
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Physics Faculty Publications Physics 

2-5-2003 

Surface Roughness and Effective Stick-Slip Motion Surface Roughness and Effective Stick-Slip Motion 

I. V. Ponomarev 

A. E. Meyerovich 
University of Rhode Island, sfo101@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/phys_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Ponomarev, I. V., & Meyerovich, A. E. (2003). Surface Roughness and Effective Stick-Slip Motion. Phys. 
Rev. E, 67, 026302. doi: 10.1103/PhysRevE.67.026302 
Available at: http://dx.doi.org/10.1103/PhysRevE.67.026302 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Physics 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/phys_facpubs
https://digitalcommons.uri.edu/phys
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevE.67.026302
mailto:digitalcommons-group@uri.edu


Surface Roughness and Effective Stick-Slip Motion Surface Roughness and Effective Stick-Slip Motion 

Publisher Statement Publisher Statement 
© 2003 The American Physical Society 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/phys_facpubs/201 

https://digitalcommons.uri.edu/phys_facpubs/201


Surface roughness and effective stick-slip motion

I. V. Ponomarev* and A. E. Meyerovich†

Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817
~Received 17 May 2002; published 5 February 2003!

The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed.
When the hydrodynamic decay length~the viscous wave penetration depth! is larger than the correlation radius
~size! of random surface inhomogeneities, it is possible to replace a random rough surface by effective
stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization
of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly
via the correlation function of random surface inhomogeneities. The stick-slip length is always negative and
the effective change of viscosity near the surface is positive signifying the effective average hampering of the
hydrodynamic flows by the rough surface~stick rather than slip motion!. A simple hydrodynamic model
illustrates general hydrodynamic results. The effective boundary parameters are analyzed numerically for
Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the fre-
quency dependence of the dissipation allows one to extract the correlation radius~characteristic size! of the
surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.

DOI: 10.1103/PhysRevE.67.026302 PACS number~s!: 47.10.1g, 68.08.2p, 46.65.1g, 81.40.Pq

I. INTRODUCTION

Progress in microtechnology and nanotechnology requires
a better understanding of boundary effects. For hydrody-
namic microflows, this means a better understanding of
stick-slip motion near solid walls and, in particular, informa-
tion on the dependence of the slip~or stick! length on the
properties of the walls. Despite the fact that similar issues
were first raised more than a hundred years ago@1–3#, the
slip length remains one of the least known transport coeffi-
cients.

Traditionally, the most detailed information on boundary
slip is available for rarefied classical gases@4–7# in applica-
tion to vacuum technology, high altitude flights, and space
research. More recently@8–15#, liquid 3He has become an
important source of information on surface slip. This is not
surprising since, in contrast to classical gases, one can easily
vary the quasiparticle mean free path in3He by changing
temperature, thus allowing experiments in a wide range of
Knudsen numbers.

The miniaturization of experimental systems renewed in-
terest to slip effects in normal liquids with short free paths, in
which the slip length is in nanometer range. This slip length,
though very small, is, nevertheless, extremely important for
hydrodynamic flows in nanochannels and microchannels, lu-
brication, etc. Modern experimental techniques, including
the atomic force microscopy@16–19#, experiments with
powder or self-assembled monolayers@20–22#, optical meth-
ods@23#, quartz crystal microbalance@24#, etc., revealed the
importance of~partial! surface slip for hydrodynamic flows
in narrow channels and layers between solid walls.

The conventional gas and hydrodynamic theories assume

that there are two main sources of noticeable boundary slip:
large bulk mean free path, as in rarefied gases@7# or 3He ~for
review, see Ref.@13#, and references therein! or, in dense
liquids with atomic-size free path, peculiarities of molecular
interaction with the wall~for review, see Ref.@25#, and ref-
erences therein! such as, for example, the molecular slip or
formation of a gas-rich layer near the hydrophobic surface.
In the former case, the slip length is assumed to be propor-
tional to the large bulk mean free pathLb , Lsl5aLb . In the
latter case, the boundary slip is associated with molecular
interaction with the wall and becomes noticeable only in
special cases such as hydrophobic walls, electrolytes, large
molecules, etc.

The change in the flow patterns caused by the roughness
of the walls, though often acknowledged as the third poten-
tial source of stick-slip motion near the walls, is usually dis-
regarded. The reason is the complexity of the flows near
rough walls and the resulting difficulty in formulating gen-
eral quantitative conclusions. It is understood that the bound-
ary corrugation changes the liquid and gas flows in a wall
layer with a thickness comparable to the parameters of the
corrugation. However, this change is considered to be not
sufficiently large for flows in wider channels to merit a de-
tailed theoretical analysis of this complicated hydrodynamic
issue. Besides, it is not always easy to treatrandom wall
roughness in a consistent quantitative way. In the case of
dilute gases, it seems reasonable to ignore small-scale sur-
face inhomogeneities on the scale smaller than the large bulk
mean free pathLb . In the case of dense liquids, the theory
@26–28# indicates that the microscale surface roughness hin-
ders the flow near the wall and can, by itself, become the
origin of the no-slip boundary condition; apart from this gen-
eral conclusion, the details of the roughness-induced changes
in the flow are assumed to be case specific. On the other
hand, the numerical methods@29,30# are not sufficiently well
developed so that to include simultaneously the change in
molecular forces near the liquid-solid interface and the com-
plicated geometry~random roughness! of the surface~for
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some recent progress in this direction, see Ref.@31#!.
Experimentally microflows and nanoflows can exhibit,

depending on the experimental setup and the wetting prop-
erties of the liquid-solid interface, full range of slip proper-
ties from complete slippage to partial slip to no slip to stick
~‘‘freezing’’ !. So far, there is no systematic analysis of the
additional effects introduced by surface roughness on the
scale comparable to the bulk-driven stick-slip length. From
this point of view, the situation is not yet satisfactory espe-
cially if one takes into account current interest to microflows
and nanoflows, for which the roughness-driven change of
flow patterns close to the walls are not negligible. For nano-
flows, this deficiency of the existing theory could become
inexcusable.

