Genome-wide annotation and comparative analysis of cuticular protein genes in the noctuid pest *Spodoptera litura*

Jianqiu Liu
Shenglong Li
Wanshun Li
Li Peng
Zhiwei Chen

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution
Available at: https://doi.org/10.1016/j.ibmb.2019.04.012

This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Genome-wide annotation and comparative analysis of cuticular protein genes in the noctuid pest *Spodoptera litura*

Authors
Jianqiu Liu, Shenglong Li, Wanshun Li, Li Peng, Zhiwei Chen, Yingdan Xiao, Huizhen Guo, Jiwei Zhng, Tingcai Cheng, Marian R. Goldsmith, Kallare P. Arunkumar, Qingyou Xia, and Kazuei Mita

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/bio_facpubs/189
Highlights

- In total, 287 cuticular protein genes are annotated in *Spodoptera litura* genome.
- Most RR-1 and His-rich RR-2 CPs form a major cluster in *S. litura* chromosome 9.
- Histidine-rich RR-2 CPs are greatly expanded in *S. litura* compared to *Bombyx mori*.
- RR-1 CP genes are mostly conserved among *S. litura*, *B. mori*, and *Manduca sexta*.
- His-rich RR-2 CP genes form species-specific clades in phylogenetic analysis.
Major histidine-rich CP expansion in *S. litura*

Graphical Abstract

S. litura

- Larval (~19)
- Pharate Pupal (~1)
- Pharate Adult (~2-3)
- Pupal (~8)
- Adult

L1 L2 L3 L4 L5 L6+W

B. mori

- Larval (~28)
- Pharate Pupal(2)
- Pharate Adult(1-2)

His-rich RR-2 CPs: *B. mori*: 54 => *S. litura*: 91
Genome-wide annotation and comparative analysis of cuticular protein genes in the noctuid pest *Spodoptera litura*

Jianqiu Liu1,2, Shenglong Li1,2, Wanshun Li1,2, Li Peng1, Zhiwei Chen1,2, Yingdan Xiao1,2, Huizhen Guo1,2, Jiwei Zhang1,2, Tingcai Cheng1,2, Marian R. Goldsmith1,2,3, Kallare P. Arunkumar1,2,4, Qingyou Xia1,2, Kazuei Mita1,2

1State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.

2Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.

3University of Rhode Island, Kingston 02881, USA

4Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Laldoigarh, Jorhat 785700, India

Corresponding author

State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China. E-mail: mitakazuei@gmail.com

Keywords:

Cuticular protein

Comparative analysis
Abstract

Insect cuticle is considered an adaptable and versatile building material with roles in the construction and function of exoskeleton. Its physical properties are varied, as the biological requirements differ among diverse structures and change during the life cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins (CPs) associated with chitin, the degree of cuticular sclerotization is an important factor in determining its physical properties. *Spodoptera litura*, the tobacco cutworm, is an important agricultural pest in Asia. Compared to the domestic silkworm, *Bombyx mori*, another lepidopteran whose CP genes have been well annotated, *S. litura* has a shorter life cycle, hides in soil during daytime beginning in the 5th instar and is exposed to soil in the pupal stage without the protection of a cocoon. In order to understand how the *CP* genes may have been adapted to support the characteristic life style of *S. litura*, we searched its genome and found 287 putative cuticular proteins that can be classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAP1, CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues with content varying from 6% to 30%, comprising many more His-rich cuticular
proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in different regions of S. litura chromosome 9. We used RNA-seq analysis to document the expression profiles of CPs in different developmental stages and tissues of S. litura. The comparative genomic analysis of CPs between S. litura and B. mori integrated with the unique behavior and life cycle of the two species offers new insights into their contrasting ecological adaptations.

