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ABSTRACT 

Majority of the drug substances are administered to patients in the form of oral 

solid dosage forms. The drug substance is mixed with excipients and the resulting 

powder blend is compressed into tablets. For a pharmaceutical powder to be 

compressed into uniform solid dosage forms, it is essential that the powder blend has 

good flow and compaction properties. The flow and compression properties of a 

pharmaceutical blend depend on the physicochemical properties of the individual 

components and their relative proportions in the mixture. Poor compressibility along 

with the poor flowable nature of most of the pharmaceutical mixtures poses 

tremendous challenges during the scale up and production stages. Vast majority of the 

tableting research was performed using single components though a typical tablet is a 

multi-component system. In this investigation, an attempt was made to study the flow 

and compression behaviors of multi-component mixtures containing several of the 

most commonly used pharmaceutical excipients. The effect of triboelectric charging 

during powder processing was also evaluated. 

The objectives of this study include: i) to investigate the relationship between the 

individual components and their mixed systems; ii) to analyze and predict the flow 

behavior of a mixed system from individual components using an experimental design; 

iii) to determine the optimum conditions for a mixture to exhibit better flow behavior; 

iv) to investigate the compression behavior of statistically designed multi-component 

mixtures using an instrumented tablet press; v) to determine the effect of mixing time, 

mixer type and batch size on triboelectrification of powders in a high shear mixer; and 

vi) to compare the antistatic effect of different lubricants/glidants on electronegative 

and electropositive materials. 
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Lactose Anhydrous (97%w/w) blends were prepared with 3%w/w 

lubricant/glidant(s) in a planetary mixer as per simplex experimental design. The 

lubricants evaluated were: magnesium stearate, NF, stearic acid and colloidal silicon 

dioxide, NF (Cab-0-Sil M5). The relative amounts of lubricants/glidants were varied 

from 0 to 3% as per simplex design. One set of powder blends were prepared with a 

constant mix time of 3 minutes. Another set of powder blends were prepared with 

varying mix time until a relatively constant value for bulk density was achieved for 

specific blend. A total of ten powder blends of 500 grams each were prepared for each 

experiment. Response surface methodology was used to correlate the variation in 

lubricant/glidant(s) with the flow behavior. The powder blends and individual 

components were evaluated for bulk density, tapped density, aerated bulk density, 

packed bulk density, compressibility index, angle of repose, angle of spatula, angle of 

fall, angle of difference, cohesiveness, dispersibility, moisture content and particle size 

distribution. The data was analyzed using StatGraphics software and the special cubic 

model was fitted to generate mathematical equations. Contour plots were obtained to 

interpret the flow behavior of powder blends as a function of mixture composition. 

The compression behavior of experimentally designed multi-component 

mixtures using an instrumented tablet press was studied. The mixtures comprised of 

anhydrous lactose, NF, microcrystalline cellulose, NF (Avicel® PH101) and 

pregelatinized starch, NF (Starch 1500) with individual quantities varying from 0 to 

99% w/w based on a simplex design. Magnesium stearate, NF was added as lubricant 

at 1 % w/w level. The batch size was 900 grams (equivalent to 3000 tablets). Ten 

experimental mixtures were prepared in a Collette Gral 10 High Shear Mixer with 3 

minutes of pre-blending and 1 minute of lubricant mixing. The powder mixtures were 
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evaluated for bulk and tapped densities, particle size distribution and moisture content. 

The powder blends were compressed using a 10-station instrumented Piccola rotary 

tablet press (Model: 026 BIO) equipped with a compression research system (PC-30, 

SMI Inc.). Tablets were prepared with 12/32" standard concave tooling with 

compressjon forces of 1000 lbs, 2000 lbs, 3000 lbs, 4000 lbs, 5000 lbs, 6000 lbs and 

maximum achievable force. The compression force-time profiles were recorded to 

measure the compression force and ejection force for each compression cycle. The 

tablets were evaluated for hardness, weight, thickness, friability and disintegration 

time. The true densities of tablets and powder blends were measured using a helium 

pycnometer (Ultrapycnometer 1000). The compression force-time pulses for all the 

mixtures at each compression force were compared to investigate the effect of mixture 

composition on the compression behavior of powder blends. Events such as rise time, 

fall time, dwell time, contact time, areas and pulse widths that characterize the nature 

of each compression pulse were evaluated using a response surface method 

(StatgraphicsP/us). Tablet surface area and volume was calculated using Natoli 

computer program. Contour plots were generated to study the effect of formulation 

composition on bulk density, tablet hardness, dwell time, total area of compression 

force-time curve, ejection force, tablet surface area, and porosity. Heckel relationships 

were plotted using the compressibility model. 

The effect of high shear mixing on electrical properties of pharmaceutical 

materials such as pregelatinized starch (Starch 1500), microcrystalline cellulose 

(Avicel® PHIOI) and cimetidine formulation (cimetidine:lactose anhydrous:Avicel® 

PHIOI:Starch 1500: lubricant = 69:10:10:10:1) was determined as a function of 

mixing time. Different lubricants/ glidants such as magnesium stearate, stearic acid, 
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colloidal silicon dioxide (Cab-0-Sil MS) and sodium stearyl fumarate (Pruv®) were 

evaluated for their antistatic effect. The selected material(s) were screened through a 

30-mesh hand screen and were mixed in a Collette Gral 10 high shear mixer for 10 

minutes at a mixer arm speed of 660 rpm and a chopper speed of 3000 rpm. 

Lubricant/glidant at 1 % w/w level was added to the pre-blend and the mixing was 

continued for an additional 3 minutes. The electrostatic charges on powder blends 

were measured using the Faraday Cup connected to NanoCoulomb Electrometer after 

0, S, 10, 11, 12 and 13 minutes of mixing. Mixer type effect was evaluated by mixing 

powders in Collette Gral 10 high shear mixer and Kitchen Aid Planetary Mixer and 

determining the electrostatic measurements. Batch sizes of O.S kg and 2.S kg were 

evaluated to determine the batch size effect on triboelectrification during high shear 

mixing. The last contact surface for all electrostatic measurements was kept constant 

with teflon coated stainless steel surface. 

From different flow parameters evaluated for lactose anhydrous blends, it can be 

summarized that the relationship for powder properties between the mixture and its 

components is non-linear. Significant differences were observed in the flow behavior 

of powder blends obtained with constant mixing time and those obtained with variable 

mixing times. Among the three variable components as per the simplex design, Cab-

0-Sil MS had a significant effect on the time required to achieve the constant bulk 

density for a specific powder blend. It was demonstrated that using the special cubic 

simplex design, the flow behavior of lactose blend can be optimized. For constant mix 

time study, the model predicted that Lactose Anhydrous would show optimum flow 

behavior with formulation composition of 0.2S%w/w Magnesium Stearate, 1.48%w/w 

Stearic Acid and l .27%w/w Cab-0-Sil MS. Thus from the response surface contour 
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plots and the mathematical model equations, one can determine the composition of the 

flow enhancers required, mix time to achieve constant bulk density so that the final 

blend will display optimum flow behavior. 

The statistically designed powder blends comprising Lactose Anhydrous, 

Avicel® PHlOl, Starch 1500 and Magnesium Stearate were compressed using an 

instrumented tablet press. The compression force-time curves and ejection force-time 

curves were evaluated and critical compression parameters such as ejection force, 

dwell time, tablet surface area, porosity and Heckel plots were determined. The 

compression parameters generated in this study, provide valuable insights into how 

multi-component mixtures behave under pressure. The key findings can be 

summarized as follows: The weight variation, tablet thickness, tablet surface area and 

volume of tablets increased with an increase in the concentration of Starch 1500 in the 

mixture. As the level of A vice!® PH 101 in the blend increases, so does the hardness 

profile for tablets. Maximum disintegration times were observed for tablets prepared 

from blend containing Avicel® PH101 and Lactose Anhydrous at 49.5% level. 

Maximum dwell time of 107 msec was observed for 99% Lactose Anhydrous at 

maximum achievable force (~8500 lbs) and a minimum dwell time of 51 msec was 

observed for the same blend at 1000 lbs of applied force. The compressibility of 

blends increased with an increase in the amount of Avicel® PHlOl in mixture. The 

amount of ejection force required for tablets increased with an increase in the 

concentration of Anhydrous Lactose in the blend. Tablets prepared from the blend 

containing 49.5% Anhydrous Lactose and 49.5% Starch 1500 displayed maximum 

amount of porosity. The presence of Starch 1500 has a significant effect on tablets 

with high porosity values. Heckel plots were generated to elucidate the densification 



and deformation mechanism of various mixtures. Based on the shapes of the curves, 

the dominant component of the mixture seems to dictate the deformation mechanism. 

In mixtures containing the components in equal amounts, the deformation mechanism 

seems to be complex. The results provide critical information on compression 

behavior of multi-component mixtures for comparative purposes as there are hardly 

any published reports in this area. 

When evaluated individually, cimetidine displayed electropositive charge 

whereas all other excipients displayed electronegative charges. Cab-0-Sil M5 was 

found to be the most electronegative whereas stearic acid was found to be the least 

electronegative among the excipients examined. Based on the results obtained in this 

study, when Starch 1500 was blended with 1 % lubricant/glidant in a Collette Oral 10 

High Shear Mixer, the lubricants/glidants can be arranged as follows in the decreasing 

order of their ability to reduce the static charges produced during the blending process: 

magnesium stearate > Pruv® > stearic acid > Cab-0-Sil M5. For Avicel® PHlOl 

blends, the antistatic effect of the same agents can be arranged in the decreasing order 

as: magnesium stearate > stearic acid> Pruv® > Cab-0-Sil M5. As the mixing time 

with lubricants/glidants increased from 1 minute to 3 minutes, the antistatic effect 

seems to reduce. The antistatic effect of lubricants/glidants was dependent on the 

electrical charge behavior of the materials studied. The mixer design and type played 

an important role in determining the electrostatic charges of powder blends in 

pharmaceutical processing. Powders blended in Collette Oral 10 High Shear Mixer 

produced more electrostatic charges as compared to those blended in Kitchen Aid 

Planetary Mixer. The mixer loading also played an important role in determining the 

electrostatic charges of powder blends in powder processing. The triboelectrification 
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of the blend in a high shear mixer decreased with an increase in the batch size from 0.5 

kg to 2.5 kg. Thus by measuring static charges present on drugs/excipients during 

developmental stage, formulation scientist can utilize triboelectrification process to 

obtain powder blends that have low segregation problems. 

In summary, the results indicated that by varying the m1xmg time and/or 

relative proportion and type of lubricants/flow enhancers, it is possible to achieve 

powder blends with markedly improved flow properties. The current findings on 

compression behavior of multi-component mixtures will help formulation scientists to 

design and develop a robust tablet dosage form that meets the desired quality attributes 

and is free of processing problems during scale up and production. Selection of 

formulation components based on their electrical behavior will enhance the 

development of dosage forms that have good flow and compression behavior. 

With the advent of so many new polymeric materials, further studies will 

definitely shed more light on the complex process of compaction, since there are only 

a few published reports concerning multi-component mixtures are available so far. 
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PREFACE 

This dissertation was prepared according to the University of Rhode Island 

"Guidelines for the Format of Theses and Dissertations" standards for Manuscript 

format, approved April 1, 2001. For this dissertation, three articles are combined to 

satisfy the requirements of the Department of Applied Pharmaceutical Sciences, 

College of Pharmacy, University of Rhode Island. 

Manuscript I Investigation of the Predictability of Flow Characteristics of 

Powder Mixtures 

This manuscript summarizes the trends and prediction of the flow behavior of a mixed 

powder system in relation to that of the individual components. These results have 

been presented at the 10th Annual Meeting of American Association of 

Pharmaceutical Scientists (AAPS) in Seattle, WA, 1996 and at the Eastern Regional 

Meeting of AAPS in New Brunswick, NJ, June 1997. This paper will be submitted for 

publication in the 'Journal of Pharmaceutical Sciences'. 

Manuscript II Analysis of Compression Behavior of Multi-Component 

Mixtures using an Instrumented Tablet Press 

This manuscript comprises of the investigation of the compression behavior of 

statistically designed multi-component mixtures using an instrumented tablet press. 

The findings of this study were presented at 12th Annual Meeting of American 

Association of Pharmaceutical Scientists (AAPS) held at San Francisco, CA in 1998. 

These findings will be submitted in two parts for publication in the 'International 

Journal of Pharmaceutics'. 

Xl 
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Manuscript III Effect of Formulation Components and Manufacturing Process 

on the Electrostatic Behavior of Pharmaceutical Powders 

This manuscript describes a study performed to elucidate the significance of 

static charges generated on pharmaceutical powders during high shear mixing. These 

results have been presented at 12th Annual Meeting of American Association of 

Pharmaceutical Scientists (AAPS) held at San Francisco, CA in 1998. These results 

will be submitted for publication in 'Drug Development and Industrial Pharmacy'. 
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INVESTIGATION OF THE PREDICT ABILITY OF FLOW 

CHARACTERISTICS OF POWDER MIXTURES 
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ABSTRACT 

The flow properties of a pharmaceutical powder blend depend on the physicochemical 

properties of the individual components and their relative proportions in the mixture. 

The objective of this study is to elucidate the trends and predict the flow behavior of a 

mixed system in relation to the individual components. Another objective of the study 

is to determine the effect of mixing time on flow properties of the blends. Lactose 

Anhydrous (97%w/w) was mixed with 3%w/w lubricant(s) in a planetary mixer. The 

lubricants evaluated were: magnesium stearate, stearic acid and Cab-0-Sil M5. The 

relative amounts of lubricants were varied according to a special cubic simplex design 

with seven combinations. Two sets of experiments were conducted. One set of 

powder blends was prepared with a constant mix time of 3 minutes. Another set of 

powder blends was prepared with varying mix time until a relatively constant value for 

bulk density was achieved for that particular blend. An additional three experiments 

were conducted to validate the model. Response surface methodology was used to 

correlate the variation in lubricants with the flow behavior. The powder blends and 

individual components were evaluated for bulk density, tapped density, aerated bulk 

density, packed bulk density, compressibility index, angle of repose, angle of spatula, 

angle of fall, angle of difference, cohesiveness, dispersibility, moisture content and 

particle size distribution. All the powder characteristics were measured in triplicates. 

The data was analyzed using Statgraphics®plus software. The special cubic model was 

fitted to generate mathematical equations. Contour plots were obtained to interpret the 

flow behavior of powder blends. The flow behavior of mixed systems displayed a 

non-linear relationship when compared with the individual components. Mixing time 
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had significant effect on the flow properties of the blends that were evaluated. Among 

the three lubricants/flow enhancers, Cab-0-Sil M5 had the most significant effect on 

the mixing time required to obtain constant bulk density. Based on the statistical 

model, lactose anhydrous showed optimum flow behavior with 0.25%w/w magnesium 

stearate, 1.48%w/w stearic acid and 1.27%w/w Cab-0-Sil M5. The results indicated 

that by varying the mixing time and/or relative proportion and type of lubricants/flow 

enhancers, it is possible to achieve powder blends with improved flow properties. 

Keywords: powder; flow; mixing time; mixtures; lubricant; simplex design; response 

surface; optimization; lactose anhydrous; magnesium stearate; stearic acid; silicon 

dioxide; Carr.'. s indices. 
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INTRODUCTION 

The design and development of a successful pharmaceutical dosage form 

requires complete understanding of the fundamental principles involved in product 

development (1-3). For a pharmaceutical powder to be compressed or encapsulated 

into uniform solid dosage forms, it is essential that the powder blend have good flow 

properties. Poor flow behavior of a powder is related to the high cohesive energies 

associated with fine particles and causes problems in the manufacturing of a quality 

product ( 4, 5). Cohesive stress, which is the cohesive force per unit surface area, is 

smaller for the larger particles. This is the reason why fine particles are more 

cohesive, and increasing particle size generally improves flow. Enlargement of 

particle size is often done by wet granulation or slugging. The powder flow may also 

be improved by altering the particle shape ( 6, 7). 

There are many factors which influence the behavior of powders and these 

include physical, mechanical and environmental factors (8). Surface energy changes 

and elastic deformation properties are two opposing forces that influence the particle 

true areas of contact. Electrostatic forces, particle size, shape and size distributions 

affect the flow. Environmental factors such as humidity, adsorbed impurities (air, 

water etc.), consolidation load and time, direction and rate of shear, and storage

container properties also influence the powder flow. The identification, quantification 

and control of these parameters is of importance during the manufacturing where the 

production of a uniform product is essential. 

There are many published methods to determine powder flow, however due to 

many variables associated with powder flow, there is no universally acceptable method 

4 



developed (9-16). Yet, well-defined experiments are essential to generate reproducible 

information so that accurate predictions can be made. Carr (9-11) defined a number of 

flow parameters, which are calculated according to a weighting system after their 

measurement. The flowability of a powder is evaluated using angle of repose, angle of 

spatula, compressibility and cohesion. The overall flowability, angle of fall , 

dispersibility and angle of difference, determine the floodability of a powder. Carr (9-

11) has also provided a detailed procedure whereby indices are deduced for each 

floodability parameter indicative of the tendency of a powder to exhibit floodable 

flow. 

Development of a dosage form is essentially an optimization process. For a 

formulator with scarce resources and time constraints, statistical experimental designs 

offer excellent means to obtain the . best compromise within the existing constraints 

(17, 18). Thus optimization techniques have become essential tools for the formulator 

to develop a robust dosage form in short period of time and with fewer resources. A 

good design should (i) generate a satisfactory distribution of information throughout 

the experimental region, (ii) ensure that the fitted model predicts a value, at all points 

in the experimental region that is as close as possible to the true value of the response, 

(iii) give good detectability of model lack of fit, and (iv) provide an internal estimate 

of the error variance. In the current investigation, simplex design in combination with 

response surface methodology was utilized to understand and predict the flow 

behavior of mixed powders using Carr' s indices. The objective was to observe the 

trends in the flow behavior of lactose anhydrous and predict the optimum levels of 

Cab-0-Sil MS, stearic acid and magnesium stearate to obtain the best possible flow. 
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When two or more pharmaceutical materials are mixed together, the resultant 

system will exhibit flow properties, which are dependent on the nature of individual 

components and their proportion in the mixture. The relationship between the flow 

properties of the mixture and the individual components is generally considered to be 

linear. However, in practicality the relationship is not always linear. This study will 

attempt to elucidate the nature of the relationship among commonly used excipients in 

terms of flow properties by a systematic study of flow behavior of powder blends. 

Mixing time is another critical parameter that affects the blending process and will 

have significant impact on the flow behavior of powders. 

The objectives of this study include: i) to determine a simplistic approach to 

improve the flow behavior of pharmaceutical powders ii) to study the relationship 

between the individual components and their mixed systems iii) to analyze and predict 

the flow behavior of a mixed system from the individual components using an 

experimental design (iv) to evaluate the effect of mixing time on flow properties of 

powder blends and v) to determine the optimum composition of lubricants/flow 

enhancers for a mixture to have maximum flow. 
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METHODOLOGY 

Materials 

The materials used in this study are lactose anhydrous, NF (Sheffield Products, 

USA), magnesium stearate, NF (Mallinckrodt Co., USA), Colloidal Silicone Dioxide 

(Cab-0-Sil M5® M5) (Cabot Corp., USA) and stearic acid, NF (Witco Corp. USA). 

Methods 

Preparation of Powder Blends: 

Lactose anhydrous, NF (97%w/w) was mixed with 3%w/w lubricant(s) in a 

Kitchen Aid Planetary Mixer. Lubricants evaluated were: magnesium stearate, stearic 

acid and Cab-0-Sil M5 MS. T~e relative amounts of lubricants were varied as per the 

simplex design described in Table 1. A constant batch size of 500 grams was used for 

all the experimental runs. The validity of the design was determined by conducting 

three experiments at different points in the lattice model. 

Constant Mixing Time: The ingredients were passed through # 30 mesh screen 

separately and the screened materials were placed in a Kitchen Aid Planetary Mixer 

(Kitchen Aid, Inc., OH) and mixed for three minutes at 94 rpm. A total of ten powder 

blends were prepared with varying concentrations of flow enhancers as per the simplex 

design described in Table 1. A constant batch size of 500 grams was used for all the 

experimental runs. 

Variable Mixing Time: The ingredients were passed through # 30 mesh screen 

separately and the screened materials were placed in a Kitchen Aid Planetary Mixer. 
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TABLE 1. Simplex Design for Powder Mixtures 

Percentage of Total Mixture 

RUN# Constant Variable Factors 

Factor 

Lactose Cab-0-Sil Stearic Acid Magnesium Stearate 

Anhydrous (X1) (X2) (X3) 

1 97 3 0 0 

"') 97 0 3 0 

3 97 0 0 3 

4 97 1.5 1.5 0 

5 97 1.5 0 1.5 

6 97 I 0 1.5 1.5 

7 97 1 1 1 

8* 97 2 0.5 0.5 

9* 97 0.5 2 0.5 

10* 97 0.5 0.5 2 

Total 10 10 10 

* Additional runs as check points for the Simplex Design 
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The contents were mixed at 94 rpm and the bulk density of powder was monitored 

after every half a minute of mixing. Mixing was continued until a relatively constant 

value for bulk density was achieved. When a constant value for bulk density was 

achieved then it was considered that the blend has reached a steady state of mixing. 

The powder compositions as per the simplex design in Table 1 were blended until all 

the powders have achieved constant values for bulk density. 

Evaluation of Powder Blends for Flow Behavior 

The mixed powders and individual components were evaluated for powder 

characteristics such as bulk density, tapped density, aerated bulk density, packed bulk 

density, compressibility index, angle of repose, angle of spatula, angle of fall , angle of 

difference, cohesiveness, disp.ersibility, moisture content and particle size distribution. 

Bulk and Tapped Density Determination: The weight of powder required to fill 100 

mL of graduated cylinder was determined and from which the bulk density was 

calculated as the ratio of mass to volume of powder. The tapped density was 

calculated from a constant volume of powder achieved after a number of taps using 

Tap Density Tester (Van der Kamp, USA). 

Flow Characterization: The flow parameters of powders such as aerated bulk 

density, packed bulk density, compressibility index, angle of repose, angle of spatula, 

angle of fall , angle of difference, cohesion, and dispersibility were determined using a 

Hosokawa Powder Tester (Hosokawa Micron Corporation, Japan). The Carr' s indices 

9 



determining the powder flow properties were calculated (9-11 ). All the measurements 

were made in triplicate. 

Moisture Content Determination: A powder sample of 2-4 grams was placed on a 

Mettler Moisture Determining Balance (Model Mettler LP16, Mettler Corp., USA) and 

the sample was heated at 105°C until a constant weight was achieved. The moisture 

content was thus determined as the percentage of loss on drying (LOD). The 

measurements were made in triplicate. 

Particle Size Analysis: The particle size distribution for vanous powders was 

determined using a Gilsonic Autosiever (Model GA-6A, Gilson Company Inc. , OH). 

The sieves used for this analysis have the following opening sizes: 180µm, 125µm, 

90µm , 53µm, 45µm, 32µm, and 20µm. A sample of 5 grams of powder was placed on 

the top sieve and after sieving for 5 minutes, the powders retained on each sieve were 

weighed. The amounts of powders retained were utilized to determine the geometric 

mean particle size of the powder blend. 

Data Analysis 

A statistical design, namely "Simplex Centroid Design" was utilized in the 

present study (19). The points of composition in the simplex were explored in 

accordance with a lattice arrangement and the responses were represented by 

polynomials (19-22). The design is explained by an equilateral triangle. Each side of 

the triangle represents one of the three varying components. Each vertex of the 

10 



triangle indicates the maximum amount of one component and the minimum amount 

of the other two components in the system. Any point inside the triangle corresponds 

to a mixture of fixed composition of three variables. Accurate mapping of responses 

in a lattice structure is represented by polynomial equations and contour plots. A 

polynomial equation correlates the measured properties (responses) with the 

formulation compositions (factors). Coefficients in the polynomials are simple 

functions of the measured responses at the lattice points. Using these polynomial 

equations from the data collected, the properties of the mixed systems are evaluated. 

The special cubic design is described by the following equation (19): 

Y = b1 X1 + b1 X2 + b3 X3 + b12 X1X2 + bn X1X3 + b13 X2X3 + bm X1X2X3 

where X1 = Cab-0-Sil M5, X2 = Stearic Acid, X3 =Magnesium Stearate 

b1 .... b123 =Regression Coefficients 

The graphical representation of a polynomial equation is the response surface 

or contour plot. The response variables such as flow characteristics, mean particle size 

and moisture content were fitted using a special cubic model. The response surface 

contour plots were obtained for each flow parameter as a function of varying amounts 

of flow enhancers. The statistical software package, 'Statgraphics®plus (23) was 

utilized to analyze the data. 

In order to determine whether the relationship between the powder properties 

of individual components and their mixtures was linear or not, the theoretical values 

for the flow properties of the mixtures were determined assuming a linear relationship 
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and these values were compared with actual measured values for flow properties of 

mixtures. The following equation was utilized to calculate the theoretical values: 

Theoretical Bulk Density of Mixture = (0.97) x BD of Lactose + (Proportion of 

Cab-0-Sil M5) x BD of Cab-0-Sil M5 + (Proportion of Stearic Acid) x BD of 

Stearic Acid + (Proportion of Magnesium Stearate) x BD of Magnesium 

Stearate 

Where BD =Bulk Density 

Proportion of each component = 0 through 0.03 

For all other powder properties, the same equation was utilized and Bulk Density (BD) 

was replaced with the respective powder characteristic and corresponding theoretical 

values were calculated. 
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RESULTS AND DISCUSSION 

The individual components of the blends were evaluated for flow properties 

prior to conducting the experiments as per the experimental design. The data is 

provided in Table 2. The powder characteristics of the blends prepared with a constant 

mix time are summarized in Tables 3 and 4. The powder properties of the blends 

prepared using variable mix times to achieve constant bulk density are provided in 

Tables 5 and 6. For all parameters, the theoretical values for different blends were 

calculated asswning a linear relationship between the individual excipients and the 

mixtures. These values are summarized in Tables 3, 4, 5 and 6. The regression 

coefficients that would describe the polynomial equations defining the contour 

surfaces are summarized in Tables 7 and 8. The summary of testing performed on lack 

of fit model for constant mix time is provided in Table 9. Table I 0 describes the 

optimization process and the constraints imposed on the model. The predicted flow 

values for optimized formulation composition are provided in Table 11. In order to 

determine whether any trends existed in the flow behavior, contour plots for varying 

compositions of stearic acid, magnesiwn stearate and Cab-0-Sil MS in lactose blends 

were provided in Figures I through 12. 

