problem can be treated in the same standard 

perturbative way as any random bulk imperfections or impurities. 

The perturbative approach to surface roughness requires that the surface 

inhomogeneities should be relatively smooth with the amplitude f smaller than their 

correlation radius R and the thickness of the film L, f ~ L, R. The use of a semiclassical 

transport equation for the motion along the film imposes an additional condition on the 

wavelength, namely, that the wall-induced distorting force does not change the energy 

along the wall on the scale 1 / q ( q is the characteristic wave vector for particle motion 

along the walls). In the case of not very high quantum numbers j for the motion across 

the film, this means that either f / L ~ q2 R 2
, q3 RL2 or 1 ~ qR ; if both inequalities 

are broken, one should substitute the Poisson bracket in the transport equation by the 

exact quantum commutator. These conditions have different meanings for thin films 
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with microscopic roughness, R ~ L, and for smooth films that are irregularly curved 

on a macroscopic scale, R ~ L. When, as it is often the case, the wave vector along the 

film q is of the same order as for the motion across the film, q rv 1/ L, the applicability 

of our perturbative semiclassical approach requires f ~ L, R, R 2 
/ L. 

The effective bulk distortion (3) determines the effect of surface roughness on 

transport via the Born collision integral 

in the transport equation for the subbands j 
q 

Otn (Ej, q) + - ·Orn (Ej, q) + F · Oqn (Ej, q) = Lj {ni} 
m 

(4) 

(5) 

where subbands Ej (q) = [(7rjn/L) 2 + q2] /2m. The equation includes both in-band 

scattering and interband transitions. Since we are interested in the effects of slight 

roughness in the lowest approximation, we do not have to include the roughness-induced 

corrections to the energy levels, and can neglect all the roughness corrections to the l.h.s. 

of Eq. ( 5). The collision integral ( 4) and , therefore, the transport coefficients contain 

the squares of the matrix elements of the "perturbation" V, and the averaging over the 

random surface inhomogeneities leads directly to the correlation function ( ( s). 

The calculation of the matrix elements \ lv:Jq,j'q' 1

2
) with the unperturbed wave 

functions W j = ~exp ( iq · s) sin ( 7r j X / L) is trivial ( v0 is the volume). The 

Hamiltonian (3) contains terms with e = 6 + 6 and 6 - 6. Both terms contribute 

to the matrix elements lv:Jq,j'q'l
2 

and the collision integral (4). After the averaging and 

integration with the 8-functions in ( 4), the term with 6 - 6 becomes equal to zero, as in 

[10]. This cancellation occurs only because of the randomness of surface roughness and 

the absence of bulk collisions. In the case of regular roughness (i.e.! periodic walls or 

channels of finite length) or in the presence of particle-particle and particle-impurity bulk 

collisions the contribution of 6 - 6 is finite. In our case of ballistic transport between 

random-rough walls, the terms with 6 - 6 disappear from the collision integral (4): 

Lj = 3

1 jd2q' ( (q - q') L (nj' (q') - nj (q)) 8 (Ej'q' - Ejq) x 27rn m 2 L 2 
I 

J 

[8 , (~ ( _ ')2 + (7rnj)
2
) 

2 
+ (1 - 8jj')j2j'

2 
( ,2 _ 2)2] · (6) 11 4 q q L (j2 _ j'2)2 q q 

where ( ( q) = ( 11 + (22 + 2(12 is the Fourier component of the correlation function 

(e (s1) e (s2)) fore= 6 + 6 (see Eq.(l)). 
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The transport equation (5), (6)is a set of equations in the distribution functions nj 

coupled via collision integrals Lj. We can solve the transport equation for an arbitrary 

correlation function ( ( q) and express the transport coefficients via the zeroth and first 

angular harmonics of the correlation function at different values of q. We will supplement 

the general expressions by the most practical example of the Gaussian correlations of 

the surface inhomogeneities of an average height £, 

(7) 

including the 8-type correlations in the limit of the small correlation radius R, 

(8) 

The condition f ~ R does not mean that our approach is applicable only to the long­

range correlations (large size inhomogeneities). The scale for the effective correlation 

range in Eq. (7) is defined by the particles wavelength >. rv 1 / q. If >. ~ R, one deals 

with the short-range 8-type correlations (8), while in the opposite case of long-range 

correlations >. ~ Rone should consider the full Gaussian expression (7). Only the large 

number of equations (5) (relevant subbands j) prevents us from giving a fully analytical 

solution of the transport problem. 