1. Introduction

Insect cuticle must provide an effective barrier from the natural environment. Consequently, its physical properties, such as thickness, stiffness, strength, elasticity and color, show large variations at different metamorphic stages and in different anatomical regions. Cuticles have a common fundamental structure, consisting of a procuticle composed of a filamentous chitin structure within a protein matrix covered by an epicuticle consisting of lipids and protein above which there is a dense cuticulin lamina (Locke, 2001). The variation in physical properties of cuticle is partly due to different degrees of cross-linking and hardening occurring during the process of sclerotization, whereby phenolic material is incorporated into the CPs and/or other cross-links are formed. Additionally, numerous CPs are identified in all insect species studied, and their number and features are quite different among diverse species (Willis et al., 2012).
Information about the CPs of various insects and their underlying genes has been obtained at the transcriptome and protein levels in the past few decades (Andersen, 2000; Baton et al., 2009; Dittmer et al., 2015; Dong et al., 2016; Futahashi et al., 2008; Gu and Willis, 2003; He et al., 2007; Pan et al., 2018). With the improvement of sequencing technology, more and more genomic information for insect CPs has become available, with many thousands of CP coding genes accumulated in sequence databases. Many CPs have been identified by their conserved protein sequence motifs. Andersen et al. (1995), Willis (2010) and Willis et al. (2012) have defined several CP families. The most abundant family of CPs contains the Rebers and Riddiford Consensus (R&R Consensus), which in an extended form has been shown to bind chitin (Dong et al., 2016; Rebers and Willis, 2001; Tang et al., 2010; Togawa et al., 2007; Togawa et al., 2004). Three distinct forms of this consensus have been classified as RR-1, RR-2 and RR-3 (Andersen, 1998; Andersen, 2000). The other families with conserved motifs are CPs with a 44 amino acid motif (CPF), CPF-like in the conserved C-terminal region (CPFL), the Tweedle motif (CPT), alanine-rich CPs of low complexity (CPLCA), CPs of low complexity with two invariant glycine residues in the conserved domain (CPLCG), CPs of low complexity with an invariant tryptophan in the conserved domain (CPLCW), proline-rich CPs of low complexity (CPLCP), CPs with well-conserved cysteine residues (CPCFC), a glycine-rich CP (CPG), and analogs to peritrophins (CPAP1 and CPAP3).
Spodoptera litura (Lepidoptera, Noctuidae) is an important agricultural pest distributed in the tropical and subtropical areas of Asia. Compared with the domestic silkworm, Bombyx mori, S. litura has a shorter life cycle, although it has one more larval instar (Fig. 1). In S. litura, instars L2-L5 are shorter than L1, whereas in B. mori, larval stages following L1 take increasingly longer times. Moreover, from the 5th instar S. litura hides in the soil during the daytime, comes out from the soil in the evening to eat crops throughout the night and then goes back into the soil with daybreak. Further, instead of residing in a protective cocoon from pupation until adult eclosion like B. mori, S. litura stays in the soil from the wandering stage until the moth emerges. This exposure to soil requires CPs to form a more protective cuticle for protection against abrasion and fungal and bacterial infection compared with B. mori. It is also informative to compare S. litura with M. sexta, a close relative of B. mori that stays underground during pupal and pharate adult stages.

In this study, we annotated CP genes based on the recently published complete genome sequence of S. litura (Cheng et al., 2017). Combined with transcriptome analysis, we then estimated what different kinds of CPs contribute to different types of cuticles among various tissues and in different metamorphic stages. In addition, comparative genomics and phylogenetic analysis among Lepidoptera provided information on how CP genes evolved to adapt to the different ecological niches of each of these three species.
2. Materials and Methods

2.1 Annotation of cuticular protein genes

To predict putative CP genes of *S. litura*, reported sets of lepidopteran CPs were collected from KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/) and the NCBI Reference Sequence database (https://www.ncbi.nlm.nih.gov/genbank/). CP genes were predicted for the *S. litura* genome assembly (Cheng et al., 2017) using TBLASTN (E-value <10^{-5}) and BLASTP in the non-redundant GenBank database. Predicted CP genes were further examined by HMMER3 search (cutoff E-value = 0.001) using the Pfam database to confirm conserved domains and subsequently classified into 9 families based on conserved motifs with the help of an online tool (http://bioinformatics.biol.uoa.gr/CutProtFam-Pred/) (Ioannidou et al., 2014). The annotation sequences were deposited at GenBank under BioProject accession PRJNA344815.

2.2 Phylogenetic tree construction

A total of 199 RR-1 and 361 RR-2 CDS sequences from *S. litura*, *B. mori*, and *M. sexta* were aligned using ClustalW in MEGA6 (Tamura et al., 2013). The tree was constructed using the Maximum Likelihood method based on the Jukes-Cantor model.
(Jukes and cantor, 1969). A bootstrap consensus tree was inferred from 1000 replicates
(Felsenstein, 1985). Adobe Illustrator CS6 was used for editing and drawing the trees.

For the CPFL family, 17 sequences from *S. litura*, *B. mori*, and *M. sexta* were used
for phylogenetic tree construction. The sequences were aligned using the program
ClustalW in MEGA6 (Tamura et al., 2013). Trees were constructed using the
Neighbor-Joining method (Nei, 1987), and gaps were treated by pairwise deletion.

2.3 Insect rearing, RNA library preparation, and RNA-Seq

S. litura (Ishihara inbred strain) was reared on artificial diet at 25°C under a 12h light/
12h dark cycle as described previously (Cheng et al., 2017), and RNA-Seq libraries
were prepared from different developmental stages. For 1st and 2nd instar larvae (L1D2
and L2D2), RNA was extracted from the whole body of second-day larvae. For 3rd to
5th (L3D2, L4D2 and L5D2) instar samples, RNA was derived from epidermis of
second-day larvae. For the 6th instar and wandering stages (L6D2 and W), epidermal
RNA samples were collected from second day larvae in the daytime sleeping (D) phase
and nighttime feeding phase (N). Although other tissues were removed carefully with
tweezers under a ZEISS Stemi 2000 microscope (ZEISS, Germany), small amounts of
muscle, fat body or trachea might have contaminated the libraries. RNA samples from
epidermis and wing were extracted separately from 2nd (P-2), 6th (P-6), 9th and 12th-day
pupae (P-9 and P-12: pharate adults). RNA isolation, library construction, sequencing
and analysis of transcripts were carried out as described in Cheng et al. (2017). The
RNA-seq data are deposited in the Sequence Read Archive database under SRA accession: PRJNA498147 (https://www.ncbi.nlm.nih.gov/sra/PRJNA498147). The Log2 (FPKM+0.01) (fragments per kilobase per million fragments mapped) value was used for making the heat maps.