One of the critical parameters that interest formulators is the flowability of the 

powder formulations (14, 16, 24). The processability of these blends is markedly 

affected by flowability concerns, since the materials need to be moved from one place 

to another. For example, encapsulation and/or tabletting on high-speed machines are 

only possible when the powder can be fed at higher rates. 
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TABLE 2. Physical Properties of Individual Components 

Response Parameter Lactose Cab-0-Sil Stearic Acid Magnesium 
Anhydrous Stearate 

Angle of Repose (°) 41.0 14.5 48.5 18.0 

Angle of Fall (°) 22.4 23.4 30.1 18.4 

Angle of Difference (0
) 17.5 18.0 17.0 17.5 

Aerated Bulk Density(glcc) 0.62 0.04 0.34 0.12 

Packed Bulk Density(glcc) 0.83 0.06 0.59 0.27 

Compressibility(%) 25.4 24.2 41.3 55.0 -+:>. Cohesiveness(%) 37.9 92.3 63.7 46.4 

Angle of Spatula (0
) 48.1 47.9 54.2 57.9 

Dispersibility (%) 6.2 66.8 15.6 54.1 

Moisture Content(%) 0.51 1.11 0.10 2.29 

Flowability Index 55.0 46.5 32.0 41.0 

Floodability Index 73.0 82.0 76.5 56.5 

Bulk Density (glee) 0.63 0.04 0.38 0.15 
Tapped Density (glee) 0.83 0.05 0.56 0.30 
Particle size (microns) 161.0 172.2 175.0 107.8 
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TABLE 3. Physical Properties of Lactose Blends with Constant Mix Time 

Blend#l Blend#2 Blend#3 Blend#4 Blend#S 

Response Parameter Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* 

Angle of Repose (0
) 41.0 41.1 48.5 41.2 45.6 40.9 37.0 41.2 38.8 41.0 

Angle of Fall (°) 22.4 22.4 30.1 22.6 23.9 22.3 18.4 22.5 20.7 22.3 

Angle of Difference (0
) 18.6 18.7 18.4 18.6 21.7 18.6 18.6 18.6 18.1 18.7 

Aerated Bulk Density(glcc) 0.53 0.60 059 061 0.69 0.61 0.64 0.61 0.56 0.61 

Packed Bulk Density(glcc) 0.77 0.81 0.80 0.83 0.84 0.82 0.81 0.82 0.80 0.81 

Compressibility(%) 30.8 25.4 26.0 25.9 18.3 26.3 20.4 25.6 29.5 25.8 

Cohesiveness (%) 79.4 39.5 74.8 38.7 52.4 38.2 64.3 39.1 69.5 38.8 

Angle of Spatula (0
) 40.7 48.l 41.5 48.3 40.9 48.4 36.8 48.2 40.7 48.3 

Dispersibility (%) 17.0 8.0 8.0 6.5 17.6 7.7 8.4 7.3 9.4 7.8 

Moisture Content(%) 0.39 0.53 0.49 0.50 0.60 0.56 0.50 0.51 0.49 0.55 

Flowability Index 47.0 54.8 46.5 54.3 57.5 54.6 58.5 54.5 50.0 54.7 

Floodability Index 64.5 73.3 64.5 73.1 71.0 72.5 74.0 73.2 69.5 72.9 

Bulk Density (glee) 0.53 063 0.64 0.65 066 0.63 0.59 0.64 0.59 0.63 

Tapped Density (glee) 0.72 0.84 0.86 0.86 0.90 0.85 0.83 0.85 0.82 0.84 

Particle size (microns) 182.8 161.3 154.7 161.4 144.6 159.4 157.1 161.4 171.4 160.4 

*Theoretical values were calculated assuming a linear relationship. between the excipients and the mixtures 
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TABLE 4. Physical Properties of Lactose Blends with Constant Mix Time 

Blend#6 Blend#7 Blend#8 Blend#9 Blend#lO 

Response Parameter Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* 

Angle of Repose (0
) 36.8 41.0 39.8 41.l 38.7 41.1 38.2 41.1 41.2 41.0 

Angle of Fall (°) 21.4 22.4 23.6 22.4 19.5 22.4 19.2 22.5 24.3 22.3 

Angle of Difference (0
) 15.4 18.6 16.2 18.6 19.2 18.7 19.0 18.6 16.9 18.6 

Aerated Bulk Density(glcc) 0.63 0.61 0.60 0.61 0.63 0.61 0.56 0.61 0.62 0.61 

Packed Bulk Density(glcc) 0.88 0.82 0.80 0.82 0.86 0.81 0.81 0.82 0.88 0.82 

Compressibility(%) 28.7 26.l 25.6 25.9 26.4 25.6 30.8 25.9 29.9 26.1 

- Cohesiveness(%) 73.6 38.4 77.4 38.8 79.7 39.2 81.9 38.7 82.4 38.5 
°' Angle of Spatula (°) 40.7 48.4 35.3 48.3 40.5 48.2 43.7 48.3 37.0 48.4 

Dispersibility (%) 9.3 7.1 l 0.3 7.4 8.7 7.7 11.8 6.9 7.0 7.5 

Moisture Content (%) 0.49 0.53 0.59 0.53 0.60 0.53 0.60 0.51 0.60 0.55 

Flowability Index 50.0 54.5 55.0 54.6 50.5 54.7 46.0 54.4 50.0 54.6 

Floodability Index 68.0 72.8 59.5 73.0 78.5 73. l 70.3 73.0 65.0 72.7 

Bulk Density (glee) 0.67 0.64 0.60 0.64 0.66 0.63 0.56 0.64 0.62 0.63 

Tapped Density (glee) 0.89 0.86 0.85 085 0.86 0.84 0.80 0.86 0.85 0.85 

Particle size (microns) 152.2 160.4 160.8 160.7 148.4 161.0 172.6 161.1 152.2 160. l 

*Theoretical values were calculated assuming a linear relationship between the excipients and mixtures 
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Angle of Repose: It is defined as the angle formed when a cone of powder is poured 

onto a flat surface out of a bulk pile (9-11 ). It is a direct indication of the flowability 

of a material. Lower values for angle of repose indicate better flow behavior for 

powders. Figure 1 provides the contour plots for angle of repose, which indicates that 

there is a significant difference in the response surfaces for the two sets of lactose 

blends. When the mixing time was kept constant at 3 minutes, the increase in 

magnesium stearate from 0 to 3% resulted in an increase of the angle of repose from 

37.S0 to 4S 0
• The variation in amount of Cab-0-Sil MS from 0 to 3% had a minor 

effect on the angle of repose as the values varied only from 37.S0 to 39°. From the 

contour plot, lower amounts of Cab-0-Sil MS and magnesium stearate along with a 

moderate amount of stearic acid seem to provide powders that will have lower angle of 

repose values indicating better flow. When the mixing time was varied to obtain 

constant bulk density, the resulting lactose blends provided different values for angle 

of repose (Figure 1 ). None of the three variable components, in the range of 0 to 3%, 

had any significant effect on the angle of repose. 

Angle of Fall: Floodability of a material is the tendency to liquid-like flow due to 

natural fluidization of mass particles by air (9-11 ). The angle of fall describes the 

floodability of a material and is obtained as the new repose angle when dropping a 

fixed weight mechanically shocks the powder cone. The more free-flowing a material, 

the lower is the angle of fall. Figure 2 provides contour plots for the two sets of 

lactose blends. When the mixing time was constant, the powders containing a lower 

amount of magnesium stearate, a medium amount of stearic acid and a medium to high 

amount of Cab-0-Sil MS provided the lowest values for angle of fall. 
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When the mixing time was varied to obtain constant bulk density, a minimum value of 

17° was observed for angle of fall at moderate levels of all the three components that 

comprise the simplex design. The model predicts that at this composition, the lactose 

blend will have maximum floodability. 

Angle of Difference: This parameter also describes the floodability of a material and 

is obtained as the numerical difference between the angle of fall and angle of repose. 

The lower the difference, the higher will be the floodable or fluidizable a material can 

be. As evident from the data and contour plots (Tables 3, 4, S & 6 and Figure 3) when 

the mixing time was constant the values for angle of difference varied from lS.8° to 

20.6° whereas when the mixing time was varied, the values were in the range of 14° to 

23°. With a constant mix time, an increase in Cab-0-Sil MS resulted in an increase in 

the angle of difference whereas increases in magnesium stearate and stearic acid had 

an insignificant effect. When the mix time was variable, a high value was observed 

for blends containing about equal amounts of stearic acid, magnesium stearate and 

Cab-0-Sil MS. 

Angle of Spatula: It provides a measure of angle of rupture or internal friction of a 

material. A free flowing material will form one angle whereas a non-free flowing 

material will form a number of irregular angles on the blade. For free flowing 

materials, the value for angle of spatula is always higher than the angle of repose for a 

particular material (9-11 ). Figure 4 provides a contrast between the two sets of lactose 

blends. For constant mix time blends, a minimum for angle of spatula was observed 

for blends comprising about equal amounts of three flow enhancers. 
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FIGURE 4. Contour Plots for Angle of Spatula: (a) Constant l\ilix Time (h) Variable Mix Time 
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For the same composition, when the mixing time was variable, a maximum was 

observed in the contour plot indicating that mixing times have an effect on the values 

observed for angle of spatula (Figure 4). 

Bulk Density & Tapped Density: These are important micromeritic parameters in 

determining the flow of a powder. They are useful for determining the feed range 

calculations, mixer loading capacity and hopper or bin capacity (25 , 40). Bulk density 

is the ratio of mass to volume. The bulk & tapped density values for individual 

excipients are summarized in Table 2. In this investigation an attempt was made to 

determine whether the relationship between the flow properties of individual 

components and those of mixtures is linear or not. The theoretical values were 

calculated usir..g equation described in Data Analysis section. The theoretical values 

for different blends were calculated assuming a linear relationship between the 

bulk/tapped density of excipients and that of mixtures. When the mixing time was 

kept constant (3 min) the theoretical density values were found to be higher than the 

actual values in some cases and for others, the values remained the same (Tables 3&4). 

When the mixing time was varied till constant bulk density was obtained for blends, 

all the theoretical values were found to be significantly lower than the actual values 

(Tables 5&6). 

Aerated Bulk Density: This is also known as loose bulk density (9-11 ). This gives an 

indication of air entrapped in the powder. From the contour plot (Figure 5) for lactose 

blends mixed for 3 minutes, as the amount of stearic acid was increased from 0% to 

3%, the aerated bulk density increased from 0.54 to 0.64 g/mL. The high values for 

aerated bulk density were seen when the magnesium stearate is at 3%. 
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TABLE 5. Physical Properties of Lactose Blends with Variable Mix Time 

Blend#l Blend#2 Blend#3 Blend#4 Blend#S 

Response Parameter Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* 

Angle of Repose (0
) 37.4 41.1 42.2 41.2 38.4 40.9 39.3 41.2 40.5 41.0 

Angle of Fall (0
) 19.7 22.4 18.3 22.6 24.8 22.3 25.1 22.5 22.9 22.3 

Angle of Difference (0
) 17.7 18.7 24.0 18.6 13.6 18.6 14.2 18.6 17.6 18.7 

Aerated Bulk Density(glcc) 0.64 0.60 0.66 0.61 0.70 0.61 0.64 0.61 0.61 0.61 

Packed Bulk Density(glcc) 0.84 0.81 0.86 0.83 0.89 0.82 0.85 0.82 0.84 0.81 
Compressibility(%) 24.2 25.4 23.2 25.9 20.8 26.3 24.3 25.6 27.8 25.8 
Cohesiveness (%) 76.3 39.5 72.6 38.7 76.8 38.2 75.2 39.1 80.8 38.8 
Angle of Spatula (0

) 38.4 48.1 32.8 48.3 36.8 48.4 34.9 48.2 37.6 48.3 
Dispersibility (%) 11.5 8.0 10.5 6.5 9.2 7.6 9.3 7.3 9.2 7.8 
Moisture Content(%) 0.39 0.53 0.59 0.50 0.59 0.56 0.50 0.51 0.50 0.55 
Flowability Index 56 54.8 55.0 54.3 58.0 54.6 57.0 54.5 49.0 54.7 
Floodability Index 75.5 73.3 75 .0 73.1 68.0 72.5 68.0 73.2 70.0 72.9 

Bulk Density (glee) 0.65 0.63 0.69 0.65 OJ3 0.63 0.67 0.64 0.65 0.63 
Tapped Density (glee) 0.86 0.84 0.89 0.86 0.93 0.85 0.87 0.85 0.86 0.84 

Particle size (microns) 130.9 161.3 157.6 161.4 155.1 159.4 168.4 161.4 175.9 160.4 

Mixing Time (minutes) 12 2 4.5 4.5 5 

* Theoretical values were calculated assuming a linear relationship between the excipients and mixtures 
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TABLE 6. Physical Properties of Lactose Blends with Variable Mix Time 

Blend#6 Blend#7 Blend#8 Blend#9 Blend#lO 

Response Parameter Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* Actual Theoretical* 

Angle of Repose (°) 38.0 41.0 40.0 41.1 38.8 41.1 38.4 41.1 40.0 41.0 

Angle of Fall (0
) 19.6 22.4 17.6 22.4 17.3 22.4 20.7 22.5 20. l 22.3 

Angle of Difference (°) 18.4 18.6 22.5 18.6 21.5 18.7 17.7 18.6 19.9 18.6 

Aerated Bulk 0.71 0.61 0.64 0.61 0.70 0.61 0.66 0.61 0.66 0.61 
Density(glcc) 
Packed Bulk Density(glcc) 0.88 0.82 0.85 0.82 0.88 0.81 0.90 0.82 0.87 0.82 

Compressibility(%) 20.2 26.l 25 .1 25.9 20.1 25.6 26.6 25.9 24.8 26.1 

Cohesiveness(%) 74.6 38.4 76.7 38.8 76.8 39.2 79.1 38.7 76.3 38.5 

Angle of Spatula (0
) 35.8 48.4 42.1 48.3 32.6 48.2 37.1 48.3 37.6 48.4 

Dispersibility (%) 11.4 7.1 9.2 7.4 7.4 7.7 8.5 7.0 8.3 7.5 

Moisture Content(%) 0.49 0.53 0.59 0.53 0.60 0.53 0.60 0.51 0.40 0.55 

Flowability Index 58.5 54.5 52.5 54.6 58.5 54.7 51.0 54.4 55.4 54.6 

Floodability Index 73.0 72.8 63.5 73.0 77.5 73.1 74.0 73.0 77.0 72.7 

Bulk Density (glee) 0.72 0.64 0.66 0.64 0.71 0.63 0.71 0.64 0.68 0.63 

Tapped Density (glee) 0.92 0.86 0.87 0.85 0.90 0.84 0.90 0.86 0.88 0.85 

Particle size (microns) 140.6 160.4 153.0 160.7 141.4 161.0 145.7 161.1 144.7 160.1 

Mixing Time (minutes) 4 5 10.5 7 9 

* Theoretical values were calculated assuming a linear relationship between the excipients and mixtures 



N 
0\ 

(a) Constant Mix Time (b) Variable Mix Time 

Cab-0-Sil (3%) Cab-0-Sil (3%) 

Stearic Acid (3%) Mag Stearate (3%) Stcaric Acid (3%) Mag Stearate (3%) 

FIGURE 5. Contour Plots for Aerated nulk Density: (a) Constant Mix Time (h) Variable Mix Time 
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It is clearly evident that Cab-0-Sil M5 had inverse effect on aerated bulk density 

(Figure 5). When the mixing times were varied, higher values were observed at low 

levels of Cab-0-Sil M5 and higher levels of stearic acid and magnesium stearate 

(Figure 5). 

Packed Bulk Density: This parameter provides useful information on the compacting 

strength of a material that may occur in the hopper (9-11 ). From the contour plot 

(Figure 6) for blends that were mixed for constant time, Cab-0-Sil M5 had an inverse 

effect on the packed bulk density whereas stearic acid and magnesium stearate had a 

minor effect on the density values. When the mixing times were varied, the Cab-0-Sil 

M5 still had the same inverse effect on bulk density (Figure 6). The packed density 

values increased with an increase in magnesium stearate and the amount of stearic acid 

in the blend had insignificant effect. 

Compressibility: This is obtained from aerated and packed bulk densities and 

provides an excellent measure on compactibility of materials. The more compressible 

a material is, the less flowable it will be (9-11) . Tables 2, 3, 4, 5&6 provide the values 

for compressibility of various lactose blends and Figure 7 provides the trends noticed 

by varying the compositions of the flow enhancers from 0 to 3%. When the mixing 

time was kept constant, magnesium stearate provided lower values for compressibility 

when incorporated in small amounts (0-0.5%) or in high amounts (- 3%). At moderate 

amounts it resulted in high values for compressibility. Stearic acid had the inverse 

effect on the compressibility values. When the mixing times were varied, significantly 

lower values for compressibility were observed. Stearic acid had the inverse effect 
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(a) Constant Mix Time (b) Variable Mix Time 

Cab-0-Sil (3°/ii) Cab-0-Sil (3%) 

Stearic Acid (3%) Mag Stearate (3%) Stearic Acid (3%) Mag Stearate (3%) 

FIGURE 6. Contour Plots for Paclced Bulk Density: (a) Constant l\1ix Time (b) Variable Mix Time 
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(a) Constant Mix Time (b) Variable Mix Time 

Cab-0-Sil (3%) 
Cab-0-Sil (3%) 

Stearic Acid (3%) Stearic Acid (3%) Mag Stearate (3%) 

FIGURE 7. Contour Plots for Compressibility: (a) Constant Mix Time (b) Variable Mix Time 
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and a significant difference in the effect of magnesium stearate on compressibility was 

observed when compared to the constant mix blends (Figure 7). 

Cohesion: This parameter is related to the attractive forces that exist on particle 

surfaces (7, 9-11 ). Figure 8 provides the response surface for cohesion for lactose 

blends. When the mixing time was constant, a maximum value for cohesion was 

noticed when the components in simplex design were in about 1-2%. When the 

mixing times were varied, stearic acid had a significant inverse effect on the cohesion 

values. 

Dispersibility: It is a direct measure of the ability of a given powder to become 

fluidized or flooded (9-11 ). When the mixing time was constant, stearic acid had a 

minor effect as compared to a much larger effect when magnesium stearate and Cab-

0-Sil MS imparted in higher amounts (Figure 9). When the mixing time was varied a 

minimum was observed at about equal concentrations of the three flow enhancers. 

Moisture Content: Moisture content is a critical parameter that affects the flow and 

compaction behavior of powder blends. Various investigators have proposed different 

mechanistic explanations (26, 27). High levels of moisture content will affect 

adversely with the continuous flow of blend from the hopper to the die. As the 

moisture content in the powder increases, so do the cohesive forces between particles 

thereby increasing agglomeration of particles. During the compression process, an 

increased amount of absorbed water can either cause a gradual change in deformability 

of the particles (i.e. plasticize the glassy amorphous material) or can facilitate a 

temporary transition of the amorphous material from a glassy to a rubbery state. 
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(a) Constant Mix Time (b) Variable Mix Time 

Cab-0-Sil (3%) Cab-0-Sil (3%) 

Stearic Acid (3°/ii) Mag Stearate (3%) 
Stearic Acid (3%) 

FIGURE 8. Contour Plots for Cohesion: (a) Constrmt Mix Time (b) Variable Mix Time 
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(a) Constant Mix Time (b) Variable Mix Time 

Cab-0-Sil (3%) Cab-0-Sil (3%) 

S1earic Acid (3%) Mag Stearate (3%) Stenric Acid (3%) Mag Stearate (3%) 

FIGURE 9. Contour Plots for Dispcrsihility: (a) Constant l\1ix Time (h) Variable Mix Time 
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Moisture content also will have an adverse impact on the stability of pharmaceutical 

dosage forms. As the values for moisture content for various lactose blends reported 

in Tables 2, 3, 4, 5&6 and indicate that there was not much significant variation in the 

moisture content. Figure 10 displays the effect of formulation composition on the 

moisture levels present in the lactose blends. 

Particle Size Distribution: Particle size is a simple concept and yet a difficult one to 

quantitate. Feret' s diameter, Martin's diameter, projected area diameter, specific area 

diameter, Stoke's diameter, and volume diameters are few of several measurements 

that have been used to quantify particle size. Reports in literature demonstrate that 

decreasing particle size resulted in an increased angle of repose, suggesting that the 

coefficient of interparticle friction increased with decreasing particle size (4, 5, 7, 8, 

14, 28-32). Some investigators using flow-through-an-orifice experiments reported 

that the flow rate increased with decreasing particle size (in contrast to angle of repose 

observations) until a maximum is reached; followed by a rapid decrease in flow at 

smaller particle size (8 , 14). The decreased flow for small particles has been attributed 

to increased Van der Waals, electrostatic and surface tension forces, while the 

decreased flow at larger particle sizes may be partly due to the size of the orifice 

relative to that of the particles ( 4 ). Poor flow due to high quantity of drug present in 

the high dose formulations is related to the cohesive energies associated with the fine 

particles. Cohesive stress, which is the cohesive force per unit surface area, is smaller 

for the larger particles. This is the reason, why fine particles are more cohesive and 

increasing particle size improves flow (9-11 ). 
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(a) Constant Mix Time (b) Variable Mix Time 

Cab-0-Sil (3%) Cah-0-Sil (31Y.1) 

Stcaric Acid (3%) Mag Stcaratc (3°/c,) Stcaric Acid (3%) Mag Stearate (3%) 

FIGURE 10. Contour Plots Moisture Content: (a) Constant l\tix Time (b) Variable Mix Time 
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In this study, the mean particle size for different blends was determined by 

sieve analysis and the data is provided in Tables 2, 3, 4, S&6 and Figure 11 . When the 

mixing time was kept constant, the mean particle size values varied from 14S to 180 

microns. There were minor increases in the mean particle size when the amount of 

Cab-0-Sil MS was altered. These variations are probably due to the random 

adsorption of Cab-0-Sil MS particles on the surface of the lactose particles (33). 

When the mixing times were varied, Cab-0-Sil MS did not have any significant effect 

and the mean particle size remained small. In both sets of experiments, stearic acid 

and magnesium stearate had similar effects (Figure 11 ). 

Mixing Time: Among all the parameters, mixing time is one critical parameter that 

has implications on flowability of powders and unifo1m distribution of drug in the 

powder blend. Mixing is defined as a process that results in randomization of 

dissimilar particles within any system (34). Mixing is a critical process that dictates 

the flow of pharmaceutical powders. Many investigations have been reported with the 

effects of physical and chemical properties of materials on powder processing (34-39). 

There are many parameters that affect mixing process and these include type of mixer, 

nature of individual components of the mixture, order of addition of components to the 

batch, batch size, mixing speed, mixing time etc ( 40-42). The effect of mixing time 

needs to be evaluated carefully as too much mixing time will result in demixing of 

powders (43-4S). Longer mixing times with lubricants result in lower tablet hardness 

values. 

From the flow data generated in this study, it is evident that significant 

differences in powder characteristics were noticed based on the mixing times. 
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(a) Co11sta11t Mix Time (b) Variable Mix Time 

CnlJ-0-Sil (3%) Cnh-0-Sll (3%) 

Stenric Acid (3%) Mng Stenrnte (3%) 
Stenric Acid (3%) Mag Stearnle (3%) 

FIGUilE 11. Contour Plots for Mean Particle Size: (a) Constant l\tlix Time (b) Variable J\!lix Time 



As seen from the contour plot for Mix Time (Figure 12), Cab-0-Sil MS had a 

significant effect on the mixing time required to obtain a constant bulk density for 

lactose blend. As the amount of Cab-0-Sil MS was increased in the formulation, the 

mixing time required to achieve a constant bulk density had to be increased. The high 

amounts of stearic acid and magnesium stearate with low amounts of Cab-0-Sil MS 

seem to provide shorter mix times so as to obtain constant bulk density. Thus from the 

information obtained in the current investigation, the optimum mixing time to achieve 

a constant bulk density for a lactose blend can be determined. 

From the powder data summarized in Tables 2, 3, 4, S and 6, it is evident that 

there are significant __ differences between the actual values and theoretical values 

calculated from individual components assuming a linear relationship between the 

mixture and its components. The same can be confirmed from the response surfaces 

for various powder properties of the lactose blends. This supports the theory that the 

relationship for powder properties between the mixture and its components is more 

complex and not linear. Also from the data presented in this paper, one can determine 

the optimum composition of the flow enhancers required, optimum mix time to 

achieve constant bulk density so that the final blend will display optimum flow 

behavior. 

Optimization: The regression coefficients for special cubic model fitted for powder 

data obtained at constant mix time (7 runs) and variable mix times (7 runs) are 

summarized in Table 7 and Table 8. These regression coefficients were used to 

generate predicted values for various powder parameters in order to check the validity 
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CalJ-0-Sil (3°/o) 

Stcaric Acid. (3o/o) Mag Slcarntc (3°~1) 

FIGURE 12. Contour Plot for Mixing Time to obtain Maximum Bulk Density 
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TABLE 7. Regression Coefficients of Special Cubic Models Fitted for Powder Data 

Cbefficients Bl B2 B3 

Response Pararreter CoostantMx VarialieMx Coffitaut Mx VarialieMx CoostantMx VariatleMx 
'Ilrre 'Ilrre Ture 'Ilrre Ture Ture 

kged~ 40.9 37.2 48.0 420 45.9 38.7 

kgedFal 221 19.9 '29.-2 17.9 24.6 24.9 

kge d Dffererre 18.8 17.3 18.9 24.0 21.4 13.8 

.Aacte::J BJ k D:rsity 0.53 0.65 O.W 0.67 0.69 0.70 

Pa:Xe::J BJk D:rsity O.Tl 0.86 0.80 0.86 0.85 0.88 

Ca Ip esslblity 31.4 24.5 25.8 224 19.0 21.3 
Q:hesi\e""-ess 79.7 76.5 74.6 73.1 54.5 76.3 

kged~a 420 38.2 41.8 321 40.0 36.8 
Dsp:;rsiblity 17.4 11.5 8.4 10.1 16.5 9.2 

rvbsh.re Caiert 0.40 0.42 0.50 O.W o.w 0.55 

ROIB:llity ln:Ex 67.l - 0.65 - 69.8 -

Rcx:rl:tility ln:Ex 0.56 - 0.62 - 0.<56 -

BJk D:rsity 0.53 - 0.65 - 0.65 -

T~D:rsity 0.73 - 0.86 - O.~ -

PatidesiZE 183.9 130.0 153.4 156.4 144.0 154.3 
Mxi.I15 Turn - 11.3 - 3.1 - 5.1 
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TABLE 8. Regression Coefficients of Special Cubic Models Fitted for Powder Data 

Coefficients B12 B13 B23 B123 

Response Pararreter C.Onstant Variable C.Onstant Vanable C.Onstant Variable C.Onstant Variable 
MxTure MixTure MixTure MixTmE MxllllE MixTure MixTure IVJiXtinE 

A-r:Jle ci Retx>se -31.8 -3.0 -17.4 10.6 -41.1 -9.4 119.4 12.0 

Afr:Jle ci Feil -33.8 24.l -8.6 2.8 -22.8 -8.5 116.4 I -154.0 

Afr:Jle ci DffEnn::s 1.9 -27.l -8.7 7.9~ -18.3 --0.9 3.0 166.0 

.Affata::J B.Jlk caisity 0.33 --0.01 --0.19 --0.25 --0.03 0.(1) --0.53 0.17 

Pa::kffi B.J k D?.nsity 0.10 0.00 --0.01 --0.08 0.27 0.03 --0.45 0.34 

O:rrµ-esslblity -31.7 1.0 20.2 15.4 26.7 -7.9 32.7 31.6 

O:tesi\16"eSS -51.2 4.6 19.0 16.6 43.4 --0.26 351 -6.5 

Afr:Jle ci ~ula -14.1 -4.5 --0.2 --0.0 -3.1 2.5 -50.3 108.7 

DSfE'Slblity -14.8 -7.5 -33.0 -4.7 -15.6 5.3 58.3 -41.8 
l\lbsture O:ntent 0.28 0.12 0.00 0.01 --0.28 0.46 3.54 2.53 

ROJ\0blity lrrex 44.0 - 9.8 - --0.44 - -221.7 -

Flocdablity lrrex 0.03 - 0.02 - 0.03 - --0.41 -
B.J k D?.nsity 0.02 - --0.02 - 0.11 - --0.45 -
T~D?.nsity 0.13 - 0.02 - 0.01 - --0.29 -
Paiide size -46.8 92.4 31.7 128.0 6.9 -67.l -27.l -533.1 
Mxing Turn - -9.2 - -13.3 - 6.3 - 86.3 
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of the simplex design. Blend #8, 9 and 10 were used as check points to determine the 

validity of the simplex design. The powder blends were evaluated for various flow 

parameters and the values thus obtained were considered actual values. Using the 

regression coefficients in Tables 7 and 8, and composition of Blend #8 , 9, 10 as per the 

design described in Table 1, the predicted values for flow parameters were calculated. 

The actual and predicted values for different flow parameters are summarized in Table 

9. It is evident that the model used to fit the data was adequate as indicated by the 

insignificance of lack of fit and the narrower differences between the actual values and 

that predicted by the model (Table 9). 