3. Singularities in transport of particles with discrete quantum states: 

Low temperatures 

Changes in particle density and/or thickness of the film lead to the redistribution of 

particles between sub bands with different j. This redistribution between discrete states 

may lead to a non-analytic dependence of transport coefficients on particle density and 

thickness of the film [17]. This non-analyticity is more pronounced for degenerate Fermi 

systems at T ----+ 0 when continuous increase in the number of particles leads, at certain 

critical densities, to filling of new levels with higher and higher values of j. 
At T = 0, the Fermi momenta of fermions for the motion along the film q~)in each 

subband j are given by the overall Fermi energy EF as 

while the 2D density of spin-1/2 particles in subbands 

(j)2 
N - Jf__ 

1 - 27rn? 

(9) 

(10) 

(for simplicity we assume that the effective masses of particles in all subbands are the 

same). The chemical potential µ = EF is determined self-consistently by calculating the 



total density of particles N, 

Eqs. (9)-(11) in convenient dimensionless notations, 

v = 2mEF (:rJ 2

, = ~NjL2 , z = L 
J 

can be rewritten as 

=3_NL2 

' 7r 

7 

(11) 

(12) 

(13) 

The number of occupied levels S for the given value of z (i.e., for the number of particles 

N L 2
) is given by the integer part of v1! 2 (z ), 

S ( z) = Int [ y'V] (14) 

All the levels with the indices j > S are empty, Zj>S = 0. Summation in Eqs.(13) from 
1 to S defines the number of occupied levels S and the dimensionless chemical potential 

v as functions of the number of particles z: 

8 ~Int [v'v] ~Int [ ~ + (s+ l) ~28+ l) , (15) 

z 1 
v(z) = 5 + 6 (S+1)(2S+l) 

[For computational purposes, it is convenient to start from defining the number of 
occupied levels S, and to determine the interval of the values of z and v, which 

corresponds to this number of levels, basing on the value of SJ. The changes in number 
of occupied levels S = 1, 2, 3, 4, 5, 6, ... occur at z = 0, 3, 13, 34, 70, 125, ... (i.e.! in 

the points z = S 3 
- S (S + 1) (2S + 1) /6). 

At T = 0, we look for the solution of the transport equation (5) in the form 

nj (q) = n~o) (q~l) - :4~~8(E - EF) Xj (q~l) cosBj, 

where ej is the angle between the momentum qj and the external force F. Then, 
after the integration of the collision integral (6) with the Gaussian correlation of 

surface inhomogeneities (7), the transport equation reduces to the following set of S 

dimensionless linear equations in Xj ( q~)) with hypergeometric coefficients: 

zJf 2 L2 
__ ~ . ( 4j 4 

1F1 (~, 2, -
2 1f

2

{~R
2

) + 6zjj2 1 F 1 (~, 3, -
2 1f

2

{~R
2

) ) 

R2 - 2XJ +[) 2 F (Z 4 _2K2z;R2) (16) 
2 ZJ 1 1 2' ' £2 

S(z) 

+ 2 L, (1-8jj')j 2j'2 exp [-7r 2 (FJ-vz.ff R 2 /2L 2
] x 

J 
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35 

30 

25 
<l>(z, .05) 

20 

15 

10 

5 

(\. ......... ........................ . 

