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ABSTRACT 

The population approach to pharmacokinetic involves the estimation of mean 

pharmacokinetic parameters and their variability within a study population. Advantages 

of this approach include the ability to i) utilize sparse data, ii) analyze data from large, 

heterogeneous populations to obtain realistic and relevant estimates of variability and iii) 

evaluate the influence of patient characteristics on pharmacokinetic estimation. 

Sparse data from a phase ill clinical trial of the protease inhibitor, nelfinavir, were used 

to obtain estimates of the pharmacokinetic parameters and their variability. The effects of 

patient covariates on the pharmacokinetic parameters of nelfinavir were evaluated. 

Clearance, estimated from data in the latter part of a dosing interval, was estimated well 

due to random spread of the data in this part of the concentration-time profile. Only the 

influence of concomitant administration of the azole antifungal agent, fluconazole was 

statistically significant resulting in a reduction in clearance of 30%. Problems arose in the 

estimation of volume of distribution and the absorption rate constant and their variability. 

The lack of early samples and the lack of variability in the timing of these samples 

contributed to the difficulty in estimating these parameters. 

A simulation study was designed to investigate design issues including the ability to 

detect a sub-population with a 30% reduction in clearance. A one-compartment model 

with intravenous input was employed. Different designs consisting of 2 samples per 

individual in 100 individuals were evaluated at two levels of interindividual variability 



( 
(30% and 60%). When interindividual variability was 30%, a sub-population of 20 

individuals could consistently be identified and the pharmacokinetic parameters of the 

model could be accurately estimated. Estimates of the variability parameters were less 

accurate but acceptable using some designs. When interindividual variability was 60%, 

no design could consistently identify the sub-population even when the sub-population 

was 30, and no design provided accurate estimates of all of the parameters. Overall, the 

performance of one design, which consisted of three sampling windows covering the 

whole dosing interval, proved superior to the other designs investigated. Increasing the 

total sample size and using the FOCE method in NONMEM improved the ability of this 

design. 
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PREFACE 

This document was prepared in the format of the manuscript plan in accordance to 

section 11-3 of the Graduate School Manual at the University ofRhode Island. The 

dissertation is divided into three sections. 

Section I contains a general introduction to the objectives of the research. Section TI 

consists of the main body of this dissertation. This section is composed of three 

manuscripts written in the format required for each scientific journal to which they are, or 

will be, submitted. A statement of overall conclusions for the entire dissertation is also 

included in this section. Section Ill contains 1 appendix that includes additional 

information and experimental details useful to the understanding of the work in section II. 

A bibliography follows section Ill in which all sources used as references in this 

document are cited. 
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INTRODUCTION 

Pharmacokinetics is the study of the relationship between a given dose of a drug and the 

plasma concentrations achieved over time. Traditionally pharmacokinetic studies are 

usually conducted in a small, homogeneous group of individuals (1 - 3). After 

administration of the study drug each individual provides an extensive number of plasma 

samples that are then used to obtain estimates of that individual ' s pharmacokinetic 

parameters. Summary statistics of the parameter values within that group can then be 

calculated using standard methods. There are many advantages to this approach such as 

the statistics are straightforward and familiar to scientists and there are many years of 

experience using this methodology. However, there are also limitations e.g. only a small 

number of individuals can be studied and subjects tend to be either healthy volunteers or 

patients with a mild form of the disease and thus are not representative of the true 

population to be treated. 

An alternative method to traditional pharmacokinetic analysis is the population approach 

to pharmacokinetic analysis (1 -4). A major difference between the two methods is that 

the population approach can use data consisting of only a few samples per patient (2,3). 

The unit of analysis is the study population. The population approach is used in a single 

step to obtain point estimates of the mean pharmacokinetic parameters and their 

variability within the population under investigation (2) . As population pharmacokinetic 

studies tend to be conducted in a large, heterogeneous population the influence of 

demographic and physiological characteristics on the pharmacokinetics of the drug can 

2 



be assessed. This method, like the traditional approach, has many potential benefits such 

as the ability to utilize sparse data and the ability to study larger populations more 

representative of the true population to be treated. There are also limitations to the 

approach that need to be recognized e.g. the unfamiliar and complex statistics and 

computer software and the lack of use of this technique to date. 