Optimization was performed to maximize the flow behavior of the formulation 

by using a· constant mix time. It was accomplished by minimizing the angle of repose, 

angle of spatula, angle of difference, compressibility index, cohesiveness, 

dispersibility and floodability index and by maximizing the angle of fall , aerated bulk 

density, bulk density and flowability index (Table 10). Based on the results obtained 

from minimization and maximization processes, the following constraints were 

imposed on the model so that the best possible compromise can be obtained for 

formulation composition: 

1. Cab-0-Sil MS+ Stearic Acid+ Magnesium Stearate = 3.0 

2. Angle of Repose<= 38.0 

3. Compressibility Index<= 24.0 

4. Aerated Bulk Density >= 0.62 

5. Floodability Index <= 72.0 
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TABLE 9. Use of Check Points for Testing Lack of Fit (Constant Mix Time) 

Blend#8 Blend#9 Blend#lO 

Response Actual Predicted Actual Predicted Actual Predicted 

Angle of Repose (0
) 38.7 40.1 38.2 38.5 41.2 40.3 

Angle of Fall (0
) 19.5 22.9 19.2 20.5 24.3 22.7 

Angle of Difference (0
) 19.2 17.3 19.0 18.0 16.9 17.6 

Aerated Bulk Density(glcc) 0.63 0.68 0.56 0.64 0.62 0.67 

Packed Bulk Density(glcc) 0.86 0.84 0.81 0.80 0.88 0.85 

Compressibility(%) 26.4 26.2 30.8 28.4 29.9 27.1 

Cohesiveness (%) 79.7 78.3 81.9 78.8 82.4 74.1 

Angle of Spatula (0
) 40.5 38.7 43.7 39.1 37.0 39.0 

Dispersibility (%) 8.7 8.0 11.8 11.1 7.0 10.6 

Moisture Content(%) 0.60 0.57 0.60 0.54 0.60 0.59 

Bulk Density (glee) 0.66 0.63 0.56 0.56 0.62 0.63 

Tapped Density (glee) 0.86 0.86 0.80 0.79 0.85 0.86 

Particle size (microns) 148.4 152.9 172.6 170.2 152.2 154.7 
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TABLE 10. Optimization Process 

MINIMIZE MAXIMIZE 

• Angle of Repose • Angle of Fall 

• Angle of Spatula • Aerated Bulk Density 

• Angle of Difference • Bulk Density 

• Compressibility Index • Flo wabili ty Index 

• Cohesiveness 

~ • Dispersi bili ty 
VJ 

• Floodabili ty Index 
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TABLE 11. Optimum Composition 

COMPOSITION Response Parameter 

Lactose Anhydrous= 97.0%w/w Angle of Repose (0
) 

Cab-0-Sil Angle of Fall (0
) 

X1=1.27% w/w Angle of Difference (°) 

Stearic Acid Aerated Bulk Density(g/cc) 

X2=1.48% w/w Packed Bulk Density(g/cc) 

Magnesium Stearate Compressibility(%) 

X3=0.25% w/w Cohesiveness(%) 

Angle of Spatula (°) 

Dispersibility (%) 

CONSTRAINTS Moisture Content(%) 

Cab-0-Sil + Stearic Acid +Magnesium Stearate = 3.0 Flowability Index 

Angle of Repose <= 38.0 Floodability Index 

Compressibility Index<= 24.0 Bulk Density (glee) 

Aerated Bulk Density>= 0.62 Tapped Density (g./cc) 

Floodability Index <= 72.0 Particle size (microns) 

---.... 

Predicted 

37.9 

19.4 

18.5 

0.63 

0.83 

23.4 

72.9 

37.9 

9.0 

0.58 

55.1 

72.0 

0.60 

0.84 

157.0 
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For lactose blends with constant mix time, using the above mentioned constraints, the 

model predicted the following composition for blend that will have optimum flow 

properties: Cab-0-Sil MS = 1.27%, Stearic Acid = 1.48% and Magnesium Stearate = 

0.25% (Table 11 ). The model also predicted the response values for various powder 

properties. As evident from the predicted values summarized in Table 11, the model 

predicted composition display optimum flow behavior. 
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CONCLUSIONS 

The powder properties of lactose anhydrous blends by incorporating 

magnesium stearate, stearic acid and Cab-0-Sil MS in varying amounts from 0 to 3% 

as per the simplex design were analyzed. One set of the powder blends was mixed at a 

constant mix time of three minutes and another set of experiments with variable mix 

times to achieve constant bulk density was performed. The mixed systems and 

individual components were evaluated for powder characteristics such as bulk density, 

tapped density, aerated bulk density, packed bulk density, compressibility index, angle 

of repose, angle of spatula, angle of fall, angle of difference, cohesiveness, 

dispersibility, moisture content and particle size distribution. 

From the different powder parameters evaluated, it can be summarized that the 

relationship for powder properties between the mixture and its components is non

linear. Significant differences were observed in the flow behavior of powder blends 

obtained with constant mixing time and those obtained with variable mixing times. 

Among the three variable components, Cab-0-Sil MS had a significant effect on the 

time required to achieve constant bulk density of a powder blend. 

This study demonstrated that by using simplex design, the flow behavior of 

lactose blend can be optimized. For constant mix time study, the model predicted that 

lactose anhydrous would show optimum flow behavior with 0.2S%w/w magnesium 

stearate, 1.48%w/w stearic acid and 1.27%w/w Cab-0-Sil MS. 

Thus from the response surface contour plots and the mathematical model 

equations, one can determine the optimum composition of the flow enhancers 
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required, optimum mix time to achieve constant bulk density so that the final blend 

will display optimum flow behavior. 
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ABSTRACT 

Purpose. To investigate the compression behavior of experimentally designed multi

component mixtures using an instrumented tablet press. Methods. The mixtures 

comprised of Anhydrous Lactose, NF, Microcrystalline Cellulose, NF (Avicel PH101) 

and Pregelatinized Starch, NF (Starch 1500) with individual quantities varying from 0 

to 99% w/w based on a simplex design. Magnesium Stearate, NF was added as 

lubricant at 1 % w/w level. The batch size was 900 grams (equivalent to 3000 tablets). 

Ten experimental mixtures were prepared in a Collette Gral 10 High Shear Mixer with 

3 minutes of pre-blending and 1 minute of lubricant mixing. The mixtures were 

evaluated for bulk and tapped densities, particle size distribution and moisture content. 

The mixtures were compressed using a 10-station instrumented rotary tablet press 

(Piccola 026 B 1-0) equipped with a compression research system (PC-30, SMI Inc.) 

and 12/32" standard concave tooling at 1000 lbs, 2000 lbs, 3000 lbs, 4000 lbs, 5000 

lbs, 6000 lbs and maximum achievable force. The compression force-time profiles 

were recorded to measure the de-aeration force, compression force and ejection force 

for each compression cycle. The tablets were evaluated for hardness, weight, 

thickness, friability and disintegration time. The true densities of tablets and mixtures 

were measured using a helium pycnometer (Ultrapycnometer 1000). Results. The 

compression force-time pulses for all the mixtures at each compressional force were 

compared to investigate the effect of mixture composition on the compression 

behavior of mixtures. Events such as rise time, fall time, dwell time, contact time, 

areas and pulse widths that characterize nature of each compression pulse were 

evaluated using a response surface methodology (StatgraphicsP/us). Heckel 

54 



( 
relationships were plotted using the compressibility model. Conclusions. The results 

indicate that the compression behavior of multi-component mixtures as a function of 

component proportion provides critical information, which mimics the realistic 

formulation conditions. Such information, during the developmental stage will be 

useful to formulators to design a robust tablet formulation that will minimize problems 

during scale-up and production environment. 

Key Words: multi-component mixtures; simplex design; contour plot; pharmaceutical 

excipients; flow; compression; instrumented tablet press; heckle plots; compression 

force-time curve; anhydrous lactose; microcrystalline cellulose; pregelatinized starch; 

magnesium stearate. 
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INTRODUCTION 

Interest and popularity of tablet dosage forms has brought increasing attention 

on the compression of pharmaceutical mixtures. The advantages of tablets are: 1) low 

manufacturing cost, 2) reduced liability to tampering, 3) less variation in dosage and 4) 

improved patient compliance as compared to other dosage forms. Tablets can be made 

either from granulations or powder blends. Since wet or dry granulation involves 

additional processing steps such as drying, milling, slugging or roller compaction, 

direct compression seems to be the method of choice for tablet manufacturing. 

However, poor compressibility along with the poor flowable nature of most of the 

pharmaceutical mixtures poses tremendous challenges during the scaleup and 

production stages. In this investigation, the compression behaviors of mixtures 

containing, several of the most commonly used excipients have been evaluated. 

There are many ongoing investigations that focus on characterizing the 

compression behavior of pharmaceutical materials (1-9). Compression behavior of 

pharmaceutical blends is determined by factors such as individual excipients, type of 

tablet press, tooling, press speed, feed rate etc. Compression force-time profiles are 

used to characterize the compaction behavior of formulations with respect to their 

elastic and plastic properties. The compression force-time profile is a fingerprint for a 

formulation and can be useful in choosing excipients for direct compression and 

binders for granulation. 

Powders consolidate under a compressive force by a variety of mechanisms, 

ranging from particle fragmentation to plastic and elastic deformation (9-14). Particle 

fracture can be regarded as a virtually instantaneous process, while irreversible 
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deformation resulting from plastic flow or viscoelasticity is comparatively slow, and 

greater consolidation may be achieved by applying force for a longer time. There are 

numerous reports in literature describing attempts to characterize compression force

time profiles from single punch as well as from rotary tablet presses. The 

consolidation time can be defined as the time to reach the maximum force, the dwell 

time as the time at the maximum displacement of the punches and contact time as the 

time for compression and decompression. Parameters that characterize the shape of 

the compression force-time curves were developed by several authors (5, 9-14, 17). 

A typical compression event can be classified into three parts. The first one is 

the compression phase, when punches are penetrating into the die caused by the 

movement of their head curvature in contact with the pressure rollers. The second 

phase is the dwell time, when no ·vertical punch movements occur while the flat punch 

tops are moving over the compression rollers. In the third phase, the relaxation phase, 

the punch heads are leaving the pressure rollers. Figure 1 depicts the different phases 

of the compression event on a rotary tablet machine. Though tablets have been a 

choice of dosage form over other delivery systems and have been in practice for more 

than a century, yet remarkably little is known of the relationships involved in the 

behavior of powders and powder mixtures during compression. Most of the work 

published so far dealt with mainly single substances or binary mixtures. But in reality, 

a typical tablet dosage form is a multi-component system. The compression 

characteristics of multi-component mixtures were rarely investigated (9). Since the 

formation of a strong and coherent tablet depends on the process of powder 

consolidation, knowledge of the compression behavior of multi-component mixtures is 

57 



essential for formulation scientists to optimize formulation composition. The 
( 

instrumented tablet machines are considered to be very useful tools to evaluate the 

compaction behavior of pharmaceutical materials that make up the formulations. 

Usually, these materials differ in physical and chemical properties thereby making the 

compaction of multi-component mixtures more challenging. 

Compression profiles may act as formulation 'finger-prints' and aid in 

troubleshooting. In spite of extensive research in tableting area, the basic questions 

still seem to be open. Is it possible to obtain some basic parameters from the force-

time curve in order to predict compression characteristics of different types of 

materials? How well can the most important mechanical properties of tablets are 
.· 

estimated from force-time cmves? And, is it possible to predict the compression 

behavior of materials in high speed rotary machines used in production on the basis of 

compression data obtained from varying types of laboratory tablet machines? 

The assessment of the compaction performances of the formulation ingredients 

is an important aspect of tablet product design and development. However, there is no 

standard compaction test method required · by the pharmacopeias. Therefore data 

obtained from two or more compaction studies are not comparable, since because of 

the inconsistent techniques employed, the equipment (i.e. type of press and tooling), 

the parameters monitored (i.e. compaction speed, applied force, and punch 

displacement), or methods used to manipulate the compaction data (i.e. Heckel 

equation, work of compaction) vary widely in these studies (6). 
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Figure 1. Different Phases of the Compression Cycle (14) 

1) Compression: punch head moving against pressure roller 

2) Dwell time: maximum deformation takes place 

3) Relaxation: punch head leaving pressure roller 
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Recently, Celik and Okutgen (15) optimized the parameters of tablet weight, 

lubrication, equipment, tooling, punch displacement profile, pressure range, as well as 

other pre-, during, and postcompaction parameters in their compaction studies, and 

proposed a standard compaction functionality 'tabletability' testing method capable of 

comparing the relative tabletability features of different materials and different lots of 

the same material with high sensitivity. Applying this test method, the authors 

generated ' compaction finger-prints' for a number of commonly used tableting 

excipients in order to establish a compaction data bank that can eventually be utilized 

as an informative reference source in tablet formulation studies. 

A recent survey by Shangraw and Demarest (16) revealed a number of 

interesting facts about solid-dosage formulation design and development: lactose and 

microcrystalline cellulose are the most preferred fillers-binders and tradition is still a 

very important reason for the preference. 

At present there are hardly any reports available in literature on behavior of 

multi-component mixtures during compression. But in reality, a typical tablet dosage 

form contains drug, filler, binder, disintegrant and lubricant. Most of the tableting 

research was done with individual components. The objective of this investigation 

was to evaluate the compression behavior of powder blends consisting of commonly 

used pharmaceutical excipients, namely, Anhydrous Lactose, NF, Microcrystalline 

Cellulose, NF (Avicel® PH101), Pregelatinized Starch, NF (Starch® 1500) and 

Magnesium Stearate, NF. A simplex design was utilized to determine the effect of 

individual components comprising the mixtures on tablet properties. Compression 
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parameters were determined from compression force-time pulse. Such information 

shall, help to develop a robust tablet formulation that will minimize problems during 

scale-up and production conditions. 
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METHODOLOGY 

MATERIALS 

The materials used in this study were Anhydrous Lactose, NF (Sheffield Products, 

USA), Microcrystalline Cellulose, NF (Avicel® PH101) (FMC Inc, USA), 

Pregelatinized Starch, NF (Starch® 1500) (Colorcon Inc., USA) and Magnesium 

Stearate, NF (Mallinckrodt Co., USA). 

METHODS 

Preparation of Powder Blends: The powder blends were prepared using commonly 

used pharmaceutical excipients, namely, Anhydrous Lactose, NF, Microcrystalline 

Cellulose, NF (Avicel® PH101) and Pregelatinized Starch, NF (Starch® 1500) as per 

the simplex design described in Table 1. The quantities of the excipients were varied 

from 0 to 99% w/w as per the experimental design. The batch size for each blend was 

kept constant at 900 grams (equivalent to 3000 tablets). Magnesium Stearate, NF, at 

1 % w/w level, was added as lubricant. A total of ten blends were prepared as per the 

process described in Figure 2. The ingredients were passed through a #30 mesh hand 

screen separately and the screened materials were placed in a Collette Gral 10 High 

Shear Mixer. The mixing was performed for three minutes at low speed (430 rpm) 

with chopper OFF. The lubricant was passed through a #30 mesh hand screen and was 

mixed with the pre-blend for 1 minute at the same mixer settings. Each powder blend 

containing composition as per the simplex experimental design (Table 1) was prepared 

in a similar fashion. 
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Table 1. Simplex Design for Blends used for Compression Analysis 

Percentage of Each Ingredient in The Formulation (%w/w) 

Constant Variable Factors 

Factor 

Blend# Magnesium Lactose Microcrystalline Pregelatinized 
Stearate, NF Anhydrous, NF Cellulose, NF Starch, NF 

(X1) (Avicel® PH101) (Starch® 1500) 
_(_Xtl_ (X3) 

1 1 99 0 0 

2 1 0 99 0 

3 1 0 0 99 

4 1 49.5 49.5 0 

5 1 49.5 0 49.5 

6 1 0 49.5 49.5 

7 1 33 33 33 

8* 1 66 16.5 16.5 

9* 1 16.5 66 16.5 

10* 1 16.5 16.5 66 

Total 1 99 

* Additional runs as check points for the Simplex Design 
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Lactose Anhydrous, NF (and/or) 
Avicel PH101 (and/or) 

Starch 1500 
Pass through #30 mesh handscreen 

Collette Gral 10 High Shear Mixer 
Mix for THREE (3) minutes at Low Speed and 

Chopper OFF 

Collette Gral 10 High Shear Mixer 
Mix for ONE ( 1) minute at Low Speed and 

Chopper OFF 

Compress into tablets using 
Instrumented Piccola Rotary Tablet Press 

STORAGE 

Magnesium Stearate, 
NF 

Figure 2. Process Flow Chart for Preparation of Powder Blends 
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( Characterization of Powder Blends: 

The powder mixtures were evaluated for bulk density, tap density, 

compressibility index, moisture content, particle size distribution and true density. 

Bulk and Tap Density Determination: The weight of powder required to fill a 100 

mL graduated cylinder was determined and from which the bulk density was 

calculated as the ratio of mass per volume of the powder. The tap density of the 

powder was calculated after 100, 250, 500 and 1000 taps using Vander Kamp Tap 

Density Tester (Van Kel Industries, Inc., USA). Mean values of three density 

measurements were determined. From these measurements, Hausner Number and 

Compressibility Index values were calculated. 

The Hausner Number was determined using the equation: 

Hausner Number = (J'apped Density/Bulk Density) 

The Compressibility Index was determined using the following equation: 

Compressibility Index {°/o) ={(Initial Volume-Final Volume)/Final Volume}xJOO 

= {(J'ap Density-Bulk Density)/Tap Density}xJOO 

Moisture Content Determination: A powder sample of 2-4 grams was placed on a 

Mettler Moisture Determining Balance (Model Mettler LP16, Mettler Corp., USA) and 

the sample was heated at 105 °C until a constant weight was achieved. The moisture 

content was thus determined as the percentage of loss on drying (LOD). Mean values 

of three measurements were determined. 
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Particle Size Analysis: The particle size distribution for various powders was 

determined using a Gilsonic Autosiever (Model GA-6A, Gilson Company Inc., Ohio). 

The sieves used for this analysis have the following opening sizes: 180µm, 125µm, 

90µm , 53µm, 45µm , 32µm , and 20µm. A sample of 5 grams of powder was placed on 

the top sieve and after sieving for 5 minutes, the powders retained on each sieve were 

weighed. The amounts of powders retained were utilized to determine the geometric 

mean particle size of the powder blend. 

Preparation of Tablets: 

A ten-station instn.unented rotary tablet press (Model : Piccola 026 B 10, Piccola 

Industria, Riva S.A., Buenos Aires, Argentina) was utilized to compress blends into 

tablets. Only five out of ten stations were utilized for compression of powders. A 

tablet weight of 300 mg and 12/32 inch standard concave tooling were used. A paddle 

feeder was utilized to feed the powder into the die stations. The powder blends were 

compressed at -1000 lbs. , 2000 lbs. , 3000 lbs., 4000 lbs. , 5000 lbs., 6000 lbs. and at 

maximum achievable force on the tablet press. All blends were compressed at a press 

speed of 15 rpm. 

Compression Data Collection: The compress10n force-time profiles at different 

compressional forces were obtained using an instrumented Piccola Rotary Tablet 

Press. The Piccola Rotary Tablet Press was equipped with strain gauge based 

transducers to measure the de-aeration force, compression force and ejection force for 

the compression cycle. Five stations were utilized to obtain data during compression 
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of various formulations as per the experimental design described in Table 1. A 

Compression Research System (PC-30, SMI Inc.) was utilized to gather and analyze 

data during compression process. The software allows collecting data in four modes: 

Scope, Tooling, Status and Repetitive Sample. In Scope mode, detailed information 

about an individual pulse can be obtained. Events such as rise and fall time, dwell 

time, contact time, area under the curve, and pulse width characterize the signature of 

the pulse. A typical pulse diagram was shown in Figure 3. Pulse signatures are a 

function of the physical characteristics of the tablet press, turret speed, and the 

properties of the formulation. Therefore for the same press running at a constant 

speed, different formulations can be directly compared for evaluation. Tooling mode 

provides very useful infom1ation during compression and can be used to evaluate the 

performance of each station. The variation in data in this mode can be directly related 

to the flow behavior of the powders. Status mode is used to statistically analyze large 

quantities of data resulting from extended time runs. This mode can be used to 

determine whether a process is in control or not. Repetitive Sample mode is used to 

acquire data that will later be cross-plotted. This mode is used typically to determine 

the effect of applied force on the tablet hardness. 

Characterization of Tablets: 

Weight, Thickness & Hardness: The tablets produced for all the blends at various 

compressional forces were evaluated for weight variation, thickness and hardness 

using Dr. Schleuniger Pharmatron Tablet tester (Model: 6D, Dr. K. Schleuniger, 

Geneva, Switzerland). For each parameter, mean value of 10 tablets was determined. 
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Figure 3. Pulse Analysis of the Force-Time Curve 
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Disintegration Testing: The disintegration test as per the USP method was performed 

utilizing Hanson Research Disintegration Test Apparatus (Model: QC-21 , Chatsworth, 

CA, USA) at 30 cycles per minute and distilled water as medium at 37±0.5°C. The 

mean disintegration time for six tablets at each experimental condition was 

determined. 

True Density Determination: The true density of tablets and final blends was 

measured using a helium pycnometer (Ultrapycnometer 1000, Quantachrome Corp., 

Fairfield, NJ, USA). Mean values of 5 readings were calculated for both the powder 

blends and tablets prepared from various compositions. 

Tablet Volume and Surface Area Determination: The tablet volume and surface 

area were calculated from the mean values of tablet weight and tablet thickness and 

tooling dimensions utilizing a Natoli computer program. 

Data Analysis: 

Porosity is a function of the voids in a powder column and measurement of 

porosity changes as a function of the compression pressure is a method widely used in 

describing the compaction processes of powders. For porosity measurements, the 

dimensions and weight of a powder column (i.e. apparent density) and particle density 

(referred to often as true density) of the solid material should be known. The porosity, 

€, can be expressed by the equation: 
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Where PA is the apparent density of powder column and PT is the particle density of 

the compressed material. The value of pA/pT, also referred as D, is regarded as the 

relative density or the packing fraction, which describes the solid fraction of a porous 

powder column. A value for the applied pressure, P, while loading a powder column 

under pressure is a function of the compression force, F, and the punch tip area, A: 

P=F/A 

The compression force and porosity data were analyzed usmg the Heckel 

compressibility model (17), one form of which is: 

Ln (1/1-D) =KP+ A 

Where D is the relative density, (1-D) represents the pore fraction, P is the applied 

pressure, and Kand A are constants. A plot of ln (111-D) vs P is known as a Heckel 

plot. The constants Kand A are the slope and intercept, respectively, calculated from 

the linear portion of the Heckel plot. Typically at lower pressures, the plot is curved 

whereas at higher pressures, the plot is linear. The reciprocal of the slope of the linear 

region (K) is termed the mean yield pressure. The intercept, A, is related to the initial 

packing density of the powder. The initial curved region of the Heckel plot is 

attributed to particle rearrangement and its extent can be quantified using the 

relationship: 

Db= Da-Do 

Where Db is the increase in relative density due to particle rearrangement, Da = 1-e-A is 

the extrapolated relative density from the intercept (A) of the linear portion of the 

Heckel plot, and 0 0 is the initial relative density. 
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A statistical design, namely "Simplex-Centroid Design" was utilized in the present 

study (18). The points of composition in the simplex were explored in accordance 

with a lattice arrangement and the responses were represented by polynomials (18-20). 

The special cubic design is described by the following equation (18): 

Y = b1 X1 + b2 X2 + b3 X3 + b12 X1X2 + b13 X1X3 + b23 X2X3 + bm X1X2X3 

where X1 =Lactose Anhydrous, X2 = Avicel PH101, X3 =Starch 1500 

b1 ... . b123 =Regression Coefficients 

The graphical representation of a polynomial equation is the response surface or 

contour plot. The response variables such as tablet hardness, dwell time, tablet surface 

area, porosity etc. were fitted using a special cubic model. The response surface 

contour plots were obtained for each parameter as a function of varying amounts of 

lactose anhydrous, Avicel® PH101 and Starch® 1500. The statistical software 

packages Statgraphics® Plus (21) and Design-Expert® (22) were utilized to analyze the 

data. 
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RESULTS & DISCUSSION 

Physical Characteristics of Powder Blends: 

The powder mixtures containing Lactose Anhydrous, NF, Microcrystalline Cellulose, 

NF (Avicel® PHIOl), Pregelatinized Starch, NF (Starch® 1500) and Magnesium 

Stearate, NF in various proportions as per the simplex design described in Table 1, 

were prepared and evaluated for blend characteristics such as bulk density, tapped 

density, true density, Hausner Number, compressibility index, moisture content and 

particle size distribution. The results are summarized in Tables 2-3 and Figures 4-7. 

Most of the active pharmaceutical ingredients have low bulk density and this is 

due to entrapment of large amounts of air between particles. At high speeds, this 

entrapped air causes capping of tablets and reduces tablet strength. For filling the die 

cavities, high bulk density is advantageous. Hence an objective of formulation design 

process is to increase the bulk density of the final blend to minimize the air entrapment 

and offset the effect of high compression speeds. Figure 4 describes the change of 

bulk density of mixtures as a function of component proportion. Among the three 

excipients, Starch® 1500 had the highest bulk density (0.7277 gm/cc) followed by 

Lactose Anhydrous, NF (0.6717 gm/cc) and Avicel® PHIOl (0.4014 gm/cc). Among 

all the mixtures, the binary mixture containing Starch® 1500 and Lactose Anhydrous, 

NF in 1: 1 ratio (Blend#5) had the highest bulk density (0.7786 gm/cc) whereas 

Avicel® PHIOl (Blend#2) had the lowest bulk density (0.4014 gm/cc). Figure 5 

demonstrates the effect of tapping process on the bulk density of mixtures. As can be 

seen from Figure 5, 250-500 taps were sufficient to obtain plateau conditions for all 

the mixtures, which indicate that the mixtures are free flowing (23, 24). 
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Physical 

Property 

Bulk Density 

(glee) 

Tapped Density 

(glee) 

Hausner 

Number 

Compressibility 

(%) 

Mean Particle 

Size (µm) 

Moisture 

Content(%) 

True Density 

(glee) 

Blend 

#1 

0.6717 

0.9016 

1.34 

25 

161 

0.60 

1.5767 

Table 2. Physical Properties of Various Blends 

Blend Blend Blend Blend Blend 

#2 #3 #4 #5 #6 

0.4014 0.7277 0.5498 0.7786 0.5284 

0.5614 0.9968 0.7331 1.0110 0.7238 

1.40 1.37 1.33 1.30 1.37 

29 27 25 23 27 

111 99 133 117 85 

5.12 4.06 2.42 2.01 4.71 

1.6188 1.5190 1.6136 1.5623 1.5772 

,,...~ . 

Blend Blend Blend Blend 

#7 #8 #9 #10 

0.6183 0.6965 0.4866 0.6728 

0.8135 0.893 0.6666 0.8971 

1.32 1.28 1.37 1.33 

24 22 27 25 

107 94 122 94 

3.13 1.92 4.22 3.36 

1.5719 1.5712 1.5966 1.5540 
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For poor flowing materials, a large number of taps will be required. Carr (23 , 24) 

proposed the 'Compressibility Index' as a simple and fast method for predicting 

powder flow characteristics. It is used as an indirect measure of bulk density, size and 

shape, surface area, moisture content and cohesiveness of materials. It is also a 

measure of the likelihood of arch formation and the ease with which arches will fail. 

Table 2 provides the compressibility index values for all blends used in this study. As 

Figure 6 indicates, the compressibility index value varies with the composition of the 

mixtures with a maximum value of 28.5 (Blend #2) observed for the 99% Avicel® 

PH101 and a minimum value of22.0 observed for the mixture containing 66% Lactose 

Anhydrous, NF, 16.5% Avicel® PH101and16.5% Starch® 1500. 

Hausner Number is another parameter used to assess the flowability of 

pharmaceutical powders. As data from Table 2 indicates that the Hausner Number 

values varied from 1.28 to 1.40. Lower the values for Hausner Number, the better will 

be the powder flow. Among the ten blends prepared in this study, Blend #2 containing 

99% Avicel® PHlOl displayed the highest value and the lowest value was observed 

for blend containing 66% Lactose Anhydrous, NF, 16.5% Avicel® PH101 and 16.5% 

Starch® 1500 (Blend #8). 

Particle size information may be the most critical physical parameter that not 

only determines the dissolution behavior of drugs but also has a significant impact on 

the manufacturability of a formulation. Mixtures with fine particles provide better 

compression but will cause flow problems at higher speeds of production. Large 

variations in the particle size distribution of excipients that makeup the final blend 
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( 
cause segregation during processing thereby resulting in content uniformity problems 

(25-31 ). Thus for tableting purposes, a narrow particle size range is desirable. The 

particle size distributions of all mixtures in the current study are summarized in Table 

3. Based on the sieve analysis data, the geometric mean particle size was calculated 

and plotted as function of mixture components (Figure 6). The mixture containing 

49.5% Avicel® PH101 and 49.5% Starch® 1500 (Blend#6) had the lowest geometric 

mean particle size of 85 µm whereas the 99% Lactose Anhydrous, NF mixture 

(Blend# 1) had the highest geometric mean particle size of 161 µm. 