----- -----------------1 

0 ~~~~~~~~~~~~~~~~~~~~~~~~~· 

0 10 20 30 z 40 50 60 70 

Figure 1. <l>(z, R/ L), Eq.(18), as a function of density z = 2N L2 /Ir for the correlation 

radius R/ L = 0.05. Solid line - exact calculation; dotted line - calculation without 

interband transitions (without off-diagonal terms in the collision integral Eq.(6)) 

r 

. ( F (l l _ 211"
2 
VZJZ]1R

2

) _ F (:i 2 _ 211"
2 
VZJZ]1R

2

)) 1 X1 1 1 1 2 , , £2 1 1 2 , , £2 

- . F (1 1 - 211"2 VZJZJ1R2) X1 1 1 2 , , £2 

[We do not give cumbersome equations for the correlation function of a general form 

( ( q) with the coefficients expressed via the angular harmonics of the correlation function 

on the Fermi surface]. The conductivity (mobility) of particles is given by the solution 

of this set of equations as 

s 2L2 s 
_ _ ~ (j) _ _ e ~ 1/2 . ( (j)) 

(J"YY - (J"zz - ~ (J"YY - 27r4nfl.2 ~ zJ X1 qF ' 
J=l J=l 

(17) 

and can be conveniently parametrized in the form 

e2 L2 ( R) 2 
(]" yy = (]" zz = ~<I> z, - , z = - NL 2 

7r4n.t.2 L 7r 
(18) 

The dimensionless functions <I> ( z, R/ L) for four different values of R/ L are plotted in 

Figure 1 (solid line) for R/ L = 0.05, and in Figure 2 for R/ L = 1; 3; 5. The singular 
points correspond to change in values of S from 1 to 2 to 3 to 4 ... at z = 3; 13; 34; ... 

This representation gives the dependence of the conductivity (mobility) on the 

dimensionless density of particles N L 2 for different (dimensionless) correlation radii 

R/ L. Another possible way of parameterization of the equations, similar to the one 
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5 

105 f- 3 -

104 r-
1 

103 f-

<l>(z, ~) 
102 f-

10 f-

1 r-

0.1 ~~~~~~~~~~~~~~~~~~~~~~~~· 

1 z 10 100 

Figure 2. <l>(z, R/ L), Eq.(18), as a function of density z = 2N L2 /Ir for the correlation 

radius R/ L = l; 3; 5. The curves are labeled by the values of R/ L 

used in [10], could be based on the definition 

27r\/zjZj!R
2 = 47r yfZjZj!N R

2 = 87r
2 
yfZjZj! (R) 

2 

L 2 z z >. ' 

where the effective particle wavelength >. 2 = 27r / N. This equation redefines the 

function <I> (z, L/ R) in (18) as <1>( 1
) (z, R/ >.) = <I> (z, 2R/ >.V,Z) or as <1>(2) (z, RvJV) = 

<I> (z, J2N/7rzR). These alternative parametrizations would give the conductivity 

(mobility) as a function of dimensionless thickness LvJV at different correlation radii 
RvJV or R/ >.. The z-dependences of the conductivity for all these parametrizations 

look roughly the same. 
The diffusion coefficient Dyy = Dzz is related to the mobility (21) as 

D __ 7rn
2 I~ j onj d _ 7rn2

cryy L
2n ( R) 

YY - e2m cryy ~ oe e - e2mS = 7r 3 m£2 S<I> z, L ' 
J=l 

(19) 

while the mean free path along the channel is 

£ = er< q > = (27r)
1
/
2 

ncr ('°' N 2)1/2 rv L LR L <I> (z, R/ L) 
e2N e2N3/2 ~ J g2 R z (20) 

Dramatic difference in shapes of the curves in Figures 1 and 2 for small and large 

values of R/ L is explained by the role of interlevel transitions. If one neglects the 
interband transitions (the off-diagonal matrix elements i/jj' with j' -/:- j) in the collision 

integral (6), then the set of transport equations (16) will decouple into S independent 
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5 