Recent analysis of a slip near a model surface with peri-
odic irregularities@32# demonstrated that the slip lengthLsl
in dilute gases contains not only the bulk componentaLb ,
but also the contribution from the averaged surface curva-
ture, L sl

215a21L b
212R21. An application of the corre-

sponding boundary condition to several types of curved
walls @33# resulted in an interesting expression for an effec-
tive slip length which could, under certain circumstances, be
equivalent to large-scale surface roughness. However, these
results@32,33# were obtained for few special types of regular
surface inhomogeneities only. In the case of microscale and
nanoscale defects, it is more realistically to suggest that sur-
faces haverandomcorrugation. What is more, in some cases,
especially in the hydrodynamic limitLb→0, it is not clear
how to use the effective boundary parameters of Refs.
@32,33#.

Below, we address the issue of hydrodynamic flows near
rough walls with small-scalerandominhomogeneities. Since
the hydrodynamic calculations near inhomogeneous walls
are extremely complicated@30#, it is highly desirable to map
this problem onto the problem with some effective boundary
condition on an ideal flat wall. This general effective bound-
ary condition should contain information about geometrical
and statistical properties of the real corrugated surface and
ensure a proper behavior of physical variables. The deriva-
tion of this simple effective boundary condition is the main
objective of the paper. We will show that this boundary con-
dition contains two effective parameters: stick-slip length
and renormalized viscosity. We will also demonstrate that the
results for attenuation in torsional oscillator experiments can
provide valuable information about the statistical type of sur-
face inhomogeneities and give the values of the main geo-
metrical parameters of the surface roughness.

In this paper, we are interested exclusively in the contri-
bution to the effective surface stick-slip coming from the
surface roughness and ignore the slip terms originating from
the wetting-related processes. Therefore, we start from a tra-
ditional no-slip boundary condition on the wall with random
inhomogeneities. Though in Sec. V of the paper, we discuss
how to use this effective stick-slip length in conjunction with
other sources of the surface slip, this broader issue requires
separate analysis.

In the following section, we present the main hydrody-
namic equations and find a general expression for the stream
function in systems with random rough walls~the details of

the derivation are given in Appendix A!. Comparison of this
hydrodynamic result with the expressions for the stick-slip
motion near flat walls allows us to get the expression for the
effective stick-slip parameters in Sec. III. For clarification of
the physical meaning of the parameters in the somewhat un-
expected effective boundary condition, we present a simple
hydrodynamic model for a boundary layer in Appendix B.
Section IV contains analytical and numerical results for the
surfaces with various statistical types of inhomogeneities. In
Sec. V, we present the conclusions and discuss further steps
that can broaden the impact of our results.

II. HYDRODYNAMIC FLOWS ALONG ROUGH WALLS

To determine an effective slip or stick length, one has to
solve an appropriate hydrodynamic problem with a boundary
condition on a random rough wall and to compare the results
with those for a similar problem with a slip boundary condi-
tion on a smooth wall. Several ‘‘typical’’ hydrodynamic
problems @34# have been generalized recently in order to
cover boundaries with slight roughness@35–38#. For our pur-
poses, the most appropriate problem is the problem of hydro-
dynamic flows excited by tangential oscillations of a rough
wall. The advantages are the convenience of the experimen-
tal setup with a standard transverse oscillator, a choice of
several observables such as hydrodynamic velocity and two
components of the shear impedance, and the presence of an
extra variable—frequencyv—which allows one to vary the
ratio of the hydrodynamic decay length to the size of wall
inhomogeneities. Since this problem has already been stud-
ied in Ref.@35#, though by a different method, we will only
briefly outline our hydrodynamic formalism in Appendix A
and present some additional results.

We consider semi-infinite viscous fluid restricted by a
rough solid wall. For simplicity, roughness is assumed to be
one-dimensional and have a profile described by a random
function Y5J(X) with the zero mean value,̂J(X)&50.
The wall is homogeneous in theZ direction~see Fig. 1!. This
inhomogeneous surface is characterized by two length
parameters—the average amplitudeh and correlation radius
~size! R of surface inhomogeneities. We consider the case of
slight roughness,

e5h/R!1. ~1!

In other situations, any general description of hydrodynamic
flows near rough walls is virtually impossible.

The wall oscillates inX-direction with the velocity

FIG. 1. General geometry of the model.
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U~ t !5exu0cos~vt !. ~2!

The hydrodynamic boundary condition is the condition of
zero velocityV on the wall in the reference frame, in which
the wall is at rest,

VS X2E U~ t !dt,Y5JS X2E U~ t !dtD D50. ~3!

Two important hydrodynamic length scales are the decay
length~or viscous wave penetration depth! d and the ampli-
tude of the boundary oscillations,a,

d5A2n/v, a5u0 /v, ~4!

wheren5h/r is the kinematic viscosity.
It is convenient to chooseh, R, and the amplitude of the

wall velocity u0 as the scaling parameters and introduce di-
mensionless variables as

v5V/u0 , x5X/R, y5Y/R, j~x!5J~X/R!/h.
~5!

When the fluctuations ofj(x) are statistically independent
and the higher momenta can be expressed through the second
one, the random surface roughness is actually described not
by the unknown random functionj(x) with the zero average,
but by the correlation functionz(x),

z~x![^j~x1!j~x11x!&5
1

AE2`

`

j~x1!j~x11x!dx1 , ~6!

^j~kx!j~kx8!&52pd~kx1kx8!z~kx!,

whereA is dimensionless flat surface area of the wall. Ex-
perimentally, the correlation functionsz(x) @or its Fourier
image, also known as the power spectrum,z(kx)] can exhibit
different types of long-range behavior and assume various
forms @39#. Particular examples of the surface correlators are
analyzed in Sec. IV. Note that in our dimensionless notations
~5!, the correlation radius of surface inhomogeneities is equal
to 1.