3. Results and Discussion

3.1 Annotation of cuticular proteins

As shown in Table 1, 287 putative CP coding genes (Supplementary Table 1) were predicted and classified into eight CP families: CPR subdivided into three groups, (RR-1, RR-2 and RR-3), Tweedle, CPF, CPFL, CPLCA, CPCFC, CPAP1, CPAP3 and Glycine-rich (CPG). In addition, a collection of unclassified CPs was named CPH following Futahashi et al. (2008).

Among the 3 R&R consensus groups used to subdivide the CPR family in *S. litura*, 63 RR-1 protein genes and 129 RR-2 protein genes were identified with CutProtFam-Pred, and one RR-3 protein gene was identified by manual annotation based on its similarity to RR-3 proteins in *B. mori*.

CPAP1 and CPAP3 families, which contain one or three peritrophin A-type chitin-binding domains, are expressed only in cuticle-forming tissues (Jasrapuria et al., 2010). Thirteen *CPAP1s* and 9 *CPAP3s* were annotated in the *S. litura* genome (Table 1) (Tetreau et al., 2015).
The CPLCA family is defined by the presence of the retinin domain (pfam04527) and richness in alanine residues, varying from 13-26% (Cornman and Willis, 2009).

Four CPLCA genes (Sl_Aki-270, 271, 272 and 273) which formed a gene cluster in S. litura chromosome 28 (Chr28) were annotated. Two CPs, named BmorCPH6 and BmorCPH7 by Futahashi et al. (2008) in B. mori, were related to CPLCA by homology search. This is the first time CPLCAs, originally described in Anopheles gambiae (Cornman and Willis, 2009; Willis et al., 2012), were found in Lepidoptera.

CPF has a conserved region with 44 amino acids (Togawa et al., 2007). One putative CP gene belonging to the CPF family in the S. litura genome (SWUSI0111680) was identified which we named Sl_Aki-CPF. Seven CPFL genes, which have a conserved C-terminal region similar to CPF (Togawa et al., 2007), were found. All of the CPFL genes together with two other CPG genes (Sl_Aki-235 and 242) formed a cluster on Chr25. This genomic structure was similar to B. mori, in which three CPFL genes (BmorCPFL2, BmorCPFL3 and BmorCPFL4) and two CPG genes (BmorCPG23 and BmorCPG42) form a gene cluster on Chr23. In addition, Sl_Aki-235 and Sl_Aki-242 were orthologous to BmorCPG23 and BmorCPG42, respectively.

We identified five genes with a Tweedle motif, among which Sl_Aki-292, 293 and 294 formed a cluster on ChrZ; the other two CPT genes were not linked to other CPs.

The CPG family contains GG repeats but does not have any definite motif described in other CP families (Futahashi et al., 2008; Willis et al., 2012). However, although
some glycine-rich cuticular proteins also had an R&R Consensus or Tweedle motif (i.e., Sl_Aki-008 (RR-1), Sl_Aki-185 (RR-2), and Sl_Aki-34 (CPT)), we left them in their well defined families. In S. litura, 28 putative CP genes were classified as CPGs.

Futahashi et al. (2008) classified a group of 34 proteins as CPH which stands for cuticular protein, hypothetical, among which we assigned BmorCPH6 and 7 to CPLCA and BmorCPH1 to CPCFC. They all have signal peptides and some sequence similarity with known CP genes or with the AAP (A/V) motif often found in CPs (Futahashi et al., 2008; Magkrioti et al., 2004). Twenty-six putative CP genes which showed sequence similarity with 31 already known CPH proteins in B. mori were classified as CPH in S. litura. Most of them had signal peptides; additionally, the AAP (A/V) motif was found in 20 CPH proteins. Only 6 of these had sequence similarity with already known CPH proteins in B. mori.

3.2 Characterization of histidine–rich CPs

The amino acid composition of the 287 CPs revealed 112 His-rich CPs in which histidine residues ranged from 6.00–30.14% (Fig. 2). Interestingly, most His-rich CPs belonged to the RR-2 family, which is common to both B. mori and S. litura. B. mori has one extremely high His-rich CP, BmorCPR152, of 45%, while the orthologous CP with the highest His content in S. litura is Sl_Aki-166 with 30.14%. Figure 3 shows a large expansion of His-rich CPs of the RR-2 family in the S. litura genome. As Andersen and Roepstorff (2007) stated, histidine and several other amino acid residues
in CPs could be involved in cuticular adduct formation based on biochemical analysis of the cuticular hydrolysates from different cuticular types of *M. sexta*, desert locust *Schistocerca gregaria*, and yellow mealworm, *Tenebrio molitor* (Andersen, 2007; Andersen and Roepstorff, 2007; James L.Kerwin, 1999; Kerwin, 1999; SO Andersen 1997). EM immunolocalization utilized by Vannini and Willis (2017) support the hypothesis about the deployment of RR-1 and RR-2 localization first proposed by Andersen (1998). Namely, the RR-1 CPs are mostly found in soft cuticle like inter-segmental membranes, whereas RR-2s are restricted to hard cuticles in *A. gambiae* (Vannini and Willis, 2017). Histidino-β-dopamine is the dominating adduct in hard cuticles like those of adult beetle cuticle, lepidopteran pupae and dipteran puparia (Andersen, 2008). Consistent with these reports is that His-rich CPs were mostly found in RR-2, but not RR-1 CPs of *S. litura*.