105 f- 1 -

104 f-

103 f-

<l>(z, ~) 
102 f-

10 f-

1 r-

0.1 _l 

1 z 10 100 

Figure 3. <l>(z, R/ L), Eq.(18), as a function of z for R/ L = l; 5 caculated without 

interlevel transitions (without off-diagonal terms in the collision integral ( 6). The 

curves are labled by the values of R/ L 

equations. It is obvious that in this approximation the conductivity should be an almost 

monotonic function of z = 2N L 2 
/ 7r, though the critical values of z, which correspond to 

the change in the number of occupied levels S, are still responsible for the singularities 

(small kinks) in the curves. Therefore, the saw-like nature of the curves is caused by 

the interlevel transitions exclusively. 

For comparison, Figure 1 (dashed line) and Figure 3 give the function <I> ( z) 
calculated when all the interband off-diagonal terms j' -/:- j in the collision integral 

(6) are artificially disregarded. The curves with and without transitions always coincide 

as far as z ~ 3 when there is only one occupied subband. The differences show up only 

at z > 3. 

Algebraically, the importance of interband transitions is characterized by the 

parameter N R 2 
rv zR2 I L 2

. Since Zjl - = j2 - j'2
' the exponents in Eqs.(16) 

make interlevel transitions to remote levels lj - j'I ~ L/ R negligible. These exponents 

show also that the interband transitions and the resulting mixing of adjacent levels 

are very important only for not very populated levels with 27r 2 
ZjR

2 
/ L 2 ~ 1. Thus, 

the contribution of interband transitions is noticeable only for relatively small values 

of R/ L, and decreases exponentially with increasing R/ L. For this reason, the saw-like 

character of particles mobility becomes less and less pronounced with increasing R/ L. 
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At R/ L = 5 the saw nearly completely disappears, and there is practically no difference 

between the curves in Figure 2 (exact calculation) and Figure 3 (calculation without 

interband transitions). Note, that the curves calculated with and without transitions 

always coincide for a small number of particles z < 3 when only one level is occupied 

and the transitions are impossible for energy reasons. 

The same parameters, 27r2zjR2 / L 2 = 47r NjR2
, determine the values of the 

hypergeometric functions in (16). At x 2 ~ 1, 1F1 ( (2n - 1) /2, n, -x2
) '.::::::'. 1, while in 

the opposite case x 2 ~ 1, 1F1 ((2n-1)/2,n,-x2) '.::::::'. (n-1)!/V7fxn. Therefore, at 

large 27r2 ZjR2 
/ L 2 ~ 1, one can not only neglect the interband transitions, but also the 

hypergeometric functions 1F1 ( (2n - 1) /2, n, -x2
) with n = 3 and n = 4 in the diagonal 

terms of the collision integrals (16) in comparison with the one with n = 2. Under these 

conditions one can justify a heuristic assumption made in [10] and recover the result 

(53): 

_ ~ (j) _ e
2 L2 

( R) 
- ~ cryy - 7r4nf2 <I> z, L ' 

J=l 

CTyy (21) 

L2 S(z) l 

= 4R2 L ~ ( ) . 1 J 1F1 ~,2,-27r 2zjR2 /L2 

If the correlation radius is small, N R2 ~ 1, all the terms m (16) are of the 

same order, while the hypergeometric function 1F1 ( (2n - 1) /2, n, -27r2 ZjR2 
/ L 2

) 

1F1 ( (2n - 1) /2, n, 0) = 1. Then Eqs.(16) can be simplified as 

zl/2 L2 S(z) 
J 1 (4 . 4 6 . 2 5 2 ) 2 """""' ( 1 (' ) . 2 . 12 -R-2- = --xj J + ZjJ + -zj - X] ~ - Ujj' J J 

2 2 / 
J 

(22) 

In this case 

R L2 S(z) V (z) - j2 

<!> (z, rJ ~ 1R2 .~ (J 4 + 3zij2 /2 + 5zif8) + S (S + 1)(28 + 1) /6 - j 2 (
2
:l) 