The liquid is considered incompressible, divv50. In
variables~5!, the dimensionless Navier-Stokes equation can
be written as

1

v0

] curl v

]t
2¹2curl v5Re@~curl v“ !v2~v“ !curl v#,

~7!

where the characteristic frequencyv0 and the Reynolds
number Re are

v05
n

R2
, Re5

u0R

n
[

a

R

v

v0
~8!

~the inverse frequency parameterv0
21 is often called the dif-

fusion time of vorticity!. Since the first term in Eq.~7! has an
order of (v/v0)curl v, the hydrodynamic flows are charac-
terized by the dimensionless parameter

L5Av/v05A2R/d, ~9!

which describes the ratio of the size of inhomogeneitiesR to
the hydrodynamic decay lengthd. Two dimensionless pa-
rameters,e andL, are the main parameters of the problem.

Below, we consider the linearized Navier-Stokes equation
without the nonlinear term on the right-hand side~RHS! of
Eq. ~7!. For small frequencies,v/v0!1, this linearization is
justified for very small Reynolds numbers Re!1. In the op-
posite limit of high frequencies,v/v0@1, this requires
smallness of the amplitude of oscillationsa in comparison
with the tangential size of surface inhomogeneitiesR at ar-
bitrary Reynolds numbers@34# Re, a/R!1. The linearized
Eq. ~7! for curl v can be, as usual, rewritten as the fourth-
order differential equation for the scalar stream function
c(x,y),

vx5
]c

]y
, vy52

]c

]x
. ~10!

In our problem, all hydrodynamic variables contain har-
monic time dependence. After the transformation to the co-
ordinate frame oscillating with the wall, the hydrodynamic
equations and boundary conditions for the stream function
acquire the form

2 iL2¹2c2¹4c50, ~11!

]c„x,ej~x!…

]y
51,

]c„x,ej~x!…

]x
50, ~12!

c~x,`!5const. ~13!

The solution of the linearized Navier-Stokes equations~11!–
~13! is quite difficult because the boundary condition~12!
involves the rough wall with random inhomogeneities. Using
a coordinate transformationy→y2j(x), we can reduce the
Navier-Stokes equation to an equivalent equation with the
boundary condition on the perfect flat wall. However, this
new equation, as a result of the transformation-driven change
in derivatives, acquires several additional termsV̂c that in-
volve the combinations of derivatives ofc and the random
function j(x). To deal with these terms, we find the explicit
form of the Green’s function with the proper boundary con-
dition. Then the problem reduces to a rather transparent in-
tegral equation

c~kx ,y!5c inh~kx ,y!1E
0

`

dy8G~kx ,y,y8!

3E
2`

` dkx8

2p
V̂~kx2kx8 ,y8!c~kx8 ,y8!. ~14!

This procedure and the explicit expressions for the unper-
turbed inhomogeneous solutionc inh(kx ,y), the perturbation
V̂, and the Green’s function are given in Appendix A. In
some sense, we shifted the difficulty from the boundary con-
dition to the bulk equations with random sources of the spe-
cial form. Note that Eq.~14! is still exact and, in principle,
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could be solved without the perturbation theory. The explicit
form of Green’s function is such that one can extract the
main part of the solution in the closed form. Another possible
approach to Eq.~14! is to apply the Wiener-Hermite func-
tional expansion@40,41#.

Note, that, in contrast to the attempts of replacing the
rough surfaces by an effective thin layer of bulk scatterers
@28#, our procedure of replacing the random surface rough-
ness by anequivalentbulk contribution is exact. What is
more, the roughness-driven contributions to the flows are
expressed explicitly via the geometrical profile of the rough
surface.

Here, we solve Eq.~14! by iterations as an expansion in
the small parameter:c5c01ec11e2c21••• The first
three terms for the stream function have the following forms:

c0~kx ,y!5
2p

il
d~kx!exp~ ily!, ~15!

c1~kx,y!5j~kx!Feily1
il

s22s1
~es1y2es2y!G , ~16!

^c2~kx ,y!&5d~kx!E
2`

`

dkx8z~kx8!

3Fs11s2

il
~ ileily1s1es1y2s2es2y!G ,

~17!

where we exclude uninteresting constant terms and

s152ukxu, s25Akx
22 iL2[2a1 ib,

a,b5
1

A2
A~kx

41L4!1/26kx
2>0,

l5eip/4L. ~18!

Since for further calculations we need only the expression
for c2 which is averaged over the random surface inhomo-
geneities, Eq.~17! gives only the compact expression for
^c2(kx ,y)&.

These expressions for the stream function provide the
roughness-driven corrections for the velocity and rate of en-
ergy dissipation~see Appendix A!:

^vx&5Re$ei (ly2vt)@11 ile2,1#%, ^vy&50, ~19!

,15E
0

`dkx

p
z~kx!$s11s22 il/2%, ~20!

Q52
hu0

2

2R

L

A2
@11e2L2,2#, ~21!

,25E
0

`dt

p
z~ tL!f~ t !, f~ t !512A~11t4!1/22t2.

~22!

The equation for the energy dissipation is averaged over both
the surface roughness and the over period of oscillations.
This expression coincides with the result of Ref.@35# ob-
tained with the help of the Rayleigh perturbation method.

Stream function also allows one to find corrections to the
roughness-driven friction force. These calculations should be
done more carefully than for standard flat geometry: the fric-
tion force is parallel to the actual surface and, in the case of
the oscillatingrough wall, has both componentsFx andFy .
One should also take into account they component of veloc-
ity, which is absent in the case of flat geometry. A straight-
forward calculation for the averaged square of absolute value
of dimensionless friction force gives

F5
hu0

R
f, ^ f 2&5

L2

2 F11
e2L2

p E
0

`

dtz~Lt !f2~ t !G .
~23!