3.3 Major clusters of CPR genes in *S. litura*

Compared to *B. mori* which has a cluster of CPR genes on chromosome 22, major expansions of *S. litura* CPR genes derived from this family were on *S. litura* Chr9. Figure 3 shows that 34 RR-1 (*Sl-Aki*-48 - 80) genes and 82 RR-2 (*Sl-Aki*-86, 88 -94, 96-169) genes were present as two large clusters located on different regions of Chr9. Intriguingly, all of the RR-2 CP members belonged to the cluster encoding His-rich CPs, whereas none of the 34 RR-1 CPs in the large cluster on Chr9 were His-rich. Chr22 in *B. mori* also has the orthologs of these RR-1 genes, but none of them were found to be His-rich (Fig. 3). Although much smaller than *S. litura*, there was a
separate His-rich RR-2 CP cluster (BmorCPR79-129) on Chr22 in B. mori. Thirteen
RR-1 (Sl-Aki-001 - 013) genes were also localized on S. litura Chr1 as a cluster
(Supplementary Fig. 1). Their orthologs in B. mori also formed a cluster on Chr9.

3.4 Phylogenetic analysis of S. litura, B. mori and M. sexta CPs

To compare the S. litura CPs with B. mori and M. sexta CPs, phylogenetic trees of
RR-1 and RR-2 CPs were constructed separately (Fig. 4). A single species clade was
very rare in the RR-1 tree. Although a small number of RR-1 CP genes were expanded
in comparison with B. mori, more than half of them showed one-to-one correspondence
among the three lepidopteran species. Sl_Aki-2, 3, 4, 5 and 6 and MsCPR13, 174, 175,
176 and 177 formed separate clades, which corresponded to BmorCPR13 (black star in
Fig. 4A). Another small species-specific RR-1 CP clade was observed (thick bar in Fig.
4A).

In sharp contrast to the situation with RR-1s, more than half of the RR-2 CPs formed
species-specific clades (Fig. 4B), indicating species-specific expansions by gene
duplication events. Intriguingly, all CP members of S. litura, M. sexta and B. mori
belonging to large species specific clades (green branch in Fig. 4B) were His-rich.
Twenty-five RR-2 CPs (Sl_Aki-100-108, Sl_Aki-110-117, Sl_Aki-122, 124, 127, 129,
132, 134 136) formed the biggest S. litura specific clade (Blue star in Fig.4B), all of
which belonged to the RR-2 CP gene cluster in chr9. BmorCPR152, MsCPR152,
MsCPR153 and Sl_Aki-166, which had the highest His-residue content in each species,
made a single clade (red star in Fig. 4B), indicating that this highest His CP is conserved and may play a common role in some specific structure among the three Lepidoptera. Five of the CPFLs (Sl_Aki-236, 237, 238, 239, 240) formed a clade in *S. litura* (Supplementary Fig. 2).

3.5 Transcript abundance of CPs

We conducted RNA-Seq analysis to study the transcript distribution of *CP* genes in various developmental stages and tissues. In total, transcriptional evidence was obtained for 283 of the 287 annotated *CPs* (see Supplementary Table 2 for numbers of genes from each CP group expressed per library). Transcripts were found for a maximum of 233 *CP* genes in the 2nd instar larvae and a minimum of 94 *CP* genes in the epidermis of the 6-day pupa (Fig. 5A). The pattern of transcript levels of different *CP* groups (Fig. 5B) showed dynamic changes in epidermis from larval to pupal stages (Supplementary Table 3 for the total FPKM value for CP groups in each library). The transcript pattern of *RR-1* CPs contrasted extremely compared to *RR-2* CPs (Fig. 5B). Most *CP* transcripts in larval epidermis were derived from *RR-1* CP genes whereas RR-2 transcripts predominated in pharate adults. The difference in transcript pattern between *RR-1* and *RR-2* genes was consistent with published reports that the *RR-1* transcripts are much more abundant in soft and flexible cuticles typical of larvae than in hard cuticles, whereas *RR-2* transcripts are associated with hard structures typical of
The transcripts of CPG and CPH amount to a large percentage in pupal and pharate adult stages, despite their small numbers of genes compared with the CPR family (CPG 16-22; CPH 10-21; CPR 38-151) (Fig. 5A,B). In B. mori, transcripts from CPG genes are also reported to be present in some hard cuticles such as pheromone gland, compound eye and maxillary galea (Futahashi et al., 2008). Most CPHs contain AAP (A/V) repeats which might cause a protein to fold into a more or less regular helix, leading to an elastin-like structure which is easily and reversibly deformed by external forces (Andersen, 1995). Transcripts of CPH genes were abundant in pupal epidermis and wing, especially in early pupal epidermis (Fig. 5B). Further study is needed to determine the function of the CPGs and CPHs in cuticle formation.