In the opposite limit when ZjR2 
/ L 2 ~ 1 for all j, the interlevel transitions and higher­

order hypergeometric functions can be neglected, 1F1 (~, 2, -x 2
) ----+ 1/ V7fx 3

, and 

<I> (z R) = 7r7/2R S(z) (v (z) -j2)5/2 
'L 21/2L f; j4 

(24) 

Note that the accuracy of Eq.(24) for large N R2 can be improved near the critical 

values of z which correspond to changes in number of occupied levels S. With 

the appearance of a new level S, the number of particles on this level, zs, and, 

therefore, z5 R 2 
/ L 2 are small even for large R/ L, and the contribution of this level 

is zs/ 1F1(~,2, -27r2zsR2 / L2) rv zs, and not zs7r1/2 (27r2zsR2 / L2)312 as it is implied by 
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Eq. (24). Away from the critical density the hypergeometric function becomes small, 

27r 2 z5 R 2 /L 2 ~ 1, and the contribution of this highest level will recover the form 

indicated by (24). 
The argument of the exponents and hypergeometric functions can be also written as 

the ratio of the particle wavelength to the correlation radius of surface inhomogeneities, 

27r 2 ZjR2 
/ L 2 

rv (R/ Aj )2
. The particle wavelength serves as a natural scale for describing 

the correlations and separates long-range from short-range correlations. In this sense, 

the interband transitions are more important for the short-range correlations. 

4. Transport along films and channels: High temperatures 

At finite temperatures, all the levels with different j are populated, and the transport 

equation is an infinite set of coupled equations (5). The chemical potential is the same 

for particles in all bands, 

(25) 

where µj is the chemical potential of a 2D system of Nj fermions in the band j. If we are 

dealing with a dilute gas, then µj depends only on the number of particles = 2NjL2 /7r 

in this band, 

= ~T ln ( 1 + exp ( i)) = ~T ln ( 1 + exp (; - ~:)) , 

and 

µj = T ln (exp ( ~T) - 1) (26) 

where 

~ _ 2mTL2 

T - 7r2n2 

describes the ratio of the temperature to the energy of zero-point oscillations in the well 

of the width L. This equation should be used to express the chemical potential via the 

total number of particles z = 2N L 2 
/ 7r, 

z = ~T f ln [exp ( µ - f_) + 1] 
j=l T ~T 

(27) 

The solution of this equation µ (z) at T = 0 is given by Eq. (15). 
We will give the transport coefficients for high-temperature systems of particles with 

the Boltzmann distribution function when 

F ~yexp (~) 8, µ ~ T Jn (~;fl), 8(0T) = t,exp (-~J 
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The transport equation ( 5) in dimensionless variables Xj ( q), 

( 
FL

3 
) nj (q) = n)

0
l (q) 1- 7r 4TfnX] (q)cose 

assumes the form 

112 _ 1 { . ( ) [ ~u2 
(ry1 (u,Ujj) -ryo (u,Ujj)) ] 

u - 27r2L 2£2 XJ q +uj2 (11 (u, Ujj) -10 (u, Ujj)) + j 4 ((1 (u, Ujj) - (o (u, Ujj)) 

S(u,j) 

+ L j 2 j'2 [Xj'(1 ( u, Ujj') - Xj(o ( u, Ujj')]} (28) 
j'f.j 

while the mobility (conductivity) is 

_ _ ~ (j) __ e
2 
L

2 
_z_ ~ (-f_) j 1; 2 . [-_7!__] 

<Yyy - <Yzz - ~ <YYY - 27r 4 n£2 ?9}G ~exp ?9y u x1 (q) exp ?9y du(29) 

Here 

u = q2 ( :n) 2, s ( u, j) = Int [ ( u + j2)112] , Ujj' = u + j2 - J'2 = q'2 ( :n) 2, 

and (0 ,1 ( u, Ujj), ry0 ,1 ( u, Ujj), and /o,1 ( u, Ujj) are the zeroth and first angular Fourier 
harmonics of the functions 

((q-q') =((q2 +q'2 -2qq'coscp) =((u,Ujj,coscp), (30) 

ry ( q - q') = ( ( q - q') [1 - cos cp] 2 , / ( q - q') = ( ( q - q') [1 - cos cp] 

over the angle cp between the vectors q and q'. In essence, the variable u = ( qL / 7rn )2 

plays the same role as the Fermi momenta = ( qy) L / 7r n) 2 
for degenerate systems in 

the previous Section. 