Moisture content is a critical parameter that affects the flow and compaction 

behavior of powder blends (32-34). Various investigators have proposed different 

mechanistic explanations. High levels of moisture content will affect adversely with 

the continuous flow of blend from the hopper to the die. During the compression 

process, an increased amount of absorbed water can either cause a gradual change in 

deformability of the particles (i.e. plasticize the glassy amorphous material) or can 

facilitate a temporary transition of the amorphous material from a glassy to a rubbery 

state. Concerning the binding process, improved particle deformability or a glass

rubber transition can affect either type of bonds formed between the particles or the 

area of bonding formed between the particles during compression. As the values for 

moisture content for various mixtures reported in Table 2 indicates that Blend#l has 

the lowest moisture content (0.60%) whereas the Blend#2 has the highest moisture 

content (5.12%). 
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Table 3. Particle Size Distributions of Various Powder Blends based on Sieve Analysis 

% Retained 

Blend#l Blend#2 Blend#3 Blend#4 Blend#S Blend#6 Blend#7 Blend#8 Blend#9 Blend#lO 

59.5 16.5 11.2 41.9 21.4 4.6 14.4 23.l 27.9 9.5 

13.1 19.3 16.6 10.6 15.8 12.8 14.8 8.7 23.3 13.3 

16.l 27.8 22.4 17.0 30.7 23.6 33.9 17.3 8.4 22.6 

6.9 14.l 23.6 13 .8 16.6 25.9 16.6 5.8 21.5 27.6 

2.2 9.9 12.8 5.2 4.0 8.4 6.8 2.4 8.6 12. l 

1.2 6.8 5.0 5.0 4.0 9.0 4.8 1.9 4.0 5.6 

0.6 3.4 5.8 4.2 3.8 8.8 4.0 39.3 4.2 4.6 

0.4 2.2 2.8 2.4 3.6 6.8 4.6 1.5 2.2 4.6 

161 111 99 133 117 85 107 94 122 94 
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Figure 7. Geometric Mean Particle Sizes Based on Sieve Analysis for Powder Blends 



( 
The true densities for all the mixtures were determined used helium 

pycnometer. Table 2 provides the summary of these results. The true density values 

varied from 1.5190 glee for blend#3 (99% Starch® 1500) through 1.6188 glee for 

blend#2 (99% Avicel® PH101). These values were used in determining the tablet 

porosity values in order to analyze the densification behavior of various experimental 

blends. 

Characterization of Tablets: Tablets prepared from the blends at varying levels of 

compression force (1000 lbs, 2000 lbs, 3000 lbs, 4000 lbs, 5000 lbs, 6000 lbs and 

maximum achievable force on the tableting machine were characterized for weight 

variation, thickness, hardness, friability loss and disintegration time. The results are 

summarized in Tables 4 to 13. The tablet weights measured during the study indicated 

that all blends produced tablets with consistent weights and the weight variations are 

within the acceptable range. Maximum variability in tablet weight was observed for 

the blend containing 99% of Starch® 1500 (Blend#3) and minimum variability was 

observed for tablets prepared using Blend#4 which contains Lactose Anhydrous, NF 

and Avicel® PH101 at 49.5% level. The tablet weight is considered to be dependent 

upon the die fill, compression speed, feeding mechanism and nature of blend (31 , 35, 

36). The tablet weight variation observed in the present study may be attributed to the 

differences in the flow properties of the blends and also due to the poor binding 

properties of the components that make up the tablets. 
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Test Parameters 

Weight (mg) Mean 
n=lO S.D 

%RSD 
Min 
Max 

Thickness Mean 
(inches) S.D 
n=lO %RSD 

Min 
Max 

Hardness (Kp) Mean 
n= lO S.D 

%RSD 
Min 
Max 

Loss of -
Friabil!!Y_io/o}_ 

Disintegration Mean 
Time (min), n=6 S.D 

%RSD 

Table 4. Physical Testing of Tablets Prepared from Blend#l 

Composition: 99% Lactose Anhydrous+ 1 % Magnesium Stearate 

Compressional Force (lbs) 

1000 lbs 2000 lbs 3000lbs 4000 lbs SOOOlbs 60001bs Max (lbs) 

303 300 299 304 303 303 303 
1.9 1.6 2.5 1.7 3.4 2.4 2.0 
0.6 0.5 0.8 0.6 1.1 0.8 0.6 
300 298 296 301 299 300 301 
305 302 303 307 308 306 307 

0.1785 0.1667 0.1604 0.1588 0.1555 0.1531 0.1568 
0.0008 0.0006 0.0008 0.0005 0.0009 0.0010 0.0028 

0.4 0.4 0.5 0.3 0.6 0.7 1.8 
0.1775 0.1660 0.1590 0.1580 0.1540 0.1520 0.1515 
0.1805 0.1680 0.1615 0.1595 0.1570 0.1550 0.1590 

1.9 5.2 9.2 12.2 15.0 17.3 14.2 
0.27 0.50 0.73 0.39 1.62 1.28 3.41 
14.0 9.5 7.8 3.2 10.8 7.4 24.0 
1.6 4.2 8.4 11.7 12.2 15.5 11.4 
2.3 5.8 11.0 12.7 16.9 19.5 20.5 

2.79 0.92 0.32 0.30 0.12 0.13 0.21 

2.63 5.96 7.03 7.06 7.16 7.09 7.24 
0.14 0.80 0.14 0.33 0.16 0.15 0.06 
5.5 13.4 2.0 4.7 2.2 2.1 0.8 
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Test Parameters 

Weight (mg) Mean 
n= lO S.D 

%RSD 
Min 
Max 

Thickness Mean 
(inches) S.D 
n= lO %RSD 

Min 
Max 

Hardness (Kp) Mean 
n=lO S.D 

%RSD 
Min 
Max 

Loss of -
Friabilityj_o/<l}_ 

Disintegration Mean 
Time (min), n=6 S.D 

%RSD 

~ 

Table 5. Physical Testing of Tablets Prepared from Blend#2 

Composition: 99% A vi eel PH 101+1 % Magnesium Stearate 

Compressional Force (lbs) 

1000 lbs 20001bs 30001bs 40001bs SOOOlbs 6000 lbs Max (lbs) 

305 301 299 298 299 300 300 
2.5 3.1 1.8 3.2 2.8 3.4 2.5 
0.8 1.0 0.6 1.1 0.9 1.1 0.8 
302 294 296 292 295 293 296 
310 305 301 303 302 306 303 

0.1947 0.1702 0.1617 0.1558 0.1540 0.1532 0.1517 
0.0006 0.0005 0.0005 0.0009 0.0005 0.0011 0.0013 

0.3 0.3 0.3 0.5 0.3 0.7 0.9 
0.1940 0.1695 0.1610 0.1540 0.1530 0.1515 0.1495 
0.1955 0.1710 0.1625 0.1570 0.1545 0.1555 0.1535 

7.3 14.2 17.9 21.0 23.1 23.4 23.7 
0.32 0.64 0.51 0.66 1.15 1.01 0.93 
4.4 4.5 2.9 3.2 5.0 4.3 3.9 
6.8 12.7 17.2 20.2 21.1 21.7 22.0 
7.8 14.8 18.9 22.0 24.7 24.6 25.0 

0.40 0.38 0.23 0.22 0.20 0.36 0.23 

0.28 0.35 0.81 2.22 3.03 3.28 3.65 
0.03 0.03 0.06 0.17 0.10 0.11 0.19 
11.2 9.5 7.6 7.9 3.5 3.3 5.2 
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Table 6. Physical Testing of Tablets Prepared from Blend#3 

c 99% Starch 1500 + 1 % M s 
Test Parameters Compressional Force (lbs) 

40001bs 6000Ibs Max (lbs) 

Weight (mg) Mean 287 293 296 
n= lO S.D 4.5 7.1 6.0 

%RSD 1.6 2.4 2.0 
Min 278 284 287 
Max 293 308 307 

Thickness Mean 0.1645 0.1648 0.1679 
(inches) S.D 0.0029 0.0034 0.0030 
n=lO %RSD 1.8 2.1 1.8 

Min 0.1605 0.1610 0.1630 
Max 0.1695 0.1700 0.1725 

Hardness (Kp) Mean 0.0 0.0 0.3 
n=lO S.D 0.0 0.0 0.07 

%RSD 0.0 0.0 20.5 
Min 0.0 0.0 0.2 
Max 0.0 0.0 0.4 

Loss of - 100 100 100 
Friabil!!Y_io/tl_ 

Disintegration Mean 0.91 2.39 2.88 
Time (min), n=6 S.D 0.12 0.18 0.27 

%RSD 13.2 7.6 9.2 
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Table 7. Physical Testing of Tablets Prepared from Blend#4 

Composition: 49 .5% Lactose Anhydrous + 49 .5% A vicel PH 101 + 1 % Magnesium Stearate 

Com]!_ression Force J.lbl 

Test Parameters 1000 lbs 2000 lbs 40001bs 6000 lbs Max (lbs) 

Weight (mg) Mean 300 301 299 301 302 
n= lO S.D 2.1 1.5 1.3 2.1 2.2 

%RSD 0.7 0.5 OA 0.7 0.7 
Min 296 298 298 298 299 
Max 304 302 302 305 305 

Thickness Mean 0.1913 0.1710 0.1576 0.1526 0.1507 
(inches) S.D 0.0006 0.0005 0.0008 0.0004 0.0008 

n=lO RSD 0.3 0.3 0.5 0.3 0.5 
Min 0.1905 0.1700 0.1570 0.1520 0.1495 
Max 0.1925 0.1715 0.1590 0.1530 0.1520 

Hardness Mean 2.6 7.8 16.0 19.9 22.6 
(Kp) S.D 0.15 0.39 0.52 0.98 0.91 
n=lO RSD 5.7 4.9 3.3 4.9 4.0 

Min 2.3 7.4 15.0 18.0 20.6 
Max 2.8 8.6 16.8 21.0 24.0 

Loss of Friability - 0.91 0.35 0.25 0.23 0.20 
_{_o/tl 

Disintegration Mean 0.19 0.36 9.45 19.48 33.13 
Time (min), n=6 S.D. 0.04 0.04 0.47 0.54 1.36 

RSD 20.8 12.2 4.9 2.8 4.1 

......, 
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Table 8. Physical Testing of Tablets Prepared from Blend#S 

Composition: 49 .5% Lactose Anhydrous + 49 .5% Starch 1500 + 1 % Magnesium Stearate 

Test Parameters Compressional Force (lbs) 

20001bs 30001bs 4000 lbs SOOOlbs 60001bs Max (lbs) 

Weight (mg) Mean 300 299 301 301 301 300 
n=lO S.D 3.1 1.3 1.7 2.0 1.3 2.2 

%RSD 1.0 0.4 0.6 0.7 0.4 0.7 
Min 297 297 299 299 300 297 
Max 305 301 304 306 304 303 

Thickness Mean 0.1768 0.1719 0.1697 0.1667 0.1660 0.1636 
(inches) S.D 0.0014 0.0005 0.0062 0.0006 0.0008 0.0011 
n=lO %RSD 0.8 0.3 0.4 0.4 0.5 0.7 

Min 0.1755 0.1715 0.1685 0.1660 0.1650 0.1625 
Max 0.1800 0.1730 0.1710 0.1680 0.1675 0.1660 

Hardness (Kp) Mean 0.4 0.8 1.2 1.8 2.2 2.9 
n=lO S.D 0.05 0.11 0.09 0.11 0.13 0.10 

%RSD 13.6 14.4 7.4 5.8 6.1 3.4 
Min 0.3 0.6 1.1 1.6 2.0 2.7 
Max 0.4 0.9 1.4 2.0 2.4 3.0 

Loss of - 100 42.03 4.53 2.29 2.20 1.59 
Friabil!!Yio/tl 

Disintegration Mean 1.29 4.48 5.80 8.32 8.32 9.70 
Time (min), n=6 S.D 0.09 0.35 0.55 0.33 0.33 0.42 

%RSD 6.9 7.7 9.4 3.9 3.9 4.4 

-----,,_ 
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Table 9. Physical Testing of Tablets Prepared from Blend#6 

Composition: 49.5% Avicel PH101+49.5% Starch 1500 + 1 % Magnesium Stearate 

Test Parameters Compressional Force (lbs) 

1000 lbs 2000 lbs 3000lbs 40001bs SOOOlbs 6000lbs 

Weight (mg) Mean 296 301 301 299 300 299 
n=lO S.D 2.7 2.0 3.1 2.1 2.3 1.5 

%RSD 0.9 0.7 1.0 0.7 0.8 0.5 
Min 292 297 294 295 296 297 
Max 301 303 306. 302 303 302 

Thickness Mean 0.1951 0.1817 0.1731 0.1706 0.1682 0.1668 
(inches) S.D 0.0010 0.0008 0.0008 0.0009 0.0008 0.0007 
n=lO %RSD 0.5 0.5 0.4 0.5 0.5 0.4 

Min 0.1935 0.1805 0.1715 0.1690 0.1670 0.1655 
Max 0.1970 0.1830 0.1740 0.1720 0.1695 0.1675 

Hardness (Kp) Mean 0.7 2.3 3.7 4.3 4.8 5.0 
n=lO S.D 0.07 0.10 0.19 0.17 0.19 0.16 

%RSD 10.4 4.5 5.1 4.0 4.0 3.3 
Min 0.6 2.2 3.5 4.0 4.6 4.7 
Max 0.8 2.5 4.0 4.5 5.1 5.2 

Loss of - 63.88 2.25 1.11 1.03 0.99 0.90 
Friabili!Y_(_o/e>}_ 

Disintegration Mean 0.68 1.31 1.20 2.14 3.84 4.61 
Time (min), n=6 S.D 0.06 0.06 0.09 0.25 0.11 0.19 

%RSD 9.2 4.5 7.5 11.6 2.8 4.1 

Max (lbs) 

299 
1.3 
0.4 
297 
301 

0.1657 
0.0012 

0.7 
0.1640 
0.1680 

5.3 
0.25 
4.8 
4.9 
5.6 

0.69 

3.70 
0.13 
3.6 
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Table 10. Physical Testing of Tablets Prepared from Blend#7 

Composition: 33% Lactose Anhydrous+ 33% Avicel PH101+33% Starch 1500 + 1% Magnesium Stearate 

Test Parameters Compressional Force (lbs) 

lOOOlbs 2000lbs 3000 lbs 40001bs 5000 lbs 6000 lbs 

Weight (mg) Mean 300 298 299 299 298 299 
n=lO S.D 2.2 2.2 1.5 1.6 2.4 0.9 

%RSD 0.7 0.7 0.5 0.5 0.8 0.3 
Min 296 295 296 297 295 297 
Max 303 302 301 302 302 300 

Thickness Mean 0.1937 0.1784 U.1671 0.1627 0.1601 0.1586 
(inches) S.D 0.0012 0.0005 0.0005 0.0006 0.0006 0.0005 
n=lO %RSD 0.6 0.3 0.3 0.4 0.4 0.3 

Min O.I 910 0.1775 0.1665 0.1620 0.1590 0.1575 
Max 0.1955 0.1790 0.1680 0.1640 O. I610 O. I 590 

Hardness (Kp) Mean 0.4 1.7 3.4 4.9 5.8 6.2 
n=lO S.D 0.04 0.15 O.I 7 0.24 O.I8 0.26 

%RSD I I. I 8.7 4.9 4.9 3.1 4.2 
Min 0.3 1.5 3. I 4.6 5.5 5.6 
Max 0.4 2.0 3.6 5.3 6.0 6.5 

Loss of - 86.84 1.97 0.77 0.52 0.48 0.43 
Friabil!!r.i._o/tl_ 

Disintegration Mean 0.50 l.I 9 2.59 4.07 6.99 7.24 
Time (min), n=6 S.D 0.10 0.36 O.I6 0.24 0.17 0.43 

%RSD 21.1 29.8 6.2 5.8 2.5 5.9 

-..... 

Max (lbs) 

299 
2.4 
0.8 
295 
303 

0.1566 
0.0004 

0.3 
0.1560 
0.1570 

7.4 
0.3I 
4.2 
6.7 
7.9 

0.42 

7.98 
0.14 
1.8 
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Table 11. Physical Testing of Tablets Prepared from Blend#8 

Composition: 66% Lactose Anhydrous+ 16.5% A vice! PHI 01 + 16.5% Starch 1500 + 1 % Magnesium Stearate 

Test Parameters Compressional Force (lbs) 

lOOOlbs 20001bs 30001bs 40001bs SOOOlbs 60001bs 

Weight (mg) Mean 300 300 301 300 301 302 
n=IO S.D 2.7 2.4 2.8 2.3 1.0 1.4 

%RSD 0.9 0.8 0.9 0.8 0.3 0.5 
Min 296 297 297 297 300 299 
Max 306 304 305 303 303 303 

Thickness Mean 0.1847 0.1717 0.1648 0.1594 0.1571 0.1548 
(inches) S.D 0.0006 0.0009 0.0008 0.0006 0.0009 0.0006 
n=lO %RSD 0.3 0.5 0.5 0.4 0.6 0.4 

Min 0.1840 0.1705 0.1640 0.1580 0.1555 0.1540 
Max 0.1860 0.1730 0.1665 0.1600 0.1580 0.1560 

Hardness (Kp) Mean 0.7 2.7 5.2 7.6 9.5 11.2 
n=IO S.D 0.03 0.17 0.4 0.31 0.39 0.5 

%RSD 4.6 6.5 7.2 4.0 4.1 4.3 
Min 0.6 2.4 4.6 7.2 8.7 10.4 
Max 0.7 2.9 6.0 8.1 10.0 11.8 

Loss of - 68.41 0.90 0.53 0.38 0.27 0.27 
Friabili!Yl_o/o}_ 

Disintegration Mean 0.17 0.33 2.86 4.44 8.52 7.89 
Time (min), n=6 S.D 0.04 0.05 0.13 0.19 0.10 0.13 

%RSD 21.5 14.0 4.4 4.3 1.2 1.7 

-, 

Max (lbs) 

300 
2.0 
0.7 
297 
303 

0.1530 
0.0007 

0.5 
0.1520 
0.1540 

12.5 
0.96 
7.7 
10.7 
13.5 

0.13 

7.97 
0.16 
2.0 
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Table 12. Physical Testing of Tablets Prepared from Blend#9 

Composition: 16.5% Lactose Anhydrous + 66% A vice! PH 101 + 16.5% Starch 1500 + 1 % Magnesium Stearate 

Test Parameters Compressional Force (lbs) 

1000 lbs 20001bs 3000Ibs 40001bs 50001bs 6000Ibs 

Weight (mg) Mean 299 300 300 302 302 300 
n=lO S.D 2.7 1.9 2.7 . 1.8 2.1 2.4 

%RSD 0.9 0.6 0.9 0.6 0.7 0.8 
Min 294 296 296 298 299 296 
Max 303 303 303 304 304 304 

Thickness Mean 0.1952 0.1727 0.1628 0.1586 0.1563 0.1548 
(inches) S.D 0.0005 0.0006 0.0007 

' 
0.0008 0.0006 0.0007 

n=lO %RSD 0.3 0.4 0.4 0.5 0.4 0.4 
Min 0.1945 0.1715 0.1620 0.1575 0.1555 0.1530 
Max 0.1960 0.1740 0.1640 0.1600 0.1575 0.1555 

Hardness (Kp) Mean 2.2 6.2 10. l 11.6 13. l 13 .8 
n=lO S.D 0.14 0.4 0.42 0.29 0.54 0.6 

%RSD 6.7 7.2 4.2 2.5 4.1 4.0 
Min 2.0 5.6 9.3 11.3 12.2 12.7 
Max 2.4 7.0 10.7 12. l 14.0 14.5 

Loss of - 1.48 0.56 0.43 0.33 0.33 0.31 
Fri ab ili!Yio/tl_ 

Disintegration Mean 0.23 0.50 3.91 5.05 8.92 10.89 
Time (min), n=6 S.D 0.08 0.05 0.08 0.20 0.14 0.13 

%RSD 33.8 9.6 2.0 3.9 1.6 1.2 

-

Max (lbs) 

302 
2.3 
0.8 
297 
305 

0.1539 
0.0006 

0.4 
0.1530 
0.1545 

15.6 
0.63 
4.0 
14.6 
16.4 

0.28 

12.63 
0.14 
1.1 



Table 13. Physical Testing of Tablets Prepared from Blend#lO 

Composition: 16.5% Lactose Anhydrous + 16.5% A vice! PH 101 + 66% Starch 1500 + 1 % Magnesium Stearate 

Compression Force (lb) 

Test Parameters 2000lbs 4000lbs 5000 lbs 60001bs Max (lbs) 

Weight (mg) Mean 297 299 301 299 299 
n=lO S.D 2.8 1.4 1.9 1.9 1.9 

%RSD 0.9 0.5 0.6 0.6 0.6 
Min 292 297 298 296 296 
Max 301 301 304 302 302 

Thickness Mean 0.1778 0.1703 0.1705 0.1691 0.1674 
(inches) S.D 0.0018 0.0009 0.0008 0.0008 0.0009 

\{) n=lO RSD 1.0 05 0.5 0.5 0.6 
...... 

Min 0.1740 0.1690 0.1690 0.1680 0.1655 
Max 0.1800 0.1715 0.1715 0.1705 0.1685 

Hardness Mean 0.2 1.0 1.1 1.3 1.5 
(Kp) S.D 0.05 0.05 0.06 0.06 0.05 
n=lO RSD 21.5 4.7 5.7 4.9 3.2 

Min 0.2 0.9 1.0 1.2 1.5 
Max 0.3 1.1 1.2 1.4 1.6 

Loss of Friabil!!Y__(o/tl_ 
100 12.08 5.56 4.72 3.69 -

Disintegration Mean 1.51 6.23 7.01 7.39 10.30 
Time (min), n=6 S.D. 0.10 0.12 0.10 0.36 0.97 

RSD 6.6 1.9 1.4 4.9 9.4 



There are few parameters that are of importance in judging the quality of 

tablets produced from pharmaceutical mixtures. The first of these is hardness . Tablets 

require certain strength to withstand the mechanical shocks of handling during 

manufacturing, packaging, shipping, dispensing and consumption. Hardness is critical 

to those products that may cause bioavailability problems and to those that are 

sensitive to altered dissolution profiles that may be attributed to the compressive force 

applied. Hardness values also act as an in-process control so that the compression 

process is robust and validatable. Hardness can be defined, as the force required to 

break a tablet in a diametric compression test. It is sometimes referred to as tablet 

crushing strength. Generally, a high compression load is required to obtain a hard 

tablet, which has the disadvantage of producing high stress on the tableting machines 

and punches. . It is therefore desirable to produce satisfactorily hard tablets at the 

lowest possible compression load. The hardness of a tablet, like its thickness, is a 

function of die fill and compression force. At a constant die fill , the hardness 

increases and thickness decreases as additional compression force is applied. This 

relationship holds up to a maximum value for hardness and a minimum value for 

thickness; beyond which increase in pressure causes the tablet to laminate or cap. At a 

constant compression force (fixed distance between upper and lower punches), 

hardness increases with increasing die fills and decreases with lower die fills. Aging 

affects the hardness of tablets of certain formulations (8-9). Lubricants may also 

reduce the tablet hardness when they are used in high concentrations or mixed for 

longer periods of time (37-42). Similarly large sized tablets display higher values of 

hardness as compared to the small sized tablets. The tablet tooling also makes an 
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impact on the hardness of the tablet. For a given formulation, a flat-faced tool 

provides harder tablets than a deep cup tool. For optimum hardness, round tooling is 

preferred to the caplet or oval shaped tooling. In the current study all mixtures were 

compressed with 12/32" standard concave tooling at target weight of 300 mg. Tables 

4 to 13 provide a summary of tablet hardness and thickness values for all the blends at 

varying levels of compression force. Figure 8 shows the effect of applied compression 

force on tablet hardness as a function of varying composition in the blends. The 

Avicel® PHIOl mixture (Blend#2) provided the highest tablet hardness values (7.3-

23.7 Kp) as compared to all other mixtures. Starch® 1500 (Blend#3) provided the 

lowest tablet hardness values (0-0.3 Kp). The lactose anhydrous (Blend#l) provided 

an intermediate hardness profile (1.9-14.2 Kp) when compared to Avicel® PH101 and 

Starch® 1500. It is well documented that Avicel displays excellent compressibility 

behavior whereas Starch 1500 shows poor bonding characteristics (8). And also the 

presence of magnesium stearate in the formulation adversely affects the tablet hardness 

for Starch® 1500 blends. Magnesium stearate is known to have strong negative effects 

on the binding properties of excipients, due to the formation of lubricant film on the 

particle surface. These observations are in consistent with the findings by other 

investigators (8, 37-42). Figure 9 displays the effect of formulation composition on 

tablet hardness at 4000 lbs of applied force. It is evident from the graph that as the 

amount of Avicel® PHIOl is increased in the mixture, hardness values increased 

proportionally with the highest hardness of 21 Kp being observed when the mixture 

had 99% of A vicel® PH 101. This could be attributed to the high amount of moisture 

content present in the blend (5.12%) (32). 
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The effect of compression force on tablet thickness is described in Figure 10 

and Tables 4 to 13. Tablet thickness is dependent on the nature of blend, die fill and 

compression force (31 , 35, 36, 43). The higher the applied force, the lower will be the 

thickness. However the ·thickness value will reach a constant at which the pore 

volume in the tablet is minimum or zero and beyond which application of more force 

does not reduce tablet thickness. Among the three excipients, Starch® 1500 tends to 

impart more thickness (0.1645"-0.1679") to the tablet followed by Avicel® PH101 

(0.1947"-0.1517") and Lactose Anhydrous (0.1785"-1568"). Among all the blends, 

the binary mixture of A vicel® PH 101 and Starch® 1500 (Blend#6) provided the 

thickest tablets throughout the range of applied forces tested. 

Another important characteristic in measuring the strength of a tablet is tablet 

friability which should be as low as possible. Tablets that tend to powder, chip, and 

fragment may cause problems during manufacturing, coating, packaging and 

transportation also adds to tablet weight variation or content uniformity problems. 

Friability generally increases as compression load decreases; thus a material that forms 

adequately cohesive tablets at a low compression load will also provide acceptably low 

friability. Figure 11 and Tables 4 to 13 shows the effect of compression force on the 

friability loss for tablets made from the tested blends. Tablets containing Starch® 1500 

(Blend#3) displayed the maximum friability loss indicating that Starch® 1500 provided 

poor binding strength. Tablets containing Avicel® PHlOl (Blend#2) showed the least 

friability loss indicating that it provided an excellent binding mechanism for particles 

to be held as coherent tablets. As Figure 11 indicates friability loss is inversely 

proportional to the applied compression forces. The increase in friability loss at lower 
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compression load is more drastic than that observed at medium or higher forces. As 

other investigators reported, friability loss is a characteristic of blend composition at a 

constant applied force and is critical for further processing steps such as coating etc 

( 44-51 ). 

Figure 12 and Tables 4 to 13 indicate the effect of compression force on the 

disintegration time of the various blend compositions. The three major excipients in 

this study have an affinity to pick up water in the following order: Starch® 1500 > 

A vicel® PH 101 > Lactose Anhydrous. Disintegration time defined as the time 

required for tablets to break into primary particles before dissolution, is dependent 

upon mixture composition, applied force, tooling design, tablet weight, hardness etc 

(8 , 44-52, ). The higher the applied force, the harder will be the tablet and the longer 

the disintegration time. In the current study, testing was performed as per the USP 

disintegration test. As Figure 10 indicates there was an increase in disintegration time 

for all the blends when compression force was increased from 1000 lbs to maximum 

achievable force (-8500 lbs). Maximum disintegration times were observed for Blend 

#4 that contains 49.5% of Avicel® PHlOl and 49.5% Lactose Anhydrous. 

Disintegration time generally provides a good indication of how long a tablet will take 

to break into particles and then go into solution. It thus provides useful information 

for predicting the in-vivo performance. Dissolution testing in multiple media coupled 

with disintegration test results will be valuable to formulation scientists in order to 

obtain successful formulations . 
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Analysis of Compression Behavior of Mixtures using Force-Time Profiles: 

The process of consolidation involves a reduction in the porosity of a powder 

bed. At low pressures, this occurs by rearrangement of the particles, but at the 

pressures used in the tableting process, two mechanisms, fragmentation and 

deformation achieve porosity reduction. Most materials will consolidate using a 

combination of both these mechanisms, but in practice one of the mechanisms will 

dominate the other (9, 12, 17, 53). It has been suggested that the more deformation 

contributes to the consolidation mechanism of a solid, the more likely is that substance 

to show time-dependent compressional properties. 

Compression work describes the total amount of mechanical energy needed to 

compress a loose powder column into a dense tablet. Three components can be 

differentiated in this work: energy to overcome friction, energy consumption in the 

expansion of the tablet after maximum compression and finally energy used in 

bonding and formation of strong bonds ( 44-5 3 ). 