Wolfgang and Riddiford (1986) reported changes of CP synthesis correlated with changes of lamellar structure in M. sexta cuticle during the final larval instar when they dig into soil in preparation for pupation. Our RNA-Seq analysis of S. litura suggested that epidermal cuticular layers of 6th larval instar would be mainly composed of RR-1s as well as CPAPs, whereas, based on transcript abundance, CPH and CPGs together with CPAPs would contribute to the cuticular layers of the wandering stage (Fig. 5A; Fig. 6). Especially, CPHs encoded by Sl_Aki-260 (Supplementary Fig. 4) and Sl_Aki-261 (Supplementary Fig. 5) were extremely highly expressed in the wandering stage at night compared to the daytime. Nevertheless, the ratios of expressed gene numbers
among CP gene families did not change so much in epidermis between 6th larval instar and wandering stage (Fig. 5B).

The heat map of transcripts for each CP gene in S. litura showed several characteristic patterns (Fig. 6). The transcripts from RR-1 and CPG genes were continuously and highly abundant in epidermis of larval stages (Fig. 6A). However, transcripts from some RR-1 genes (Fig. 6B) that were abundant in larval epidermis were also found in the early pupal stage (P-2) or pharate adult stage (P-12). This is similar to An. gambiae, where Willis (2010) reported that both RR-1 and RR-2 transcripts are present in pharate adults and post-eclosion, but many fewer are RR-1 compared with RR-2.

The secondary structure predicted by online software Phyre2 (Kelley et al., 2015) (http://www.sbg.bio.ic.ac.uk/) for RR-1 CPs of pattern B (Fig. 6B) suggested that most of them shared a common structure homologous to the Polo-Box domain (Park et al., 2010), which comprises a six-stranded antiparallel β-sheet shielded by one α-helix. However, we could not find such a common domain in RR-1 CPs of pattern A (Fig. 6A). As Vannini and Willis (2017) reported, the location of RR-1s and RR-2s depends on properties of individual proteins in An. gambiae. It will be interesting to learn how RR-1s are involved in specific protein structures of adult cuticle.

The CPH genes (Sl_Aki-262, 265, 266, 267 and 268) which formed a cluster on Chr28 and a small cluster of RR-2 genes (Sl_Aki-186, 187, 188, 189 and 190) in Chr15
RR-2 genes, which are the main members of “pattern D” of the heat-map (Fig. 6D), were highly expressed in the pharate adult wing and epidermis (P-9 and P-12). These genes were also well conserved among the three moth species with one-to-one correspondence in the phylogenetic trees (Fig. 4B). Sl_Aki-166, encoding the highest His-rich CP, had abundant transcripts in the pharate adult stage. This expression pattern was similar to its B. mori ortholog, BmorCPR152, which encodes the highest His-rich CP (Suetsugu et al., 2013). These CP genes, which were mainly expressed in the pharate adult stage, may contribute to scales or other specific structures in the adult.

Not only RR-2 transcripts, but also transcripts from other CP families such as RR-1, CPG, CPFL, CPAP and CPH, were also observed in high abundance in pupal wing and epidermis (Fig. 6C, D). The finding that two RR-1 genes (Sl_Aki-182 and 210) were expressed highly only in the pupal stage, but not in the larval stage (Fig. 6D), is interesting since most RR-1 genes had high transcript levels in larval epidermis. The contrasting expression patterns of the genes encoding these two RR-1 proteins suggests that their function merits further study.

Transcripts from a few CPAP, RR-1 and CPH genes were observed in abundance in epidermis throughout the development and wing of pharate adult (Fig. 6E). The transcripts of three CPAP genes (Sl_Aki-20, 22 and 23) showed a steady high abundance in epidermis in all stages of pupal wing. These three genes are orthologs of...
CPAP3-A1, CPAP3-B and CPA3-C in both *M. sexta* and *T. castaneum*. Their biological importance is indicated by reports that RNAi knockdown of *TcCPAP3-A1* causes adult lethality, down-regulation of the *TcCPAP3-B* causes a walking defect and RNAi treatment for *TcCPAP3-C* leads to molting arrest at the pharate adult stage (Jasrapuria et al., 2012; Petkau et al., 2012).

His-rich RR-2 genes (*Sl_Aki-100-108, Sl_Aki-110-117, Sl_Aki-122, 124, 127, 129, 132, 134 136*), which form the large species-specific clade in the phylogenetic tree (Blue star in Fig.4B), unexpectedly showed few transcripts in epidermis or other samples (Supplementary Fig. 3). However, since the transcripts were only examined in limited tissues in this study, we estimate these species-specific *His-rich CP* genes may be expressed in some hard cuticle structures such as the cornea of the compound eye, maxilla, or antenna.

Another unexpected finding was that transcripts from *CPG, CPAP, CPT, CPH, RR-1* and *RR-2* were present in relatively high abundance at the 2nd instar (Supplementary Fig. 4), which was quite different from those of other larval stages. Other CPs that were abundant at later stages also had high levels of transcripts in the 2nd instar (Supplementary Fig. 5). Among several possibilities to explain this peculiar expression pattern across all the samples is the large/major morphological change that occurs in larvae during the transition from 1st to 2nd instar. Further study of the ultrastructure and physical properties of larval cuticle at these stages may help to explain this observation. Another likely possibility is related to the timing of sample
collection. If the sampling was performed at the pharate third instar stage, CP expression would be higher than in mid-instar larvae. It is also of interest to check the transcripts of CP genes in the pharate stage. Levels of other CP transcripts are shown in Supplementary Figure 5.

