
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Physics Faculty Publications Physics 

4-4-2014 

Applications and Identification of Surface Correlations Applications and Identification of Surface Correlations 

Mauricio Escobar 
University of Rhode Island 

A. E. Meyerovich 
University of Rhode Island, sfo101@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/phys_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Escobar, M., & Meyerovich, A. E. (2014). Applications and identification of surface correlations. 
Condensed Matter. 1 - 42. 
Available at: http://arxiv.org/abs/1404.1291 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Physics 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/phys_facpubs
https://digitalcommons.uri.edu/phys
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arxiv.org/abs/1404.1291
mailto:digitalcommons-group@uri.edu


Applications and Identification of Surface Correlations Applications and Identification of Surface Correlations 

The University of Rhode Island Faculty have made this article openly available. The University of Rhode Island Faculty have made this article openly available. 
Please let us knowPlease let us know  how Open Access to this research benefits you. how Open Access to this research benefits you. 

This is a pre-publication author manuscript of the final, published article. 

Terms of Use 
This article is made available under the terms and conditions applicable towards Open Access Policy 
Articles, as set forth in our Terms of Use. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/phys_facpubs/199 

http://web.uri.edu/library-digital-initiatives/open-access-online-form/
https://digitalcommons.uri.edu/oa_policy_terms.html
https://digitalcommons.uri.edu/phys_facpubs/199


Applications and identification of surface correlations

M. Escobar, A. E. Meyerovich

Department of Physics, University of Rhode Island, Kingston, RI 02881-0817, USA

(Date textdate; Received textdate; Revised textdate; Accepted textdate; Published textdate)

Abstract

We compare theoretical, experimental, and computational approaches to random rough surfaces.

The aim is to produce rough surfaces with desirable correlations and to analyze the correlation

functions extracted from the surface profiles. Physical applications include ultracold neutrons in

a rough waveguide, lateral electronic transport, and scattering of longwave particles and waves.

Results provide guidance on how to deal with experimental and computational data on rough

surfaces. A supplemental goal is to optimize the neutron waveguide for GRANIT experiments. The

measured correlators are identified by fitting functions or by direct spectral analysis. The results

are used to compare the calculated observables with theoretical values. Because of fluctuations, the

fitting procedures lead to inaccurate physical results even if the quality of the fit is very good unless

one guesses the right shape of the fitting function. Reliable extraction of the correlation function

from the measured surface profile seems virtually impossible without independent information on

the structure of the correlation function. Direct spectral analysis of raw data rarely works better

than the use of a ”wrong” fitting function. Analysis of surfaces with a large correlation radius is

hindered by the presence of domains and interdomain correlations.
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I. INTRODUCTION

Progress in material science, nanofabrication and related technologies expands the range

of physical systems in which scattering by surface and interface roughness is the dominant

scattering channel. Such systems are studied by different theoretical, experimental, and

computational techniques, all of which, in principle, should use a more or less common

language and converge to identical results. Below we try to answer the question how to

bridge the gap between these techniques. Our applied goal is to find ways to prepare a

random rough surface with desirable physical properties.

We are interested in surfaces with slight random roughness for which the observables

are quadratic in roughness. Theoretical expressions for the physical observables, such as,

for example, transport coefficients, should explicitly contain the geometrical and statistical

parameters of surface roughness. These parameters are routinely introduced (see, e.g., Ref.

[1] and references therein) by the binary roughness (auto-)correlation function ζ (x) , which is

usually characterized by an average amplitude of inhomogeneities ` and a single correlation

radius of inhomogeneities R,

ζ (x) = `2ϕ (x/R) , ϕ (0) = 1. (1)

An equivalent description uses the roughness structure function, S (x) = `2 (1− ϕ (x)). A

brief review of alternative approaches to roughness can be found in Ref. [2]. For applications,

the Fourier image of the correlation function (1) (the so-called power spectrum of surface

roughness),

ζ (q) = `2ψ (qR) , (2)

is often more important than the correlation function itself (here q is an appropriate con-

jugate for x; in 1D there could be an extra coefficient
√

2πR, in 2D - just R2). The use of

multiparameter descriptors instead of Eqs. (1) , (2) could provide additional fitting param-

eters, but usually does not clarify the physics.

The form of the roughness correlation function for real surfaces cannot be predicted

theoretically except for a few exactly solvable models of surface interaction which may or

may not correspond to reality. Even the simplest models rarely lead to simple explicit

expressions for the correlation functions. One can also try to establish classes of universality

for roughening and to find the roughening or fractal exponents (for recent examples see Refs.
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[3–5] and references therein). In theoretical calculations the correlation function is usually

assumed to be known leaving its determination to experiment or numerical modeling.

These sources are often inconclusive and the theoretical evaluation of observables is per-

formed using some ad hoc correlation function. The variety of Gaussian, exponential, or

power law correlators are used almost at will despite the evidence that the choice of the

correlation functions with similar correlation parameters but of different functional forms

can lead to very different physical results (see, e.g., Refs. [1, 6–8]). All this degrades the

application of theoretical results to real surfaces.

Thus the questions are whether it is possible to extract an accurate correlation function

from experiment and whether it is possible to create a random rough surface with a prede-

termined roughness correlation function. We will start from the former question and later

give a physical example for which the latter question is indeed crucial.

There are two types of experiments which can provide information on the surface correla-

tion function: scattering of particles or waves by the rough surface and direct measurements

of the surface profile. The intensity of waves scattered from a rough surface is directly

described by the power spectrum of the correlation function (2) [1], but the accuracy of

measurements is high only in limited ranges of wave vectors and angles.

The second type of experiment seems more promising since one can easily extract the

correlation function ζexp from precise scanning measurements of the surface profiles, such as,

for example, STM or AFM. The difficulty here lies in proper identification of the raw data on

ζexp. This extracted discrete correlation function ζexp inevitably exhibits noticeable noise,

especially if the scanned area is not very large, and cannot be unambiguously identified

with some simple functional form of ζ (x), Eq. (1). There are two ways of dealing with

these difficulties: either compare the extracted correlator ζexp with some preconceived fitting

function ζfit (x) and get the correlation parameters from the best fit or feed the the extracted

raw correlation function ζexp directly into the theoretical equations for observables. Below

we analyze the limitations of both approaches.

The experimental difficulties of extracting an accurate surface correlator multiply when

one deals with an atomic-scale roughness, even if one disregards the issue of the accuracy

of the data on the surface profile related, for example, to the tip profile [9] or the step size

[10]. Some requirements on accuracy of profile measurements for reliable extraction of the

correlation parameters are discussed in Refs. [11, 12]. It is not even clear to what extent
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the theoretical methods using the correlation function of surface roughness can be applied

to random inhomogeneities on atomically-smooth crystal surfaces.

The potential shortcomings of the first approach are obvious: the correlation parameters

which are extracted from ζexp in this way, depend on an ad hoc choice of the fitting function.

Fitting of the STM data on ζexp (x) to correlation functions ζfit (x) of different functional

forms could yield vastly different values of the correlation parameters such as the correlation

radii R (for recent experimental examples see, e.g., Refs. [7, 15]). This can become a real

problem when the step size in scanning microscopy is comparable to the correlation radius

of roughness: according to the estimates [1], to resolve the shape of the correlation peak one

needs about ten points within the peak. As we will see, even the increase in the sample size

does not necessarily help. In the end, using a preconceived correlation function is especially

dangerous in two limiting cases when the correlation radius R is comparable to the scanning

step or when R and, therefore, the size of inhomogeneities, is large. However, as we will see

below, the use of the raw experimental data on ζexp can often be more dangerous than the

risk of using the wrong fitting function.

But how can one evaluate the reliability of identifying the correlation function extracted

from precise scanning measurements of the surface profile? As we will see, the statistical

quality of a fit to some fitting function is not the answer.

The main issue is that we cannot fabricate a surface with a known correlation function

to serve as a reference to check against the extracted correlator. What we can do instead is

to computationally generate a surface with a given correlation function, scan this surface,

and analyze the extracted correlators. The knowledge of the exact correlation function

will allow us to judge the quality of identification not by statistical properties of the fits,

but by how well the physical observables are reproduced. The identification issues for real

and computationally generated surfaces are more or less the same [12–15] and our results

should provide a roadmap for dealing with experimental data. This will also allow us to

accomplish our second applied goal: to design a random surface with desirable correlation

properties which in the case of a reasonable physical scale can be reproduced experimentally

(see below).

We start (Section II) from two computational procedures for generating random rough

surfaces with known correlation functions. The first procedure produces a random rough

surface with any predetermined correlation function and is suitable for larger scale roughness.
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The second one relies on model Hamiltonians. It provides surfaces with discretized profiles,

more appropriate for atomic-scale roughness, but with a limited number of correlators.

Which of the procedures is preferable depends on the physical circumstances.

In Section III we briefly describe physical applications which we use to test the results.