This expression is different from a simple experimental defi-
nition of the effective friction forceFe f f52Q/u0.

At low frequencies~large decay lengths,L!1), Eqs.~19!
and ~21! for parameters,1,2 reduce to

,1522E
0

`dkx

p
z~kx!kx1O~L!,

,2511O~L ln L!,

and the equations for the velocity and attenuation acquire the
following form:

^vx&5ReH ei (ly2vt)F12Lei3p/4

3e2S 2E
0

`dkx

p
z~kx!kx1O~L! D G J , ~24!

Q52
hu0

2

2R

L

A2
@11L2e2

„11O~L ln L!…#. ~25!

The fact that the main term in,2 is equal to 1 is due to our
choice of the normalization of the correlation function in Eq.
~5! asz(x50)51 ~see also Sec. IV!.

In the opposite limit of high frequenciesL@1,

Q'2
hu0

2

2R

L

A2
F11

e2

2 E0

`dkx

p
z~kx!kx

2G[Q0F11
e2

2
^j82&G .

~26!

This result has a simple physical explanation. In this limit,
the decay length is much smaller than correlation radius
~size! of the wall inhomogeneitiesR. As a result, the dissi-
pation occurs in a very narrow layer near the wall within
which the wall can be considered as almost flat. Then the
correction to dissipation stems simply from the increase in
the surface area relatively to the flat boundary
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Q'2
hu0

2

2R

L

A2

1

L2 R dA52
hu0

2

2R

L

A2

1

LE A11e2j82dx.

~27!

Equation ~26! is simply the combination of the first two
terms in the Taylor expansion of Eq.~27! in small e.

In principle, it is possible to slightly modify our problem
by considering a torsional quartz crystal oscillator with den-
sity rs , and thicknessd. If such a resonator has a rough
solid-fluid interface, the frequency shiftdv of the resonance
frequencyV0 acquires an additional roughness-driven com-
ponent that can be described within the above formalism and
should be given by similar equations. Such a frequency shift
for a transverse oscillator is@35#

dv52
h

A2

L

R

1

rsd
H 11e2LE

0

`dkx

p
z~kx!

3@A~kx
41L4!1/21kx

22L1A2kx#J ,

wheref(y) is given by Eq.~22!. We do not want to dwell on
this issue; our interest in focused mainly on the roughness-
driven corrections to the hydrodynamic flows and dissipa-
tion.

III. EFFECTIVE STICK-SLIP BOUNDARY CONDITIONS

The main objectives of this paper are to find when and to
what extent the flows near random rough surface are equiva-
lent to stick-slip motion with some effective stick-slip
boundary conditions near flat surfaces,

ReH vx~x,0,t !2
,e f f

R

]vx~x,0,t !

]y J 5Re~e2 ivt!, ~28!

where the effective stick-slip length,e f f , in order to sim-
plify the applications of the results, is introduced with the
proper dimensionality of length while all other variables are
still dimensionless, Eq.~5!. With this boundary condition on
a flat wall, the velocity field is

vx~y,t !5ReF ei (ly2vt)

12ei3p/4L,e f f /R
G . ~29!

Since the roughness-generated corrections for velocity are
small, the comparison between Eq~29! and Eqs.~19! and
~24! is possible only whenL,e f f /R!1, i.e., only for rela-
tively large decay lengths~low frequencies!

vx~y,t !' Re@ei (ly2vt)~11ei3p/4L,e f f /R!#. ~30!

In this case, the comparison with the roughness-driven cor-
rection for the velocity, Eq.~24!, yields the following simple
expression for the effective stick-slip length,e f f5Re2,1:

,e f f522
h2

RE
0

`dkx

p
z~kx!kx. ~31!

The negative sign in Eq.~31! means that the boundary
roughness causes effective slow down of the liquid, i.e., the
coefficient,e f f ~31! is the stick length rather than the slip
length. In other words, there is an additional roughness-
induced friction.

Surprisingly, the effective boundary conditions~28! and
~31!, taken by itself, cannot emulate the roughness-driven
attenuation~21!. The reason is the presence normal flows
near the boundary,vy(x), which are completely absent
within the effective stick-slip description~28! and ~29!, in
which vy50. The attempts to modify the boundary condi-
tion ~28! so that to reproduce both the velocity and attenua-
tion correctly by, for example, introducing a two-component
or complex stick-slip length, fail. In order to emulate the
correct behavior of liquid near a rough wall, one has not only
to introduce the stick-slip length~28! and ~31!, but also to
renormalize the viscosity near the wall as

he f f~y!5h@11bd~y!#, ~32!

where renormalization parameterb is given by

b'2
h2

R2
@,11L,2 /A2#, ~33!

or, in the case of smallL,

b'2F,e f f

R
1

L

A2

h2

R2G . ~34!

The effective boundary conditions~28!, ~31!, ~32!, and
~34! are the main results of this paper. These conditions al-
low one to replace the random rough boundary by an equiva-
lent problem with the flat boundary and the effective stick-
slip length and renormalized viscosity. The necessity of the
renormalization of the viscosity means that the rough surface
slows the flow down and changes the attenuation. Usually,
the slip boundary condition is understood in terms of the
existence of a peculiar thin slip boundary layer with the
thickness of the order of the mean free path and with the
properties that are somewhat different from the rest of the
liquid. In the case of the rough walls, one should not only
introduce the effective stick-slip layer with the thickness that
is determined byd andR, but also to renormalize the viscos-
ity in this layer explicitly. A simple physical model that clari-
fies the meaning of the effective parameters is given in Ap-
pendix B.