4. Conclusion

S. litura, among the most economically important global agricultural pests, is characterized by a short life cycle, direct contact with soil during both late larval and pupal/pharate adult stages, long distance migration and quick adaptation to diverse ecological niches. RNA-Seq analysis suggests that differential expression of various CP groups to produce cuticle layers with different physical properties at different stages. This study aimed to illustrate how the CP genes have been adapted to the characteristic life style of this pest by analyses of their genome organization, phylogenetics and transcriptomics. Similar to *M. sexta* (Dittmer et al., 2015), the RR-2 group has expanded more than other CP groups, largely by gene duplication events after speciation. Additionally, we found that 91 of 129 RR-2 CPs are His-rich, amounting to twice the number and a greater fraction than in *B. mori* (from 58% in *B. mori* to 71% in *S. litura*). These His-rich proteins are likely involved in cuticular sclerotization since a His residue, which contains a nucleophilic imidazole group, can react with ortho-quinone or dehydrobenzodioxine (Andersen, 2010, 2012). Although more evidence is needed, we speculate that the high content of His-residues and the
large expansion of His-rich RR-2 CP genes that occur in *S. litura* could contribute to
construct tougher cuticles that could protect against fungal and bacterial attacks and
abrasion throughout their larval and pupal stages. Comparison with *M. sexta* CPs also
strengthened this idea, since both species which stay under soil during pupal/pharate
adult stages without cocoons share a large expansion of His-rich RR-2 CP genes
compared with *B. mori*.

The present work clearly showed how this pest established its unique life cycle
through the expansion of His-rich CP genes, which provides insights into the possible
regulation of CPs for pest control and their properties as new biomaterials.

Acknowledgements

We are very grateful to Dr. Judith H. Willis for many helpful discussions and
comments for this MS. We also thank a reviewer and Prof. H. Kishino (University
Tokyo) for their valuable comments and discussion on phylogenetic analysis. This
research was supported by a grant from the One Thousand Foreign Experts

References

Andersen, S.O., Roepstorff, P., 1997. Sequence studies of proteins from larval and
27, 121-131.

pathogen-specific signatures upon bacterial challenge and Plasmodium berghei infection. BMC genomics. 10, 257.

Figure Captions

Figure 1. Differences in behavior and life cycle between *S. litura* and *B. mori*. L1-L6 refer to larval instars 1-6; W is the wandering stage; numbers in parentheses represent days at a particular stage.

Figure 2. The number of His-rich CPs in each CP group. His-rich RR-2 CPs in *S. litura*, 91; *B. mori*, 54; His-rich RR-1 CPs in *S. litura*, 0; *B. mori*: 2; His-rich CPGs in *S. litura*, 11; *B. mori*: 9; His-rich CPLCA in *S. litura*, 3; *B. mori*, 1; His-rich CPAP in *S. litura*, 3; *B. mori*, 1; His-rich CPH in *S. litura*, 4; *B. mori*, 2. Blue, *B. mori* CPs; red, *S. litura* CPs.

Figure 3. Chromosomal location of the largest cluster of CPR genes in *S. litura* compared with *B. mori*. RR-1 genes (red) and RR-2 genes (blue) are located primarily in separate clusters on chromosome 9. Arrows indicate direction of transcription.

Figure 4. Phylogenetic trees of annotated RR-1 and RR-2 proteins among *S. litura*, *B. mori* and *M. sexta*. (A) RR-1 protein genes. Black star, BmorCPR13; thick bar, species-specific clade. (B) RR-2 protein genes. Blue, *M. sexta* CPs; yellow, *B. mori* CPs; magenta, *S. litura* CPs; blue star, 25 RR-2 CPs forming the biggest *S. litura* specific clade; red star, highest His-content RR-2 CP among the three species, forming
a clade. Green branch, His-rich CP genes. Bootstrap values of 70 or higher are shown in the branches.

Figure 5. Transcript distribution of CP genes in RNA-Seq libraries. (A) Total FPKM values of transcripts for CP genes in each family. (B) Numbers of CP genes with transcripts in each family. EP, Epidermis; D, daytime; N, nighttime; Wg, wing.

Figure 6. Heatmap of transcripts of S. litura CP genes grouped into five distinct patterns. (A) CP transcripts mainly found in the larval epidermis. (B) CP transcripts expressed highly in larval and pharate adult stages. (C) CP transcripts expressed highly in epidermis of late larval to early pupal stages. (D) CP transcripts found mainly in the pharate adult stage. (E) Transcripts of CP genes highly abundant through the larval to pupal stage.
Figure 1