For clarity, we chose the applications for which the roughness contribution to the observables

collapses into a single constant. This ensures effective and unambiguous evaluation of the

quality of the data and our methods. The first of these applications, namely, quantized

ultracold neutrons in rough waveguides, is essentially a one dimensional (1D) application

with a large spatial scale of roughness (the typical scale is 6 µm). Here we also have a

practical goal: designing the best rough waveguide for experiments in GRANIT installation

(ILL, Grenoble) by optimizing the waveguide roughness. Transferring the generated profile

onto the real mirror seems to be technically feasible because of a large spatial scale of

roughness and is by far preferable to the current procedure of introducing the uncontrolled

roughness (random scratching of the mirror). Our second application is more traditional and

deals with the conductivity of two dimensional (2D) ultrathin films in quantum size effect

(QSE) conditions and, more generally, with scattering of longwave particles and waves by

rough surfaces.

In Section IV we analyze random surface profiles generated using the methods of Section

II. We extract the correlation functions from these profiles and try to identify them by fitting

to different types of the fitting functions using the same procedures used in analyzing the

results of the scanning microscopy measurements with a fixed step. The results of the fits

are then used to calculate the observables for the applications from Section III. The purpose

here is to find out what kind or errors are introduced by ad hoc assumptions about the

shapes of the fitting functions when analyzing experimental and numerical data on surface

profiles. Since in this case we know the ”true” correlation functions, we have an excellent

criterion to compare the errors. We will see that the quality of the fit, which is described by

the standard deviation σ between ζexp (x) and the fitting function ζfit (x) does not translate

into the quality of the physical results unless the fitting function `2ϕfit (x/R) has the right

functional form which is, unfortunately, unknown in most experiments with real surfaces. In

many cases the physical results turn out even worse if one tries to input the raw experimental

data on ζexp directly into the calculations instead of risking to make a wrong guess about

the functional form of the fitting function ϕfit (x/R). The results are summarized in Section
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V.

II. GENERATION OF ROUGH SURFACES

In this Section we briefly describe two numerical methods for generating random rough

surfaces with predetermined correlation functions. A short review of alternative approaches

is given, for example, in Ref. [16]. Some of the earlier work in this direction can be found

in Refs. [11, 17].

A. Surfaces with arbitrary correlation functions

In this subsection we generate random surfaces with an arbitrary predetermined corre-

lation function of surface roughness without paying attention to discretization of the am-

plitudes on atomic scale. In this sense, we will be generating macroscopic or ”classical”

roughness with the only constraint that the profiles are described by the smooth functions.

This is appropriate for rather thick films or waveguides and for particles/waves with rela-

tively large wavelengths.

A random rough profile y (x) can be generated numerically using some distribution func-

tion P (y). The usual choice is the Gaussian distribution,

P (y) =
1√
2π

exp
(
−y2/2

)
, (3)

(see Ref. [1] and references therein). The simple distribution P (y) of the type (3) leads

to an uncorrelated roughness, ζ (x) ∝ δ (x) (white noise). To produce meaningful desirable

binary correlations ζ (x),

ζ (x) = 〈y (x′) y (x′ + x)〉x′ ≡
1

L

∫
y (x′) y (x′ + x) dx′, (4)

one requires a more complicated distribution P [y (x)] than the straightforward distribution

(3) which is embedded in the generators of random numbers.

The first step is discretizing the surface into a large number segments,

y (x)→ yi = y (xi) , i = 1, 2, ..., N (5)
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and, if necessary, smoothing the resulting profile after the computations are done. One way

to proceed is to generate the surface with a generalized Gaussian probability distribution,

P [−→y ] = C exp

(
−1

2
−→y · Ĝ−→y

)
, −→y = (y1, y2, ..., yN) , (6)

with some matrix Ĝ. The choice of Ĝ in (6) should provide the desired binary correlation

function of surface roughness

ζ (x)→ ζik = ζ (i− k) = 〈yiyk〉 =

∫
yiykP [−→y ] d−→y . (7)

Here C is the normalization constant defined by the equation

1 = C

∫
exp

(
−1

2
−→y · Ĝ−→y

)
d−→y . (8)

If one rotates the vector −→y ,

−→y = Â−→g , −→g = Â−1−→y , (9)

in such a way as to diagonalize the quadratic form −→y · Ĝ−→y ,

−1

2
−→y · Ĝ−→y = −1

2
Â−→g · ĜÂ−→g = −1

2
−→g · ÂT ĜÂ−→g , (10)

ÂT ĜÂ = Î ≡ δik, (11)

the probability distribution (6) (including the Jacobian) becomes

P [−→y ] d−→y → P [−→g ] d−→g =
1

(2π)N/2
exp

(
−1

2

N∑
i=1

g2i

)
d−→g (12)

meaning that all gi are statistically independent,

〈gigk〉 =

∫
gigkP [−→g ] d−→g = δik. (13)

The coefficient in Eq. (12), together with the transformation Jacobian, gives the normal-

ization coefficient C in Eqs. (6) , (8). Then the roughness correlation function ζ̂ = 〈yiyk〉

acquires the form

ζ̂ =

∫
yiykP [−→y ] d−→y =

∫
AilglAkmgmP [−→g ] d−→g (14)

= AilAkmδlm =
(
G−1

)
ik
.
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(the last equation is based on Eq. (11)). Therefore, numerically the problem requires

inverting the ”desirable” matrix ζ̂, Ĝ = ζ̂−1, and computing the rotation matrix Â. For real

symmetric matrices, the rotation matrix Â, according to Eq. (14), is

Â = ζ̂1/2. (15)

Summarizing, generating a random rough surface with a desirable correlation function of

surface roughness ζ (x) (4) reduces to generating a set of random uncorrelated numbers −→g

for a simple Gaussian distribution (3) and rotating this vector using the rotation operator

Â (15). Computationally, this is a straightforward task. The only limitations on the surface

size, as measured in terms of step sizes b = ∆x = xi+1 − xi, are computational resources

required to perform the operation (15) for large matrices ζ̂. Obviously, this limitation is

much more important for two dimensional (2D) surfaces than for one dimensional (1D) ones:

in addition to a size explosion in the 2D case, the matrices for the 2D surfaces loose their

almost diagonal structure even for very steep correlation functions.

The above procedure is straightforward in 1D. Expanding it to 2D surfaces can be done

in one of two ways. In principle, one can modify the procedure by designating the raw

and rotated profiles g and y not as vectors but as 2D arrays and considering the rotation

operator as a 4-component tensor. We preferred instead to make a flat file out of the 2D

surface profile and redefine the surface correlator using this flat file. After the rotation, the

points of the newly created flat file were projected back onto the surface grid.

There is a certain ambiguity in the computation of the averages ζik = ζ (i− k) = 〈yiyk〉 in

samples of finite size (finite N). In a 1D case, one cannot extend evaluation of ζ (s) beyond

s = N/2 without loosing accuracy even if one introduces a periodic boundary condition. The

same is true when extracting the correlation function ζexp (s) from the scanning microscopy

data on the surface profile.

In a 2D system the loss of data points is worse. If the sample is large enough, one can

limit oneself to using N/4 (one quadrant of the surface) for a straightforward calculation of

the correlator up to the distances
√
N/2. If the sample size L =

√
N is an issue, which is

usually the case since the required processing power is determined by N and not L, one can

extend the computation to approximately N/2 points but should take special care to avoid

double-counting of the correlations.

This technique allowed us to generate a rough surface with an arbitrary correlation func-

8



tion of roughness. In numerical examples below we reproduce three most popular types of

the correlators, namely, the Gaussian,

ϕG = exp
(
−x2/2R2

)
, (16)

exponential,

ϕE = exp (−x/R) , (17)

and power law

ϕPL =
1

(1 + x2)3/2
(18)

correlation functions. The same correlation functions will be used as fitting functions when

probing the surfaces. All numerical parameters, extracted with the help of these correlators,

will carry the same indices G,E, and PL. Note that our particular power law correlator

(18) has an exponential power spectrum and vice versa.

Each physical system has its own spatial scale l0. These scales for different systems

can differ from each other by orders of magnitude. It is convenient to measure length

parameters of each correlator in units of its own physically meaningful scale l0 leaving

the definition of l0 to the underlying physical systems. We have three length parameters:

the average amplitude of surface roughness η = `/l0, the correlation radius of roughness

r = R/l0, and the step (grid) size b = ∆s/l0 = xi+1 − xi, Eq. (12) . Since the square of the

amplitude of surface inhomogeneities ` enters most of the physical results as a simple scaling

parameter, in all illustrations we assume, unless mentioned otherwise, that η = `/l0 = 1

and assign other values to η only when the physical situation requires this. Therefore,

in graphical illustrations below the amplitude of profile inhomogeneities can be arbitrarily

compressed resulting in smoother profiles and correlation functions. The values of b and

r are not necessarily independent: for example, one can generate the correlation functions

with various values of r either by calculating the rotation matrix Â (b = 1, r) directly or

calculating Â (b, r = 1) and then compressing or stretching the generated surface so that get

the desired value of r. In some situations b is an independent physical parameter. The most

obvious example is the step size in the STM-like measurements.

The accuracy with which the generated surface reproduces the desirable correlator ζ

improves with the increase in the number of points N . The limit of accessible values of N

depends on our ability to compute and use the N ×N matrix Â, Eq. (15) (in our examples

going to N above five thousand was not practical with easily available resources).
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Even with a fixed large number of points N, the standard deviation σ between the de-

sirable and generated correlators is not always the right way to look at the quality of the

generated rough surfaces. In general, the correlation function consists of two parts: a peak

area of the size r, which describes the short-range correlations, and a long tail of long-range

correlations. Under the usual circumstances, the correlation function is expected to go to

zero at large distances. However, the correlation functions for finite size samples inevitably

contain long fluctuation-driven tails. The same is true for experiments on restricted scan-

ning areas. As a result, σ is determined mostly by these tails of the correlation functions

and is not very sensitive to the shape of the peak area. Paradoxically, the larger the size

of the sample the less sensitive can σ be to the shape of the short-range peak and the rate

of decrease of the ”real” correlation function. We will encounter this issue throughout the

paper.