One of the major advantages of the population approach is the ability to utilize only a few 

(even as little as one) samples per individual (2, 3). However the method can equally be 

applied to data that is rich or a combination of both rich and sparse data (1). Historically 

in phase ill trials, random trough samples may be taken from some individuals to monitor 

compliance (5), which in many cases has been the only use of this data. The population 

approach is ideally suited to the analysis of this kind of data. By using the population 

approach useful information can be obtained on the pharmacokinetics of a new drug 

using data that already exists. This can be accomplished for little additional cost except 

for the cost of the actual analysis itself. 

However a note of caution is necessary. It must be realized that the quality of an analysis 

is highly dependent on the design of the study and the quality of the data obtained. Thus, 

in order for the population approach to be implemented effectively, the design of the 

study and the collection of the data must be given careful consideration (5, 6). 

Important aspects of study design to be considered include the number of individuals to 

include in the study, the number of samples per individual (e.g. a fixed number per 

3 
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individual or variable numbers) and the timing of sampling (e.g. optimal times, sampling 

windows or sampling completely at random). All levels of these factors must be chosen 

so that sufficient information is available to estimate the pharmacokinetic and variability 

parameters of interest. If the effect of a patient characteristic on a pharmacokinetic 

parameter is to be evaluated then it is important to ensure that the size of the sub­

population possessing that characteristic is adequate to detect the effect. In terms of the 

data itself, accurate dosing and sampling records and the documentation of covariate 

information are important considerations. 

In short, the population approach to pharmacokinetic analysis has the potential to provide 

high quality, relevant information on a drug' s pharmacokinetics from sparsely sampled 

data if the study is conducted in an appropriate manner. 

4 



( HYPOTHESIS TESTED IN TIDS PROJECT 

Design of population pharmacokinetic studies is an area of active investigation. Several 

simulation studies investigating issues such as the number of samples per individual, the 

timing of samples and the number of total individuals in the study necessary to produce 

accurate parameter estimates have been reported in the literature. As this approach is 

intended for use in situations when only sparse data is available such as a phase III 

clinical trial , then consideration must be given to these issues. In particular, the 

information available on pharmacokinetic parameters and their variability is highly 

dependent on the number of samples obtained per individual and the timing of these 

samples. 

The influence of the size of a sub-population possessing a characteristic that significantly 

influences a pharmacokinetic parameter on the ability to detect that population in an 

analysis has received little attention. There are no formal studies in the literature that 

specifically address this issue and in instances when this design consideration is 

mentioned, the authors have chosen the size of the sub-population based upon their own 

experiences (7, 8). 

The hypothesis to be tested in this research is that the population approach to 

pharmacokinetic analysis can be applied to sparsely sampled data to obtain precise and 

unbiased estimates of pharmacokinetic parameters and their variability and to distinguish 

significant covariate effects. 
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OBJECTIVES 

The objectives of this research project are: 

1. To determine the pharmacokinetic parameters of a marketed drug using a sparse 

sampling design (observational data) . 

2. To determine if the study design is adequate to accurately determine these 

parameters. 

3. To evaluate the influence of patient covariates on the pharmacokinetics of this drug. 

Using simulated data: 

4. To evaluate the ability to accurately measure the pharmacokinetic parameters of an 

intravenously administered drug using a sparsely sampled study design consisting of 

only two samples per individual. 

5. To determine the influence of the size of a sub-population possessing different 

pharmacokinetic characteristics on the ability to detect that sub-population. 

6. To assess the ability to estimate the value of the pharmacokinetic parameter in the 

sub-population. 
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r MANUSCRIPT I 

Application of Population Pharmacokinetics to the Drug Development Process 
*published in Drug Development and Industrial Pharmacy 24(12) 1155-1162 (1998). 

ABSTRACT 

Population pharmacokinetics is playing an increasing role in clinical drug development. 

An overview of the population approach, including software and the advantages and 

limitations of the approach compared to the traditional approach to pharmacokinetic 

studies, is given. This paper also documents how the area has evolved over the past 15 

years and addresses some of the issues that have arisen over the design and conduct of 

population studies. Finally, some alternative applications of the population approach are 

given for areas other than clinical drug development. 
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( INTRODUCTION 

Pharmacokinetics is the study of the relationship between the dose of a drug and the 

manner in which its plasma concentrations change over time. A pharmacokinetic model 

provides a mathematical representation of this relationship and relates the independent 

variables of time and dose to the dependent variable, plasma concentration, using 

pharmacokinetic parameters such as clearance (CL) and volume of distribution (Vd). 