In the Gaussian case (7), integration in (28) leads to the same set of equations (16) 

with the only difference that Zi should be substituted by u. The situation is again 

non-analytic since the summation in (30) for off-diagonal transitions over j' should be 

performed up to the value S ( u, j) which is not only different for each j, i.e.! for each 

equation, but also depends on momentum q and exhibits step-like jumps at certain 

values of u = q2 (L/7rn)2. However, this non-analyticity manifests itself more noticeably 

in the integrands (29) rather than in the transport coefficients themselves which are 

fairly smooth. Finally, the conductivity (mobility) is equal to 

- ~<Y(j) - e2NL4IT (19 R) ( ) 
<Yyy - ~ yy - 7r5n£2 T, L , 31 

1 =1 ( j2+u
2

) IT(x,y) = x2G(x)y2 j; Xj(u)exp - x du 

Function II ( x, y) is plotted in Figure 4 for y = R/ L = 0.05 and m Figure 5 for 

y = R/ L = 0.5; 1. 
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Figure 4. Function II(x, y), Eq.(31), for y = R/ L = 0.05 
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30 f- ·. 0.5-

II(x,y) 
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0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-' 
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Figure 5. Function IT(x,y), Eq.(31), for y = R/L = 0.5 (solid line) and 1 (dotted 

line) 
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In the Boltzmann temperature range, the diffusion coefficient can be expressed via 

mobility as 

D - - 7rn? (]" I"""""' j onj dE - TO"yy - T L4 II (73 R) 
yy,zz - e2 m YY ~ OE - e2 N - 7r 5nf2 T, L ' 

J 

(32) 

while the mean free path 

( T)1/2 L4 ( R) 
£ = (]" < q > I e2 N = m 7rsng2 II 73y, L (33) 

The difference between the functions II ( x) in Figures 4,5 by several orders of 

magnitude is not surprising. Since x = 13y rv ( L / >.)2 ( >. is the particle wavelength), 

Figure 4 is plotted in the region L rv >.. On the other hand, y = R/ L = 0.05 is 

rather small meaning that R/ >. ~ 1. As it was explained in [10] (and is confirmed by 

the present calculation), condition R/ >. ~ 1 corresponds to a nearly specular quantum 

reflection, and, therefore, to large particle mean free paths. Thus the large values of 

II ( x) in Figure 4. In Figure 5, y = R/ L rv R/ >. rv 1. This case corresponds to the most 

effective scattering of particles by surface inhomogeneities and to the smallest values of 

the mean free path. 

5. Summary and discussion 

In summary, we calculated mobility and diffusion coefficients for ballistic particles in 

ultra-thin films with random rough boundaries when the motion of particles across the 

film is quantized. We obtained simple and explicit expressions for transport coefficients 

via the correlation function of surface inhomogeneities, particle density N and the film 

thickness L. The particle transport along the film is a non-trivial function of two 

dimensionless parameters, N L2 and R/ L, where R is the correlation radius of surface 

inhomogeneities. The most important consequence of a discrete character of the particle 

spectrum for the motion across the film is the non-analytic low-temperature dependence 

of the transport coefficients on the film thickness and the density of particles with the 

singularities at the critical values of N L 2
• 

The strength these singularities strongly depends on the correlation radius of surface 

inhomogeneities R. In the case of short-range correlations of surface inhomogeneities, 

the low-temperature dependence of transport coefficients on particle density and film 

thickness has a pronounced saw-like structure. The saw teeth become smaller and the 

saw-like structure gradually disappears with increasing correlation radius. Finally, for 

long-range correlations one gets not very well pronounced kinks, instead of the saw 

teeth, at the critical values of density and/or thickness at which the number of occupied 

levels changes by one. 