Many parameters influence the powder compaction process (9). Some of these 

include stress intensity, speed and application time of the stress, die dimensions, and 

the mechanical properties of the powder. Particle size distribution, shape, crystalline 

state, interfacial properties, and viscoelastic properties of a powder mixture affect the 

mechanical properties of the compacts. Materials that undergo fragmentation show 

little change in yield pressure when punch velocity is increased. Such materials do not 

show much variation in their behavior when the punch speed or press is changed. 
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Changes in tablet strength brought about by increasing punch speed are fundamentally 

due to increased tablet porosity (31 , 35, 36). 

It has been hypothesized that interparticulate bonds are formed during the 

dwell time, and that the ultimate strength of a tablet depends on these interparticulate 

bonds. Thus claims have been made that the longer the dwell time, the better the 

quality of tablet, but there is no evidence that the formation of interparticulate bonds is 

time-dependent (53 , 54). It should be noted that the radius of the pressure roll has no 

effect on the duration of the dwell time. 

In the case of compressed powders, the particle surface is the most dynamic 

component of structural relaxation, where relaxation is a function of the attractive 

forces between individual ·powder particles. 

The energy consumption during compression of powders can be classified into 

the following stages: i) for arriving at the closest possible proximity of the particles, ii) 

by friction between the particles, iii) by friction with the die wall, iv) by plastic 

deformation and v) by elastic deformation. 

In the current study, compression force-time data was collected usmg an 

instrumented rotary tablet press for all the ten mixtures prepared as per the simplex 

design described in Table 1. The compression force applied was varied from 1000 lbs 

to maximum achievable force (1000 lbs, 2000 lbs, 3000 lbs, 4000 lbs, 5000 lbs, 6000 

lbs and maximum achievable force) on the tablet machine. From each upper punch 

compaction force-time pulse, parameters such as rise time (10% to 90% of peak 

value), fall time (90% to 10% of peak value), pulse width (50% to 50% of peak value), 

dwell time (90% to 90% of peak value), contact time (10% to 10% of peak value), 
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force at 10%, force at 50%, force at 90%, maximum force, area to peak, area from 

peak and total area were determined. Similarly, from each lower punch ejection force

time pulse, parameters such as rise time (10% to 90% of peak value), fall time (90% to 

10% of peak value), pulse width (50% to 50% of peak value), dwell time (90% to 90% 

of peak value), contact time (10% to 10% of peak value), force at 10%, force at 50%, 

force at 90%, maximum force, area to peak, area from peak and total area were 

calculated. Figures 13, 15, 17, 19, 21 , 23, 25, 27, 29 and 31 provide the representative 

pulse analysis of various parameters from compaction force-time curves at an applied 

compression force of 4000 lbs for Blend#! to #10 respectively. Similarly, Figures 14, 

16, 18, 20, 22, 24, 26, 28, 30 and 32 provide the representative pulse analysis of 

various parameters from ejection force-time curves at an applied compression force of 

4000 lbs for Blend#! to #10 respectively. The upper punch compression data obtained 

for all the ten blends with varying proportions of A vicel® PH 101 , Lactose Anhydrous, 

NF and Starch® 1500 at compression forces of 1000 lbs, 2000 lbs, 3000 lbs, 4000 lbs, 

5000 lbs, 6000 lbs and maximum achievable forces on the tableting machine are 

summarized in Tables 14, 15, 16, 17, 18, ·19 and 20, respectively. At the same 

compression forces, the lower punch ejection data generated for the ten blends are 

summarized in Tables 14, 15, 16, 17, 18, 19 and 20, respectively. 

The compression event can be divided into the compress10n and 

decompression phase. On rotary tablet press there is dwell time because the punches 

do not move actively in a vertical direction when they are with their plane punch head 

area under the compression rollers. At the beginning of the compression event the 

upper punch is hitting against the compression roller. After reaching its lowest position 
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Figure 15. Typical Pulse Analysis of the Compaction Force-Time Curve 
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Dwell Time - 71.11 msec. Max. Force - 4205 lbs - -
Contact Time - 198 msec. -

Area to Peak . = 316 lbs seconds 
Area from Peak = 261 lbs seconds 
Total Area = 577 lbs seconds 

Figure 17. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#3 at 4000 lbs 
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Rise Time - 2.98 msec. Force at 10i! - .13 lbs - -
Fall Time - 68.08 msec. Force at 50i! - .~1 lbs - -
Pulse Width - 289 msec. Force at 90i! - 1.10 lbs - -
Dwell Time - 236 msec. Hax. Force - 2.93 lbs - -
Contact Time - 307 msec. -

Area to Peak· - .04 lbs seconds -
Area from Peak = .38 lbs seconds 
Total Area = .42 lbs seconds 

Figure 18. Typical Pulse Analysis of the Ejection Force-Time Curve for 
Blend#3 at 4000 lbs 
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Tool nl11'1he r 1.00 Ti11e= 296 11sec. 

Rise Time - 86.91 msec. Force at 10t: - 406 lbs - -
Fall Time - 48.64 msec. Force at 50t: - 1989 lbs - -
Pulse Width - 146 msec. Force at 90t: - 3572 lbs - -
Dwell Time - 74.53 msec. Hax. Force - 3978 lbs - -
Contact Time - 210 msec. -

Area to Peak - 313 lbs seconds -
Area from PeaH = 258 lbs seconds 
Total Area = 571 lbs secon4s 

Figure 19. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#4 at 4000 lbs 
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.00 
Tool nuMher 1.00 Title: 430 t1sec . 

Rise Time - 13.89 msec. Force at 10:1. - 3.57 lbs - -
Fall Time - BB.05 msec. Force at 50:1. - 10.20 lbs - -
Pulse Width - 107 msec. Force at 90:1. - 16.82 lbs - -
Dwell Time - 52.76 111sec. Max. Force - 18.80 lbs - -
Contact Time - 155 msec. -

Area to Peak - .42 lbs seconds -
Area from Peak = 1.24 lbs seconds 
Total Area = 1.65 lbs seconds 

Figure 20. Typical Pulse Analysis of the Ejection Force-Time Curve for 
Blend#4 at 4000 lbs 
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Tool nul'lher 3.00 Ti Me: 296 l'lsec, 

Rise Time - 72.29 msec. Force at 10Y. - 409 lbs - -
Fall Time - 48.63 msec. Force at 50'l. - 2006 lbs - -
Pulse W idtJ1 - 138 msec. Force at 90'l. - 3603 lbs - -
Dwell Time - 70.25 msec. Max. Force - 4012 lbs - -
Contact Time - 191 msec. -

Area to Peak - 274 lbs seconds -
Area from Peak = 262 lbs seconds 
Total Area = 536 lbs seconds 

Figure 21. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#5 at 4000 lbs 

112 



( 

50.00 ............ .......... .. ................ Ej.ec.1 i.on ..... .... .. . ......... ....... ............... . . ' . . . . . . 
.. ... ... ....... ... .... .. .. ··· ·· ·····:····· ···· ·:··· ·· ·· ··· ...... ... ··· ······ ·:· ··· ······:··· ·· ·· ··· . . . . . . . . 

40.00 ····· ··· ···· ····· ..... .... · ·· ···· ···:······· ···:··· ·· ····· ......... ··· · ·· ····:·· ·· ··· ···:·· ····· ··· . . . . . . . . . ' ' . . . . . . . . . . . . . . . . . . .. '..... . ' .. ' ... . ~· .. ... .. . ·~ . . . . . . . . . . ... .... ' .. .... ... ~· ........ ·~ ........ . 
. . . . 
' . . . 

30.00 ........ ......... ....... .. .... ...... ;.· ...... .. . ; ..... .... . ... ... .. ... .. ..... . : ..... ..... ; .... ... .. . . . . . . . . . . ' ' . ··· ··· ·· .. ................ ······ ····:·· ·· ······:······ ···· ......... ····· ···· ·: ······· ·· ·:·· ········ . . . . 
. . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~· .... ' ... ·~ ........................... ~· ... .. ... ·~ ........ . 
. ' . . . ' ' 

. . . . 
~20.00 

............... .. .. .. ............ ... ; .......... ; ..... ... ... .............. .. .. ; .... ..... . ; ......... . . . . ' . . . ' 

10.00 : : . . : : 8'l. 
' ' ' ' ' . 0i! 

····:·· ·· ····· ·>·········; .. .... ... :····· ·····; ....... .. .: ......... 8~ 

.00 
Tool nuMher 3.00 TiMe= 430 Msec. 

Rise Ti111e - 14.27 111sec. Force at 10i! - 3.24 lbs - -
Fall Ti111e - 99.27 111sec. Force at 50i! - 6 .47 lbs - -
Pulse Width - 116 111sec. Force at 90i! · = 9.70 lbs -
Dwell Ti111e - 57 .35 rnsec . Max. Force - 10.74 lbs - -
Contact Tirne - 171 msec. -

Area to Peak - .14 lbs seconds -
Area from Peak = .67 lbs seconds 
Total Area = .81 lhs seconds 

Figure 22. Typical Pulse Analysis of the Ejection Force-Time Curve for 
Blend#5 at 4000 lbs 
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.00 
Tool nuMher 1.00 TiMe: 296 Msec. 

Rise Time - 91.77 msec. Force at 10x - 400 lbs - -
Fall Time - 44.86 msec. Force at 50% - 1962 lbs - -
Pulse Width - 143 msec. Force at 90x - 3524 lbs - -
Dwell Time - 75.03 msec. Max. Force - 3924 lbs - -
Contact Time - 212 msec. -

Area to Peak - 307 lbs seconds -
Area from Peak = 252 lbs seconds 
Total Area = 559 lbs seconds 

Figure 23. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#6 at 4000 lbs 
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Tool nuMher 1.00 Ti Me: 430 Msec • 

Rise Time -- 5.50 msec. Force at 10'.I. - . 29 lbs -
Fall Time -- 177 msec. Force at 50'.I. - 1.41 lbs -
Pulse Width -- 3% rnsec. Force at 90'.I. - 2.53 lbs -
Dwell Time -- 223 msec. Max. Force - 5.B& lbs -
Contact Time -- 405 rnsec. 

Area to Peak - .12 lbs seconds -
Area frorn Peak = 1.0& lbs seconds 
Total Area = 1.17 lbs seconds 

Figure 24. Typical Pulse Analysis of the Ejection Force-Time Curve for 
Blend#6 at 4000 lbs 
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Fall Time - 47.00 msec. Force at 501. - 2027 lbs - -
Pulse Uidtl1 - 144 msec. Force at 901. - 3640 lbs - -
Dwell Tirne - 74.46 msec. Max. Force - 4054 lbs - -
Contact Time - 206 msec. -

Area to Peak - 314 lbs seconds -
Area from Peak = 258 lbs seconds 
Total Area = 572 lbs seconds 

Figure 25. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#7 at 4000 lbs 
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Tool nuMher 3.00 Ti Me: 430 Msec. 

Rise Time - 13.82 msec. Force at 10i! - 2.04 lbs - -
Fall Time - 173 msec. Force at 50i! - 5.26 lbs - -
Pulse Width - 111 msec. Force at 90i! - 8.48 lbs - -
Dwell Time - 45.03 msec. Hax. Force - 9 .40 lbs - -
Contact Time - 232 msec. -

Area to Peak - .11 lbs seconds -
Area from Peak = .82 lbs seconds 
Total Area = .93 lbs seconds 

Figure 26. Typical Pulse Analysis of the Ejection Force-Time Curve for 
Blend#7 at 4000 lbs 
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Rise Time - 77.91 msec. Force at 101. - 417 lbs - -
Fall Time - 46.24 msec. Force at 501. - 2046 lbs - -
Pulse Width - 145 msec. Force at 901. - 3675 lbs - -
Dwell Time - 76.99 msec. Max. Force - 4093 lbs - -
Contact Tirne - 201 111sec. -

Area to Peak - 313 lbs seconds -
Area from Peak = 263 lbs seconds 
Total Area = 576 lhs seconds 

Figure 27. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#8 at 4000 lbs 
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Total Area = 1.60 lhs seconds 
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Figure 28. Typical Pulse Analysis of the Ejection Force-Time Curve for 

Blend#8 at 4000 lbs 
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Dwell Ti111e - 73. 35 rnsec , Max. Force - 3993 lbs - -
Contact Time - 213 msec. -

Area to Peak · = 323 lbs seconds 
Area from Peak = 250 lbs seconds 
Total Area = 573 lhs seconds 

Figure 29. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#9 at 4000 lbs 
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Dwell Time - 28.80 msec. Hax. Force - 7.69 lbs - -
Contact Time - 133 msec. -

Area to Peak - .12 lbs seconds -
Area from Peak = .38 lbs seconds 
Total Area = .50 lbs seconds 

Figure 30. Typical Pulse Analysis of the Ejection Force-Time Curve for 
Blend#9 at 4000 lbs 
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Figure 31. Typical Pulse Analysis of the Compaction Force-Time Curve 
for Blend#10 at 4000 lbs 
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Figure 32. Typical Pulse Analysis of the Ejection Force-Time Curve for 
Blend#10 at 4000 lbs 
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Table 14. Summary of Upper Punch Compression and Lower Punch Ejection Data from Force-Time Curves at 1000 lbs 

Upper Punch Compression Data at 1000 lbs [Mean (SD)], n=5 

Blend #1 Blend #2 Blend #4 Blend #6 Blend #7 Blend #8 Blend #9 

Rise Time(msec) 56.1(0.4) 94.0(0.8) 71.7(1.7) 74.5(1.0) 63 .7(0.4) 58.1(0.5) 75 .1(2.1) 

Fall Time(msec) 49.5(1.3) 67.1(14.0) 58.6(8.1) 57.4(1.7) 61.6(7.5) 55 .3(5.3) 64.5(10.5) 

Pulse Width(msec) 128.7(2.5) 154.3(0.6) 136.9(3 .1) 142.0(3 .0) 133.0(2.0) 128.1(2.1) 142.8(3 .7) 

Dwell Time(msec) 51.3(29.7) 65 .3(13.6) 62.7(8.1) 68.8(4.0) 59.9(7.9) 61.3(6.3) 62 .8(14.2) 

Contact Time(msec) 174.7(2.5) 226.3(0.6) 193(2.6) 201(2.0) 185.2(1.5) 175.6(1.4) 202 .2(2.4) 

Max Force(lb.) 986. 7(31. 7) 1056.0(37.4) 965 .1 (21.1) 1107.3(19.5) 1009.0(22.2) 1019.3(28.8) 939.0(24.5) 

Area to peak (lb msec) 47.3(0.8) 69 . 0(3 .~ 52.3(4.5) 64.5(4.6) 51.9(3 .1) 47.0(3 .5) 51.1(1.7) 

Area from peak(lb msec) 75.4(5 .8) 88.9(212_ 74.7(6.5) 87.5(4.8) 76.2(4.3) 77.1(5 .0l 76.1(2.2) 

Total area(lb msec) 122.7(6.0) 158.0(6.0) 126.9(4.8) 152.3(5 .5) 128.0(3.4) 124.1(4.3) 127.4(3 .8) 

Lower Punch Ejection Data at 1000 lbs [Mean (SD)], n=5 

Blend #1 Blend #2 Blend #4 Blend #6 Blend #7 Blend #8 Blend #9 

Rise Time(msec) 12.1(1.5) 11.8(2.3) 8.2(3 .0) 8.2(5.0) 1.0 (0.01) 0.9(0.4) 11 .2(0.5) 

Fall Time(msec) 237.5(193) 221.2(182.2) 248.7(153 .0) 168.5(77.1) 75 .8(93 .6) 54.8(85.5) 101.5(0.7) 

Pulse Width(msec) 97(22.6) 75 .7(9.1) 93 .1(5.7) 242.2(228.8) 254.0(166.9) 330.5(103.9) 83 .0(15 .9) 

Dwell Time(msec) 32.1(2.5) 29.2(1.8) 43 .2(13 .0) 117.5(130.9) 246. 0(168.3) 299.3(149.7) 29.0(10.3) 

Contact Time(msec) 325(157.7) 261.5(186) 305 . 6(105 .~ 293 .5(202.9) 323(75) 355(64.8) 142.0(9.9) 
Max Force(lb.) 11.3(0.6) 8.1(0.4) 6.2(1.3) 5.4(0.9) 5.1(0.9) 4.4(1.2) 5.7(0.4) 
Area to peak (lb msec) 0.2(0.1) 0.1(0.0) 0.03(0.0) 0.05(0.06) 0.04(0.03) 0.02(0.01) 0.35(0.0) 
Area from peak(lb msec) 1.2(0.7) 0.3(0.1) 0.4(0.1) 0.7(0.8) 0.13(0.1) 0.14(0.1) 0.3(0.0) 
Total area(lb msec) 1.4(0.7) 0.4(0.1) 0.4(0.1) 0.8(0.9) 0.17(0.1) 0.16(0.1) 0.3(0.0) 
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Table 15. Summary of Upper Punch Compression and Lower Punch Ejection Data from Force-Time Curves at 2000 lbs 

Upper Punch Compression Data at 2000 lbs rMean (SD)], n=S 

Blend #1 Blend #2 Blend #4 Blend #5 Blend #6 Blend #7 Blend #8 Blend #9 Blend #10 

Rise Time(msec) 62.1(1 .1) 100.8(2.1) 77.4(1 .5) 58.9(1 .0) 79.2(0.7) 71 .7(1 .1) 64.9(0.9) 85(1 .3) 66(0.7) 

Fall Time(msec) 53.0(3.3) 55.4(2.3) 45.5(17.7) 54.8(4.3) 59.4(5.0) 55.3(4.4) 54.9(0.2) 56.3(2.6) 56.6(2.7) 

Pulse Width(msec) 137(2.6) 149 (2.6) 137(0.0) 131 .7(2.9) . 142.3(3.3) 139.2(1 .9) 133.7(2.9) 143.5(2.1) 136.5(2.5) 

Dwell Time(msec) 72.4(5.2) 73(5.5) 62.6(3.2) 66.9(4.6) 68.4(6.4) 70.3(4.1) 67(2.3) 70(1 .6) 68(3.3) 

Contact Time(msec) 187.3(2.3) 229.3(1.5) 200.5(0.7) 18;3.3(1 .5) 207.2(2.8) 197.2(1.5) 186.7(2.1) 211.3(1 .5) 190.7(1 .7) 

Max Force(lb.) 2039.3(73.5) 2138(49.4) 2006(46.7) 2076.3(88.8) 2006.5(40.4) 2018.4(73.5) 1956(38.2) ~025 . 5(34 .5 2028(34.8) 

Area to peak (lb msec) 116(14.4) 146(2.6) 113.5(4.9) 106.7(1 .2) .118.5(5.9) 120.2(13.5) 100.3(6.7) 122.8(4.2) 111 .2(9.4) 

Area from peak(lb msec) 154.3(17.6) 172(9.5) 154.5(3.5) 156.7(9.3) 160.5(6.5) 153.8(19. 7) 153.3(2.5) 164(4.7) 157.2(3.2) 

Total area(lb msec) 270.3(5.1) 318. 7(12.4) 267.5(9.2) 263.3(10.0) 279.5(10.9) 273.8(8.4) 253.7(8.5) 286.5(6) 268.2(8.7) 

Lower Punch Ejection Data at 2000 lbs [Mean (SD)], n=S 

Blend #1 Blend #2 Blend #4 Blend #5 Blend #6 Blend #7 Blend #8 Blend #9 Blend #10 

Rise Time(msec) 13.8(0.8) 10.9(0.5) 13.9(0.0) 14.8(0.0) 3.2(3.1) 11 .7(0.7) 10.6(1 .7) 11 .7(0.0) 11 .7(1 .7) 

Fall Time(msec) 118(1 .0) 229.9(205.2) 95.3(0.0) 323(0.0) 161 .7(116.4) 218.6(183) 74.5(33.3) 105.5(26.2) 177.7(133.9) 

Pulse Width(msec) 104.5(11.2) 72.1(8.8) 87(8.6) 157(0.0) 252.4(140.6) 104.8(27.2) 64.9(31.4) 77.1 (0.2) 105.3(4.5) 

Dwell Time(msec) 41 .1(11.0) 29.7(6.2) 37.9(0.0) 56.4(0.0) 179.7(80.4) 44.6(11) 24.2(9.0) 51 .9(26.2) 39.5(6.3) 

Contact Time(msec) 172.3(11 .8) 270.5(211.4) 147(0.0) 396(1.4) 344.8(101 .9) 275(195.2) 109(43.8) 163.5(44.5) 229(134.3) 

Max Force(lb.) 24.1 (1.5) 8.1 (0.4) 11 .2(2.8) 7.2(1.6) 5.0(1 .0) 7.5(0.7) 7.7(1 .1) 6(1 .1) 4.7(0.7) 

Area to peak (lb msec) 0.4(0.1) 0.1(0.0) 0.2(0.0) 0.1 (0.06) 0.06(0.04) 0.12(0.06) 0.08(0.04) 0.1(0.0) 0.04(0.0) 

Area from peak(lb msec) 2.2(0.3) 0.3(0.1) 0.7(0.0) 1.1 (0.06) 0.4(0.4) 0.8(0.6) 0.3(0.27) 0.3(0.2) 0.2(0.1) 

Total area(lb msec) 2.5(0.3) 0.3(0.1) 0.9(0.0) 1.2(0.6) 0.5(0.5) 0.9(0.7) 0.38(0.31) 0.3(0.2) 0.2(0.1) 
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Table 16. Summary of Upper Punch Compression and Lower Punch Ejection Data from Force-Time Curves at 3000 lbs 

Upper Punch Compression Data at 3000 lbs (Mean (SD)], n=S 

Blend #1 Blend #2 Blend #5 · Blend #6 Blend #7 Blend #8 Blend #9 

Rise Time(msec) 68.7(1 .2) 103.3(2.1) 66.3(1 .3) 86.6(1 .3) 78.6(1 .0) 61 .5(26.4) 90.0(2.5) 

Fall Time(msec) 51.4(0.4) 50(0.6) 50.2(1 .8) 51 .3(3.0) 49.6(1 .7) 49.8(3.2) 50.7(3.4) 

Pulse Width(msec) 144(0.0) 149.7(2.1) 136.8(1 .8) 143.2(2.1) 141 .8(2.3) 147.4(21 .1) 144.7(1.6) 

Dwell Time(msec) 76.1(0.5) 76.2(3.7) 70.3(2) 71 .8(3.2) 73.7(2.70 85.5(34.2) 73.4(1 .3) 

Contact Time(msec) 196(1.4) 229.7(2.1) 186.7(1 .8) 209.3(2.0) 201 .8(1 .6) 196.9(6.9) 214.0(2.4) 

Max Force(lb.) 3109.5(43.1) 2966.3(79.7) 3122.6(60.1) 3102.3(91 .1) 3060.5(52.3) 2928.3(59.5) 3136.3(183.7) 

Area to peak (lb msec) 215(14.1) 253(5.6) 203.5(14.7) 229.3(21.4) 210.2(17.5) 198.6(21.4) 240. 7(29.3) 

Area from peak(lb msec) 229.5(3.5) 193.7(13.3) 208.4(11 .9) 209(12.1) 215.5(13.6) 200.9(19.1) 209.5(16.9) 

Total area(lb msec) 445.5(10.6) 446.7(18.2) 411 . ~(10 . 6) 438.3(14.5) 425.7(11 .1) 399.6(10.0) 450.3(28.0) 

Lower Punch Ejection Data at 3000 lbs (Mean (SD)] , n=S 
Blend #1 Blend #2 Blend #5 Blend #6 Blend #7 Blend #8 Blend #9 

Rise Time(msec) 14(1 .6) 4.3(5.9) 14.5(0.9) 5.6(5.2) 14.1(1.2) 12.0(1 .6) 11 .21(1 .8) 

Fall Time(msec) 82.2(25.9) 80.3(46.9) 103.6(7.7) 116.2(35.8) 104.5(10.8) 70.0(27.6) 93.0(5.3) 

Pulse Width(msec) 85.7(43.1) 197(179.7) 105.1(4.7) 271(136) 118.5(39.5) 66.9(35.1) 70.1(26.2) 

Dwell Time(msec) 39.4(23.8) 179.5(194.7) 40.2(9.1) 208.4(137.4) 71 .6(44.5) 28.1(17.9) 33.9(15.0) 

Contact Time(msec) 135. 7(51 .3) 263.7(156.8) 158(2.2) 308.4(128.9) 227.7(122) 110.1(45.9) 123.0(28.4) 

Max Force(lb .) 26.7(15.4) 7.2(0.3) 9.5(0.3) 4.6(1 .0) 7.6(1 .2) 11 .9(1 .3) 6.9(1 .5) 

Area to peak (lb msec) 4.8(8.5) 0.04(0.0) 0.11(0.04) 0.02(0.01) 0.09(0.05) 0.1(0.1) 0.07(0.03) 

Area from peak(lb msec) 9.3(14.8) 0.2(0.1) 0.55(0.04) 0.22(0.18) 0.3(0.23) 0.6(0.3) 0.28(0.14) 

Total area(lb msec) 10.6(16.3) 0.3(0.1) 0.66(0.06) 0.23(0.19) 0.4(0.27) 0.7(0.4) 0.35(0.15) 
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Table 17. Summary of Upper Punch Compression and Lower Punch Ejection Data from Force-Time Curves at 4000 lhs 

U~er Punch Compression Data at 4000 lbs IMean (SD)], n=5 

Blend #1 Blend #2 Blend #3 Blend #4 Blend #5 Blend m; Blend #7 Blend #8 Blend #9 

ruse Time(msec;[ 75.8(1 .3) 104.6(2.5) 74.6(3.4) 87.1(0.7) 72.2(1 .6) 91 .2(1 .3) 85.3(1 .2) 78.4(1 .2) 93.1(0.9) 

Fall Time(_msec}_ 48.9(3.5) 49.3(4.6) 42.6(12.1) 47.2(2.9) 48.7(0.7) 46.4(1 .8) 46.0(2.5) 46.2(2.4) 46.3(0.2) 

Pulse Width(msec) 149.7(0.6) 149.0(1 .4) 135.8(6.6) 143(2.6) 139.7(1.5) 141 .6(0.9) 143.2(1 .8) 142.2(2.3) 142.7(2.5) 

Dwell Timc(msec) 78.7(2.7) 75.6(2.4) 70.1(1 .50 72.7(2.1) 70.2(1 .8) 72.1(2.0) 72.5(1 .2) 74.5(1 .6) 72.3(1.1) 

Contact Time(msec) 203.7(2.1) 229.4(5.9) 187.2(13.0) 207(2.6) 191 .3(0.6) 209.8(1 .3) 204.5(1.9) 198.8(2.2) 211 .7(2.3) 

Max Force(lb.) 4042.3(66.2) 4051.4(135.9) 4099.5(86.3) 3970. 7( 43.5) 3945.3(87.7) 3857.2(68.7) 4099.3(68.2) 4182.2(76.4) 3928. 7(58. 7) 

Arca to _E_eak (lb msec) 305.3(14.6) 340.6(15.0) 296.2(14.7) 313.7(17) 275.0(7.5) 300.6(10.6) 323.67(7.1) 311 .5(14.7) 310. 7(11 .0) 

Area from_p_cak(lb msec) 278.3(20.6) 265.6(5.3) 242.5(23.5) 245.3(14.2) 254.7(6.4) 241 .4(10.8) 249.3(14.4) 268.3(12.0) 246.3(5.5) 

Total area(lb msec) 583.7(8.5) 605.8(17.6) 538.8(34.5) 558.7(13.1) 529.7(8.5) 541 .8(12.6) 572.8(13.9) 579.3(14.4) 557.0(15.50 

Lower Punch Ejection Data at 4000 lbs lMean (SDll_, n=S 

Blend #1 Blend #2 Blend #3 Blend #4 Blend #5 Blend m; Blend #7 Blend #8 Blend #9 

ruse Time(mse~ 15.1(1 .3) 5.5(4.9) 6.0(4.2) 12.1 (1 .7) 15.8(1 .3) 2.7(2.6) 13.9(2.0) 13.8(2.2) 8.4(7.1) 

Fall Time(mse~ 91 .8(25.8) 176.0(93.0) 42.6(36.1) 45.1(1 .1) 147.8(75.7) 126.1 (44.1) 109.7(44.1) 71.4(28.4) 79.6(27.0) 

Pulse Width(msec) 99(40.6) 257.6(158.0) 354.0(57.5) 39.1(5.0) 110.7(6.8) 274(135.6) 84.6(21 .7) 77.3(34.1) 104.3(75.20 

Dwell Time(msec) 44.6(23.4) 163.1(145.0) 331 .0(82.3) 15.6(1 .9) 45.0(11.1) 243.7(30.8) 40.4(16.3) 41 .7(30.9) 55.9(59.4) 

Contact Time(mse~ 151 .5(48.0) 344.8(112.7) 363.7(51 .6) 71 .9(3.8) 208.3(73.5) 305.3(153.1) 162.5(55.0) 148.0(83.9) 143.8(75.3) 

Max Forc~b .) 50.5(3.0) 5.4(1 .3) 3.4(0.4) 15.9(2.7) 10.6(0.1) 4.4(1 .3) 8.6(1.0) 16.6(1 .6) 6.4(1.20 

Area to 1!.eak (lb msec) 1.1 (0.3) 0.1(0.0) 0.1(0.0) 0.2(0.2) 0.19(0.06) 0.05(0.07) 0.13(0.1) 0.2(0.1) 0.2(0.2) 

Area from _E_eak(lb msec) 4.0(1 .8) 0.4(0.3) 0.6(0.3) 0.6(0.5) 0.81 (0.21) 0.5(0.5) 0.46(0.3) 0.9(0.5) 0.2(0.1) 

Total area(lb msec) 5.1 (2.2) 0.5(0.3) 0.7(0.40 0.9(0.7) 1.0(0.28) 0.54(0.59) 0.6(0.3) 1.1(0.6) 0.3(0.2) 

,,,.-.... 