Pharmacodynamics is the study of the relationship between concentrations of the drug at 

the site of action and its physiological effect. 

The traditional approach to pharmacokinetic studies involves taking intensive samples, 

up to 10 or 20 per individual, from a small group of subjects or patients. The data from 

each subject are individually fitted to a pharmacokinetic model (e.g., a one- or two­

compartment model) to obtain that individual ' s pharmacokinetic parameters. Then, 

summary statistics such as the mean and the variance of the group are calculated based on 

each individual ' s pharmacokinetic parameters. Initially, these studies are often performed 

on healthy volunteers, especially in phase I clinical studies. 

The population approach to the analysis of pharmacokinetic data also provides estimates 

of the average value of pharmacokinetic parameters in a study population and gives a 

measure of the variability of these parameters within that population (1). In contrast to 

the traditional approach, the population approach is based on only a few samples from 

each subject in a larger number of subjects. In addition, the population approach provides 

parameter estimates from the population of individuals in a single step. A population 

10 



model generally consists of two components: a pharmacokinetic or structural model and a 

pharmacostatistical model. As a result, the term mixed effects modeling is often used to 

describe the modeling process since two types of parameters are estimated: the fixed 

effect parameters associated with the pharmacokinetic model and the random effect 

parameters that describe the pharmacostatistical model (2). 

Fixed effect parameters describe the relationship between the plasma concentration and 

the fixed effects. Fixed effects include the dose, physiological factors such as age, weight 

and creatinine clearance and other factors such as concomitant medications. Fixed effect 

parameters include typical pharmacokinetic parameters such as volume of distribution 

(Vd) and clearance (CL) and proportionality constants that quantify the relationship 

between a pharmacokinetic parameter such as clearance and a fixed effect such as 

creatinine clearance (1-3). 

Random-effect parameters are used to quantify variability in pharmacokinetic parameter 

estimates that arise due to interindividual (between subjects) and intraindividual (within 

subject) variations (1) . Interindividual variability is the random between subject 

variability that cannot be explained in terms of fixed effects. It is important to obtain an 

estimate of unexplainable variability for a new drug because the safety and efficacy of a 

drug tends to decrease as unexplainable variability increases (4) . Intraindividual 

variability is the variability that occurs within an individual. It includes errors that arise 

from the measurement of drug concentrations, model misspecification due to 

11 



oversimplification of the model, and random variation in a patient's pharmacokinetic 

parameters that can occur over time (1 ,2,4,5). 

There are numerous articles in the literature that can be consulted to provide a more 

comprehensive review of the theory and methodology underlying the population 

approach to pharmacokinetic analysis (1-3 ,5-8) . 

COMPUTER SOFTWARE 

Software development for population analyses is an active area of investigation, and a 

number of programs are currently available. A meeting of experts was held in 1994 to 

discuss software issues associated with the analysis of population pharmacokinetic and 

pharmacodynamic data. The participants concluded that programs need to be user­

friendly with good graphical interfaces, have the ability to specify complex 

pharmacokinetic and pharmacodynamic models, and be able to handle sparse data (9). 

NONMEM (Nonlinear Mixed Effects Modeling) (10) is the software most often used and 

tested for these analyses (9, 11 ). Other currently available software includes NPML (Non­

Parametric Maximum Likelihood) (12), NPEM (Non-Parametric Expectation 

Maximization) (13) and the programs that implement the Bayesian approach using Gibbs 

sampling (14) . 