Though both the amplitude an the correlation radius of surface inhomogeneities 

affect the particle scattering by the walls, the dependence of transport coefficients on 
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the amplitude of the surface inhomogeneities £, in contrast to their dependence on the 

correlation radius R, is quite trivial, and reduces to a multiplicative factor 1 / £2
• 

In general, the non-analytic nature of the curves is explained by the singularities 

in the (low-temperature) distribution of fermions over a system of discrete energy 

subbands. However, the sharp discontinuities on the saw-like curves for transport 

coefficients are caused not by the singularities in the density of state, but mostly by 

the interband transitions caused by the scattering from wall inhomogeneities. 

The occupation of a new, higher energy subband leads to two transport effects: 

to the direct transport contribution of the particles from this new band, and to the 

opening of new scattering channels for particles in all already occupied bands (interband 

transitions to and from the new band). The first effect is proportional to the number 

of particles in the new band and is small. For this reason the singularity of the 

transport coefficients reduces, in the absence of interband transitions, to a series of kinks 

corresponding to the occupancy of the higher bands. On the other hand, the opening 

of new scattering channels with the interband transitions to and from newly occupied 

bands affects particles from all already occupied bands thus increasing dramatically the 

total effective scattering cross-section in a step-like manner. If one artificially freezes 

these transitions, the transport curves will exhibit kinks rather than the saw teeth. 

Not surprisingly, the contribution of interband transitions depends exponentially 

on the ratio of the particle wavelength to the correlation radius of the surface 

inhomogeneities, and decreases rapidly with increasing correlation radius of surface 

roughness (i.e.! with flattening of surface inhomogeneities). The emerging picture 

is more complicated than that described in[l 7, 29, 15] because, in contrast to bulk 

impurities, surface inhomogeneities can have a relatively large correlation length. 

The parameterization of transport parameters in this paper is slightly different from 

[10]. In the case of the mean free path it is, probably, better to use, instead of (20), (33), 

the parameterization in the form [10] 

with the minimum at R rv >.. The transformation of the results to this form is fairly 

straightforward in both degenerate and Boltzmann regions. As usual, the information 

on the mean free path allows one to calculate quantum interference corrections and to 

determine the localization length. 
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8. Appendix. Classical and Semi-Classical Motion Across the Channels 

In the classical limit, when the distance between the bands with different j becomes 

negligible, the above results should coincide with the results of classical calculations in 

[10]. The transition to the classical limit corresponds to thick films or to the states 

with large quantum numbers, j ~ 1, when the interlevel transitions are accompanied 

by relatively small changes of the quantum number, 1 rv 8j ~ j. The coordinate 

transformation (1) and the effective Hamiltonian (3) are, obviously, the same in the 

classical and quantum cases. The matrix elements of the effective bulk distortion (3) 

are 

e ( q - q') [ Djj' ( 1r~~2 + ~ ( q2 - q'2)) + l 
Vqj,q' j' = mL ~ ( ( -1 y+j' + 1) ( i72s!.!;ljj' ( q2 - q'2) 

(34) 

In the quasiclassical (continuous) limit we should substitute jn/ L and j'n/ L by Px and 

p~ and assume that j,j' ~ 1 . Then the matrix elements (34) coincide exactly with the 

classical matrix elements in [10] with the Djj'-terms giving rise to 8 (Px - p~), and the 

terms with (1 - Djj') / (j - j')- to 8' (Px - p~). 