IV. COMPARISON FOR DIFFERENT TYPES
OF RANDOM INHOMOGENEITIES

In this section, we address the question whether it is pos-
sible to extract information on the properties of the rough
surface from the frequency dependence of attenuation of
transverse oscillations. Statistical properties of the random
surface are described by the correlation function of surface
inhomogeneities,J(X)5h2z(x), x5X/R, Eq. ~6!. Experi-
mentally, the correlation function can exhibit different types
of long-range behavior and can assume various forms@39#.
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Three broad classes of the correlation functionsz(x) and
their Fourier imagesz(k) ~the so-called power density spec-
tral functions, or power spectra! are summarized in Table I.
For better comparison, all the correlators are normalized in
the same way,z(x50)51. Note, that this normalization dif-
fers from the one used in Ref.@42# for conductivity of ultra-
thin films: the natural reference point for the conductivity
was its value in the limitkR→0 and all the correlation func-
tions in Ref.@42# have been normalized usingz(k50)51.
For the hydrodynamic problem in this paper, the normaliza-
tion z(x50)51 provides a better reference.

The most commonly used correlation function, namely,
the Gaussian correlator, is listed first. The next class of the
correlation functions covers power-law correlators with the
exponentially decaying Fourier images~power spectra!,
ukumKm(uku). Here, the most widely used are the Lorentzian
correlator ~index m51/2) and the Staras correlator (m
53/2) with the exponentially decaying power spectra. The
third class of the correlation functions includes the conjugate
correlators, namely, the exponentially decaying correlators
with the power-law spectral functionz(k). In our dimension-
less notations, Eq.~ 5!, all the correlators have the correla-
tion radius equal to one.

The most convenient observable is the frequency depen-
dence of the relative attenuation, Eq.~21!,

DG~L!5
DQ

Le2Q0

[LE
0

`dt

p
z~ tL!f~ t !, ~35!

f~ t !512A~11t4!1/22t2. ~36!

In the limits t!1 and t@1, the functionf(t) has the fol-
lowing asymptotic expansions:

f~ t !'H t2/22t4/8, t!1

121/A2t, t@1.
~37!

Note, that the piecewise continuous function, defined by the
expressions in Eq.~37! connected at the pointt5A2, gives a
good approximation forf(t) in the whole range oft. This
can be useful in simple approximations of the integral~35!.

The integral~35! can be conveniently split into two parts,
DG1 and DG2, which correspond to the contributions from
small and larget.

In the laminar limit,L!1, the main contribution comes
from larget,

DG~L!;DG25L2L2ln~L!/A21O~L2!. ~38!

The first two terms in this expression are the same for the
correlators of all types. Therefore, in the low-frequency limit
with large decay length, it is impossible to distinguish statis-
tical properties of different surfaces. The physical reason is
obvious: large-scale attenuation processes on the scale of de-
cay lengthd are not very sensitive to the details of surface
inhomogeneities with the sizeR!d.

The situation is different in the opposite case of largeL.
In this limit for Gaussian and power-law correlators with the
exponential power spectra~types 1 and 2 in the Table I!, the
contribution from larget to the integral~35! is exponentially
small. An estimate of the contribution from smallk yields

DG~L!;DG1'E
0

`dk

p

k2z~k!

2L
52

1

2L

d2z~x!

dx2
ux505

C

L
,

~39!

whereC51 for the Gaussian correlator andC5m11/2 for
the power-law correlators.

For the correlators with the power-law power spectrum
~correlators of the type 3 in the Table I!, the contribution
from larget, DG2, is

DG2;LE
0

1/L t2n21dt

~11t2!n11/2
;L122n.

The contribution from smallt, DG1, strongly depends on the
value of the exponentn. If 0,n,1, then the value ofDG1
is determined by the upper limit of the corresponding part of
the integral and it is also proportional toL122n. If n.1,
then the first terms in the Taylor expansion forf(t) yields a
convergent integral proportional toL21, while the rest gives
the terms with the smaller exponentL122n:

TABLE I. The position of the maximum of the funcion~35! and the value of stick-slip length Eq.~41! for different types of the surface
correlation function.

Correlator type Form,z(x) Fourier image,z(k) Lmax ,1(L!1)

1 Gaussian exp(2x2) Apexp(2k2/4) 1.293 4/Ap
2 Power-law (11x2)2(m11/2) Ap

2m21G(m11/2)
ukumKm(uku)

4

Ap

G(m11)
G(m11/2)

2a m51/2: Lorentzian (11x2)21 p exp(2uku) 1.320 2
2b m53/2: Staras (11x2)22 p

2
(11uku)exp(2uku)

1.825 3

3 Power-law Fourier image 1

2n21G(n)
uxunKn(uxu) 2Ap

G(n11/2)
G(n)

(11k2)2$n11/2% 2

Ap

G(n11/2)
G(n)

1
n21/2

3a n51/2: exponential exp(2uxu) 2(11k2)21 no max `

3b n53/2 (11uxu)exp(2uxu) 4(11k2)22 1.238 4/p
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DG1;E
0

L dk

~11k2!$n11/2% F k2

2L
2

k4

8L3
1•••G

;
1

L
1OS 1

L2n21D .

Thus, the energy dissipation rate for the correlators with the
power-law power spectrum is determined by the value of the
index n,

DG~L,n!;H L122n, 0,n,1,

L21, n.1.
~40!

Comparison of the asymptotic behavior of the function
DG(L) for small and largeL, Eqs.~38!–~40!, indicates that
this function should have a maximum atL5A2R/d;1 ex-
cept for the correlators with smalln. In experiment, the po-
sition of this maximum on the frequency dependence of the
attenuation can become a direct measurement of the correla-
tion radius~size! of the surface inhomogeneitiesR.

The numerical results are summarized in Fig. 2 which
presents the functionsDG(L) for various correlators. Nu-
merical values of the position of the maximum forDG(L)
for various correlation functions are presented in the Table I

The last column in the table describes the dimensionless
roughness-driven stick-slip length,152,e f f /e

2R for vari-
ous correlators, Eq.~31! at smallL,

,1.2E
0

`dkx

p
z~kx!kx . ~41!