Each method of applying the population approach has its own assumptions and 

limitations. Some researchers have advocated using several methods to analyze one 

dataset as a means of confirming results and of highlighting problems in methodology 

12 



(9,15). A comparative study carried out in 1992 under the initiative of the American 

Statistical Association compared four population modeling methods: NONMEM, Gibbs 

sampling, SPML (semi-parametric maximum likelihood) and NPML. They showed that 

the different methods gave similar results, with only minor discrepancies observed (9) . In 

1997, the Population Pharmacokinetic Modeling Workgroup formed by the 

Biopharmaceutical Section of the American Statistical Association compared population 

methods using two simulated data sets (11). Their report included analyses performed 

using seven different modeling programs: NONMEM, a conditional first-order method 

implemented in S-Plus (16), two alternative first-order methods implemented in SAS (17-

19), the Bayesian approach using Gibbs sampling (14), a semi-non-parametric approach 

(20) and NPML (12) . The statistical theory and methodology underlying these software 

programs can be found in the literature (5,7,12-14,16-20). The group observed 

differences in some parameter estimates when the different approaches were compared. 

Thus, there appears to be conflicting evidence regarding the comparability of some 

methods of implementing the population approach and this subject requires further 

investigation. 

ADVANTAGES AND LIMITATIONS OF THE POPULATION APPROACH 

In contrast to traditional studies, the population approach to pharmacokinetic studies 

requires fewer samples per patient. Thus, these designs are more suited to the study of 

sub-populations such as pediatrics, geriatrics and the very ill (e.g. AIDS and cancer 

patients or patients with renal and hepatic impairment), for whom there are ethical 

constraints to taking many blood samples per patient (3 ,5, 7). 

13 



Traditional pharmacokinetic studies often involve volunteers or patients with mild forms 

of the disease of interest, and inclusion and exclusion criteria are often very strict. Thus, 

these patients/subjects are not very representative of the population to be treated, and the 

pharmacokinetics of the study drug for these patients may differ significantly from the 

pharmacokinetics of patients who receive the drug in clinical practice (21 ). As fewer 

samples are required per patient in a population study, it is feasible to study a greater 

number of patients. For example, if a population pharmacokinetic study is incorporated 

into a phase III clinical trial, patients under study are more representative of the 

population for which the drug will eventually be used; thus the results of the analysis are 

of more relevance to the population of interest. Also, as the patient population is 

generally more heterogeneous, it becomes possible to examine the effect of various 

patient characteristics (e.g., age, weight, renal function, concomitant medications) on the 

pharmacokinetics of the drug. Thus, if a population analysis is incorporated into a phase 

II or III trial, then drug disposition can be evaluated early in the development process, 

and the results used to guide dosage recommendations in different sub-populations ( 4). 

Traditional studies are expensive to conduct due to their strict scientific design, so only a 

small number of individuals can be studied, which can result in poor estimates of 

interindividual variability. In contrast, a population study can be done using observational 

data, that is, data collected under less-restrictive conditions, such as in clinical practice, 

than in a traditional study. The requirement for fewer samples per individual and the use 

of routine data enables a population study to be conducted less expensively. Plasma 
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( 
samples are often obtained periodically from subjects enrolled in phase III trials to 

monitor compliance. Therefore, if these samples were used in a population 

pharmacokinetic study, there would be minimal additional cost to the sponsor. 

A limitation to the use of population pharmacokinetic methods is the complex data 

analysis techniques involved. In contrast, the analysis of traditional pharmacokinetic data 

is relatively straightforward and is performed using common, simple statistical methods 

(3) . The observational design of a population study does not provide as convincing 

evidence for causation as the rigid scientific control of a traditional pharmacokinetic 

study. However, traditional studies are done in patients often not representative of the 

population of interest, which makes the relevance of the results questionable. 

INTEGRATION OF POPULATION PHARMACOKINETICS IN THE DRUG 

DEVELOPMENT PROCESS 

In 1983, a discussion paper on the testing of drugs in the elderly was issued by the Food 

and Drug Administration (FDA). It advocated the inclusion of population 

pharmacokinetic studies as part of phase III clinical trials (22) . Initially, there was a 

negative reaction from the pharmaceutical industry to this suggestion for a number of 

reasons ( 4) . First, the method of data analysis was unfamiliar to most scientists, and the 

complex nature of the analytical technique demanded specialized expertise. There was 

the belief that identification of a factor influencing the pharmacokinetics of the drug 

during drug development could result in the FDA requiring a prospective study to 

investigate this possible influence. Some believed that incorporating a population 
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pharmacokinetic study into a trial protocol could result in additional cost and reduced 

compliance with the study protocol. Finally, there were questions regarding the quality of 

the data used in such an analysis (3 ,4,23 ,24). 