The collision integral ( 4) contains the squares of the matrix elements Vqj,q' j'. The 

calculation of\ IVqj,q'j' 1

2
) for the quantum matrix elements (34) is trivial since 8Jj' = Djj', 

(1 - Djj') 2 = 1 - Djj', and Djj' (1 - Djj') = 0. However, a calculation of the squares 

of the classical matrix elements in the continuous limit, as in Ref. [10], involves the 

use of not very well defined squares of the 8-functions 8 (Px - p~) and 8' (Px - p~). In 

our calculation [10] we used the following approximation for such a product of the 8-
functions: 

/5' (Px - P~) /5 (Px - P~) = -} [ D2 (Px - P~)] 1 ~ - ~ /5' (Px - P~) ( 35) 

An unambiguous calculation procedure requires the transition to the classical 

expressions only after the quantum calculation of \ IVqj,q'j' 1

2
) when the problem with 

the squares of the 8-functions does not arise (an alternative is the use of the bell-shaped 

functions instead of 8-functions, e.g.! in the presence of dissipation; this option is more 

complicated). The use of the quantum expression for \1Vqj,q'j'l 2
) on the basis of Eq.(34) 

with the consequent transition to the quasiclassical limit shows that the exact expression 

for the above product of the 8-functions (35) has the form 

This leads to a more accurate classical analog of the transition probability, 

W (p, p') = 2t7r / IY:Jq,j'q' 12) = ( ( q - q') 8 ( e - e') x 
n \ 47r L2 m 2 

(36) 



n (p, p') 

than Eq.(18) of [10]. 

[2p!8(px - p~) + ~
2 

8"(Px - p~)J, 
(q - q'). (pxq + p~q')' 
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The corresponding change in the classical collision integral does not result in any 

significant changes in the expressions for the classical transport coefficients. The only 

improvement should be the substitution of the functions 

d sine 

a+4tan4 e 

in the integrands for all transport coefficients in Ref. [10] by 

d sine 

a+ 4p tan4 e + 8 tan4 e 
where 

a(u) (5/2) 1F1 (7/2,4,-u2
) / 1 F 1 (3/2,2,-u2

), 

p ( u) ( 3 I 2) 1 F1 ( 5 I 2' 3' - u 
2

) I 1 F1 ( 3 I 2' 2' - u 
2

) 

This change in the analytical expressions leads to more accurate results. However, 

the numerical change is not very significant. This small numerical change is illustrated in 

Figures 6, 7 for the functions f B ( x) and f F ( x) which describe the transport coefficients 

and the mean free path [10] for Boltzmann and Fermi gases, 

32 e2 L 2 R2 N n 
=7r3/2 nf2 xfB(x),x=(4mT)1/2R' 

(37) 

and 

(38) 
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Figure 6. Function fB(x); solid line - Eq.(37), dotted line - result of Ref.[10]. 
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Figure 7. Function fF(x); solid line - Eq.(38), dotted line - result of Ref.[10]. 

9. FIGURE CAPTIONS 

Figure 1. iJ>(z,R/L), Eq.(18), as a function of density z = 2NL2 /7r for the correlation 

radius R/ L = 0.05. Solid line - exact calculation; dotted line - calculation without 
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interband transitions (without off-diagonal terms in the collision integral ( 6)) 

Figure 2. iJ>(z,R/L), Eq.(18), as a function of density z = 2NL2 /7r for the 
correlation radius R/ L = 1; 3; 5. The curves are labled by the values of R/ L. 

Figure 3. iJ> ( z, R/ L), Eq. (18), as a function of density z = 2N L2 
/ 7r for R/ L = 1; 5 

calculated without interlevel transitions (without off-diagonal terms in the collision 

integral (6)). The curves are labled by the values of R/L. 
Figure 4. Function II(x,y), Eq.(31), for y = R/L = 0.05 
Figure 5. Function II(x,y), Eq.(31), for y = R/L = 0.5 (solid line) and 1 (dotted 

line) 

Figure 6. Function fB (x); solid line - Eq.(37), dotted line - result of Ref.[10] 
Figure 7. Function fF (x); solid line - Eq.(38), dotted line - result of Ref.[10] 
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