Blend #10 

81 .3(1.2) 

47.5(2.0) 

138.8(1 .8) 

70.6(1 .5) 

199.3(1 .5) 

4195.7(67.3) 

311 .0(9.6) 

260.2(11 .5) 

571 .2(11 .2) 

Blend #10 

15.0(1.4) 

97.9(17.5) 

101.1 (5.4) 

40.8(13.1) 

154.0(6.2) 

5.6(0.9) 

0.0(0.0) 

0.1(0.1) 

0.2(0.1) 



N 
00 

Table 18. Summary of Upper Punch Compression and Lower Punch Ejection Data from Force-Time Curves at 5000 lbs 

U_E_E._er Punch Com_E_ression Data at 5000 lbs l_Mean JSDJ1 n=5 

Blend #1 Blend #2 Blend #5 Blend fl6 Blend #7 Blend #8 Blend #9 Blend #10 

Rise Time(msec) 75.4(1 .9) 106.7(2.1) 82.6(1.2) 94.8(0.5) 92.0(1.7) 84.5(0.7) 102.0(1.4) 88.7(1 .2) 

Fall Time(msec) 45.8(1 .3) . 48.6(1 .1) 45.3(1.1) 44.8(1 .2) 44.1(1 .7) 44.7(1.4) 42.4(0.2) 45.1(0.8) 

Pulse Width(msec) 144.8(1.7) 148.3(4.0) 139.7(3.5) 140.0(1 .0) 140.7(2.1) 142.3(2.3) 143.5(0.7) 138.7(2.4) 

Dwell Time(msec) 77.4(1 .5) 75.4(3.5) 72.0(1.4) 73.2(1 .6) 72.7(2.1) 73.8(0.7) 74.2(1 .0) 71 .8(1 .5) 

Contact Time(msec) 198.5(2.3) 230.7(4.0) 199.7(2.1) 213.0(1 .0) 209.0(1 .0) 202.7(1 .1) 219.0(0.0) 205.3(1 .2) 

Max Force(lb.) 4847.3(247.6) 4671 .7(144.1) 5131 . 7(138.2) 4687.7(80.8) 4984.0(42.7) 4867.0(63.4) 5115.0(188.1) 5018.7(95.3) 

Area to _£_eak (lb msec) 359. 3(35. 7) 400.0(25.2) 387.0(11 .3) 371 . 7(11 .5) 408.0(9.0) 377.3(6.3) 435.0(22.6) 391.0(10.7) 

Area from _£_eak(lb msec) 321 .8(29.9) 299.3(11 .7) 317.3(12.5) 2R9.0(4.6) 289.3(13.6) 301.7(9.9) 302.0(5.7) 301 .5(9.8) 

Total area(lb msec) 681.2(40.8) 699.3(30.5) 704.0(23.1) 660.7(13.6) 697.3(14.6) 679.3(14.5) 737.5(29.0) 692.5(19.1) 

Lower Punch Ejection Data at 5000 lbs lMean (SD)], n=5 

Blend #1 Blend #2 Blend #5 Blend fl6 Blend #7 Blend #8 Blend #9 Blend #10 

Rise Time(msec) 16.4(1.8) 1.4(0.9) 13.9(2.3) 4.5(1 .9) 7.7(7.2) 15.2(2.9) 14.8(0.0) 7.8(7.2) 

Fall Time(msec) 89.4(21 .9) 67.7(93.8) 119.2(28.0) 130.5(6.4) 193.8(93.4) 72.7(38.4) 121.4(40.5) 127.4(47.2) 

Pulse Width(msec) 104.9(30.5) 371 .5(99.7) 77.0(46.7) 353.0(72.1) 191 .6(100.3) 63.5(30.5) 94.8(21 .5) 240.2(131 .3) 

Dwell Time(msec) 46.9(18.5) 348.5(130.8) 35.0(26.2) 273.0(2.8) 65.0(23.2) 31 .5(13.6) 43.7(21 .9) 163.9(104.5) 

Contact Time(msec) 152.6(38.3) 417.5(36.1) 168.0(1.4) 408.0(5.7) 266.5(106.7) 95. 7(51 .8) 173.0(52.3) 298.6(135.3) 

Max Force(lb.) 63.2(6.4) 3.9(0.0) 11 .2(2.0) 4.6(0.9) 8.9(1 .3) 19.3(2.0) 6.8(1 .7) 5.3(1.0) 

Area top_eak (lb msec) 1.5(0.5) 0.04(0.0) 0.21(0.13) 0.07(0.03) 0.13(0.05) 0.3(0.1) 0.1(0.0) 0.1(0.0) 

Area from peak(lb msec) 5.1(1 .7) 0.2(0.2) 0.7(0.23) 0.8(0.38) 0.59(0.19) 0.9(0.6) 0.3(0.2) 0.4(0.2) 

Total area(lb msec) 6.5(2.1) 0.2(0.3) 0.9(0.37) 0.87(0.42) 0.72(0.19) 1.3(0.6) 0.4(0.3) 0.5(0.2) 
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Table 19. Summary of Upper Punch Compression and Lower Punch Ejection Data from Force-Time Curves at 6000 lbs 

U..Ef_er Punch Com_e_ression Data at 6000 lbs !Mean (SD)], n=S 

Blend #1 Blend #2 Blend #3 Blend #4 Blend #6 Blend #7 Blend #8 Blend #9 

Rise Time(msec) 86.5(1 .5) 112.0(1 .1) 93.1(2.2) 101 .3(1 .0) 102.7(2.7) 94.6(0.3) 92.4(2.6) 105.0(2.3) 

Fall Time(msec) 48.8(1 .2) 47.5(2.5) 50.6(4.6) 47.0(1 .6) 47.9(1 .6) 47.0(0.2) 46.7(1 .1) 46.6(1 .1) 

Pulse Width(msec) 150.7(1 .5) 150.8(4.1) 139.8(1 .9) 146.3(2.1) 141 .8(2.2) 143.3(1 .5) 195.8(122.6) 144.5(1 .8) 

Dwell Time(msec) 80.4(2.0) 78.5(2.0) 71.9(2.0) 76.1(2.2) 73.2(1 .8) 76.4(0.7) 76.9(2.5) 75.5(1 .8) 

Contact Time(msec) 215.7(1 .2) 237.8(3.4) 213.8(1 .8) 224.8(1 .9) 223 4(1.1) 218.0 (1 .0) 215.7(1.5) 226.7(0.5) 

Max Force(lb.) 6245.0(104.9) 6105.3(98.0) 6576.4( 113.1) 6111 .0(163.9) 6233.8(127.5) 5885.3(159.0) 6132.3(133.9) 6244.5(148.1) 

Area to peak (lb msec) 528(1 .0) 561 .5(14.1) 534.6(9.5) 525.0(22.6) 528.6(15.4) 489.7(21 .2) 515.3(24.8) 539.5( 19.2) 

Area from peak(lb msec) 397.3(23.2) 378.2(17.3) 388.8(22.6) 375.8(13.7) 370.2(14.4) 358.3(7.1) 374.3(16.6) 377.0(19.4) 

Total area(lb msec) 925.0(22.3) 939.5(29.0) 923.2(27.4) 900.5(34.8) 899.0(20.7) 848.0(27.7) 889.5(32.2) 916.5(26.3) 

Lower Punch Ejection Data at 6000 lbs [Mean (SD)], n=S 

Blend #1 Blend #2 Blend #3 Blend #4 Blend #6 Blend #7 Blend #8 Blend #9 

Rise Time(msec) 16.8(1 .7) 2.0(1 .3) 1.57 12.9(0.8) 16.3 13.5 (0 .1) 14.4 (1.2) 12.6(2.1) 

Fall Time(msec) 85.5(18.6) 12.5(0.6) 68.6 63.4(19.3) 99.1 267.0(91 .9) 71 .6(17.5) 130.8(102.6) 

Pulse Width(msec) 106.7(42.1) 404.0(13.7) 193 71 .0(46.1) 81 .3 93.4(53.2) 87.1(40.6) 74.8(31.4) 

Dwell Time(msec) 51 .8(29.3) 352.3(83.2) 190 35.3(29.9) 29.3 44.3(30.7) 43.9(26.5) 29.4(13.1) 

Contact Time(msec) 154.3(44.6) 408.7(15.6) 260 111 .5(48.9) 145 324.5(122.3) 129.7(44.0) 172.8(116.2) 

Max Force(lb.) 78.8(12.2) 5.0(1 .3) 4.5 20.1(3.6) 5.2 9.6(2.2) 22.1(2.6) 7.4 (1 .4) 

Area to peak (lb msec) 2.4(1 .4) 0.1(0.0) 0.04 0.3(0.1) 0.03 0.16(0.06) 0.46(0.19) 0.1(0.0) 

Area from peak(lb msec) 6.1(2.8) 0.5(0.4) 0.1 1.1(0.8) 0.15 1.0(0.69) 1.46(0.73) 0.4(0.3) 

Total area(lb msec) 8.5(4.0) 0.5(0.4) 0.2 1.4(0.9) 0.19 1.2(0.76) 1.92(0.89) 0.5(0.3) 

Blend #10 

93.7(1 .2) 

48.2(1 .2) 

141 .5(2.6) 

73.6(1 .8) 

215.5(1.4) 

6191 .3(109.2) 

502.0(18.6) 

375.0(13.3) 

877.0(26.4) 

Blend #10 

11.4(8.5) 

123.9(112.3) 

183.8(117.9) 

124.9(114.1) 

259.8(124.2) 

5.9(0.9) 

0.08(0.05) 

0.45(0.43) 

0.53(0.46) 



Table 20. Summary of Upper Punch Compression and Lower Punch Ejection Data from Force-Time Curves at Maximum Achievable Force 

UHer Punch Com_E.t"ession Data at Maximum Achievable Force, [Mean (SD)), n=S 

Blend #1 Blend #2 Blend#3 Blend #4 Blend#S Blend #6 Blend #7 Blend #8 Blend #9 Blend #10 

Rise Time(msec) 117.7(0.6) 119.3(3.2) 113 116.0(3.6) 105.3(2.1) 114.4(1 .7) 110.8(4.2) 102.1(1 .9) 116.3(2.5) 108.8(1.5) 

Fall Time(msec) 46.5(0.1) 48.8(3.7) 47.3 50.0(0.8) 48.5(1 .4) 51 .5(1 .9) 49.9(1 .7) 47.3(1 .5) 50.1(1 .5) 51 .0(1 .1) 

Pulse Width(msec) 194.0(7.5) 159.7(7.3) 162 171 .3(4.7) 162.3(4.5) 161 .8(2.8) 165.2(2.5) 157.2(3.2) 163.0(2.9) 159.5(4.0) 

Dwell Time(msec) 107.3(7.1) 82.2(4.2) 81 88.8(2.2) 85.5(3.1) 83.2(1 .6) 86.3(2.3) 83.1(2.3) 83.7(2.8) 82.5(2.7) 

Contact Time(msec) 271 .0(7.0) 250.5(9.3) 241 254.7(4.5) 239.3(4.4) 249.4(2 .6) 247.2(2.8) 232 .2(2.1) 250.0(2.2) 242.2(3.1) 

Max Force(lb.) 8190.7(109.2) 7 455.0(224.5) 8808 8593.3(49.2) 8395.2(118.1) 8977.4(102.2) 8551 .8(129.6) 77 44.0(104.5) 8588.8(162.0) 8678.3( 157 .8) 

Area to peak (lb msec) 1034.3(49.0) 751 .3(50.7) 896 946.7(39.3) 852.3(36.5) 934.2(21 .5) 901.2(40.8) 743(17.3) 895.3(36.8) 863.2(40.6) 

Area from peak(lb msec) 523.7(28.0) 462.8(23.0) 521 530.0(7.5) 502.b(18.9) 538.0(16.3) 517.7(10.7) 472.5(22.0) 523.8(16.7) 530.5(16.1) 

Total area(lb msec) 1558.0(76.9) 1214.2(70.1) 1418 1476.3(44.1) 1355.3(48.3) 1472.0(30.1) 1418.7(37.7) 1215.3(38.5) 1419.0(47.1) 1393.8(55.4) -I.;.) 
0 

Lower Punch Election Data at Maximum Achievable Force, (Mean (SD}L n=S 

Blend #1 Blend #2 Blend #3 Blend #4 Blend #5 Blend #6 Blend #7 Blend #8 Blend #9 Blend #10 

Rise Time(msec) 17.5(2.1) 9.5(10.6) 7.4 16.0(3.5) 16.7(2.0) 11 .9(2.5) 13.6(1 .9) 16.3(3.7) 13.7(3.2) 12.2(6.4) 

Fall Time(msec) 88.2(15.4) 107.7(84.8) 0.3 93.2(35.2) 145.0(55.7) 86.1(5.8) 150.0(60.9) 73 .3(23.4) 120.9(40.4) 124. 7(66.5) 

Pulse Width(msec) 116.1(44.1) 176.9(96.3) 77.5 100.8(39.4) 128.0(16.2) 88.7(21 .1) 104.7(30.2) 92.3(40.3) 83.9(23.8) 150.4(92.6) 

Dwell Time(msec) 59.9(31 .2) 149.6(81 .7) 73.5 38.0(12 .3) 61 .2(15.1) 46.8(11 .7) 48.2(15.2) 42.9(26.1) 33.0(10.2) 84 .1(79.0) 

Contact Time(msec) 165.7(46.7) 261 .0(118.3) 81 .2 147.0(49.0) 222.8(68.2) 145.0(19.5) 211 .8(61 .8) 132.6(46.9) 167.6(41.3) 221 .1(104.1) 

Max Force(lb.) 98.8(14.3) 5.3(1 .2) 3.2 26.7(4.7) 14.6(0.6) 4.3(0.7) 11.1(1 .7) 25.3(4.3) 8.5(1.4) 5.9(1 .2) 

Area to peak (lb msec) 2.6(0.8) 0.0(0.0) 0.08 0.6(0.2) 0.4(0.0) 0.02(0.02) 0.23(0.06) 0.54(0.16) 0.1(0.1) 0.1(0.0) 

Area from peak(lb msec) 8.9(4.5) 0.2(0.2) 0.14 2.1(1 .2) 1.5(0.5) 0.06(0.04) 0.91(0.37) 1.77(1 .1) 0.5(0.2) 0.4(0.3) 

Total area(lb msec) 11 .5(5.4) 0.2(0.2) 0.21 2.7(1 .4) 1.9(0.5) 0.07(0.05) 1.1(0.43) 2.31(1 .25) 0.6(0.2) 0.5(0.3) 



( 
the dwell time starts. Decompression occurs when the punch rises agam. The 

duration of dwell time is dependent on the diameter of the plane surface of the punch 

head and the speed of the machine (31 , 35, 36). Many believe that interparticulate 

bonds are formed during dwell time, and the ultimate strength of tablet depends on 

these interparticulate bonds (53 , 54). Thus the longer the dwell time, harder will be 

the tablet formed. In the current study, the tablet tooling and tablet machine speed 

were kept constant for all the mixtures, since the purpose was to determine the effect 

of formulation composition on the compaction behavior of multi-component mixtures. 

In order to determine the effect of compression force on dwell time, the dwell times 

obtained for each compression cycle were plotted in Figure 33 and the data is 

summarized in Tables 14, 15, 16, 17, 18, 19 and 20 at varying compression forces for 

Blend#l , 2, 3, 4, 5, 6, 7, 8, 9 and 10, respectively. The highest dwell time of 107 msec 

was observed for 99% lactose anhydrous mixture (Blend#l) at maximum achievable 

force and the minimum dwell time of 51 msec was observed for the same blend at 

1000 lbs of applied force. The dwell times for all other mixtures relatively remained 

between 60 and 80 msec. Dwell time increased with an increase in applied force for 

any given blend. Figure 34 illustrates the effect of formulation composition on dwell 

time at 4000 lbs of applied force. As the contour plot indicates, the higher the amount 

of lactose anhydrous and A vicel® PH 101 , the longer is the dwell time. Since during 

dwell time, the interparticulate bond formation takes place, the comparison of dwell 

times in correlation with tablet hardness for various multi-component mixtures will 

provide critical information in understanding the compression behavior of 

pharmaceutical mixtures (9-14, 17, 52-54). 
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Figure 35 describes the effect of applied force on the total area of compaction

force time pulse. The total area of the compression pulse denotes the total amount of 

work done for the compression process as a function of applied pressure. For 10 

powder blends studied, the highest total area was observed for 99% Avicel® PH101 

blend. Overall, the total amount of work involved increased with the applied force and 

this in turn resulted in harder tablets. It is apparent for all blends that the total work 

involved in the compression process increased with the applied pressure following a 

linear relationship. The higher the work input involved during the compaction of 

powder, the stronger the tablet is expected to be formed due to the larger amount of 

energy utilized in the formation of bonds. As the compression forces are increased, 

the contact areas between particles are also increased. Plastic materials will 

permanently deform and create extensive areas of true contact between particles 

whereas elastic materials will store energy elastically under compression. During 

decompression, the stored elastic energy may disrupt and separate the true contact 

areas that were established by compression forces resulting in poor bonding (9-14, 52-

61). 

Figure 36 illustrates the effect of compression force on the total area of ejection 

pulse. In the current study, compression force or force applied was varied from 1000 

lbs to maximum achievable force on the tableting machine. The parameters generated 

during ejection cycle were recorded and analyzed. As the ejection force-time data 

summarized in Tables 14,15, 16, 17, 18, 19, and 20 and Figure 36 indicate for varying 

formulation compositions, the highest amount of work was needed to eject tablets 
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prepared from 99% lactose anhydrous blends. In Figure 37, the ejection forces 

required during tableting of different blends were plotted as a function of applied 

compression force. The lactose blends demonstrated that significantly higher amounts 

of ejection force was needed to eject tablets as compared to other formulation 

compositions. The highest amount of ejection force (98.8 lbs) was required for tablets 

using 99% lactose anhydrous blend (blend# 1) at an applied compression force of 8191 

lbs (Table 20). Figure 38 provides the effect of formulation composition on ejection 

force at an applied force of 4000 lbs. As the percentage of lactose anhydrous increases 

in the formulation, the force required to eject tablets increases. Significantly lower 

amounts of forces were required to eject tablets prepared from Avicel® PHlOl and 

Starch® 1500 blends. 

Another parameter of interest is the tablet's specific volume. The patient's 

compliance improves with smaller size tablets . Smaller size tablets which have low 

tablet volumes will be possible only with either use of lower quantity of material or 

use of material that has very high compressibility value. The particle characteristics of 

the starting materials and changes that take place during the process of compaction 

determine the volume reduction (60). Figure 39 and Table 21 provide the reduction of 

surface area as a function of the compressional force for various powder mixtures. For 

all the blends, plateau values for tablet surface area were reached when compression 

force was approximately 4000-5000 lbs. Figure 40 displays the effect of formulation 

composition on tablet surface area at a compression force of 4000 lbs. As the graph 

indicates, increase in the concentration of Avicel® PHlOl in tablet composition 
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Table 21. Compression Parameters For Multi-Component Mixtures 

Blend #2 Blend #J Blend #4 Blend #5 Blend #6 Blend #7 

0.017577 - 0.017201 - 0.017621 0.017466 

0.373589 - 0.369583 - 0.374060 0.372411 

49.6 - 44.8 - 53.8 41.4 

0.7 0.8 - 0.62 0.88 

0.014871 - 0.014959 0.015600 0.016141 0.015776 

0.344725 - 0.345668 0.352501 0.358274 0.354386 

41.2 - 36.3 58.2 48.7 35.6 

0.89 1.01 0.54 0.72 I.OJ 

0.013932 - - 0.015059 0.015191 0.014528 

0.334712 - - 0.346728 0.348142 0.341073 

37.7 - - 56.9 45.5 29.8 

0.98 - 0.56 0.79 1.21 

0.013280 0.014241 0.013479 0.014816 0.014915 0.014042 

0.327761 0.338010 0.329881 0.344136 0.345197 0.335890 

34.8 51.7 29.8 55 .9 44.8 27.4 

1.05 0.66 1.21 0.58 0.8 1.29 

0.013082 - - 0.014484 0.014650 0.013755 

0.325640 - - 0.340602 0.342369 0.332827 

33.6 - - 54.8 43.6 26. I 

1.09 - - 0.6 0.83 1.34 

0.012993 0.014274 0.012927 0.014407 0.014495 0.013590 

0.324698 0.338364 0.323991 0.339777 0.340720 0.331059 

32.9 50.8 26.3 54.6 43.2 25 

I.II 0.68 1.34 0.61 0.84 1.39 

0.012828 0.014617 0.012717 0.014142 0.014374 0.013369 

0.322931 0.324016 0.321752 0.336950 0.339424 0.328703 

32.1 51.5 24.8 53 .9 42.7 23.7 

1.14 0.66 1.29 0.62 0.85 1.44 

--... 

Blend #8 Blend #9 Blend #10 

0.164720 0.017632 -
0.361808 0.374178 -

40.3 51.6 -
0.91 0.66 -

0.150360 0.015147 0.015710 

0.346493 0.347671 0.353679 

34.6 43.5 51.3 

1.06 0.83 0.67 

0.014274 0.014053 -
0.338364 0.336007 -

30.9 39.1 -
1.17 0.94 -

0.013678 0.013590 0.014882 

0.332002 0.331059 0.344843 

28.1 36.6 48.2 

1.27 1.00 0.73 

0.013424 0.013336 0.014904 

0.329292 0.328350 0.345079 

26.5 35.4 48 

1.33 1.04 0.73 

0.013170 0.013170 0.014749 

0.326583 0.326583 0.343429 

24.8 35 47.8 

1.39 1.05 0.74 

0.012971 0.013071 0.014562 

0.324462 0.325522 0.341427 

24.2 33 .6 47.1 

1.42 1.09 0.75 
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reduces the tablet surface area; and increase in the Starch® 1500 concentration results 

in tablet that has low surface area. These trends can be explained based on the 

compaction mechanism of respective excipients. Avicel® PH101 displays excellent 

compressibility values indicating larger amounts of material can be compressed into 

smaller volumes. Conversely, Starch® 1500 displays poor compressibility 

characteristics and hence larger amount of material results in larger tablets which in 

turn will have high surface areas. 

Particulate solids may be characterized by two parameters: compressibility, 

that is, the material ' s ability to undergo volume reduction under pressure; and 

compactibility, that is, the material ' s ability to yield a compact of adequate 

deformation resistance when compressed. Figure 41 and Table 21 provide the 

reduction of tablet volume as a function of applied force. All the blends display high 

tablet volume in the initial stages and a continuous reduction as the applied force 

increases until a plateau value is reached. The volume of fixed amount of powder 

blend in die is reduced by decreases in the inter- and intra-particulate pore space. The 

process of volume reduction is generally divided onto different stages: die filling, 

rearrangement of particles, deformation by elastic changes, permanent deformation by 

plastic flow, or particle failure by brittle fracturing (8). As expected, the volume data 

displayed trends similar to those observed with the tablet surface area values. Blends 

containing Starch® 1500 produced tablets with high volumes whereas the blends 

containing A vice!® PHI 01 produced tablets with low volumes. 
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This is attributed to the excellent ability of Avicel® PHI 01 to undergo high volume 

reduction with applied force as compared to Starch® 1500, which behaves differently 

during compaction. 

Tablet porosity is the entrapped air in the compacts and provides critical 

information how a mixture behaves under pressure. Figure 42 and Table 21 provides 

the porosity values for tablets prepared from the various blends as a function of 

compression force. Among the ten blends, Blend#5 which contains 49.5% of lactose 

anhydrous and 49.5% of Starch 1500 displayed the highest values for porosity. For 

Blend#5, increase in compression force from 1000 lbs to-8500 lbs did not affect the 

high porosity values significantly. Higher porosity values indicate that blends cannot 

deform well to make compacts. The high porosity values are associated with the 

amount of Starch 1500 present in the formulation. The blends containing A vice!® 

PHlOl has high porosity values initially, but as the applied force increases, the 

porosity values drop significantly. 99% lactose anhydrous blend provided tablets with 

lowest amount of porosity. Figure 43 shows the effect of formulation composition on 

tablet porosity of blends compressed at 4000 lbs of applied force. As graph indicates 

that as the concentration of Starch® 1500 increases, the porosity values seem to 

mcrease. 

Numerous mathematical models describing the change of relative density in a 

powder column as a function of the applied pressure have been derived and adopted 

from other fields of industry for pharmaceutical compression processes (9-14, 17). 
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Heckel equation is widely used to study the densification behavior of materials with 

applied pressure. Three types of volume reduction mechanisms of pharmaceutical 

powders have been distinguished by using the Heckel equation (17). The types are 

referred as A, B and C (Figure 44). In type A, size fractions had different initial 

packing fractions and the plots remain parallel as the compression pressure was 

increased. In type B, the plots were slightly curved at the initial stages of compaction 

and later became coincidental. In type C, the plots had an initial steep linear part after 

which they became coincidental with only trivial volume reduction. Generally, type A 

behavior was related to the densification by plastic flow, preceded by particle 

rearrangement. In type B, powder densification occurs by fragmentation of the 

particles. Type C densification occurs by plastic flow but no initial particle 

rearrangement is observed. 

The effects of experimental variables on Heckel plots have been studied quite 

intensively. Rue and Rees (11) and York (12) have published about the limitations of 

Heckel plots used for predicting the compaction mechanisms. Rue and Rees (11) 

pointed out that the predominant compaction mechanism may change with the particle 

size. They also reported that an increased volume reduction was observed increased 

compression time indicating deformation of microfine cellulose by plastic flow. In 

contrast, no increase in volume reduction as a function of contact time was observed 

for dicalcium phosphate, this being characteristic of brittle materials. The authors 

proposed measuring the area under the Heckel plot to quantify the amount of plastic 

deformation. York (12) reviewed several studies where densification behavior of 

crystalline lactose was evaluated and he pointed out that the general form of the 
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Heckel plots was similar in all cases though the numerical values describing the 

compression process were dependent on experimental variables. York (12) has listed 

several variables such as the state and type of lubrication, rate of compaction, mode of 

die filling, contact time, dimensions of tools and techniques used to measure compact 

dimensions, all which are necessary to take into account in tableting studies. 

Duberg and Nystrom (13) have used the initial curvature of Heckel plots as an 

indication of particle fragmentation. Also the correlation coefficient describing the 

linearity of the Heckel plots have been used for the same purpose. Thus, nonlinear 

plots may indicate fragmentation, and linear plots the deformation by plastic flow. 

Also poor packing of powder due to cohesiveness, small particle size and irregular 

particle shape may lead to initial curvature in a Heckel plot. In most cases, however, 

the rearrangement of the relatively regular particles occurs already at low pressures. 

Thus measurements of the nonlinearity could be a useful tool for categorizing 

pharmaceutical materials. This is especially true if fragmentation of microcrystalline 

particles or aggregates of primary particles are concerned, since they are intensively 

fragmented to smaller particles already at low compression pressures and this results in 

considerable volume reduction. At higher pressures the volume reduction becomes 

more difficult, and is expressed by nonlinear Heckel plots. On the other hand, the 

densification due to plastic flow and elastic deformation of particles, and the volume 

reduction of a powder column proceed steadily, since according to Heckel function the 

porosity reduction occurs exponentially. 