By the late 1980s to early 1990s, a number of applications of the population approach had 

appeared in the literature, they were summarized by Sheiner and Ludden in 1992 (7). 

However, the majority were carried out in a clinical setting after marketing of the drug 

and were not performed in the pre-approval process (25). 

At this time, Grasela and colleagues published a series of articles in which they evaluated 

the use of population pharmacokinetics in clinical drug development (21 ,26-28). They 

applied the population approach in four different scenarios: a phase III clinical trial of 

patients who contributed only a few plasma samples each, a phase III clinical trial 

designed to detect a drug-drug interaction, a prospectively designed clinical trial that 

included forms designed to collect and record information relating to plasma sampling 

and dosing specifically for determining population pharmacokinetics, and finally, a 

postmarketing surveillance study that had limited control of design issues. They found 

that parameter estimates obtained using the population approach in all situations were 

comparable to estimates obtained in traditional pharmacokinetic studies and thus 

confirmed the potential use of this methodology in phase III and IV studies. 

An interdisciplinary conference was held in April 1991 to discuss the integration of 

pharmacokinetics in rational drug development (29). The report from the conference 
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advocated the use of population approaches in phase III trials to identify those patient 

characteristics that influence the pharmacokinetics of a drug in different subpopulations 

and to use this information in drug labeling. It was accepted that a population 

pharmacokinetic analysis was not the primary objective of phase II, III and IV trials; thus, 

the methods for a population pharmacokinetic study, which must be incorporated into the 

efficacy protocol, should be as simple as possible and not have an impact on the major 

goals of the study (30,31). 

In March 1995, a meeting of experts was held to discuss design issues associated with 

conducting population pharmacokinetic and pharmacodynamic studies (30) . The 

experiences of the committee were that the population approach had frequently been 

implemented successfully in phase II and phase III studies. The consensus was that 

population pharmacokinetics should be included in clinical trials, and the discussion 

focused on design issues associated with the inclusion of a population pharmacokinetic 

study in a phase II or phase III efficacy trial. 

A report published in 1996 on the implementation of the population approach in clinical 

drug development proposed many instances in which the population approach could 

successfully be employed in the drug development process from the preclinical stage to 

postmarketing studies (15). Phase I studies provide initial information on the 

pharmacokinetics and pharmacodynamics of a drug in human subjects, usually healthy 

volunteers (29). Intensive sampling, as employed in traditional pharmacokinetic studies, 

is advocated at this stage to establish an initial pharmacokinetic profile for the drug (15). 
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However, if data from sufficient patients can be pooled, then the population approach can 

be applied at this stage. An advantage in doing this is that the data from all patients can 

be fit to the same pharmacokinetic model (i .e., a one- or two-compartment model) 

whereas in traditional studies, different models may sometimes be fit to data from 

different patients (15). 

Phase II studies are used to determine initial efficacy data in relatively small groups of 

patients with the disease to be treated and to investigate the dose-response relationship 

(29) . A more rational design of subsequent clinical studies can be undertaken if the 

population approach is applied at this stage to investigate variability in response and 

relationships with covariates (15) . 

Phase ill clinical trials are designed to confirm the efficacy of a drug and to establish a 

toxicity profile (29) . It is often the nature of these studies to exclude patients with diverse 

characteristics (e.g. , patients with renal or hepatic disease) to increase the statistical 

power of the study. It is these patients whose pharmacokinetic profile is most likely to 

differ and whose dosage regimen may need to be individualized. As a solution to this 

problem, Vozeh et al. proposed that these patients be included in the study as a satellite 

group whose data would be excluded from the efficacy assessment, but included in the 

population pharmacokinetic analysis (15) . 

In September 1997, the FDA issued proposed guidelines to govern the conduct and 

analysis of population pharmacokinetic studies in the drug development process (32) . 
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Design issues associated with these studies were discussed in the guidelines. Obviously, 

the issues depend to some extent on what stage in the drug development process 

(preclinical, phase I - ID or postmarketing) in which the analysis is being conducted as 

this drives the kind of data collected. The new regulations proposed by the FDA, which 

are to require companies to conduct extensive clinical studies in the pediatric population 

during drug development, provide an opportunity for the wide application of the 

population approach (33) . 