S. litura

- Larval (~19)
- Pharate Pupal (~1)
- Pharate Adult (2-3)
- Adult

B. mori

- Larval (~28)
- Pharate Pupal (2)
- Pharate Adult (1-2)
- Adult
Figure 2

Gene Number of His-rich CPs in each Group

- Not-His-rich
- His-rich
- S.litura
- B.mori

RR2
RR1
CPG
CPLCA
CPAP
CPH
Figure 4

RR-1
S. litura
B. mori
M. sexta

RR-2
S. litura
B. mori
M. sexta

Gene cluster in Chr9

His-rich
Figure 5

A

Total FPKM values of transcripts for CP genes in each family

B

Numbers of CP genes with transcripts in each family

Legend:
- CPCFC
- CPF
- CPT
- CPLCA
- CPFL
- CPAP3
- CPAP1
- CPH
- CPG
- RR-3
- RR-2
- RR-1
<table>
<thead>
<tr>
<th>Motif</th>
<th>S. litura</th>
<th>B. mori</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR-1</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>RR-2</td>
<td>129</td>
<td>93(4)(^a)</td>
</tr>
<tr>
<td>RR-3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Tweedle</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>CPF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CPFL</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>CPLCA</td>
<td>4</td>
<td>2(BmorCPH6,7)(^a)</td>
</tr>
<tr>
<td>CPCFC</td>
<td>1</td>
<td>1(BmorCPH1)(^c)</td>
</tr>
<tr>
<td>CPAP1</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>CPAP3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Glycine-Rich</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>CPH</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>287</td>
<td>247</td>
</tr>
</tbody>
</table>

\(^{a,b,c}\) items in parentheses refer to CPs reported in Futahashi et al. (2008)

\(^a\) 4 more cuticular RR-2 genes were identified in *S. litura* than *B. mori*
Supplementary Table 1. Classification of CP coding genes.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Start (nt)</th>
<th>Stop (nt)</th>
<th>orf</th>
<th>Start (AA)</th>
<th>Stop (AA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPB1</td>
<td>1000</td>
<td>1460</td>
<td></td>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>CPB2</td>
<td>1000</td>
<td>1460</td>
<td></td>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>CPB3</td>
<td>1000</td>
<td>1460</td>
<td></td>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>CPB4</td>
<td>1000</td>
<td>1460</td>
<td></td>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>CPB5</td>
<td>1000</td>
<td>1460</td>
<td></td>
<td>33</td>
<td>46</td>
</tr>
</tbody>
</table>

Note: All genes have the same length and start/stop positions.
Supplementary Table 2. Numbers of genes from each CP group expressed per library

<table>
<thead>
<tr>
<th></th>
<th>RR-1(63)</th>
<th>RR-2(129)</th>
<th>RR-3(1)</th>
<th>CPG(28)</th>
<th>CPH(26)</th>
<th>CPAP1(13)</th>
<th>CPFL(7)</th>
<th>CPLCA(4)</th>
<th>CPAP3(9)</th>
<th>CPT(5)</th>
<th>CPF(1)</th>
<th>CPCFC(1)</th>
<th>Total(287)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1D2_EP(whole)</td>
<td>41</td>
<td>26</td>
<td>1</td>
<td>16</td>
<td>11</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>123</td>
</tr>
<tr>
<td>L2D2_EP(whole)</td>
<td>59</td>
<td>91</td>
<td>1</td>
<td>22</td>
<td>21</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>230</td>
</tr>
<tr>
<td>L3D2_EP</td>
<td>42</td>
<td>28</td>
<td>1</td>
<td>18</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>132</td>
</tr>
<tr>
<td>L4D2_EP</td>
<td>48</td>
<td>33</td>
<td>1</td>
<td>19</td>
<td>17</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>142</td>
</tr>
<tr>
<td>L5D2_EP</td>
<td>45</td>
<td>30</td>
<td>1</td>
<td>19</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>133</td>
</tr>
<tr>
<td>L6D2_EP</td>
<td>51</td>
<td>41</td>
<td>1</td>
<td>18</td>
<td>11</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>158</td>
</tr>
<tr>
<td>L6D2_EP_D</td>
<td>45</td>
<td>40</td>
<td>1</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>152</td>
</tr>
<tr>
<td>L6D2_EP_N</td>
<td>31</td>
<td>32</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>W_EP_D</td>
<td>22</td>
<td>32</td>
<td>1</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>125</td>
</tr>
<tr>
<td>W_EP_N</td>
<td>35</td>
<td>38</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>P2_EP</td>
<td>31</td>
<td>30</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>118</td>
</tr>
<tr>
<td>P2_Wg</td>
<td>17</td>
<td>29</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>151</td>
</tr>
<tr>
<td>P6_EP</td>
<td>26</td>
<td>32</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>172</td>
</tr>
<tr>
<td>P6_Wg</td>
<td>33</td>
<td>32</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>171</td>
</tr>
<tr>
<td>P9_EP</td>
<td>17</td>
<td>39</td>
<td>1</td>
<td>19</td>
<td>19</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>151</td>
</tr>
<tr>
<td>P9_Wg</td>
<td>39</td>
<td>39</td>
<td>1</td>
<td>19</td>
<td>19</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>171</td>
</tr>
<tr>
<td>P12_EP</td>
<td>35</td>
<td>35</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>151</td>
</tr>
<tr>
<td>P12_Wg</td>
<td>35</td>
<td>35</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>171</td>
</tr>
</tbody>
</table>
Supplementary Table 3. FPKM values of CP groups expressed per library