V. SUMMARY AND DISCUSSION

In summary, we investigated the possibility of replacing a
random rough surface by a set of effective stick-slip bound-
ary conditions on an ideal flat surface. Such a replacement is
highly desirable for analysis of experimental data and/or
simplification of hydrodynamic computations for microchan-
nels and nanochannels. The replacement turned out to be

possible where the hydrodynamic decay length~the viscous
wave penetration depth! is larger than the correlation radius
~size! of random surface inhomogeneities. The effective
boundary conditions contain two constants: the stick-slip
length and the renormalization of viscosity near the bound-
ary. The stick-slip length and the renormalization coefficient
are expressed explicitly via the correlation function of sur-
face inhomogeneities. The corresponding expressions are
quite simple and can be easily used for analysis of experi-
mental data or in hydrodynamic computations. The effective
stick-slip length is negative. It means that the effective aver-
age hampering of the hydrodynamic flow by the rough sur-
face~stick rather than slip motion!. What is more, the renor-
malization coefficient for the viscosity is positive also
pointing at additional resistance in the stick layer near the
rough surface.

For a better understanding of the results, we presented a
simple hydrodynamic model that illustrates our general hy-
drodynamic calculations.

In the process of the derivation of the effective boundary
condition, we reduced the Navier-Stokes equation with the
no-slip boundary condition on the random rough wall to the
exactly equivalent closed integral equation with the homoge-
neous boundary condition on the ideal flat wall. All the in-
formation on the surface roughness is contained in the kernel
of this integral equation. The equation can be solved by stan-
dard methods.

The effective boundary parameters were analyzed numeri-
cally for three classes of surface correlators including the
Gaussian, power-law, and exponentially decaying correla-
tors. The energy dissipation near the rough surface was cal-
culated as a function of frequency for these types of the
correlation functions. The position of maximum on the fre-
quency dependence of the dissipation allows one to extract
the correlation radius~characteristic size! of the surface in-
homogeneities directly from, for example, experiments with
torsional quartz oscillators.

In our particular hydrodynamic problem, the only hydro-
dynamic parameter with the dimensionality of length, which
can be used for scaling of surface inhomogeneities, is the
decay lengthd. In principle, in microchannels and nanochan-
nels there is another scaling parameter—the channel widthL.
Therefore, the next obvious step should be the evaluation of
the effective stick-slip length for ultrathin flow channels of
the thicknessL, for which L is expected to gradually replace
the decay lengthd as the scaling parameter. The fact that our
main result for the effective stick-slip length, Eq.~31!, does
not contain the decay length explicitly, gives hope that the
same equation for the effective slip length will hold in finite
channels as long as the channel widthL is larger than the
amplitude and the correlation radius of the surface inhomo-
geneitiesh andR.

In experiment, the measured slip length is a combination
of the geometric, roughness-driven and physical, and mo-
lecular force-driven contributions. As it is shown above, the
geometric contribution is always negative~stick rather than
slip motion! and has the order of magnitude2h2/R. On the
other hand, the combined slip length can range between
1–100 nm@16,17,19,22–25#. This slip length is routinely

FIG. 2. Correction to the energy dissipation rate,DG as a func-
tion of the frequency parameterL for Gaussian andn correlators in
log-log scale.
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attributed to molecular forces. Since the roughness and mo-
lecular forces provide the contributions of the opposite signs,
the slip length attributed to molecular forces in experiments
with unknown surface roughness can be seriously under-
reported. The same concerns the renormalization of the vis-
cosity near the surface and friction: the roughness-driven
renormalization corresponds to the increase in viscosity and
friction, while the molecular force driven renormalization,
especially for hydrophobic solids, corresponds to a decrease
in viscosity and friction.

Depending on the geometric parameters of the surface
roughness, either one of the geometrical and physical contri-
butions can dominate the overall slip. This transition from
the force-driven contributions to the roughness-driven con-
tributions has been recently observed in experiments with
flows past the surfaces with different roughness but the same
hydrophobic chemistry@20#.

Quantitative analysis of experimental data requires the
study of stick-slip motion which would take into account
simultaneously the surface roughness and the molecular
forces. For this, one would require calculation of the
roughness-driven contribution in microchannels when the
boundary condition on ideal walls corresponds to a partial,
molecular force-driven slip. When the roughness-driven and
molecular force-driven contributions to the surface slip and
viscosity are independent, one would expect that the corre-
sponding transport coefficients obey the Matthiessen’s rule.
Unfortunately, this is not always so: recent study of flow of
particles with large mean free path through microchannels
with random rough walls revealed large classical interference
between bulk and wall scattering which resulted in the vio-
lation of the Matthiessen’s rule@43# for bulk and wall-driven
transport coefficients. In the systems in which the source of
slip is not the large free path, but nonwetting of the walls,
such interference may be caused by renormalization of mo-
lecular forces near walls due to the wall curvature.
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APPENDIX A: SOLUTION OF THE NAVIER-STOKES
EQUATION FOR FLUIDS RESTRICTED

BY RANDOM ROUGH WALLS

First, we assume that all the variables have the harmonic
time dependence, exp(2ivt), transform the linearized
Navier-Stokes equation~7! to the noninertial coordinate
frame in which the wall is at rest,

vx\vx2exp~2 ivt !, x→x2E exp~2 ivt !dt,

and introduce the stream functionc(x,y) as

vx5
]c

]y
, vy52

]c

]x
. ~A1!

In this reference frame, the Navier-Stokes equation~7! and
the boundary condition~3! can be rewritten as the following
equation for the stream function

2 iL2¹2c2¹4c50, ~A2!

]c„x,ej~x!…

]y
51,

]c„x,ej~x!…

]x
50, ~A3!

c~x,`!5const. ~A4!