ISSUES ASSOCIATED WITH THE DESIGN AND CONDUCT OF A 

POPULATION PHARMA CO KINETIC STUDY 

There are a number of fundamental requirements to fulfill in order to conduct a good 

population pharmacokinetic study. A sensitive and specific assay is needed to measure 

plasma concentrations of parent drug and clinically relevant metabolites; confirmation 

from preliminary studies is required to demonstrate a correlation between drug or 

metabolite concentrations and clinically relevant effects; and last, preliminary 

pharmacokinetic studies should have established the basic pharmacokinetic model to 

describe the drug' s disposition, although population analyses of sparse data may use less 

complex structural models than are required in data-rich situations (2,4,9). 

The draft documentation issued by the FDA governing the conduct of population 

pharmacokinetic studies discussed some of the issues involved in designing a population 

pharmacokinetic study. These include the number of subjects required for a population 
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analysis, the number of samples required per subject, and the optimum time of sampling 

(32) . Simulation studies and real data sets are being used to investigate these issues. 

In the early 1980s, Sheiner and Beal conducted three simulation studies with designs that 

were based on three experiments, each consisting of 10 subjects who were extensively 

sampled. They found that estimates of interindividual variability were imprecise as a 

result of the small number of individuals, even though each individual provided many 

samples (34) . In another study, they used a one-compartment intravenous model to 

simulate data. They found that when the total number of samples were fixed at 

approximately 100, the bias and precision of pharmacokinetic and variability parameters 

were comparable when the data consisted of three samples from 33 patients or two 

samples from 50 patients. However, estimates were less precise and more biased when 

the data consisted of four samples from 25 patients (3 5). 

One study investigated the number of samples per patient and the total number of 

samples necessary to provide accurate pharmacokinetic parameter estimates of 

cyclosporine in liver transplant patients (36) . The data consisted of 203 samples from 42 

individuals and was analyzed using a one-compartment model implemented in NPEM. 

Estimates of clearance and volume of distribution converged and showed very little 

variation once there were two levels per patient and the total number of patients in the 

analysis reached 15-20. Others found that analyses using either two or three samples per 

patient provided estimates that were not significantly biased or imprecise when compared 

with the intense sampling strategy (37) . 
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A simulation study using a two-compartment model with intravenous input found that 

pharmacokinetic parameter estimates were accurate using from four to six samples per 

subject for 100 subjects, but interindividual variabilities were biased using the four­

sample design (38) . Also in this study, the effect of the number of subjects was assessed 

using a six-sample design. They evaluated seven levels from 20 to 100 subjects and 

found that all pharmacokinetic parameters were comparable irrespective of the sample 

size, but estimates of interindividual variability became less biased as the number of 

subjects increased. 

Another group used simulated data to mimic sparsely sampled data for 100 patients from 

a phase III clinical trial in which either one or two blood samples were taken per patient 

on two occasions (39) . They compared various sampling strategies for bias and precision 

of population parameter estimates and found that parameter estimates were often more 

precise and less biased when patients provided two samples per visit as compared to only 

one. 

Thus, it appears that two samples per individual for 30 to 50 individuals can provide 

accurate estimates of population average parameters. However, more individuals and 

more samples per patient may be required to obtain unbiased estimates of interindividual 

variability ( 40). Obviously, the specific pharmacokinetic model used to fit the data and 

the number of parameters to be estimated has an impact on the number of samples 

required per individual. 
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Some researchers have advocated the use of random sampling of plasma concentrations 

within the population (21 ,3 0). However, it is likely that the quality of information 

obtained will increase if informative sampling times are selected. Samples obtained at the 

time of peak serum concentrations usually contain the most information about the volume 

of distribution, whereas samples obtained in the middle of a dosing interval are 

informative about clearance (2) . Others have employed Optimal Sampling Theory (OST) 

to reduce the number of samples required per subject (41 ,42). This method ensures that 

data are collected at informative times for estimation of pharmacokinetic parameters 

(37,43-47). These studies investigated various sampling schedules and pharmacokinetic 

models; in all cases, the optimally sampled, reduced data sets provided accurate estimates 

of clearance, often the parameter of most interest. In some, but not all , cases, other 

pharmacokinetic parameters were also accurately estimated. 