On the other hand, the contributions from the peak and tail areas to physical observables

for different physical applications enter with different weights: while some of the observables

are more sensitive to the short-range correlations from the peak area, the others require

more information and, therefore, better accuracy, in the tails. When the peak area is

more important, one should have more points inside the peak. The number of such points

is given by the ratio of the correlation radius r to the step size b, r/b. However, a large

increase in the number of such points leads to proportional decrease in the number of surface

inhomogeneities Nb/r (”clusters” or ”domains”) which one can fit on the generated surface

with the fixed overall number of pointsN . This, in turn, suppresses accuracy of the generated

correlation tails and increases the value of the overall σ which is weighted more heavily

towards the tails of the correlation functions. This effect was obvious when we looked at

σ as a function of r/b. As a result, the computer generation of rough surfaces with large

correlation radii r requires a dramatic increase in the overall number of points which is

difficult to achieve. This also means that reliable computer simulations of theoretically

predicted physical effects at very large r are not feasible. For example, we are currently

not able to reproduce computationally a new type of quantum size effect in conductivity of

ultrathin films, predicted in Ref. [8], by generating a thin film with rough surface with very

large r. We will encounter this issue later on in a slightly different context.

In Figure 1 we present the initial part of the correlation function (black solid line) for the
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r = 2.0
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-0.20

0.00
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0.80

1.00

ζ

s

FIG. 1: An example of the correlation function (black solid line) for a generated 1D surface which

should emulate a surface with Gaussian correlation of inhomogeneities ζ (x) = exp
(
−x2/8

)
(blue

dashed line). The total number of points is 2000, the average amplitude of roughness η = `/l0 = 1,

the correlation radius r = R/l0 = 2.

generated 1D surface profile which should emulate a surface with the Gaussian correlation

of inhomogeneities ζ (x) = exp (−x2/8) (dashed blue line). The total number of points

is N = 2000, the average amplitude of roughness η = `/l0 = 1, the correlation radius

r = R/l0 = 2. The long oscillating tail in the correlation function reflects fluctuations.

For comparison, in Figure 2 we plotted together correlation functions which should re-

produce the Gaussian ζ (x) = exp (−x2/8) (curve 1; black), exponential ζ (x) = exp (−x/4)

(curve 2; red), and power law ζ (x) = 1/ (1 + x2/4)
3/2

(curve 3; blue) correlation functions

with N = 2000, η = `/l0 = 1, and r = R/l0 = 2. In all three cases the generation started

from the same set of random numbers −→g . It is clear that in the peak area (Figure 2a)
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r = 2

FIG. 2: Correlation functions for 1D generated surface profiles which should emulate the Gaussian

(black; curve 1), exponential (red; curve 2), and PL (blue; curve 3) correlation functions. In the

peak area (Figure 2a) the differences are very pronounced, but the fluctuation-driven tails (Figure

2b) are almost identical. All three computations started from the same set of N = 2000 random

numbers.
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the correlations are different, but in the tail area (Figure 2b: the same functions ζ (s) as in

Figure 2a extended to s = 200) all three curves look the same. As a result, the quality of

reproducing the desired correlation function is the same if measured by σ which is heavily

weighted towards the fluctuation-driven tail area.

As expected, the value of the standard deviation σ between generated and exact correla-

tion functions decreases with increasing surface size N as
√

2/N (Figure 3).

0.0

0.1

0.2

0.3

0.4

σ

0 200 400 600 800 1000N

FIG. 3: Dependence of the standard deviation σ between generated and exact correlation functions

on the sample size N . The solid line is
√

2/N . The generated roughness is supposed to have

Gaussian correlations with r = 2.

Generation of 2D roughness by this method requires more computational resources. We

were not able to routinely proceed for surfaces L×L with size L well above 70 when the size of

the rotation matrix Â exceeds 4900×4900; computations beyond that required special efforts.

An example of a correlation function for a generated 2D rough surface is given in Figures

13



4. The roughness correlations were supposed to emulate isotropic Gaussian correlations

with r = 2, ζ (s) = exp (−s2/8). Figure 4a shows the 2D correlation function ζ (x, y)

for this surface. The anisotropy of the extracted correlation function is well pronounced.

Similar anisotropy of the extracted correlator is quite pronounced in STM experiments as

well (see, for example, Ref. [10]). After averaging over the angles, this correlation function

becomes ζ (s) in Figure 4b (blue curve; the black curve gives the emulated Gaussian correlator

exp (−s2/8)).

The standard deviation between the two curves in Figure 4b is surprisingly small, σ ∼

0.057, though visually the generated correlation function ζ (r) looks very volatile while the

2D function ζ (x, y) is smooth. The reason for this volatility is quite obvious: the nearby

points in ζ (r) correspond very different orientations in ζ (x, y) . With increasing sample size

L the volatility actually increases because the density of data points in ζ (r), each of which

represent different directions, goes up at large r. The volatility becomes so strong that the

flattened correlation function becomes unstable and practically useless for data analysis and

one should deal with the anisotropic ζ (x, y) directly (see Section IV).

Another difficulty, which, though common to both 1D and 2D surfaces, is exacerbated in

the 2D case, concerns surfaces with long range correlations of inhomogeneities (large r). The

large value of r means that the surface is covered by large size inhomogeneities (domains).

The larger the value of r, the smaller the number of inhomogeneities for the samples of the

same linear size L. The correlations of particles within each inhomogeneity are responsible

for the central peak of the radius r in the correlation function ζ (r). However, there are

noticeable non-zero correlations between the particles from different inhomogeneities which

are due not to some aligning physical forces, but simply to geometrical factors arising from

the large size of inhomogeneities. These non-zero interdomain correlations manifest them-

selves as smaller secondary peaks of the radius r at positions that correspond to the integer

numbers of average distances between the domains. If the sample is large enough to contain

a very large number of such domains, these secondary peaks are washed out. The washing

out of these peaks is determined not by the total number of data points in the sample N ,

which is proportional to L or L2 depending on dimensionality, but by the ratio N/Ni where

Ni is the number of particles in a typical domain. If the number N is not very big or the

inhomogeneity clusters Ni are large, these secondary peaks survive and ζ (r) looks as if the

system has an additional, larger correlation radius R2. The situation is worse in the 2D

14
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FIG. 4: An example of a 2D rough surface of the size 60 × 60. The roughness emulates isotropic

Gaussian correlations with r = 2, ζ (s) = exp
(
−s2/8

)
(black line 1 in Figure 4b). (a) 2D correlation

function ζ (x, y) (b) The correlation function ζ (s) after averaging over the angles (line 2; blue).

case in which the number of particles in a domain Ni grows with r as r2. If one plots the
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set of correlators for the generated surface with increasing r, one will see a widening central

peak and tails with more and more distinct secondary correlation peaks. In our typical 1D

examples with N = 2000 one cannot proceed with r well above 10 without the tails loosing

any relationship to the physical forces and starting to reflect purely geometrical interdomain

correlations. This explains why it is so difficult to generate rough surfaces with large r.

B. Surfaces with discrete (integer) amplitudes of roughness

Above we treated rough surfaces as 1D or 2D objects that are described by smooth

functions. This can be easily justified when the natural physical scale of the system l0 is

much larger than the atomic size a, l0 � a, as in our neutron example in which l0 ' 6

µm (see Section IIIA below). This is a good approximation for systems with macroscopic

roughness and/or longwave particles. In the case of electrons in ultrathin metal films the

amplitudes of inhomogeneities have atomic scale and the situation is different. The approach

should depend on whether one deals with atomically rough or atomically smooth surfaces.

In the former case, such as, for example, for amorphous films, the theoretical description

via the correlation function might still work though the correlators should be discretized

in order to account for discrete nature of atomic-size steps in scanning measurements or

computer models. In the latter case, the rough surfaces can be understood as perfect crystal

faces with roughness introduced by randomly distributed adatoms/vacancies and steps with

kinks. If this is the case, then the roughness profile is described by an integer number of

defects of the atomic height a which now becomes the only scale of the problem. Then the

use of continuous correlators for computer modeling and STM data should be revisited even

if one ignores the obvious angular anisotropy. For example, the small value of the amplitude

of the correlation function ` as in experiment [15] might mean that either the amplitude of

roughness is indeed small or that there is simply very few surface defects. In the latter case

the meaning of the roughness correlation radius can itself become murky.