Most of the reports on porosity-pressure functions are derived from single 

component powders. There are hardly any reports concerning the compression 
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behavior of multi-component powder mixtures (6, 9). Solid dosage forms are always 

multi-component systems containing typically, filler/binder, disintegrant and lubricant. 

Hence, the current study was designed to evaluate the densification behaviors of multi

component powder mixtures using simplex experimental design. The compaction 

parameters generated using instrumented Piccola rotary tablet for ten powder blends 

were summarized in Tables 15 to 20. Table 21 provides the summary of tablet 

volume, surface area, porosity and Ln (l/E) values at compression forces varying from 

1000 lbs to approximately 8500 lbs. Figure 45 shows Heckel plots determined using 

Heckel equation and compaction parameters. 

The ability of powder materials to form tablets or compacts depends on their 

deformation and bonding characteristics. Materials are usually classified as either 

brittle or plastic, depending on their . predominant deformation behavior. Plastic 

materials are basically viscoelastic, which is apparent from their sensitivity to changes 

in strain rate. The consolidation is affected by the speed of compaction. Elastic 

deformation at higher tableting speeds leads to additional stress relaxation of tablets. 

The individual components, namely, lactose anhydrous, Avicel® PH101 and 

Starch® 1500 have been well researched when used alone (8). Lactose consolidates 

primarily by fragmentation, but directly compressible lactose contains some 

amorphous material which is capable of plastic flow (58). The anhydrous lactose used 

in the current study, consists of agglomerated, extremely fine crystals, produced by 

roller-drying of a solution of pharmaceutical grade a-lactose monohydrate followed 

by subsequent comminution and sieving. It contains about 85% of P-lactose and 

about 15% anhydrous a-lactose. 
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During compaction, microcrystalline cellulose is thought to undergo stress 

relief deformation by several mechanisms. David and Augusburger (1) reported that 

microcrystalline cellulose consolidates by two mechanisms: fragmentation and plastic 

deformation. At low compression forces, stress relief is dominated by a slight elastic 

phase. This has been explained by its hollow microfibrillar structure. At higher force, 

there is either further deformation or permanent deformation by nonspecific plastic 

flow. Following stress relaxation studies, David and Augusburger (1) suggested that 

plastic flow is an important factor affecting the compressibility of microcrystalline 

cellulose. Plastic deformation is facilitated by the presence of slip planes, dislocations, 

and the small size of the individual microcrystals. The plasticity of microcrystalline 

cellulose increases with increasing compressing force, which is accompanied by a 

decrease in viscoelasticity. When microcrystalline cellulose tablets are prepared by 

wet granulation, there is less plastic deformation in comparison with tablets prepared 

by direct compression. Force versus displacement plots on diametric compression to 

fracture indicates that A vicel shows stress relief by time-dependent yielding. The 

yield pressure increases with punch velocity, because of a reduction in the amount of 

plastic deformation caused by the time-dependent nature of plastic flow. This 

increase in mean yield pressure at increasing compression speeds is reflected by the 

high strain rate sensitivity value for microcrystalline cellulose. Armstrong and Palfrey 

(35, 36) show that the reduction in crushing strength at increasing compression speed 

is caused by an increased porosity of the compacted powder bed. 
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Strong binding properties of microcrystalline cellulose are caused by hydrogen 

bonds between hydrogen groups on the plastically deformed, and adjacent cellulose 

particles. The hydrogen bonds on the extremely large surface area are brought into 

close contact during plastic deformation. This is the reason for the extremely good 

compactability of microcrystalline cellulose, better than that of any other directly 

compressible filler-binder. The microcrystalline cellulose (Avicel® PH101) has a very 

low brittle fracture index and a very high bonding index, two properties that make it an 

excellent tableting excipient. The low brittle fracture index can successfully mask the 

brittle properties of drugs, while the low brittle fracture index will overcome the poor 

bonding of the active compound. The compactability of microcrystalline cellulose 

depends on its moisture content. During plastic deformation, the moisture within the 

pores should act as an internal lubricant and facilitate slippage and flow within the 

individual microcrytsals. The presence of an optimum amount of water will prevent 

elastic recovery by forming bonds through hydrogen bond bridges (8, 53, 54). The 

compactibility of microcrystalline cellulose decreases with a reduction of its moisture 

content. The strongest compacts are produced when the microcrystalline cellulose 

contains 7.3% moisture. The capping tendency of microcrystalline cellulose is 

reduced by increasing the moisture content. This is attributed to the strengthening of 

interparticle binding forces and the reduction of elastic recovery by lowering the yield 

point (8). 

Density-stress and stress-relaxation studies show that Starch® 1500 exhibits 

extensive, yet slow, plastic deformation during compression. Changes in contact time 

during compaction, therefore, have a marked effect on tablet properties (8). Starch® 
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1500 has a slower initial relaxation than anhydrous lactose, but after prolonged time 

periods the total relaxation of Starch® 1500 is much greater than that of anhydrous 

lactose. As compared with other plastically deforming materials, the strength of 

Starch 1500 tablets is low. This effect may be because plastic deformation is too slow 

to produce adequate interparticle binding during rapid compression. In addition, 

during compaction at high strain rate, a large proportion of the total deformation will 

be elastic (8). When elastic and plastic deformation and interparticles binding occur 

during compression and when elastic recovery occurs on decompression and ejection, 

interparticle bonds are not formed rapidly enough to prevent brittle fracture reducing 

tablet strength and possibly causing capping. 

Because of its plastic behavior under pressure, Starch® 1500 is extremely 

sensitive to mixing with lubricants (37-42). This behavior is confirmed with the 

results obtained in this study. Among, the ten mixtures, 99% Starch® 1500 blend 

provided low tablet hardness and high tablet friability values. Since Starch® 1500 is 

an important component in tablet formulation because of its disintegrant properties 

and better flow characteristics, the limitations seen above can be offset by choosing 

appropriate amount of other components (Avicel® PHOIOl and lactose anhydrous) 

based on trends observed in this study and desired tablet characteristics. 

Based on shape of Heckel plots (Figure 45) and comparing with theoretical 

curves (Figure 44), we can understand how each blend is behaving during compression 

process. Since each blend is a multi-component mixture, it is difficult to precisely 

estimate what type of mechanism each blend is following for deformation during 

compression. However, since all three major components, Lactose Anhydrous, 
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Avicel® PHlOl , Starch® 1500 behave differently as described above, the blends seem 

to follow the same mechanism as its major component. Similar trends can be seen for 

all other compression and tablet parameters. 

In summary, compaction parameters were generated for statistically designed 

powder mixtures containing Lactose Anhydrous, A vicel® PH 101, Starch® 1500 and 

Magnesium Stearate. The powder blends were evaluated and then compressed into 

tablets at an applied force of 1000 lbs, 2000 lbs, 3000 lbs, 4000 lbs, 5000 lbs, 6000 lbs 

and maximum achievable force on tableting machine (~8500 lbs). The tablets were 

characterized. The compression force-time curves and ejection force-time curves were 

studied and all critical compression parameters were summarized. Critical parameters 

such as tablet volume, surface area, true density, porosity and Ln(l/E) values were 

computed and heckle plots wer~ generated. In order to determine the effect of 

formulation composition on a specific property, response surface contour plots were 

generated to study the trends. 
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CONCLUSIONS 

In the current investigation, experimentally designed blends compnsmg 

Lactose Anhydrous, Avicel® PH101 , Starch® 1500 and Magnesium Stearate were 

evaluated using an instrumented tablet press. Simplex design was utilized to mimic 

the actual formulation requirements and ten different blends were prepared using a 

high shear mixer. The powder mixtures were compressed at 1000 lbs, 2000 lbs, 3000 

lbs, 4000 lbs, 5000 lbs, 6000 lbs and maximum achievable force on tableting machine 

(- 8500 lbs). The compression force-time curves and ejection force-time curves were 

evaluated and critical compression parameters such as porosity and In (1/E) values and 

Heckel plots were determined to understand the compression behavior of the 

experimental blends. The compression parameters generated in this study, provide 

valuable insights into how multi-component mixtures behave under pressure. 

The key findings can be summarized as : 1) Maximum weight variation was 

observed for blends containing 99% Starch® 1500 and minimum variation was 

observed for blends containing Lactose Anhydrous and AviceI® PH101at49.5% level. 

2) 99% Avicel® PHIOl provided the highest tablet hardness values (7.3-23.7 Kp) as 

compared to all other mixtures. 99% Starch® 1500 provided the lowest tablet hardness 

values (0-0.3 Kp). 99% Lactose Anhydrous provided an intermediate hardness profile 

(1.9-14.2 Kp). As the level of Avicel® PH101 in the blend increases, so does the 

hardness profile for tablets. 

3) Starch® 1500 imparted more thickness to the tablets followed by Avicel® PHIOl 

and Lactose Anhydrous. 
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4) Maximum disintegration times were observed for tablets prepared from blend 

containing Avicel® PH101 and Lactose Anhydrous at 49.5% level. 

5) Maximum dwell time of 107 msec was observed for 99% Lactose Anhydrous at 

maximum achievable force (-8500 lbs) and a minimum dwell time of 51 msec was 

observed for the same blend at 1000 lbs of applied force . 

6) Maximum total area of compression pulse was observed for 99% A vicel® PH 101. 

7) The highest amount of ejection force (98.8 lbs) was required for tablets prepared 

from 99% Anhydrous Lactose blend. 

8) Tablet surface area and volume are dependent upon the amount of Starch® 1500 

present in the blend. 

9) Tablets from the blend containing 49.5% Anhydrous Lactose and 49.5% Starch® 

1500 displayed maximum amount percentage of porosity. It indicates that the blend 

can not deform well to make compacts. Presence of Starch® 1500 also resulted in 

higher porosity values. Tablets containing A vicel® PH 101 displayed high porosity 

values initially (at 1000 lbs) but the porosity was reduced significantly as the applied 

force was increased. 

10) Heckel plots were generated to elucidate the deformation mechanism of various 

blends. 

The current findings will help formulation scientist to design and develop a 

robust tablet dosage form that meets the predetermined quality attributes and will be 

free of typical tableting problems such as hardness variation and weight variations. 
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Finally, at present only very few investigations comprising multi-component 

mixtures were available in literature for compaction process and more studies will 

definitely shed more light on the complex process of compaction especially with the 

advent of so many new polymeric materials. 
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MANUSCRIPT III 

EFFECT OF FORMULATION COMPONENTS AND MANUFACTURING 

PROCESS ON THE ELECTROSTATIC BEHAVIOR OF 

PHARMACEUTICAL POWDERS 
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ABSTRACT 

The unit processes involved in preparation of pharmaceutical solid dosage forms 

include sieving, milling, mixing and compression. All these processes involve use of 

large amounts of shear forces and may result in generation of electrostatic charges on 

the powders. In turn the induced charges on the powders may adversely affect powder 

flow and packing behavior, fill uniformity, dose uniformity and drug-carrier particle 

separation on actuation. The mechanism of development of electrical charges on 

powders and their behavior is complex and remains largely unexplored. The current 

study is designed to investigate the significance of static charges generated on 

pharmaceutical powders during the processing of solid dosage forms. The objectives 

of this study are . to determine the effect of formulation components 

(lubricants/glidants) and process parameters (mixing time, mixer type and batch size) 

on the electrostatic charges generated during the blending of pharmaceutical materials. 

The effect of high shear mixing on the electrical properties of pharmaceutical materials 

including pregelatinized starch (Starch l SOO), microcrystalline cellulose (A vice!® 

PH 101) and a cimetidine containing formulation was determined. Various 

lubricants/glidants such as magnesium stearate, stearic acid, colloidal silicon dioxide 

(Cab-0-Sil MS) and sodium stearyl fumarate (Pruv®) were evaluated on 

triboelectrification of electronegative and electropositive materials. When evaluated 

individually, cimetidine displayed electropositive charge whereas all the other 

excipients displayed electronegative charges. Cab-0-Sil MS was found to be the most 

electronegative whereas stearic acid was found to be the least electronegative among 

the excipients examined. Based on the results obtained in this study, when Starch 
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1500 was blended with 1 % lubricant/glidant in a Collette Gral 10 High Shear Mixer, 

the lubricants/glidants can be arranged as follows in decreasing order of their ability to 

reduce the static charges produced during the blending process: magnesium stearate > 

Pruv® > stearic acid> Cab-0-Sil MS. For Avicel® PHlOl blends, the antistatic effect 

of the same agents can be arranged in decreasing order as: magnesium stearate > 

stearic acid > Pruv® > Cab-0-Sil MS. The antistatic effect was reduced when the 

mixing time with lubricants increased from 1 minute to 3 minutes. The antistatic 

effect of lubricants/glidants was dependent on the electrical charge behavior of the 

materials studied. The mixer design and type played an important role in determining 

the electrostatic charges of powder blends in pharmaceutical processing. Powders 

blended in Collette Gral 10 High Shear Mixer produced more electrostatic charges as 

compared to those blended in a Kitchen Aid Planetary Mixer. The triboelectrification 

of the blend in a high shear mixer decreased with an increase in the batch size from 0.5 

kg to 2.5 kg. 

Key words: triboelectrification; electrical charge; pharmaceutical powder; high shear 

mixing; lubricant; glidant; antistatic effect; microcrystalline cellulose; pregelatinized 

starch; cimetidine; magnesium stearate; stearic acid; colloidal silicon dioxide; sodium 

stearyl fumarate. 
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( INTRODUCTION 

Pharmaceutical powders tend to acquire electrical charges during processmg 

operations such as milling, mixing, micronization, sieving, compaction, spray drying 

and congealing, coating, transfer of material from one place to another and packaging 

(1). The induced charges on powders may cause problems with the efficient operation 

of processing equipment, uniform mixing of formulation components, flowability of 

powder blends in high speed machines, drug content uniformity, and accurate delivery 

of powders from drug delivery systems, fire hazards, and explosion hazards and may 

affect the quality of dosage forms. Although the accumulation of electrical charge on 

solid and solid-liquid systems is one of the earliest physical phenomena known, the 

significance of these electrical charges on powders in pharmaceutical processing 

remains largely unexplored (2-3). Drug substances and pharmaceutical excipients can 

be classified as electropositive, electronegative or neutral depending on the charge 

behavior on powder particles. Table 1 provides the examples of commonly used 

pharmaceutical materials and their electrical behavior. 

'Static electrification' by definition includes all processes that produce segregation 

of positive and negative electrical charges by mechanical actions operating through 

contact, impact, or friction between two surfaces, or by rupture or by separation of 

solid and liquid surfaces (1-3). 'Static charge' results from contact of 'true surfaces' 

and not from friction. Such a net static charge may be electropositive or 

electronegative and is derived from a complex bipolar system. 
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Table 1. Electrical Behavior of Selected Pharmaceutical Excipients 

NEGATIVE ELECTROSTATIC CHARGE POTENTIAL OF POWDER EXCIPIENTS 

Talc, USP (extrafine) STRONGEST 

Ascorbic Acid (90% granulation) 

Sugar (6X) 

Dipac 

Calcium Sulfate 

Lactose, USP 

Starch, USP (Com) 

Dibasic Calcium Phosphate (milled) 

Sodium Chloride 

Dibasic Calcium Phosphate (unmilled) WEAKEST 

POSITIVE ELECTROSTATIC CHARGE POTENTIAL OF POWDER EXCIPIENTS 

Niacinamide 

Methyl Cellulose 400 cps 

Stearic Acid, USP 

Alginic Acid 

Spray Dried Lactose 

Sugartab 

Sea Sand 

STA-Rx 1500 

Ethyl Cellulose 10 cps 
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The transfer of charge that talces place when two materials collide or are 

rubbed together is called triboelectrification (2). Triboelectrification is similar to, 

though not the same as, contact electrification, which occurs when two materials are 

brought together and then separated, resulting in a transfer of charge between the two 

materials. Triboelectrification is a more complicated form of contact electrification in 

which there is also transverse motion. Triboelectrification causes a transfer of charge 

leading to a buildup of static charge. Static electricity is the result and 

triboelectrification is the cause. There are two approaches that can be used for 

quantifying and measuring triboelectric phenomena. The first approach is to measure 

the results of static accumulation i.e. the buildup of charge due to many charge 

transfers on powder particles. The majority of the research into this phenomenon has 

been performed using this approach. The second approach is to measure the charge 

transfer directly as it talces place ( 4-5). The advantage of second approach is that it is 

more accurate and can be used as a tool to monitor the flow of solids during material 

transfer. 

In pharmaceutical operations, the triboelectrification or contact charging is 

influenced by several factors such as particle size and shape, and the electrical 

properties of the formulation components, surface properties of particles, nature of the 

last contact surface, contact area and frequency, surface purity, and atmospheric 

conditions (6-9). Triboelectrification remams a challenge, as some materials are 

sensitive to electrostatic charging at atmospheric conditions, while other materials are 

not. Also, triboelectrification can be completely characterized only if the true area of 

contact is known (1). The true area of contact depends on the surface roughness as 
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well as contact pressure. The process of triboelectrification is a complex phenomenon 

and is not yet fully understood in pharmaceutical processing. Most pharmaceutical 

powders are organic crystals, which behave as insulators under ambient conditions. 

These systems are complex and less well defined when compared to conductors and 

however, similar theoretical considerations can be extrapolated to explain the 

electrostatic behavior of pharmaceutical systems (10). The work function of a 

substance is defined as the difference in the energy state between the outermost 

electrons or Fermi level, and a reference source. When two dissimilar substances 

come into contact, transfer of electrons occurs as to equalize the Fermi level energies. 

A contact potential or electrostatic charge is produced, and this is the difference 

between the work functions. It is this adhesion energy, with electric force 

contributions from London- Van der Waals and surface tension interactions, as well as 

Coulomb interactions, which must be overcome in order to allow free movement of 

powder particles. 

During dry powder handling operations, particles make frequent contact with 

different surfaces, such as surface of other particles, metallic surfaces of the handling 

equipment and surfaces of the processing equipment (1). The process of contact 

electrification thus charges the powder particles with either positive or negative 

charge. The dynamic behavior of charged particles depends largely on the charges 

present on the powder particles. On contact with surfaces in the neighborhood, 

charged particles adhere by a combination of electrostatic and Van der Waal forces . 

Once a particle is charged during handling, the charge is transferred at the particle 

contact point and will redistribute itself over the surface electrostatic forces. The rate 
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at which this redistribution proceeds depends upon the electrical relaxation time of the 

particle material. Charged particles set up electrostatic fields, which influence particle 

trajectories and powder dynamics. Such charged particles are subject to extreme 

attractive forces and may adhere strongly to surfaces. This powder adhesion can be 

very problematic in processing and cleaning operations. The practical significance of 

electrostatic charge measurements is more critical for aerosol formulations intended 

for nasal and inhalation dosage forms. The charges on the powders affect powder flow 

and packing behavior, fill uniformity, dose uniformity and drug-carrier particle 

separation on actuation. Addition of antistatic agents is one approach that can be used 

to overcome these problems in the pharmaceutical industry. Another approach is 

selection of each excipient in the formulation based on the electrical properties of 

individual components so that final formulation can display neutral charge during 

processmg. 

Although it has been recognized that triboelectrification can be a senous 

problem in handling of pharmaceutical powders, only a few reports have been 

published so far. The significance of electrostatic charges in pharmaceutical 

formulation development and process development remains largely unexplored. The 

purpose of this investigation was to enhance the understanding of triboelectrification 

process during blending of pharmaceutical materials for solid dosage forms. The 

objectives of this study were: 1) to evaluate the electrostatic nature of various 

pharmaceutical powders, 2) to determine the mixing time effect on triboelectrification 

process in a high shear mixer, 3) to understand the effect of mixer type and batch size 
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on static charging of pharmaceutical materials and 4) to compare the antistatic effect 

of different lubricants/glidants on electronegative and electropositive materials. 
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METHODOLOGY 

Materials: The materials used in this study were cimetidine, USP (Agvar 

Chemicals, USA), microcrystalline cellulose, NF (Avicel® PHIOl) (FMC Inc., USA), 

pregelatinized starch, NF (Starch 1500) (Colorcon Inc. , USA), anhydrous lactose, NF 

(Sheffield Products, USA), magnesium stearate, NF (Mallinckrodt Co., USA), sodium 

stearyl fumarate, NF (Pruv®) (Mendell, USA), stearic acid, NF (Witco Corp. , USA) 

and colloidal silicon dioxide, NF (Cab-0-Sil M5) (Cabot Corp. , USA). 

The equipment used includes Collette Gral 10 High Shear Mixer (Collette, 

USA), Kitchen Aid Planetary Mixer (Kitchen Aid, USA) and Faraday Cup connected 

to NanoCoulomb Meter (Monroe Electronics, USA). 

Methods 

Preparation of Powder Blends: Selected pharmaceutical materials namely, 

microcrystalline cellulose (Avicel® PH101), pregelatinized starch (Starch 1500) and a 

cimetidine formulation containing active, Avicel® PHIOl , Starch 1500 and anhydrous 

lactose in the ratio of 69: 10: 10: 10 were evaluated for electrostatic behavior during 

blending process in a high shear mixer. Lubricants/glidants such as magnesium 

stearate, sodium stearyl fumarate, NF (Pruv®), stearic acid, and colloidal silicon 

dioxide, NF (Cab-0-Sil M5) were added to the pre-blends to evaluate their antistatic 

effect. The selected material(s) were screened through a 30-mesh hand screen and 

were mixed in a Collette Gral I 0 High Shear Mixer for 10 minutes at a mixer arm 

speed of 660 rpm and a chopper speed of 3000 rpm. Lubricant/glidant at 1 % w/w 

level was added to the pre-blend and the mixing was continued for an additional 3 
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minutes. The batch size of 0.5 kg was used for all the experiments in order to evaluate 

the antistatic effect of various lubricants/glidants. The electrostatic charges on powder 

blends were measured after 0, 5, 10, 11 , 12 and 13 minutes of mixing. 

Mixer load will also affect the blending efficiency during preparation of 

powder mixtures. In order to determine the effect of batch size on electrostatic 

charging of powders in a high shear mixer, Starch 1500 at batch sizes of 0.5 kg and 2.5 

kg was blended in a Collette Gral 10 High Shear Mixer. The charge developed on 

powder was monitored after 0, 5, 10, 15 and 20 minutes of mixing. 

In a blending operation, mixing efficiency is dependent on the design and type 

of mixing vessel used for processing. In order to determine the effect of mixer type on 

triboelectric charging, Starch 1500 was blended in a Collette Gral 10 High Shear 

Mixer (capacity - 7 liters) and in a Kitchen Aid Planetary Mixer (capacity- 2.5 liters) 

keeping the batch size constant (0.5 kg). The charge developed on powder was 

monitored after 0, 5, 10, 15 and 20 minutes of mixing. 

Measurement of Electrostatic Charges: Electrostatic charges on powder particles 

were measured using the Faraday Cup connected to an electrometer (11). The 

experimental set up is shown in Figure 1. The Faraday Cup consists of 6-inch can 

inserted in another can and the two cans were insulated from one another with a teflon 

block. The inner can which is a static charge detector was connected to an 

electrometer, NanoCoulomb Electrometer (Model:253 , Monroe Electronics, Inc. , 

USA) via a coaxial cable. The electrometer is capable of measuring charges in the 

range of 2x10-12 
- 2x10-7 Coulombs. At predetermined intervals, the powder samples 
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were taken using a stainless steel scoop from the mixer and a teflon coated stainless 

steel spoon was used to pour sample into the Faraday Cup. Sufficient sample was 

poured into the Faraday Cup such that the bottom surface of the Cup is covered with 

the powder. The total charge (C) present on powder particles following a constant 

flow from a teflon coated stainless steel spoon into Faraday Cup was measured on the 

electrometer. The mean charge per mass of powder was calculated from six replicate 

measurements. The mean specific charge values were presented as nanoCoulombs/g 

or nC/g (10-9 C/g). The same procedure was followed for all powder samples 

collected at different experimental conditions. The last contact surface for samples 

used for electrostatic mea5urements from all blends and individual components was 

kept the same as teflon coated stainless steel surface. All the measurements were 

taken in a controlled environment with a relative humidity of 30-35% and temperature 

of20-23 °C. 
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Figure 1. Experimental Set-Up for Measurement of Electrostatic Charges on 

Pharmaceutical Powders 
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RESULTS AND DISCUSSION 

Typical processing of phannaceutical dosage forms involves different stages 

such as sieving, milling, mixing, and transfer of powder blend from hopper to the die, 

and compaction (3). All these stages involve close interaction of particles of various 

formulation components along with those of active material(s). Since 

triboelectrification is a surface contact phenomenon and phannaceutical powders tend 

to acquire electrical charges during various stages involved in the preparation of 

dosage forms, electrostatic forces associated with dry powders have been identified as 

playing a significant role in cohesion/adhesion (12-14). The accumulated static charge 

on the surface of powder particles contributes to 'demixing'. This may cause flow and 

segregation problems which are detrimental to the content uniformity of the 

formulation as well as deteriorates powder flow and compaction properties. The 

induced charge on powders also causes problems in the efficient operation of 

processing equipment, flowability of powder blends from hopper to die table in high 

speed machines and affects the quality of dosage forms. 

In order to investigate the effect of triboelectrification during the mixing 

process of phannaceutical materials, the commonly used excipients: microcrystalline 

cellulose (Avicel® PHIOl) - filler/diluent, pregelatinized starch (Starch 1500) -

disintegrant, and a cimetidine tablet formulation containing active, A vicel® PH I 0 I, 

Starch 1500, lactose anhydrous and lubricant/glidant were evaluated using a high shear 

mixer. 

The individual components used in the study were evaluated for electrical 

properties using a Faraday Cup connected to an electrometer and the results are 
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summarized in Table 2. The specific charge (nC/g) was calculated for each material 

and the results represent the mean and standard deviation of six replicate readings. 

Table 2 shows that different charging tendencies exist for different materials. The data 

indicates that all the excipients evaluated in this study displayed negative charges 

except the drug substance, cimetidine, USP which showed a positive charge. Among 

the excipients studied, Cab-0-Sil MS displayed the highest electronegative charge (-

53 .488 nC/g) as compared to stearic acid, which showed the least amount of 

electronegative charge (-0.115 nC/g). 
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Table 2. Electrostatic Properties of Individual Pharmaceutical Materials 

MEAN (SD), n=6 

MATERIAL Charge Sample Weight Specific Charge 

(nC) (g) (nC/g) 

Cimetidine, USP +0.80 (0.24) 0.571 (0.076) +1.379 (0.250) 

Microcrystalline 

Cellulose, NF (A vicel® -0.58 (0.11) 0.448 (0.045) -1.305 (0.300) 

PH 101) 

Pregelatinized Starch, NF 

(Starch® 1500) 
-0.45 (0.19) 0.824 (0.119) -0.550 (0.224) 

Lactose Anhydrous, NF -0.65 (0.08) 0.507 (0.059) -1.293 (0.134) 

Magnesium Stearate, NF -0.26 (0.02) 0.397 (0.020) -0.649 (0.068) 

Stearic Acid, NF -0.14 (0.02) 1.216 (0.252) -0.115 (0.013) 

Sodium Stearyl Fumarate, 

NF (Pruv®) 
-0.20 (0.07) 0.384 (0.059) -0.537 (0.201) 

Colloidal Silicon Dioxide, 

NF (Cab-0-Sil MS®) 
-7.69 (0.52) 0.144 (0.007) -53.488 (4.038) 
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Effect of Lubricants/Glidants on Triboelectrification of Starch 1500: 

Figures 2, 3, 4, and 5 and Table 3 demonstrate the effect of mixing time and 

addition of lubricant/glidant on triboelectrification of Starch 1500 in a Collette Gral 1 O 

High Shear Mixer. Magnesium stearate, sodium stearyl fumarate (Pruv®), stearic acid, 

and colloidal silicon dioxide (Cab-0-Sil MS) were evaluated for their antistatic effect 

on triboelectrification of Starch 1500. As shown in Figure 2, the electronegative 

charge on Starch 1500 increased with mixing time for up to 10 minutes and when 1 % 

w/w magnesium stearate was added, the charge on Starch 1500 powder was converted 

from electronegative to electropositive. After one minute of mixing with magnesium 

stearate, the charge on powder particles was converted from -0.807 nC/g to +0.575 

nC/g (Table 3). : A net charge of +0.498 nC/g and -0.057 nC/g was found on the 

powder blend after 2 minutes and 3 minutes of lubricant mixing respectively. As the 

data indicates in Figure 2 and Table 3, the addition of magnesium stearate neutralized 

the negative charges present on Starch 1500 particles after one minute of lubricant 

mixing. When the mixing was continued further, the positive charge on powder blend 

was reduced and eventually a negative charge was developed again. This reduction in 

charge may be due to demixing of powder blend ( 15-17). Thus use of one minute of 

lubricant mixing time is recommended for magnesium stearate as the antistatic effect 

was observed to be optimum. 