The quality of the data used in a population analysis is of paramount importance. Ette, 

Sun, and Ludden investigated the use of balanced (i .e. , equal number of samples per 

patient) versus unbalanced data and found that the precision of parameter estimates, but 

not accuracy, was affected by missing data (48) . Sun et, al. conducted a simulation study 

to investigate the effect of misrecorded sample times on parameter estimation in 

NONMEM ( 49). Obviously a well designed study may not provide good results if sample 

times are not recorded accurately. Sun, Ette, and Ludden found that estimates of 

clearance tended to be unbiased when errors were random or systematically positive 

whereas the estimate of clearance was biased when there was a negative systematic error. 
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One study compared prospectively and retrospectively collected data (27) . Specific forms 

were designed to collect and record information related to plasma sampling and dosing in 

the prospective study. Patient records were used to obtain information in the retrospective 

study. The prospective study was found to produce pharmacokinetic estimates 

comparable to previously reported estimates from traditional studies, whereas the 

retrospective study yielded biased estimates. The results from these studies demonstrate 

the need for good quality data in order to conduct a meaningful population 

pharmacokinetic analysis. 

Validation of population pharmacokinetic models (i.e., ifthe parameter estimates and 

covariates included in a model based on one set of data can be reproduced with another 

set of data) is an area of current interest (32). The various approaches that have been used 

to date, such as data splitting and the bootstrap resampling technique, have recently been 

discussed (50) . 

In summary, there are many ongoing issues in the design and conduct of population 

pharmacokinetic analyses . It appears that two samples per patient for 100 patients would 

be a reasonable minimum number of patients and samples required to develop a 

population pharmacokinetic model. It should be noted that the number of samples 

obtained from each subject depends on the number of pharmacokinetic parameters to be 

estimated (21). Thus, care should be taken when extrapolating results from specific 

situations that use particular pharmacokinetic models to other situations. A well-planned 
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study protocol which describes the objectives and methodology for conducting a 

population pharmacokinetic analysis is required. It should include a specific form that is 

simple in design to record sample times and dosing history. Education of clinical 

investigators is also essential to ensure that good quality data is obtained. 

OTHER APPLICATIONS OF POPULATION PHARMA CO KINETICS 

Although the majority of discussion has involved the implementation of the population 

approach in clinical drug development, there is interest in using these methods in pre­

clinical development, although application of the population approach in preclinical 

studies is still relatively sparse.(15,51-54). Two examples can be found in the literature 

that investigate the use of the population approach in one animal species only (53 ,54). 

Both studies used a one sample per animal design, which is often the case in preclinical 

studies. The first study showed that variability in volume of distribution could be partially 

explained due to gender differences, and the second study produced unbiased and precise 

estimates of the pharmacokinetic parameters. However, both studies were unable to 

separate interindividual from intraindividual variability and thus did not provide good 

estimates of variability. 

The use of the population approach to investigate the pharmacokinetics and influence of 

covariates in a single species requires further study to show that it is a meaningful and 

cost-effective analysis to undertake. A potential application of the population approach in 
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preclinical studies is to analyze data from a number of animal species in order to 

investigate allometric relationships using weight as a covariate (15) . 

Therapeutic drug monitoring (TDM) is applied in clinical practice to monitor the plasma 

concentrations of drugs that have a narrow therapeutic range. TDM is used to 

individualize the dose in order to avoid subtherapeutic levels of the drug or unwanted 

toxic effects (55) . Relevant prior pharmacokinetic parameter estimates are required in 

order to implement TDM (56). Population pharmacokinetic studies can be used to 

provide these a priori estimates, and there are many examples in the literature where 

pharmacokinetic parameters that have been derived from population analyses to be used 

in this manner (see the summary by Thomson and Whiting, Ref. 56). 

CONCLUSIONS 

The population approach to pharmacokinetic studies is a new field that is rapidly growing 

and gaining acceptance in the pharmaceutical arena. The population approach can be 

used to analyze data that consists of only a few samples per individual. Thus, it is ideally 

suited to analyze observational data that is collected during clinical studies to monitor 

compliance, data pooled from early phase traditional pharmacokinetic studies, and data 

collected through routine clinical practice in postmarketing studies. 