The generation of rough surfaces with discretization of amplitudes on atomic level cannot

be done using a generic procedure of Section II: the rotation matrix Â, Eqs. (9) , (15) , is

determined solely by the desirable correlator ζ̂ and the generated surface profile yi does not

reduce to a set of integer numbers in terms of a even if before the rotation the starting values

of gi were integer. In general, the best we can do with this procedure is to generate the
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set of yi and then round the values of yi to the nearest integer number ỹi. This, of course,

changes the correlation function. The results of this approach are illustrated in Figure 5. In

this Figure we used the method of Section IIA to generate the rough surface which emulates

the exponential correlator ζ (i− k) = 4 exp (− |i− k| /2) and then rounded the data points

yi to the nearest integer number ỹi. The black curve in the Figure is the initial theoretical

correlator, the red line is the correlator ζ (|i− k|) = 〈yiyk〉 of the generated rough surface,

and the blue line is the correlator ζ̃ (|i− k|) = 〈ỹiỹk〉 after the discretization of the surface

profile yi to integer numbers. As one can see, this procedure can work at best qualitatively.

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0s
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FIG. 5: Correlation function for a generated surface emulating ζ (i− k) = 4 exp (− |i− k| /2) (line

1; black) after rounding the profile data points yi to the nearest integer number yi. Line 2 (red):

the generated raw correlator ζ (|i− k|) = 〈yiyk〉, line 3 (blue): the correlator for the discretized

surface 〈yiyk〉.

It might be impossible to computationally emulate a random rough surface with an integer

profile ỹi with an arbitrary predetermined correlation function ζ̂ (i− k) = 〈ỹiỹk〉 except, of
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course, for ”classical” surfaces with very large amplitude of roughness `, a � ` � R.

However, several specific correlators can still be generated based on spin lattice models with

various Hamiltonians. This might help in extracting the proper correlation functions from

experimental data on the surface profile based on realistic assumptions on the interaction

of the surface defects. This can also help to guess which correlation functions to use in

theoretical calculations. Needless to say, many of the lattice models produce the correlation

functions which are exponential at large distances and have complicated, often analytically

unresolved structure in the peak area.

Unfortunately, the universe of the correlation functions which are accessible in this way

is limited by the number of known exactly solvable lattice models, mostly in 1D, some of

which may have little resemblance to real surfaces. It is even unclear whether there are any

restrictions on allowed forms of the correlation functions. In 2D even the simplest models,

such as the Ising model, lead to the correlation functions for which we do not have explicit

analytical expressions making them virtually useless for our purposes.

There are a couple of additional practical difficulties for using this approach. First,

when the correlation radius R is comparable to or smaller than the lattice constant a,

the reliable extraction of R or the shape of the peak in the correlator from either computer

generated surface or STM data still remains impossible. In the opposite case, whenR is large,

the computational requirements rapidly increase because of the large size inhomogeneities

(domains). The latter requires not only going to much large sample sizes but also an increase

in computing time because of a slowdown in convergence.

The simplest example is, of course, the ferromagnetic Ising lattice yi = ±1 where the cor-

relation function is determined by the attractive coupling constant J in the Hamiltonian (or,

what is the same, by the Boltzmann factors exp (±2J/kT )). In the 1D case the correlation

function is exponential,

ζE (x) = η2 exp (−x/r) , r =
1

2
exp (2J/kT ) . (19)

The correlation function for the 2D Ising model, though known in principle, Ref. [18], is

described by a set of complicated equations involving elliptical integrals.

We performed Monte Carlo simulations of 1D and 2D rough surfaces on the basis of

the Ising model. The 1D correlation function ζ (x) for the generated surface profile y (x)

is illustrated in Figure 6. In computations we used 1000 positions xi and performed 106
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FIG. 6: An example of the correlation function for a 1D rough surface y (x) and its correlation

function ζ (s) generated using the Ising model (red line 2). The parameters in the correlation

function r = 1.19 and η = 0.119; black line 1 is given by Eq. (19) (σ = 6.83× 10−4).

Monte Carlo cycles. The correlation function ζ (s) (red curve in Figure 6) should emulate

function (19) with r = R/l0 = 1.19 and η = `/l0 = 0.119 (black curve in the figure) as

in the neutron experiments (see below). The standard deviation between the desired and

generated correlators is σ = 6.83× 10−4.

Figures 7 illustrate the correlation function for the the surface profile generated using

the 2D Ising model at relatively high temperatures, T/Tc = 1.2. At this temperature the

relaxation (and computation) times are not very long, domains are small, and the energy

equilibrates. On the other hand, the correlation radius already starts to grow and the

correlation function should start exhibiting deviations from the pure exponential form. The

surface area was 101×101 and we performed 106 Metropolis cycles. Figure 7a shows the 2D

correlation function for this surface and Figure 7b gives the same correlation function after
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FIG. 7: An example of a 2D random rough surface generated using the Ising model at T = 1.2Tc:

a) 2D correlation function b) correlation function after averaging over the angles.
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averaging over the angles. Since the sample size is substantially larger than in Section IIA,

the fluctuations are smaller. For the same reason, the volatility of the flattened correlation

function is actually higher. A more detailed analysis is presented in Section IV. At high

temperatures this approach to generating rough surfaces seems to be better than the one from

Section IIA since it allows working with larger samples without involving more computation

resources. The situation inverses closer to the transition and below when the relaxation

times increase.

III. PHYSICAL APPLICATIONS

A. 1D applications: ultracold neutrons in a rough waveguide

Experimental observation of quantization of motion of ultracold neutrons by gravitational

field [19] was one of the most interesting recent achievements in neutron physics. This is a

significant breakthrough in a field with a relatively long theoretical and experimental history

going back at least into the late 1960-s; for a review and a list of publications in the field

see Ref. [20]. The discrete quantum states for neutrons in the Earth gravitational field

have extremely low energies with the scale of 1 peV. Though the quantization of motion

by a linear field such as gravity is not new by itself [21] and has been already encountered

experimentally in a low-temperature context [22], the experimental access to a spectrum of

discrete energy states in such a low energy range opens the way for using ultracold neutrons

as a very sensitive probe for extremely weak fundamental forces [20, 23–25].

Currently, the experimental resolution of gravitational states is achieved by sending a

horizontal beam of ultracold neutrons between two horizontal mirrors. The top mirror, the

”ceiling”, is intentionally made rough, while the bottom one, the ”floor”, is nearly ideal (the

quality of this mirror is such that it can ensure thousands of almost specular consecutive

reflections [26]). The mirrors are reflective only when the normal component of velocity is

below a certain threshold; neutrons with velocities above this threshold are absorbed by the

mirrors’ material. The beam of ultracold neutrons entering this wave guide contains neutrons

with a horizontal velocity noticeably higher than this threshold and a much smaller residual

vertical component. The scattering of neutrons by the rough ceiling turns the velocity vector

thus increasing its vertical component and leading, eventually, to absorption of the scattered
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neutrons. The quantization of the vertical motion of neutrons by the Earth gravity field

corresponds to the quantization of the amplitude of bounces of neutrons from the floor

mirror. In quantum language, the turning of the velocity is equivalent to scattering-driven

transitions of neutrons into the higher quantum states. Only the neutrons in the lowest

gravitational states with the lowest kinetic energy of vertical motion and, therefore, the

lowest amplitudes of bounces, which could not reach the rough ceiling, continue bouncing

unimpeded along the floor mirror and are counted by an exit neutron counter.

Recently we demonstrated that the results of such experiments strongly depend on the

correlation properties of roughness on the ceiling mirror [27]. The experiments are unique

in a sense that the roughness of the ceiling mirror is created artificially. In this application,

the spatial scale l0 = ~2/3 (2m2g)
−1/3 ∼ 5.871 µm is the size of the lowest quantum state

in the infinite gravitational trap (open geometry without the ceiling); m is the neutron

mass. Since this length scale l0 is relatively large, it is possible to create the random

roughness with optimized correlation properties by computationally generating the required

pattern and transferring it onto the real surface. In earlier experiments the roughness was

neither optimized nor properly measured. The observation of the surface profile under the

microscope yielded the average distance between the nearby maxima and the height of the

peaks about 1.19 and 0.119 in units of l0. These numbers were accepted as the correlation

radius R and the amplitude ` of surface roughness, r = R/l0 = 1.19 and η = `/l0 = 0.119,

and the roughness was assumed to be Gaussian. Of course, neither of these assumptions

could be justified, and the comparison of the theoretical results to the experimental data

required adjustments. If the planned new experiments follow the suggestions of this paper,

this uncertainty could be eliminated.

An additional attraction of this system is that the geometry of the beam experiment

allows one to deal with a practically 1D roughness application in which the motion along

the waveguide surface in the direction perpendicular to the beam can be made irrelevant.

In Ref. [27] we demonstrated that, as far as the neutron exit count Ne is concerned, all

system parameters collapse into a single constant Φ,

Ne =
∑

Nj (0) exp (−Φbj (h)) , (20)

where Nj (0) are the numbers of neutrons in the in the quantized states j that enter the rough

waveguide, h is the average width of the waveguide, and bj (h) are the values of the wave
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functions of neutrons in the gravitational states j on the ”ceiling”. Therefore, the problem

of computationally optimizing the exit count so that it exhibits the most pronounced step-

wise dependence on the waveguide width h reduces to increasing the value of constant Φ by

manipulating the computer-generated correlation functions.