The difficulty in solving Eqs.~A2!–~A4! originates from
the presence of a random functionj(x) in the boundary con-
dition. The next step is the coordinate transformation

x→x, y→y2ej~x!, ~A5!

that flattens the wall, making the boundary condition~12!
simple,

]c~x,0!

]y
51,

]c~x,0!

]x
5ejx~x!, c~x,`!5const.

~A6!

The change in derivatives introduces the additional term
V̂(j,]x)c into the RHS of Eq.~A2!,

2 iL2¹2c2¹4c5V̂~j,]x!c, ~A7!

where

V̂5eV̂11e2V̂21e3V̂31e4V̂4 , ~A8!

V̂1c52~2l2jxcyx1l2jxxcy14jxxxcyx16jxxcyxx

1jxxxxcy12jxxcyyy14jxcyxxx14jxcyyyx!,

V̂2c5~l2jx
2cyy14jxxxjxcyy112jxjxxcyyx16jx

2cyyxx

12jx
2cyyyy13jxx

2 cyy!,

V̂3c522jx
2~3jxxcyyy12jxcyyyx!,

V̂4c5jx
4cyyyy,

and lower indices denote the differentiation of the functions
j andc.

The simplicity of boundary conditions in new coordinates
allows us to find the Green’s functionG(x2x8,y,y8) for the
operator on the LHS of Eqs.~A2! and~A7!. With the help of
this Green’s function, our initial problem with a boundary
condition on the random rough surface reduces to the com-
pact integral equation,

c~kx ,y!5c inh~kx ,y!1E
0

`

dy8 G~kx ,y,y8!

3E
2`

` dkx8

2p
V̂~kx2kx8 ,y8!c~kx8 ,y8!, ~A9!
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where we performed the Fourier transformation inx direction
~in the new coordinate frame, the geometry of the boundary
is independent ofx), and

c inh~kx ,y!5E
2`

`

dxe2 ikxxc~x,y! ~A10!

is a solution of Eq.~A2! with V̂50 and boundary conditions
~A3!, ~A4!. With this definition ofc inh(kx ,y), the Green’s
function satisfies the homogeneous boundary conditions on
the wall. Note, that Eq.~A9! is an exactequivalent of our
initial problem with the random rough wall and, in principle,
can be solved for an arbitrary functionj(x).

The functionc inh(kx ,y) is determined by the character-
istic equation for the operator in LHS of Eq.~A2!:

ky
42~2kx

22 iL2!ky
22~ ikx

2L22kx
4!50. ~A11!

This equation has four solutions,

ky56s1 ,6s2 , ~A12!

s152ukxu, s25Akx
22 iL2[2a1 ib,

a,b5
1

A2
A~kx

41L4!1/26kx
2>0.

We are interested only in the functionsc inh(kx ,y) that de-
crease aty→`. Therefore, the general solution of the homo-
geneous Eq.~A2! with the boundary condition~A3! has the
form

c inh~kx ,y!5
2p

il
d~kx!@eily21#1

ej~kx!

s22s1
@s2es1y2s1es2y#

~A13!

and contains the contribution withoute,c0(kx ,y), and the
term linear ine. Similar calculations yields the Green’s func-
tion

G~kx ,y,y8!5
1

2iL2 F 1

s2
~es2uy2y8u2es2(y1y8)!

2
1

s1
~es1uy2y8u2es1(y1y8)!G

31
1

iL2~s22s1!
@es1(y1y8)1es2(y1y8)

2es1y1s2y82es1y81s2y#. ~A14!

Note that the last result can be also obtained by noticing that
our Green’s function is proportional to the difference be-
tween the Green’s functions for the two-dimensional Laplace
and Helmholtz equations with the same boundary conditions:

G~r ,r 8!5l22~GL2GH!,

GL~r ,r 8!52
1

2p
ln~RS /RI !,

G2~r ,r 8!5
i

4
@H0

(1)~lRS!2H0
(1)~lRI !#,

RS,I5A~x2x8!21~y7y8!2.

In our case of slight roughness, it is sufficient to find only
the first three terms of the expansion of the stream function
c, Eq. ~A9!, in powers of the small parametere, c5c0

1ec11e2c21••• Since all the terms in the operatorV̂ con-
tain e, the only part ofc without e is the first term in Eq.
~A13! for c inh ,

c0~kx ,y!5
2p

il
d~kx!@exp~ ily!21#. ~A15!

The first-order term inc contains the remaining part ofc inh
and the first order term in the integral~A9! with

V̂1~kx ,]y!c052j~kx!@kx
2l21kx

4#eily.

Integration gives

c1~kx,y!5j~kx!Feily1
il

s22s1
~es1y2es2y!G . ~A16!

The calculation of the second-order term requires straight-
forward integration for much more cumbersome expressions.
However, the general expression forc2 is not required for
further calculations; it is sufficient to have only the expres-
sion forc2 averaged over the surface inhomogeneities,^c2&.
The resulting expression for the stream function contains
products of the derivatives of the surface profilej (n)(x).
These products should be averaged over surface inhomoge-
neities using the definition of the correlation functionz(x),
Eqs.~6!

^j (n)~x!j (m)~x8!&5~21!mz (n1m)~x2x8!. ~A17!

In the end, after substantial cancellations that accompany the
averaging,

^c2~kx ,y!&5d~kx!E
2`

`

dkx8z~kx8!

3Fs11s2

il
~ ileily1s1es1y2s2es2y!G .

~A18!

Reversing the coordinate transformation of Eq.~A5! and
performing the related reexpansion ine,
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^vx~kx ,y2ej!&.vx
(0)~y!d~kx!

1e2F ^vx
(2)~kx ,y!&2 K j

]

]y
vx

(1)~kx ,y!L
1 K j2

2 L ]2

]y2
vx

(0)~y!d~kx!G ,

we get for the average velocity

^vx~x,y!&5exp~ ily!F11 il«2E
0

`dkx

p
z~kx!