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RR-1</td>
<td>116705</td>
<td>278947</td>
<td>82667</td>
<td>355390</td>
<td>462561</td>
<td>26954</td>
<td>26775</td>
<td>31679</td>
<td>1660</td>
<td>1890</td>
<td>2669</td>
<td>42854</td>
<td>14808</td>
<td>58283</td>
<td>11567</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-2</td>
<td>348</td>
<td>49969</td>
<td>569</td>
<td>2478</td>
<td>377</td>
<td>6517</td>
<td>5084</td>
<td>992</td>
<td>999</td>
<td>11732</td>
<td>1051</td>
<td>3025</td>
<td>5340</td>
<td>134920</td>
<td>184337</td>
<td>129479</td>
<td>162394</td>
<td></td>
</tr>
<tr>
<td>RR-3</td>
<td>842</td>
<td>903</td>
<td>1087</td>
<td>1332</td>
<td>969</td>
<td>1425</td>
<td>1443</td>
<td>835</td>
<td>207</td>
<td>2541</td>
<td>293</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>651</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CPG</td>
<td>22935</td>
<td>116540</td>
<td>10206</td>
<td>4550</td>
<td>4322</td>
<td>3499</td>
<td>3163</td>
<td>3068</td>
<td>5817</td>
<td>2265</td>
<td>2335</td>
<td>120649</td>
<td>147493</td>
<td>93050</td>
<td>214203</td>
<td>118529</td>
<td>162159</td>
<td></td>
</tr>
<tr>
<td>CPH</td>
<td>149</td>
<td>25029</td>
<td>647</td>
<td>7192</td>
<td>1289</td>
<td>11518</td>
<td>6751</td>
<td>793</td>
<td>5365</td>
<td>31577</td>
<td>109135</td>
<td>3238</td>
<td>1526</td>
<td>327068</td>
<td>64099</td>
<td>102801</td>
<td>39777</td>
<td></td>
</tr>
<tr>
<td>CPAP1</td>
<td>203</td>
<td>882</td>
<td>1494</td>
<td>192</td>
<td>135</td>
<td>221</td>
<td>235</td>
<td>2348</td>
<td>5271</td>
<td>339</td>
<td>147</td>
<td>440</td>
<td>1686</td>
<td>4272</td>
<td>4206</td>
<td>13776</td>
<td>25131</td>
<td></td>
</tr>
<tr>
<td>CPAP3</td>
<td>1271</td>
<td>215561</td>
<td>3937</td>
<td>3001</td>
<td>1572</td>
<td>8442</td>
<td>6543</td>
<td>2815</td>
<td>2740</td>
<td>2654</td>
<td>2435</td>
<td>27230</td>
<td>31503</td>
<td>24499</td>
<td>13611</td>
<td>81304</td>
<td>8013</td>
<td></td>
</tr>
<tr>
<td>CPFL</td>
<td>17</td>
<td>8231</td>
<td>29</td>
<td>18</td>
<td>1072</td>
<td>793</td>
<td>39</td>
<td>47</td>
<td>6635</td>
<td>663</td>
<td>35</td>
<td>143</td>
<td>4767</td>
<td>16926</td>
<td>37249</td>
<td>51676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPLCA</td>
<td>129</td>
<td>3625</td>
<td>325</td>
<td>1900</td>
<td>713</td>
<td>2033</td>
<td>1356</td>
<td>0</td>
<td>18</td>
<td>1334</td>
<td>161</td>
<td>0</td>
<td>12</td>
<td>42</td>
<td>15</td>
<td>3628</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>8404</td>
<td>66386</td>
<td>10511</td>
<td>4451</td>
<td>3661</td>
<td>2222</td>
<td>934</td>
<td>85</td>
<td>1615</td>
<td>16</td>
<td>18</td>
<td>82</td>
<td>21</td>
<td>25446</td>
<td>2782</td>
<td>4573</td>
<td>1083</td>
<td></td>
</tr>
<tr>
<td>CPF</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>40</td>
<td>421</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>CPCFC</td>
<td>0</td>
<td>145</td>
<td>3</td>
<td>382</td>
<td>0</td>
<td>177</td>
<td>226</td>
<td>136</td>
<td>117</td>
<td>27017</td>
<td>327</td>
<td>144</td>
<td>40</td>
<td>56928</td>
<td>11963</td>
<td>1009</td>
<td>456</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>150807</td>
<td>568643</td>
<td>111485</td>
<td>381649</td>
<td>281218</td>
<td>494358</td>
<td>491083</td>
<td>37551</td>
<td>48979</td>
<td>401985</td>
<td>118212</td>
<td>156957</td>
<td>189902</td>
<td>713874</td>
<td>526961</td>
<td>551137</td>
<td>464732</td>
<td></td>
</tr>
</tbody>
</table>

Note: FPKM values of CP groups expressed per library.
Supplementary Figure 1. Expansion of RR-1 CP gene cluster on Chr1 in *S. litura*. The orthologous RR-1CPs are clustered in Chr9 in *B. mori*.
Supplementary Figure 2. The phylogenetic tree of CPFL CPs of *S. litura*, *M. sexta* and *B. mori*. Five CPFL CPs formed a species specific clade in *S. litura*.
Supplementary Figure 3. CPs showing low expression in most RNA-seq libraries. Gene names colored red belong to the largest species-specific clade in the phylogenetic tree.
Supplementary Figure 4. *S. litura* CP transcripts heatmap. *S. litura* CPs were highly abundant in the 2nd instar larval epidermis exclusively.
Supplementary Figure 5. Heatmap of transcripts of all the other CP genes of S. litura not shown in Fig. 6, Supplementary Fig. S3 and S4.