The explicit expression for Φ via the correlation function ψ, Eq. (1), is [27]

Φ (η, r) = Aη2r

∫ 1

0

z2ψ (y) dz (21)

where the constant A is determined by the size and the material of the waveguide (in

experiments [19, 20], A = 92 ·10−5κu2c/πχ), and the variable y in the argument of the power

spectrum of the surface roughness ψ (qr) is

y =
1
√
χ

(
1−
√

1− z2
)√

ucr. (22)

Here uc = Uc/mgl0, Uc is the energy threshold for the neutron penetration into material of

the waveguide, χ = Uc/E < 1 is the ratio of this threshold energy to the full kinetic energy

of neutrons in the beam (in past experiments χ ≈ 0.16), and κ ≈ 1 differs from 1 only

because of small variations in the time of flight through the waveguide.

As a result, the computation of Φ, and, therefore, the expected neutron count, for various

correlation functions ψ reduces, essentially, to numerical integration in Eq. (21). The most

important feature here is that, because of the large value of uc (in experiment uc ∼ 105),

the main contribution to the integral comes from not the whole peak in the power spectrum

ψ (qr), but from the immediate vicinity of its center at qr = 0. This means that the tails in

the computationally generated power spectrum ψ (qr) are irrelevant, but also that the only

issue is to correctly reproduce the vicinity of ψ (0). However, the closer one gets to ψ (0),

the more important is the tail of the correlation function ϕ (x/r) at large x.

Our recommendation is to generate a random rough profile using the Monte Carlo simu-

lations on the basis of the 1D Ising model as described in subsection IIB. In this particular

case we prefer this method to the one from Section IIA because it allows easier computation

for a large number of points N resulting in smaller fluctuations. Another important benefit

is that the transferring the generated pattern to the real mirror is also much simpler because

all the inhomogeneities for the Ising profile have the same constant amplitude ±η (Figure

6a). In this case, the roughness correlation function is exponential ζE, Eq. (19), with a
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simple power-law power spectrum

ψE (qr) = 1/
(
1 + q2r2

)3/2
(23)

which yields the following analytical expression for Φ:

ΦE '
1

3
Aη2r 2F1

(
3

4
,
3

2
,
7

4
,−r

√
uc/χ

)
(24)

(see [27], Eq. (38)).

Improving the experimental outcome, namely observing the well-pronounced quantum

steps in neutron count, requires the value of Φ to be as large as possible. One can get

the desirable value of Φ by simply manipulating values of the correlation radius and the

amplitude of surface roughness in computer simulation. The only limitation here is that the

amplitude of the mirror roughness η should be smaller than both the correlation radius r

and the width of the waveguide h,

η � r, h. (25)

When making estimates of the optimal values of η and r, it is convenient to rewrite Eq.

(24) in the limit uc →∞,

ΦE (uc →∞) ' 1.38
Aη2

r1/2
(4χ)3/4

3u
3/4
c

. (26)

This equation does not have very high accuracy and for final calculations one should still

use Eq. (24). However, Eq. (26) highlights the dependence of ΦE on η and r in a very

simple form. Since the value of ΦE, Eq. (26), is more sensitive to η than to r, one should

increase η as much as possible simultaneously adjusting r. The limit is imposed by the

width of the waveguide which in experiment comes down to h ∼ 2. Therefore, the optimal

waveguide should have roughness with r = 2 and the amplitude η < 2. We would not

recommend to make η much larger than 0.2 ÷ 0.4 - the ratio η/h limits the accuracy of

measuring the waveguide width. Still, even this would allow to increase the value of Φ

several times in comparison to what it is assumed to be in previous experiments with an

additional benefit of ensuring a perfectly controllable environment. The anticipated value

of ΦE for these parameters is in the 43.5 ÷ 170 range and one should be able to see well-

pronounced quantum steps in neutron count without changing anything else in experiment.
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B. 2D applications: conductivity of ultrathin films and surface scattering

One of the most important applications is ballistic conductivity of ultrathin films with

rough surfaces in quantum size effect (QSE) conditions. There are many theoretical ap-

proaches to this problem (for a short review of earlier approaches see, for example Ref.

[28]). The equations relate the 2D conductivity of the films σ to the Fourier image (power

spectrum) of the correlation function of surface roughness ζ (q). Though these equations are

more or less transparent, the results, which involve inversion of large matrices, are not. The

difficulty arises because of the QSE-driven split of the 3D energy spectrum ε (p) into a large

set of 2D minibands εj (q) and the corresponding slicing of the Fermi surface. As a result,

the transport equation becomes a large set of coupled equations in the miniband index j.

For the purpose of this paper, namely for analysis of the correlation functions extracted

from a numerical or physical experiment, it is better to restrict oneself to the situations

in which it is possible to solve this matrix transport equation analytically and get simple

explicit expressions for σ via ζ (q) (see, for example, Ref. [8]). We will not give here the

details of the derivation and only present these final expressions.

In the first case only the first miniband j = 1 is occupied (ultrathin films with very strong

spatial quantization, ~2/mL2 ∼ εF ) and

σ =
e2

3~2m
τ1q

2
1 =

2e2q21
3~2m2

1

W
(0)
11 −W

(1)
11

. (27)

Here the lower index 1 indicates that everything is restricted solely to the first miniband

with the Fermi momentum q1 and W
(0,1)
11 are the zeroth and first angular harmonics of the

roughness-driven scattering probabilities W11 (|q− q′|),

W11 (|q− q′|) =
2~

m2L2
ζ (|q− q′|)

(π
L

)4
(28)

over the angle between the vectors q and q′ (this equation assumes that the correlation

properties of both surfaces of the film are the same and that there are no intersurface

correlations).

The second analytical case is the case of small qR. In this limit, the correlation function

is a constant with the zero first harmonic,

W
(0)
jj = 2W (qR→ 0) , W

(1)
jj = 0 (29)
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with

Wjj′ (qR→ 0) =
2~

m2L2
ζ (qR→ 0)

(
πj

L

)2(
πj′

L

)2

. (30)

and

σ =
2e2

~
(L/π)4

2S (S + 1) (2S + 1) ζ (qR = 0)

∑
j

(
Lqj
~j

)2

. (31)

where S is the total number of the occupied minibands (the number of slices of the Fermi

surface by quantizing planes pzj = πj~/L) which is given by the equation

S (L) = bpFL/π~c (32)

Eqs. (29) − (31) involve the power spectrum of the surface roughness ζ (q) at q = 0,

which acquires the following form after the angular integration (see, for example, [8]):

ζ (q = 0) = 2π

∫
ζ (|s|) d2s = 2πJ0 (0) intζ (s) sds. (33)

The value of ζ0 ≡ ζ (q = 0) is important not only for conductivity of ultrathin films, but

also for a much more general class of problems associated with scattering longwave particle

(or waves) on rough surfaces. Scattering in longwave limit q → 0 is always described by

a single constant, which here is, essentially, ζ0. Therefore, ζ0 is one of the most important

characteristics of the surface which determines a large number of observables.

Note, that all our surface correlators ζ (s) in Ref. [8] are introduced in such a way that

in the longwave limit ζ (q → 0) → 2π`2R2. In what follows we will evaluate ζ (q → 0) for

rough surfaces. Here one has a choice: either to fit the correlation function extracted from

the experimental or numerical data to one of the model correlators and to get 2π`2R2 from

the best fit values of ` and R, or to get ζ (q = 0) directly from the data by, for example,

direct numerical integration (33) of the extracted data. The accuracy with which we will be

able to evaluate the value of ζ0 will provide a much more reliable physical evaluation of the

data and techniques than the standard deviation between the extracted correlators and the

fitting functions.

IV. PROBING AND IDENTIFYING THE ROUGH SURFACES

In this section we will analyze what kind of information one can extract from the surfaces

generated by methods of Section II. This will also give us an insight into difficulties facing
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experimentalists trying to extract the correlation function from the scanning microscopy.

In this regard, the problems facing the computational physicists and experimentalists are

roughly the same: limited sample sizes, noticeable fluctuations, large domains, and long

relaxation times. Since we know exactly how the ”true” roughness correlation function

should look like when we are using the methods of Section II, we are able to point at

potential pitfalls in extracting information from experimental and computational data when

one does not know the ”true” correlation function. We will judge the quality of the surface

analysis not by the standard deviation σ between the extracted data and a fitting function,

but by the values of the physically important variables - Φ for the 1D neutron problem and

ζ0 = ζ (q → 0) for the conductivity of and scattering from 2D films in the longwave limit as

explained in Section III.

Our goal here is to show that the use of a fitting function of a wrong shape can invali-

date both the computations and the experiments. First, the parameters of the correlation

function ζfit obtained from the best fit to ζexp strongly depend on the assumption about the

functional form (shape) of the ”real” correlator. For example, the analysis of the same STM

measurements of ζexp on the basis of the Gaussian and exponential correlators in Ref. [29]

provided vastly different values of the correlation radius R. Since the shape of the ”real”

correlator is not known a priori, it is almost impossible to know what function should be

fitted to ζexp and what is the reliability of the extracted parameters.

Note that the standard deviation σ is supposed to be the deviation between the extracted

(”measured”) correlator ζexp and the ”true” correlation function. When the ”true” correlator

is unknown, as in most experiments, what is presented as σ is the deviation between the

extracted correlator and the models used for fitting,

σ2 =
2

N

N/2∑
j=1

(
ζexpj − ζfitj

)2
. (34)

which describes the quality of the fit and tells us nothing about appropriateness of the fitting

function.