3$s11s22 il/2%G , ~A19!

wheres1 ,s2 are given by Eq.~A12!.
The above equations for the stream function and velocity

allow one to calculate the roughness-driven correction to the
dissipation of energy and effective friction.

Time average of the bulk dissipation per unit area of the
wall can be expressed via the stream functionc as

Q52
hu0

2

2R

1

AE dVK S ]v i

]xk
1

]vk

]xi
D 2L

52
hu0

2

R

1

AE dV^4Cxy
2 1~Cyy2Cxx!

2&, ~A20!

whereC(r ,t)5Re@c(r )e2 ivt#, an overline denotes the time
average over the period of oscillations and^•••& stands for
the statistical average over the random surface inhomogene-
ities. The time averageC ik

2 5 1
2 c ikc ik* .

After the coordinate transformation~A5!, the attenuation
up to the second order term ine reduces to

Q52
hu0

2

2R E
0

`

dy@Q(0)1e2Q(2)#, ~A21!

Q(0)5ucyy
(0)u25L2e2A2Ly,

Q(2)5^ucyy
(1)1jxxcy

(0)2cxx
(1)u212ujxcyy

(0)2cxy
(1)u212ucxy

(1)u2

12Re@cyy
(0)* ~cyy

(2)1jxxcy
(1)!#&.

Finally, we get

Q52
hu0

2

2R

L

A2
H 11e2LE dkx

2p
z~kx!

3@L2A~kx
41L4!1/22kx

2#J . ~A22!

The friction force acting on the area unit of the surface is
@34#

F5
hu0

R
f, f i52p iknk , ~A23!

p ik5S ]v i

]xk
1

]vk

]xi
D

y5ej

, n5
1

A11e2jx
2 S ejx

21D .

~A24!

Here,n is the unit vector normal to the surface and directed
out of the liquid. The square of the absolute value of this
force is

f 25 f x
21 f y

25pxy
2 1

pyy
2 1e2j82pxx

2

11e2j8 2
, ~A25!

or, via the stream function,

f 25@~cyy2cxx!
214cxy

2 #uy5«j . ~A26!

In new coordinates~A5!, this expression reduces to

^ f 2&5^~112e2jx
2!cyy

2 ~x,0!&.

After separating the real and imaginary parts and expanding
in e, we finally get

^ f 2&5
L2

2 S 11e2E
0

`dkx

p
z~kx!@L2A~kx

41L4!1/22kx
2#2D .

~A27!

Note that in this problem the friction force introduced by
Eq. ~A23! does not determine, after integration over the sur-
face, the full energy dissipation. In the case of inhomoge-
neous rough boundaries there is an additional dissipative
contribution related to the term with pressure,Pni , in the
expression for the full force acting on the unit area of the
surface. If one defines the friction force not via the stress
tensor, Eq.~A23!, but assumes the experimental definition
according toF52Q/u0, then the roughness-driven correc-
tion to the friction force will be given by Eq.~A22! rather
than by Eq.~A27!. Another anomaly of this problem is that
one should always take into account both components of the
friction force.

APPENDIX B: TWO-LAYER MODEL

The necessity of using two boundary parameters instead
of a single stick-slip length can be illustrated by the follow-
ing simple model. Let us consider tangential oscillations of
viscous liquid which is separated from a solid substrate by a
layer of another liquid with a slightly higher viscosityh1

FIG. 3. Schematic geometry of the problem.
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.h and the same density~see Fig. 3!. In effect, we model a
rough surface by a layer of viscous liquid with somewhat
different properties than in the bulk. The model has two
parameters: the thickness of the layerd and dimensionless
ratio g,

g5
hl

h1l1
[

L1

L
&1.

Assuming that the velocity in both liquids is proportional
to exp(2ivt), we get the following equations of motion:

2 ivv12n1

d2v1

d y2
50, 2 ivv2n

d2v

d y2
50,

v1~0!51, v1~d!5v~d!,

h1

dv1~d!

d y
5h

dv~d!

d y
.

The solution is

v1~y!5Aeil1(y2d)1Be2 il1(y2d),

v2~y!5Ceily

with

A,B5Ceild
16g

2
,

C5
e2 ild

cos~l1d!2 igsin~l1d!
.

Time average of the rate of the energy dissipation per unit
consists of contributions from both liquids:

Q5QI1QII ,

QI52h1E
0

d

dyFReS ]v1

]y
e2 ivtD G2

52uCeildu2h1L1

1

8A2
@~11g!2~eA2l1d21!

1~12g!2~12e2A2l1d!12~g221!sin~A2l1d!#,

QII 52hE
d

`

dyFReS ]v2

]y
e2 ivtD G2

52uCeildu2
hL

2A2
.

If the thickness of the layerd is smaller than the decay
lengthd, l1d!1,

C→12ei3p/4Ld~12g2!,

uCeildu2→12A2Ldg21L2d2g4,

v~y!'eily@12 ild~12g2!#

2Q'
hL

2A2
@11L2d2g2~12g2!#.

Note that the conditionl1d!1 does not necessarily mean
that the layer is very thin.

The last two equations show that in this limit

v~y>d!' Re$u0ei (ly2vt)@12ei3p/4Ld~12g2!#%,
~B1!

Q'
hu0

2L

2A2
@11L2d2g2~12g2!#. ~B2!

Comparison of Eqs.~B1! and ~B2! with Eqs. ~ 31!–~34!
gives the mapping of the effective viscous layer model onto
the problem with a rough surface,

2d~12g2!5,e f f /R[e2,1 ,

d2g2~12g2!5e2,2.

In this limit d!d, the contribution of the layer to the
dissipation,QI , corresponds to thed-type renormalization of
the viscosity in the effective boundary condition of Sec. III
with renormalization parameter

b5e2@2,11A2L,2#

given in Eq.~33!.
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