As demonstrated in Figure 3 and Table 3, when 1 % w/w Pruv® was added to 

Starch 1500 after 10 minutes of pre-blend mixing, the electronegative charge present 

on powder particles was converted to electropositive. After one minute of mixing with 

Pruv®, the charge on powder particles was reduced from -1.422 nC/g to -0.561 nC/g. 
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Table 3. Effect of Lubricant/Glidant on Triboelectrification of Starch 1500 

CUMULATIVE SPECIFIC CHARGE (nC/g) 

MIXING TIME MEAN(SD) MEAN (SD) MEAN (SD) MEAN (SD) 

(min.) n=6 n=6 n=6 n=6 

-0.245 -0.82 -0.515 -0.198 
0 

(0.031) (0.092) (0.088) (0.039) 

-0.666 -0.974 -0.816 -0.284 
5 

(0.093) (0.100) (0.084) (0.059) 

-0.807 -1.422 -0.930 -0.32 
10 

(0.070) (0.202) (0.185) (0.039) 

Addition of 1% Addition of 1% 
Addition of Addition of 1% 

Addition of 

Lubricant/ Magnesium 1% Cab-0-Sil 
/ %Pruv Stearic Acid, NF 

Glidant Stearate, NF M5 

+0.575 -0.561 -0.319 -2.093 
11 

(0.103) (0.077) (0.045) (0.247) 

+0.498 +0.096 -0.218 -1.732 
12 

(0.110) (0.030) (0.032) (0.115) 

-0.057 -0.278 -0.131 -1.729 
13 

(0.124) (0.043) (0.020) (0.236) 
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The negative charge was further neutralized to +0.096 nC/g after 2 minutes of 

lubricant mixing. The positive charge was converted to negative (-0.278 nC/g) after 3 

minutes of lubricant mixing. Thus, addition of Pruv® seems to reduce the negative 

charges generated on Starch lSOO due to high shear mixing and the optimum effect 

was observed after two minutes of lubricant mixing. When the mixing was continued 

further, there was a re-development of electronegative charge on powder particles 

probably due to demixing of the blend after 3 minutes of lubricant mixing. Lubricants 

have a tendency to cause demixing with prolonged mixing times. (1 S-17). 

In Figure 4 and Table 3, the charges generated on Starch 1 SOO due to high 

shear mixing and the effect of stearic acid on these triboelectric charges was shown. 

When 1 % w/w of stearic acid was added after 10 minutes of mixing in high shear 

mixer, the negative charge present on. Starch l SOO powder was reduced from -0.930 

nC/g to -0.319 nC/g after 1 minute of lubricant mixing. When the mixing was 

continued for two additional minutes, the negative charge on powder particles was 

further reduced to -0.131 nC/g. Thus, addition of stearic acid decreased the 

electronegative charges generated on Starch 1 SOO during high shear mixing and the 

reduction in negative charge increased with lubricant mixing time. 

Figure S and Table 3 display the effect of Cab-0-Sil MS on the 

triboelectrification process. When 1 % w/w of Cab-0-Sil MS was added to Starch 

1 SOO after 10 minutes of high shear mixing, the negative charges present on the 

particles were increased from -0.327 nC/g to -2.093 nC/g after one minute of glidant 

mixing. The negative charges were reduced slightly when the mixing was continued 

further for two additional minutes. 
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Thus, addition of Cab-0-Sil MS to Starch 1 SOO significantly increased the 

electronegative charges present on the powder blend. Increased mixing with Cab-0-

Sil MS® had a marginal effect on the net negative charges present on the powder 

blend. 

Starch 1 SOO particles displayed electronegative behavior initially when the last 

contact with the powder sample was the teflon coated stainless steel surface. The 

electronegative charge present on Starch 1 SOO increased with mixing time in Collette 

Gral 10 High Shear Mixer when compared to the initial charge. The addition of 

magnesium stearate and Pruv® neutralized the negative charges generated during 

mixing process. Stearic acid reduced the negative charges generated on Starch 1 SOO 

after initial mi~ing but the effect was not .as significant as either magnesium stearate or 

Pruv®. Addition of Cab-0-Sil MS as glidant increased the net negative charges 

present on the powder particles as compared to the initial charge present on the 

particles. Based on the antistatic effect on Starch 1 SOO, the lubricants/glidants can be 

arranged in the following order: magnesium stearate > Pruv® > stearic acid> Cab-0-

Sil MS.The maximum antistatic effect was observed for magnesium stearate and 

Pruv® after one minute of lubricant mixing. Increase in mixing time seems to reduce 

the antistatic effect of these lubricants. The mixing time seems to have marginal effect 

when the additive was either stearic acid or Cab-0-Sil MS. 
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Effect of Lubricants/Glidants on Triboelectrification of AviceI® PHlOl: 
I 
\ 

A vice!® PH 101 is commonly used as a filler in solid dosage forms. It displays 

high compressibility but poor flow properties due to a fine particle size distribution. In 

the current study, the antistatic effect of magnesium stearate, sodium stearyl fumarate 

(Pruv®), stearic acid, and colloidal silicon dioxide (Cab-0-Sil MS) was evaluated on 

the triboelectrification of A vice I® PH 101 during a high shear mixing process. The 

results are summarized in Table 4 and data plotted as a function of mixing time in 

Figures 6, 7, 8, and 9. The graphs display the effect of mixing time on 

triboelectrification of AviceI® PH101 and the effect of lubricant/glidant on electrical 

nature of Avicel® PHlOJ. during high shear mixing. 

As shown in Figure 6 and Table 4, the electronegative charge on A vice!® 

PH101 increased with mixing time up to 10 minutes and when 1% w/w magnesium 

stearate was added to the blend, the negative charge present on powder was 

significantly neutralized. After one minute of mixing with magnesium stearate, the 

charge on powder particles was reduced from -1.920 nC/g to -0.992 nC/g (Table 4). 

After 2 minutes of mixing, a net positive charge of +0.124 nC/g was observed. When 

mixing was continued for one more minute, then there was a redevelopment of 

negative charge (-0.260 nC/g) on powder particles indicating demixing of blend. As 

the data indicates in Figure 6, the addition of magnesium stearate neutralized the 

negative charges generated on A vice I® PH 101 particles due to triboelectrification 

during mixing process. Magnesium stearate acts as lubricant by forming a thin film on 

the primary particles. Thus the particle size distributions of individual components in 

a formulation play significant role in electrical behavior of final blends (18-19). 
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Table 4. Effect of Lubricant/Glidant on Triboelectrification of Avicel® PHlOl 

CUMULATIVE 
SPECIFIC CHARGE (nC/g) 

MEAN MEAN MEAN MEAN 
MIXING TIME 

(min) 
(SD) (SD) (SD) (SD) 

n=6 n=6 n=6 n=6 

-0.883 -1.165 -1.056 -1.096 
0 

(0.190) (0.173) (0.157) (0.253) 

-1.284 -1.242 -1.324 -1.408 
5 

(0.131) (0.205) (0.214) (0.180) 

-1.920 -1.398 -1.385 -2.017 
10 

I (0.312) (0.145) (0.210) (0.367) 

Addition of 1% 
Addition of 1% 

Addition of Addition of 1% 
Addition of 

Magnesium 1% Cab-0-Sil 
Lubricant/Glidant 1%Pruv Stearic Acid, NF 

Stearate, NF M5 

-0.992 -1.077 -0.496 -4.886 
11 

(0.167) (0.191) (0.065) (0.737) 

+0.124 -0.659 +0.323 -4.051 
12 

(l.233) (0.093) (0.180) (0.635) 

-0.260 -0.505 -0.196 -3 .103 
13 

(l.002) (0.087) (0.030) (0.430) 

\ 
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Since Avicel® PH101 consists of fine particles, it took longer time for antistatic agent 

to neutralize the charges present on Avicel® PH101 as compared to that was observed 

for Starch 1500. The maximum antistatic effect of magnesium stearate on A vicel® 

PH 101 was seen after two minutes of mixing. When the mixing was continued 

further, the antistatic effect seems to diminish probably due to demixing of powder 

blend (15-17). 

As demonstrated in Figure 7, when 1 % w/w Pruv® was added to A vicel® 

PH 101 after 10 minutes of high shear mixing, the electronegative charge present on 

powder particles was reduced from -1.398 nC/g to -1.077 nC/g after 1 minute of 

mixing with Pruv® (Table 4). The negative charge was further reduced to -0.659 nC/g 

and -0.505 nC/g after 2 minutes and 3 minutes of lubricant mixing, respectively. 

Thus, addition of Pmv® seems to reduce the negative charges generated on A vicel® 

PH 101 due to high shear mixing. The antistatic effect of Pruv® on A vicel® PH 101 

increased with an increase in the mixing time. 

Figure 8 shows the effect of stearic acid on the triboelectric charges generated 

on A vicel® PH 101 due to high shear mixing. When 1 % w/w of stearic acid was added 

after 10 minutes of mixing, the negative charge present on Avicel® PHlOl powder was 

reduced from -1.385 nC/g to -0.496 nC/g after 1 minute of lubricant mixing (Table 4). 

When the mixing was continued further for another minute, then the electronegative 

charges present on powder particles were converted to electropositive (from -0.496 

nC/g to +0.323 nC/g). The negative charges reappear after 3 minutes of lubricant 

mixing. 
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Thus, addition of stearic acid decreased the electronegative nature of A vicel® 

PH101 and the reduction in negative charge increased with lubricant mixing time for 

up to two minutes. 

Figure 9 demonstrates the electrical charges present on Avicel® PH101 as a 

function of mixing time and the effect of Cab-0-Sil MS on the triboelectrification 

process. When 1% w/w of Cab-0-Sil MS was added to Avicel® PHlOl after 10 

minutes of high shear mixing, the negative charges present on the particles were 

significantly increased from -2.017 nC/g to -4.886 nC/g after one minute of mixing 

(Table 4). The negative charges were reduced to -4.0Sl nC/g and to -3.103 nC/g 

when the mixing was continued for 2 and 3 minutes respectively. Thus, addition of 

Cab-0-Sil MS as glidant to Avicel® PHlOl significantly increased the amount of 

electronegative charges .present 0n the powder blend. Increased mixing with Cab-0-

Sil MS had a reducing effect on the overall negative charges present on the powder 

blend. However, addition of Cab-0-Sil MS has resulted in increasing the net 

electronegative charges present on Avicel® PH101 powder. 

Avicel® PH101 displayed electronegative behavior initially when the last 

contact with powder sample was a teflon coated stainless steel surface. The 

electronegative charge present on Avicel® PH101 increased with mixing time (up to 

10 minutes) in Collette Gral 10 High Shear Mixer when compared to the initial charge. 

The addition of magnesium stearate, Pruv® and stearic acid resulted in reduction of the 

negative charges generated during mixing process. Addition of Cab-0-Sil MS as 

glidant increased the net negative charges present on the powder particles as compared 

to the initial charge present on the particle. Additional mixing however reduced the 
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negative charges marginally. The antistatic agents can be arranged in the following 

order based on their decreasing order of effectiveness to reduce electrostatic charges: 

magnesium stearate > stearic acid> Pruv® > Cab-0-Sil MS. The maximum antistatic 

effect was observed for magnesium stearate and stearic acid after two minutes of 

lubricant mixing. Increase in mixing time seems to increase the antistatic effect of 

Pruv® and Cab-0-Sil MS. The mixing time had an adverse effect when the additive 

was either stearic acid or magnesium stearate (1 S-17). 
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Effect of Lubricants/Glidants on Triboelectrification of Cimetidine Formulation: 

A typical tablet formulation contains active ingredient, filler, binder, 

disintegrant and lubricant/glidant. In this study an attempt was made to determine the 

electrostatic charges present on cimetidine tablet formulation as a function of mixing 

time in a high shear mixer and also evaluate the effect of antistatic agents. A 

cimetidine formulation was prepared consisting of 69% cimetidine, USP, 10% A vice!® 

PH 101 , 10% Starch 1 SOO, 10% lactose anhydrous and 1 % lubricant or glidant. When 

evaluated independently the drug displayed electropositive charge and all the 

excipients used in formulation showed electronegative charge (Table 2). Figure 10 

and Table S indicate that the pre-blend displayed an electropositive charge of + 1.269 

nC/g prior to mixing. After 5 and 10 minutes of mixing, the charges on blend were 

reduced to +0.884 nC/g and +0.917 nC/g, respectively. Magnesium stearate was 

added at 1 % w/w to the pre-blend after 10 minutes of mixing in order to evaluate its 

antistatic effect (Table S and Figure 10). After mixing for 1 minute with magnesium 

stearate, the electrostatic charge on the pre-blend was reduced from +0.917 nC/g to 

+0.834 nC/g. A net charge of +0.69S nC/g and +0.908 nC/g were recorded for blend 

after 2 and 3 minutes of lubricant mixing. Thus the addition of magnesium stearate 

showed an antistatic effect by reducing the net electropositive charges present on 

cimetidine formulation. The maximum antistatic effect was observed after two 

minutes of lubricant mixing. 

In another experiment, Cab-0-Sil MS, a commonly used glidant was added to 

cimetidine composition after 10 minutes of high shear mixing. The results were 

presented in Table S and Figure 11. After mixing for 1 minute with Cab-0-Sil MS the 
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Table 5. Effect of Lubricant/Glidant on Triboelectrification of Cimetidine 

Formulation 

SPECIFIC CHARGE (nC/g) 
CUMULATIVE 

MEAN MEAN MDCTNGTIME 

(min.) (SD) (SD) 

n=6 n=6 

+1.269 +l.229 
0 

(0.521) (0.348) 

+0.884 + 1.173 
5 

(0.188) (0.284) 

+0.917 + 1.607 
10 

(0.205) (0.348) 

Addition of 1% Addition of 1% Magnesium Addition of 1% Cab-0-

Lubricant/Glidant Stearate, NF Si/M5 

+0.834 -0.040 
11 

(0.281) (0.183) 

+0.695 -0.756 
12 

(0.131) (0.259) 

+0.908 -0.020 
13 

(0.211) (0.169) 
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charge on cimetidine blend has been reduced from + 1.607 nC/g to -0.040 nC/g. The 

charge was further reduced to -0.756 nC/g after mixing for an additional minute. 

When the mixing was continued for a total of 3 minutes with the glidant, a net charge 

of -0.020 nC/g was observed on cimetidine blend. Thus, when compared with 

magnesium stearate, Cab-0-Sil M5 had a more substantial antistatic effect on the 

positive charges present on the cimetidine blend. The addition of Cab-0-Sil M5 

neutralized the electropositive nature of cimetidine formulation after one minute of 

mixing. The antistatic effect seems to be optimum with two minutes of mixing. 

There are many factors that contribute to the interaction of solids (12-14, 18-

22). The interaction between two particles 'is dependent upon the surface to interfacial 

energy change that occurs when the solids come into contact. The surface energy of a 

solid rarely is homogenous. Therefore, the energy change at the true areas of contact 

will not be a single function of the true area of contact but will vary with the nature of 

the exact portions of the two solid surfaces in contact. The area of true contact 

between individual particles is dependent on the particle shape, size, distribution, 

roughness, the compressive force at the interface, the shear to which the sample has 

been subjected, and the mechanical properties of the particles. Most organic solids are 

insulators. Unless their surface is made conducting by additives such as 

lubricants/glidants, the solid particles will charge on contact. The resulting 

electrostatic attractions may be large thereby affecting the powder flow and 

compression operations. 
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Staniforth et al. (23-26) have demonstrated that contact and frictional 

electrification can be used to develop surface charges on drug and excipient powders. 

These surface charges can be optimized to facilitate the formation of ordered mixes 

and to minimize their segregation tendency. The last contact surface for charge 

measurement is critical as glass, plastic and brass behave differently for the same 

material. It has been demonstrated that dry powders with similar charges are less 

stable than those with dissimilar charges. Further drug-excipient blends with like 

charges are less stable than those with opposite charges. Stability in this case implies a 

tendency to segregate on standing. 

The results obtained in the current study clearly indicate that the lubricants 

have a higher anti-static effect on the negatively charged materials where as glidant 

has a high anti-static effect on positively charged powders indicating that it is possible 

to select formulation components so that final formulation is not prone to high static 

charging. 

Gold and Palermo (27) provides an interesting comparison of mechanisms 

proposed for of tablet lubricants and antistatic agents. In manufacture of tablets, the 

primary function of lubricants is to reduce the friction between the tablet-die wall 

interface during tablet formation and ejection. The reduction in friction occurs by 

mechanism of fluid and boundary lubrication. In fluid lubrication, the two surfaces are 

separated by a finite layer of fluid lubricant. Boundary lubrication results from the 

adherence of polar portions of molecules with long carbon chains to the metal 

surfaces. Lubricants may also function to improve the flow characteristics of powder 

blends and to prevent sticking to the punch faces. 
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Antistatic agents function by reducing friction or by increasing conductance or 

by both mechanisms. A material added to reduce friction may not be an efficient agent 

for mitigating static accumulation, as the generation of static charges is thought to 

arise from contact rather than friction. Surfaces may be made electrically conductive 

by utilizing antistatic agents which have polar or hygroscopic properties. 

207 



( 
Effect of Mixer Type on Triboelectrification of Starch 1500: 

The design and size of a mixing vessel has significant impact on generation of 

electrostatic charges on powders as they affect the shearing forces that are applied on 

particles (31-32). Generally, in blending of pharmaceutical materials, two types of 

mixers are used in order to obtain homogeneous mixtures. These include high shear 

mixers such as Collette Gral and low shear mixers such as V-blenders. The high shear 

mixers are preferred due to their high process efficiencies as compared to the low 

shear mixers. In the current study, two types of high shear mixers were evaluated for 

their effect on triboelectrification process on Starch 1500. The two mixers evaluated 

were: the Collette Gral 10 High Shear Mixer with a capacity of 7 liters and the Kitchen 

Aid Planetary Mixer with a capacity of 2.5 liters. A batch size of 0.5 kg was used for 

both mixers. For Collette Gral 10 High Shear Mixer, the speed settings for mixer 

blade and chopper were set at 660 rpm and 3000 rpm respectively. For the Kitchen 

Aid Planetary Mixer, the mixer blade was set at 94 rpm. The Starch 1500 powder was 

mixed for a total period of 20 minutes in both mixers. Figure 12 and Table 6 show the 

effect of mixer type on triboelectrification of Starch 1500 as a function of mixing time. 

In both the mixers, Starch 1500 displayed electronegative behavior prior to initiation 

of mixing process. As mixing progressed, in both mixers, the electronegative charges 

present on Starch 1500 powder particles increased as a function of mixing time. In the 

Kitchen Aid Planetary Mixer, the negative charges were increased from -0.615 nC/g 

to -0.945 nC/g after 20 minutes of mixing (Table 6). In the Collette Gral 10 High 

Shear Mixer, the negative charges present on Starch 1500 were increased from -0.186 

nC/g to -1.023 nC/g after 20 minutes of mixing. As the data indicates, the Collette 
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Table 6. Effect of Mixer Type on Triboelectrification of Starch 1500 

SPECIFIC CHARGE (nC/g) 

MEAN 
CUMULATIVE 

MIXING TIME 
(SD) 

n=6 
(min.) 

Kitchen Aid Planetary Collette Gral 10 High 

Mixer Shear Mixer 

-0.615 -0.186 
0 

(0.046) (0.025) 

-0.682 -0.261 
5 

(0.033) (0.047) 

-0.742 -0.749 
10 

(0.099) (0.112) 

-0.845 -0.954 
15 

(0.146) (0.131) 

-0.945 -1.023 
20 

(0.149) (0.124) 
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Gral 10 High Shear Mixer had a more substantial effect on the electronegative nature 

of Starch 1500 as compared to the Kitchen Aid Planetary Mixer. This is attributed to 

the higher effective shear and higher efficiency of the Collette Gral 10 High Shear 

Mixer as compared to the Kitchen Aid Planetary Mixer (Figure 12). The design of 

Collette Gral 10 High Shear Mixer i.e. presence of two mixing blades as compared to 

one present in Kitchen Aid Planetary Mixer and the larger size of the mixer also 

contributed to increased particle-particle interactions resulting in generation of high 

electrostatic charges. 

. . 
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Effect of Batch Size on Triboelectrification of Starch 1500: 

Batch size is a critical parameter in pharmaceutical processing as it affects 

directly the efficiency of mixing operation (31-32). In order to evaluate the batch size 

effect on triboelectrification of Starch 1500 in Collette Gral 10 High Shear Mixer, 

batch sizes of 0.5 kg and 2.5 kg were investigated. For both batch sizes, the same 

speed settings of mixer (660 rpm) and chopper (3000 rpm) were used and the batches 

were mixed for a total of 20 minutes. As shown in Figure 13 and Table 7, the initial 

charge found on Starch 1500 for both batches was electronegative. The charge for 0.5 

kg batch increased from -0.186 nC/g to -1.023 nC/g after 20 minutes of mixing. For 

2.5 kg batch, the negative charge was found to increase from -0.806 nC/g to -1.273 

nC/g after 20 minutes of mixing. For both batch sizes, the negative charges seem to 

increase as a function of mixing time. The triboelectrification observed for 0.5 kg 

batch seems to be more profound as compared to the one seen for 2.5 kg batch. This 

can be explained based on the fact that under same processing conditions, the 0.5 kg 

batch received more shearing energy relative to mass of powder present in the mixer as 

compared to the 2.5 kg batch. The 0.5 kg batch was fluidized more in the mixer vessel 

due to large available area as compared to the bigger batch (2.5 kg). The high frequent 

particle movement of powders could be the reason for the higher triboelectric effect 

that was seen with the small batch size as compared to the large batch size. Thus the 

triboelectrification of Starch 1500 due to high shear mixing decreased with an increase 

in the batch size from 0.5 kg to 2.5 kg. 
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Table 7. Effect of Batch Size on Triboelectrification of Starch 1500 in 

Collette Gral 10 High Shear Mixer 

SPECIFIC CHARGE (nC/g) 

CUMULATIVE MEAN 

MIXING TIME (SD) 

(min) n=6 

Batch Size: 0.5 Kg Batch Size: 2.5 Kg 

-0.186 -0.806 
0 

(0.025) (0.077) 

-0.261 -0.875 
5 

(0.047) (0.130) 

-0.749 -1.088 
10 

(0.112) (0.133) 

-0.954 -1.177 
15 

(0.131) (0.134) 

-1.023 -1.273 
20 

(0.124) (0.125) 
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Figure 13. Effect of Batch Size on Triboelectrification of Starch 1500 in Collette 

Gral 10 High Shear Mixer 
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These preliminary findings showed significant differences m charging 

propensity among drug and different excipient materials that have relevance in 

formulation, manufacture and use. The results also illustrate the complexities and 

difficulties when conducting charging experiments with different materials. As data in 

Tables 2-7 indicate that there is a high degree of variation associated with electrostatic 

measurements. These variations can be explained based on: complex and bi-polar 

nature of triboelectrification process, chemical nature of test material, particle size and 

shape, surface properties of test material, nature of last contact surface, contact area 

and frequency, surface purity, relaxation nature, mode of charge decay, atmospheric 

conditions such as . humidity, temperature, sampling plan, sample handling and 

instrumental variation (6-9). The limitation of these measurements is the reliance on 

the final net specific charge value (28-30). It will be useful to measure charge 

continuously during triboelectrification process (2). 

Though there is high variation in static measurements, the charging tendencies 

in the materials investigated clearly provide useful information that can be utilized in 

selecting formulation components. It has been demonstrated in this study that by 

measurement of static charges present on drugs/excipients during developmental stage, 

triboelectrification can be used to obtain stable blends that have low segregation 

tendencies. Results also indicated that choice of process equipment such as type of 

mixer, processing conditions such as mixing time and batch size play significant role 

in electrostatic charging. 

215 



(' 
CONCLUSIONS 

When evaluated individually, cimetidine displayed electropositive charge 

whereas all other excipients displayed electronegative charges. Cab-0-Sil MS was 

found to be the most electronegative whereas stearic acid was found to be the least 

electronegative among excipients studied. The dry mixing of A vicel® PH 101 and 

Starch l SOO in a Collette Oral 10 High Shear Mixer caused an increase in the 

electronegative charges probably due to the frictional and shearing forces, modified 

particle behavior such as particle size reduction and increased particle-particle 

interactions. Four excipients namely, magnesium stearate, sodium stearyl fumarate 

(Pruv®), stearic acid and colloidal silicon dioxide (Cab-0-Sil MS) were evaluated for 

antistatic effects. 

Addition of magnesium stearate to Starch lSOO and Avicel® PH101 after 10 

minutes of high shear mixing resulted in neutralization of electrostatic charges present 

on the powder particles. Pruv neutralized the negative electrostatic charges more on 

Starch lSOO particles as compared to Avicel® PH101. The antistatic effect of stearic 

acid is more profound on Avicel® PHlOl as compared to Starch lSOO. Addition of 

Cab-0-Sil MS caused an increase in the electronegative charges of both Avicel® 

PH 101 and Starch 1 SOO. As the mixing time with lubricants/glidants increased from 1 

minute to 3 minutes, the antistatic effect seems to reduce. Based on this study, when 

A vicel® PH 101 was blended with 1 % lubricant/glidant in a Collette Gral 10 High 

Shear Mixer, the additives can be arranged as follows in the decreasing order of their 

ability to reduce the static charges produced during the blending process: magnesium 
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stearate > Pruv® > stearic acid> Cab-0-Sil M5. When Starch 1500 was blended with 

1 % lubricant/glidant in a Collette Gral 10 High Shear Mixer, the antistatic 

effectiveness of additives can be arranged in the decreasing order as: magnesmm 

stearate > stearic acid> Pruv® > Cab-0-Sil M5. 

The cimetidine tablet formulation containing electropositive active ingredient 

( cimetidine, USP) and four electronegative excipients: Avicel® PHI 01, Starch 1500, 

anhydrous lactose and lubricant/glidant in the ratio of 69: 10: 10: 10: 1 was evaluated for 

electrostatic measurements. Mixing for 10 minutes a high shear mixer without 

lubricant/glidant did not neutralize the charges present on powder particles. But 

addition of 1 % Cab-0-Sil M5 significantly reduced the positive charges present on the 

cimetidine blend and neutralizrd the charges after two minutes of mixing. Magnesium 

Stearate showed marginal reduction of elcctropositive charges present on the 

cimetidine powder blend. 

The mixer design and size play critical role in determining the homogeneity of 

blends in pharmaceutical processing. In the current study, two types of mixers: 

Collette Gral 10 High Shear Mixer (capacity-7 liters) and Kitchen Aid Planetary Mixer 

( capacity-2.5 liters) were evaluated for triboelectrification of Starch 1500. Mixing of 

Starch 1500 in the Collette Gral 10 High Shear Mixer resulted in generation of more 

electronegative charges as compared to the mixing in the Kitchen Aid Planetary 

Mixer. This is attributed to the higher effective shear and higher efficiency of the 

Collette Gral 10 High Shear Mixer as compared to the Kitchen Aid Planetary Mixer. 

In both cases, the increased mixing time resulted in increased electrostatic charges. 
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In order to evaluate the batch size effect on electrostatic charging of Starch 

1500 in a high shear mixer, two batch sizes of 0.5 kg and 2.5 kg were investigated. 

The triboelectrification of Starch 1500 due to high shear mixing decreased with an 

increase in the batch size from 0.5 kg to 2.5 kg. The larger and more frequent particle 

movement of powders could be the reason for high triboelectric effect that was seen 

with the small batch size as compared to the large batch size. 

These preliminary findings showed that significant differences in charging 

propensities existed among drug and different excipient materials. The charging 

tendencies in the materials investigated clearly provide useful information that can 

utilized in selecting formulation components prior to development. By measuring 

static charges present on drngs/excipients during developmental stage, formulation 

scientist can utilize triboelectrification process to obtain powder blends that have low 

segregation. 

Since there are numerous factors that may affect the triboelectrification process 

and further investigations are warranted to fully understand its mechanism. Results 

from this study will enable further detailed investigations of triboelectrification of 

powders to be undertaken which will definitely aid the formulation scientists in 

formulating a stable and desired product. 
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