Eq. (34) is highly weighted towards the tails of the correlator, especially when the

correlation radius is comparable to the probing step. When the fitting functions rapidly go

to zero at large distances, σ, Eq. (34), does not even depend much on the choice of the

fitting function while the physical results clearly do. When one uses the short-range fitting

functions, the presence of long fluctuation-driven tails may even emulate the presence of
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some additional large correlation radius R2 introduction of which can noticeably decrease

σ. [The second, large correlation radius was observed, for example, in Ref. [30]. We do not

know how to verify the reliability of such conclusions without doing the same measurements

on a relatively large number of other surfaces, including much larger sample sizes. This,

of course, is not practical for the already difficult experiments]. The outsize effect of these

fluctuation tails often seems even more important than the difficulties in resolving the shape

of the main maximum [11].

The second intrinsic difficulty arises when dealing with surfaces with a large correlation

radius r. The large value of r means that the surface is covered by large size inhomogeneities

(domains). As explained in the end of Section IIA, the presence of a small number of large

domains gives rise to the appearance of spurious secondary peaks of the radius r at positions

that correspond to the integer numbers of average distances between the domains. These

peaks reflect interdomain correlations and not physical interactions.

In addition to analyzing the extracted correlators with the help of various fitting functions,

we will also perform the direct Fourier analysis of the correlation data sets as it is sometimes

done for experimental data. This should, in principle, give us the full power spectrum of the

correlations which we use for direct calculation of observables. This approach allows one to

avoid the pitfall of using the fitting functions of a ”wrong” shape. However, this approach

encounters difficulties of a different type. It utilizes all the erroneous information which is

contained in the fluctuations while all the fitting function of ”right” and ”wrong” shapes,

which all rapidly go to zero at large distances, simply disregard the long fluctuation-driven

tails. Of course, one can always introduce the high frequency cutoff when doing the spectral

analysis, but then the physical results become dependent on the guess for the cutoff.

We start from the 1D case in application to our neutron problem. Table I contains exam-

ples of three runs based on Section IIA. In each run we generate a rough surface with a Gaus-

sian correlation of inhomogeneities with r = 1.19 and η = 0.119 which is supposed to be close

the real experimental setup. The main physical parameter Φ, Eq. (21), which determines the

neutron count behind the waveguide, for such roughness is equal to Φ = 23.48. After each nu-

merical run, we fit the observed correlation function with a Gaussian,
(
ηG
)2

exp
(
−s2/2rG2

)
,

exponential,
(
ηE
)2

exp
(
−s/rE

)
, and power law,

(
ηPL

)2
/
[
1 +

(
s/rPL

)2]3/2
, correlators and

extract the best fitting values ηG,E,PL and rG,E,PL for the amplitude and the correlation

radius. Then we recalculate the value of Φ, Eq. (21), using these fitting functions. The
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Table contains values of Φ for these three types of fitting correlators, ΦG,E,PL, the standard

deviations σG,E,PL for the fittings, and the fitting parameters rG,E,PL
fit which provide the best

fits. To save space, we do not present the fitting parameters ηG,E,PL
fit which were all in the

range 0.118÷ 0.123. The Table also contains the values Φnum and σnum obtained from the

Fourier analysis with a large number of harmonics (half the number of the data points; thus

a vanishingly small value of σnum ∼ 2 × 10−17). The latter procedure is, essentially, equiv-

alent to direct numerical integration (21) of the power spectrum of the observed correlator

with all its fluctuation-driven tails.

# rG, σG × 104 rE, σE × 104 rPL, σPL × 104 σnum × 1017 ΦG, ΦE, ΦPL, Φnum

1 1.19, 5.24 1.59, 5.81 1.44, 5.81 1.92 23.86, 18.19, 18.81, 21.96

2 1.15, 4.49 1.53, 4.56 1.36, 4.64 1.83 23.33, 17.84, 18.65, 21.14

3 1.25, 4.37 1.69, 4.40 1.54, 4.47 1.69 23.56, 17.26, 17.85, 20.96

Table I. Three numerical runs based on Sec. IIA in application to our neutron prob-

lem. Rough 1D surfaces emulate Gaussian correlation of inhomogeneities η2 exp (−x2/2r2)

with r = 1.19 and η = 0.119 as it was assumed in experiment. The expected value

of the main physical parameter Φ, Eq. (21), is Φ = 23.48. The extracted correlators

were fitted with Gaussian, ηfitG exp
(
−s2/2rfitG

)
, exponential, ηfitE exp

(
−s/rfitE

)
, and power

law, ηfitPL/

[
1 +

(
s/rfitPL

)2]3/2
fitting functions. The table contains the best fitting values of

rfitG,E,PL, together with σG,E,PL, and the recalculated values of ΦG,E,PL. The columns with

Φn and σn give the values of Φ and the standard deviation when the spectral decomposition

of the data was put directly into equations without fitting.

The results are very informative. The quality of the fits σG, σE, σPL for all three types

of the fitting functions were more or less the same, about 5 × 10−4, but the results for

the physically important parameters ΦG,E,PL differed considerably, by about 25%. In our

experiment, the ”true” shape of the correlation function was known to be Gaussian and,

not surprisingly, the fitting by the Gaussian function produced the values of Φ very close

to the ”true” value 23.48. This brings us to an inevitable conclusion that the quality of fit

(σ) of measured surface correlations by some ad hoc correlator does not tell much about

the quality of physical conclusions. Note that the results for fitting by the power law and

exponential correlation functions were relatively close to each other and very different from

those for the Gaussian fit. The explanation is simple: the Gaussian function has a much
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shorter tail.

Interestingly, feeding the Fourier image of experimentally observed correlator directly into

the equations without any fitting does not do much to improve the quality of conclusions.

The reason is simple: with this approach we are using too much information about the long

distance correlations, which are determined by the fluctuations and not by any physical

forces. Still, this approach for our 1D physical problem works a little bit better than making

a wrong guess on the shape of the correlation function.

The results for our 2D problem on conductivity of films are different because of different

dimensionality and smaller linear sizes of our samples. The corresponding results are given in

Table II. Here we were generating the Gaussian rough surface with the correlation function

ζ (|s|) = exp
(
− |s|2 /8

)
(i.e., η = 1, r = 2) for which the theoretical value of ζ0 ≡ ζ (q = 0) =

8π ≈ 25.13. The sample size was 61 × 61 points. The Table contains the results extracted

from the best fit of the extracted correlator to the Gaussian, exponential, and power law

functions. The quality of the fits (the values of σ) here is worse than in the 1D case above

though the overall number of the data points is larger (3600 vs. 2000 points): the linear size

of the sample is noticeably smaller while the correlation radius is bigger. The Table provides

the values of the extracted fitting parameters η and r, values of σ, and, most importantly,

the corresponding values of the physical observable ζ0.

# ηG1, rG1, ζ
G1
0 , σ × 102 ηG2, rG2, ζ

G2
0 , σ × 102 ηE, rE, ζ

E
0 , σ × 102 ηPL, rPL, ζ

PL
0 , σ × 102

1 1.04, 1.97, 25.3, 5.7 1.04, 1.95, 25.89, 9.5 1.14, 2.04, 33.81, 6.2 1.08, 2.45, 44.03, 5.9

2 1.10, 1.80, 24.37, 6.5 1.10, 1.78, 27.91, 8.5 1.20, 1.76, 27.91, 7.4 1.14, 2.15, 37.75, 7.2

3 0.90, 1.84, 24.37, 4.1 0.91, 1.82, 17.09, 6.0 0.98, 2.05, 25.17, 4.3 0.94, 2.40 , 31.04, 4.1

4 1.00, 1.98, 25.0, 1.9 1.00, 1.97, 25.0, 2.4 1.10, 2.11, 33.8, 2.9 1.05, 2.49, 42.9, 2.4

Table II. The same as in Table I for generated 2D rough Gaussian surfaces with r = 2

and η = 1. The expected value of the main physical observable ζ (q = 0) = 8π. The table

contains the extracted fitting parameters ηfitG,E,PL and rfitG,E,PL, together with σG,E,PL, and the

recalculated values of ζ0. The Gaussian fit was done independently for the 1D correlation

function ζ (|s|) (index 1) and the 2D correlation function ζ (s) (index 2). The fourth row

gives the results for the correlation function averaged over 10 independent runs.

In this Table, the first three rows represent three different numerical runs. The fourth

row provides the results of averaging of the data extracted from 10 numerical runs (in
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experiment, this is equivalent to averaging the data extracted from 10 different pieces of the

same surface).

As it was explained in Section II, we have two options when dealing with 2D correlations

which, because of fluctuations, always exhibit anisotropy even when the underlying true

physical correlator is isotropic. We can either deal with an anisotropic 2D correlator ζ (s)

and fit it to 2D fitting functions, or flatten the observed 2D correlator to a 1D function

ζ (|s|) by averaging away the anisotropy. The drawback of the latter procedure is that the

resulting 1D correlator, as explained above, exhibits increasing volatility at large distances.

This volatility is not very important when using our simple fitting functions which vanish at

large distances anyway, but makes it impossible to perform the Fourier analysis of unfitted

experimental data and feed the results directly into equations as it was done for our 1D

neutron problem. In this case, the results were simply unstable.

We use both options when fitting using the Gaussian correlator. In the first column of

the Table we present results obtained from the flat (1D) file ζ (|s|). The second column

gives the results of fitting ζ (s) by a 2D Gaussian function. For exponential and power law

correlators in columns 3 and 4, we use only the flattened file ζ (|s|).

Feeding the results of the spectral analysis of extracted raw correlation function directly

into the equations (the last column), as it was done for the neutrons, does not work at all

- the results for ζ (q = 0) are unstable because of anisotropic fluctuations. Possibly, this

procedure might have been used if we would had been able to increase the sample size. We

are not able to check this because time and memory requirements are increasing as L4 with

an increase in the linear size L. However, it is not clear whether increasing the linear size L

would have been of much help: the amplitude of fluctuations would have indeed gone down,

but the length of the fluctuation tails would have increased. This procedure was giving

stable, but still not very good results, when we use the correlation function averaged over 10

runs (the last row). Here the value of ζn10 obtained from ζ (|s|) is 18.79, and ζn20 obtained from

the 2D Fourier analysis of ζ (s) is 17.6. Even these two numbers are much worse than those

obtained with the help of fitting functions. However, averaging the correlation function over

several runs (or, in experiment, over several parts of the rough surface [10, 15]) to decrease

the anisotropic fluctuations is an inherently dangerous procedure. It can work well if one

knows beforehand that the ”true” correlator is a simple slowly decreasing function. If, for

example, the correlation function contains an oscillating tail, this averaging could destroy
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important physical information. The same uncertainty does not allow one to simply cut off

the fluctuation tails.

As one can see from Table II, here, as in the case of neutrons, the values of σ are similar

for all fitting functions, but only the fitting function with the correct (Gaussian shape)

yield good results for the physical observables (in this case, ζ0). In contrast to the neutron

problem, the accuracy of the results for conductivity obtained with the help of wrong fitting

functions, which is not good by itself, is nevertheless preferable to putting the Fourier image

of the raw data directly into the equations.

The next two tables provide the similar data analysis for surfaces generated using the

Ising model. Table III presents the results of five runs for the application of the 1D Ising

generator to the neutron problem. The data in the columns are arranged similarly to Table

I. The parameters of the ”true” correlation function are the same, r = 1.19 and η = 0.119.

However, since the Ising model corresponds to the exponential correlation function, Eq. (19),

and not to the Gaussian correlator as in Table I, the true value of parameter Φ, Eq. (21),

is now Φth
E = 19.5 (with the same values of r and η Φth

G = 23.7 and Φth
PL = 20.4). Since the

simulation is based on the Ising model with spins ±1, the extracted average amplitudes of

roughness differ from η = 0.119 by less than 1% for all fitting functions and there is no need

to present the values of ηE,G,PL. The size of the sample was N = 1000 and we performed

106 Metropolis cycles. Of course, the fit using the exponential correlator provides the best

values for Φ. Of the other two fits, it is not at all clear why in this case the power law fit

works much better than the Gaussian one. The last column in the Table gives the values

of Φn which obtained by direct spectral analysis with N/2 harmonics of the raw correlation

data without any fitting. These data display the worst agreement with Φth
E = 19.5 while

the value of σn is by 13 orders of magnitude better than σ for any of our fitting functions.

The explanation is the same as before: the full set of raw data is dominated by the long

correlation tails which come from the fluctuations.
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# rE, σE × 104 rG, σG × 104 rPL, σPL × 104 σn × 1017 ΦE,ΦG,ΦPL,Φn

1 1.27, 6.69 0.85, 6.93 1.26, 6.72 3.79 18.6, 27.4, 19.6, 25.8

2 1.23, 6.83 0.88, 6.94 1.25, 6.84 1.49 19.1, 26.8, 19.7, 26.2

3 1.04, 6.51 0.73, 6.74 1.07, 6.54 2.82 20.7, 30.2, 21.4,27.3

4 1.18, 6.65 0.87, 6.71 1.23, 6.62 3.01 19.7, 27.1, 20.0, 26.1

5 0.94, 6.44 0.74, 6.42 1.03, 6.38 1.91 22.2, 29.8, 21.9, 27.7

Table III. Five Monte Carlo runs for the 1D Ising model. The ”true” correlation function

is exponential with r = 1.19 and η = 0.119 and yields Φth
E = 19.5. The correlation functions

extracted from the generated rough surfaces were fitted with the exponential, Gaussian,

and power law functions. The Table contains the best fitting values of rE,G,PL and the

corresponding values of σE,G,PL and ΦE,G,PL. Since the simulation is based on the Ising

model with spins ±1, the best fitting values of η differed from 0.119 by less than 1% for

all fitting functions. The values of Φn were obtained by direct spectral analysis of the raw

correlation data. The size of the sample was N = 1000 and we performed 106 Metropolis

cycles.

The last table, Table IV, presents results for three rough surfaces generated using the 2D

Ising model plus a row for the correlation function averaged over ten runs. The observable

here is again ζ0.

# rE1, σE1 × 102 rE2, σE2 × 102 rG, σG × 102 rPL, σPL × 102 ζE1
0 , ζE2

0 , ζG0 , ζ
PL
0

1 1.56, 2.03 1.60, 2.75 1.06, 2.41 1.55, 2.12 15.33, 16.18, 7.01, 15.16

2 1.43, 1.56 1.43, 2.27 1.06, 1.89 1.48, 1.63 12.80, 12.94, 7.11, 13.78

3 1.53, 1.66 1.53, 2.49 1.11, 2.04 1.57, 1.75 14.61, 14.75, 7.80, 15.43

4 1.54, 0.69 1.57, 0.89 1.10, 1.42 1.57, 0.91 14.99, 15.43, 7.67, 15.46

Table IV. Results for three rough surfaces generated using the 2D Ising model (the first

three rows) and for the correlation function averaged over ten runs (the last row). The

Monte Carlo simulations have been done at T = 1.2Tc with 106 Metropolis cycles as in

Figure 7. The surface size is 100 × 100. The Table is arranged similarly to Table II. The

Table contains the best fitting values of rE,G,PL and the corresponding values of σE,G,PL and

ζE,G,PL
0 . The values of ζn1,20 for direct spectral analysis of the raw correlation data are given

in the text. The results for the exponential fits ζE1,2
0 for ζ (|s|) and ζ (s) should be the closest

to the true physical parameters.
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The computations are done above the phase transition, T = 1.2Tc. At this temperature

the correlation function is, probably, still close to the exponential (Figures 7b and 7c), but it

is not clear how close. Here we do not know exactly what should be the ”true” value of ζ0, but

expect that the exponential correlator provides the best estimate. At this temperature the

domains are relatively small (see Figure 7a) and the relaxation times are manageable. The

size of the surface is relatively large, 100× 100, and each computation runs 106 Metropolis

cycles. The Table is arranged similarly to Table II. Here again the values of σ for all fitting

functions are close for each other while the values of ζ0 and r are noticeably different. The

results for the exponential fit should be the closest to the true physical parameters. The

first column for the exponential fitting gives results obtained from the flat (1D) file ζ (|s|).

The second column gives the results of fitting ζ (s) by the 2D exponential function. For the

Gaussian and power law correlators, columns 3 and 4, we used only the flat files ζ (|s|).What

is somewhat surprising is that the results for our choice of the power law correlator, which

is the Fourier image of the exponential one, are again close to those using the exponential

fit. What is even more surprising, the values of ζ0 for the power law fit using 1D ζ (|s|) are

systematically closer to the exponential fit using 2D ζ (s) than to the exponential fit using 1D

ζ (|s|). The Gaussian fit yields very different ζ0 while the value of σ is comparable with the

others. The direct spectral analysis of the raw correlator data again yields the worst physical

results and changes from run to run; there results are not even worth listing. The spectral

analysis of the correlation function averaged over ten runs worked better than the Gaussian

fit and yielded ζn10 = 17.42 for the flat files ζ (|s|) and ζn10 = 18.70 when working with the

2D correlation function ζ (s). The differences between results obtained using different fitting

functions once again illustrate the uncertainty in comparing computational and experimental

data to theoretical results. One should have at least some information about the shape of

the ”true” correlation function.

V. SUMMARY AND CONCLUSIONS

In summary, we looked at reconciling numerical and physical measurements of random

rough surfaces with theoretical results using the roughness correlation function. We demon-

strated that data extracted from scanning microscopy of the surface profile can be insufficient

for unambiguous determination of the shape of the correlation function (for some of the re-
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cent experimental attempts to extract the correlation function from the scanning microscopy

see Refs. [7, 10, 12, 15, 29, 30]). The same is true for computational experiments in which

a random surface is generated without an effort to reproduce a known correlation function.

There are two main obstacles apart from the accuracy of measurements. The first one

is the presence of fluctuations which are unavoidable for finite samples. The second one

is the relationship between the step size b, correlation radius r, and the overall number of

data points N . To properly recover the shape of the correlation maximum, one needs the

step size b to be noticeably smaller than the correlation radius r. If one decreases b (or,

what is the same, increases r) while keeping the overall number of data points N , which is

determined by the technical or computational abilities, constant, the data set measured in

units of r effectively shrinks. Since r determines the size of correlated clusters (domains), the

full data set will cover the smaller number of domains. This, in turn, gives rise to noticeable

spurious, purely geometrical interdomain correlations which have nothing to do with real

physical interactions. These interdomain correlations can masquerade as the presence of an

additional, larger correlation radius. The same effect makes reproducing surfaces with very

large correlation radii virtually impossible.

We analyzed two methods for numerical generation of surfaces with predetermined rough-

ness correlation functions. This was done with practical physical applications in mind: 1D

beams of ultracold neutrons in a rough waveguide, resistivity of ultrathin rough films in

quantum size effect conditions, and particle or wave scattering in the longwave limit. We

judged the quality of the analysis of the extracted correlation functions by the accuracy of

the predictions for observables for these applications.

For the neutron problem, for which the roughness of the waveguide is introduced on

purpose, we suggest a practical way of preparing the rough mirror for optimization of the

GRANIT-type experiment [19, 20, 27]. Our recommendation is to generate a random rough

profile using the Monte Carlo simulations on the basis of the 1D Ising model with the

correlation radius r = 2 and the amplitude of roughness in the 0.2÷0.4 range and to transfer

this profile onto the mirror surface. This allows one to increase the value of Φ to 43.5÷ 170,

i.e., several times times in comparison to what it is assumed to be in previous experiments

while creating a perfectly controllable environment. This is sufficient for showing the well-

developed quantum steps in the exit neutron count and produce neutrons with well-defined

energies in the peV range. Since all the lengths here are in the units of 6 µm, this procedure

35



seems to be feasible.

There are several challenges for identifying the roughness correlator from experimental

and numerical data on the surface profile even if one disregards all the issues concerning the

accuracy of profile measurements. Most importantly, the standard deviation σ between the

measured or generated correlation function and some fitting function cannot be considered

a good predictor for physical results.

The value of σ extracted from fitting is strongly weighted towards the tail of the corre-

lation function. If the correlator rapidly decreases at large distances, the values of σ are

more or less the same for all reasonable fitting functions and measure the fluctuations with-

out saying anything about appropriateness of the chosen fitting functions. Meanwhile, the

physical observables are very sensitive to the shape of the correlator. As a result, the error

in physical results can by far exceed σ.

Decreasing the size of the fluctuations requires increasing the size of a sample. Increasing

the size of the sample, on the other hand, increases the role of the fluctuation-driven tails

of the correlators at the expense of the contribution from the peak area in which one would

expect to observe main differences between the physically different correlators.

One option for suppressing the fluctuation-driven tails is to average the numerically or

experimentally measured correlation function over several samples as it is sometimes done

in experiment [15]. However, this operation can be inherently dangerous when, for example,

the correlation function itself has longer tails of alternating sign. If one knows that there

are no long range correlations, this averaging over several samples can be very helpful for

2D roughness. Such averaging has not been necessary for 1D roughness in our numerical

experiments. The same difficulty persists if one simply cuts off the long range tails assuming

that they are driven only by the fluctuations.

Generating or measuring the correlation function with a large correlation radius R re-

quires a noticeable increase in the sample size N : the important parameter is not the overall

number of the data points N , but the number of inhomogeneities N/Ni where Ni is the num-

ber of points in a typical inhomogeneity. The problem is exacerbated in the two-dimensional

case when Ni grows proportionally to R2. The shape of the correlation function with not very

large N/Ni could be very misleading and point, rather convincingly, at fictitious long-range

correlations.

In general, it is much easier to generate a rough surface with a desired correlator in a
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1D rather than in a 2D case. Apart from the obvious difficulty that the 2D sample of the

same linear size L requires the use of N = L2 data points rather than N = L as in the 1D

case, there is an additional difficulty associated with a greater volatility of the correlation

function due to the residual anisotropy in generated or measured correlators.

We also tried the alternative approach to data analysis without fitting functions by per-

forming the spectral analysis of the raw correlation data and using the results for direct

calculation of observables. In 1D examples this approach worked somewhat, but not much,

better than using a fitting function of a wrong shape, but still noticeably worse than us-

ing the ”right” fitting function. This approach did not work for us in 2D cases because of

the fluctuation-driven anisotropy of the extracted correlators and smaller linear sizes of the

samples than in 1D.

If there are no restriction on the amplitudes of inhomogeneities, as in the case of macro-

scopic roughness, one can easily generate a surface with any given correlation function.

Generating random surfaces with discretized (atomic) inhomogeneities, i.e., inhomogeneities

with amplitudes of integer sizes, presents unique challenges. Here the only reliable method

is to use a solvable lattice model (for example, the Ising model). The universe of exactly

solvable models is limited and, therefore, one can generate the surfaces with discrete ampli-

tudes of inhomogeneities with just few types of the predetermined surface correlators which

may or may not reflect the real rough surfaces.
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VI. FIGURE CAPTIONS

Figure 1. (color online) An example of the correlation function (black solid line) for a

generated 1D surface which should emulate a surface with Gaussian correlation of inhomo-

geneities ζ (x) = exp (−x2/8) (blue dashed line). The total number of points is 2000, the

average amplitude of roughness η = `/l0 = 1, the correlation radius r = R/l0 = 2.

Figure 2. (color online) Correlation functions for 1D generated surface profiles which

should emulate the Gaussian (black; curve 1), exponential (red; curve 2), and PL (blue; curve

3) correlation functions. In the peak area (Figure 2a) the differences are very pronounced,

but the fluctuation-driven tails (Figure 2b) are almost identical. All three computations

started from the same set of N = 2000 random numbers.

Figure 3. (color online) Dependence of the standard deviation σ between generated and

exact correlation functions on the sample size N . The solid line is
√

2/N . The generated

roughness is supposed to have Gaussian correlations with r = 2.

Figure 4. (color online) An example of a 2D rough surface of the size 60 × 60. The

roughness emulates isotropic Gaussian correlations with r = 2, ζ (s) = exp (−s2/8) (black

line 1 in Figure 4b). (a) 2D correlation function ζ (x, y) (b) The correlation function ζ (s)

after averaging over the angles (line 2; blue).

Figure 5. (color online) Correlation function for a generated surface emulating

ζ (i− k) = 4 exp (− |i− k| /2) (line 1; black) after rounding the profile data points yi to the

nearest integer number yi. Line 2 (red): the generated raw correlator ζ (|i− k|) = 〈yiyk〉,

line 3 (blue): the correlator for the discretized surface 〈yiyk〉.

Figure 6. (color online) An example of the correlation function for a 1D rough surface

y (x) and its correlation function ζ (s) generated using the Ising model (red line 2). The

parameters in the correlation function r = 1.19 and η = 0.119; black line 1 is given by Eq.

(19) (σ = 6.83× 10−4).

Figure 7. (color online) An example of a 2D random rough surface generated using the

Ising model at T = 1.2Tc: a) 2D correlation function b) correlation function after averaging

over the angles.
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VII. TABLE CAPTIONS

Table I. Three numerical runs based on Sec. IIA in application to our neutron prob-

lem. Rough 1D surfaces emulate Gaussian correlation of inhomogeneities η2 exp (−x2/2r2)

with r = 1.19 and η = 0.119 as it was assumed in experiment. The expected value

of the main physical parameter Φ, Eq. (21), is Φ = 23.48. The extracted correlators

were fitted with Gaussian, ηfitG exp
(
−s2/2rfitG

)
, exponential, ηfitE exp

(
−s/rfitE

)
, and power

law, ηfitPL/

[
1 +

(
s/rfitPL

)2]3/2
fitting functions. The table contains the best fitting values of

rfitG,E,PL, together with σG,E,PL, and the recalculated values of ΦG,E,PL. The columns with

Φn and σn give the values of Φ and the standard deviation when the spectral decomposition

of the data was put directly into equations without fitting.

Table II. The same as in Table I for generated 2D rough Gaussian surfaces with r = 2

and η = 1. The expected value of the main physical observable ζ (q = 0) = 8π. The table

contains the extracted fitting parameters ηfitG,E,PL and rfitG,E,PL, together with σG,E,PL, and the

recalculated values of ζ0. The Gaussian fit was done independently for the 1D correlation

function ζ (|s|) (index 1) and the 2D correlation function ζ (s) (index 2). The fourth row

gives the results for the correlation function averaged over 10 independent runs.

Table III. Five Monte Carlo runs for the 1D Ising model. The ”true” correlation function

is exponential with r = 1.19 and η = 0.119 and yields Φth
E = 19.5. The correlation functions

extracted from the generated rough surfaces were fitted with the exponential, Gaussian,

and power law functions. The Table contains the best fitting values of rE,G,PL and the

corresponding values of σE,G,PL and ΦE,G,PL. Since the simulation is based on the Ising

model with spins ±1, the best fitting values of η differed from 0.119 by less than 1% for

all fitting functions. The values of Φn were obtained by direct spectral analysis of the raw

correlation data. The size of the sample was N = 1000 and we performed 106 Metropolis

cycles.

Table IV. Results for three rough surfaces generated using the 2D Ising model (the first

three rows) and for the correlation function averaged over ten runs (the last row). The

Monte Carlo simulations have been done at T = 1.2Tc with 106 Metropolis cycles as in

Figure 7. The surface size is 100 × 100. The Table is arranged similarly to Table II. The

Table contains the best fitting values of rE,G,PL and the corresponding values of σE,G,PL and

ζE,G,PL
0 . The values of ζn1,20 for direct spectral analysis of the raw correlation data are given
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in the text. The results for the exponential fits ζE1,2
0 for ζ (|s|) and ζ (s) should be the closest

to the true physical parameters.
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