The population approach provides estimates of the mean population pharmacokinetic 

parameters within a population and variability of these estimates within that population. 

This method partitions the variability into between variability and within variability, and 
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it can be used to explain the variability in pharmacokinetic parameter estimates in terms 

of physiological fixed effects. In doing so, this method can provide information on 

possible patient subgroups at risk of excessive drug accumulation or subtherapeutic 

levels, and it can be used to develop guidelines for drug dosage individualization (2,4) . 

The advent of proposed guidelines from the FDA that govern the design and conduct of 

population pharmacokinetic studies supports the use of these studies in the drug 

development process. 
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MANUSCRIPT II 

A Population Pharmacokinetic Analysis of the Protease Inhibitor, Nelfinavir 

Mesylate in Human Immunodeficiency Virus (HIV) Infected Patients Enrolled in a 

Phase III Clinical Trial. 

*presented at the 12th World AIDS Conference, Geneva, 1998. 

ABSTRACT 

A population pharmacokinetic analysis was conducted on nelfinavir in patients infected 

with Human Immunodeficiency Virus (HIV), who were enrolled in a phase III clinical 

trial. The data consisted of 509 plasma concentrations from 174 patients who received 

nelfinavir at a dose of 500 mg or 750 mg three times a day. The analysis was performed 

using NONMEM. A one-compartment model with first-order absorption best described 

the data. The timing and number of early post dose blood levels did not allow accurate 

estimation of volume of distribution (V d/F) and the absorption rate constant (ka). As a 

result, two models were used to analyze the data, Model 1 in which oral clearance 

(CL/F), V d/F and ka were estimated and Model 2 in which V d/F and ka were fixed and 

only CL/F was estimated. The values of V d/F and ka were fixed to those obtained from 

analysis of data from 19 intensely sampled HIV patients enrolled in a traditional 

pharmacokinetic study. Estimates of CL/F ranged from 41.9 - 45 .1 L/h, values in close 

agreement with previous studies. Neither body weight, age, gender, race, dose level, 

baseline viral load, CYP2C19 metabolizing status, history of liver disease nor raised liver 
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function tests appeared to be significant covariates for clearance. A low CD4 count and 

concomitant use of a macrolide antibiotic or fluconazole were significant when tested 

alone. However once concomitant use offluconazole was incorporated into the model as 

a covariate for CL/F, the other covariates no longer achieved statistical significance. 

Patients who received concomitant therapy with fluconazole experienced a statistically 

significant reduction in CL/F of 26 - 30%. This is unlikely to be of clinical significance. 

Addition of this covariate to the model resulted in a modest reduction in interindividual 

variability of CL/F. Only a small fraction of patients (5/174) were taking concomitant 

rifabutin and it was not possible to obtain conclusive results for the effect of this drug on 

the CL/F of nelfinavir. 
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INTRODUCTION 

Nelfinavir mesylate (Viracept™) is a protease inhibitor approved for the treatment of 

Human Immunodeficiency Virus (HIV) infection. The viral protease enzyme plays an 

essential role in the replicative cycle of HIV by catalyzing the cleavage of genetically 

encoded polyprotein precursors to yield mature, viral proteins (12,21). Inhibition of the 

protease enzyme by nelfinavir results in the formation of immature, non-infectious 

VlflOnS. 

Nelfinavir was approved by the Food and Drug Administration (FDA) in March 1997. 

The currently recommended adult dose is 750 mg three times a day (tid) taken with or 

after food (1 ). Pharmacokinetic studies of nelfinavir have previously been conducted in 

phase I/II of clinical drug development (18,20). When nelfinavir was administered at a 

dose of 500 mg or 750 mg tid the peak plasma concentration (Cmax) at steady-state was in 

the range of 3 - 4 µg/ml and the time to peak concentration (T max) in the range of 2.5 - 3 

hours (18). The half-life of nelfinavir has been reported in these studies as 3 - 5 hours 

(18,20). 

Nelfinavir, like the other currently available protease inhibitors, ritonavir, indinavir and 

saquinavir, is metabolized by the cytochrome P450 system (13-16,19,20,25,29,31). In 

vitro studies have shown that CYP3A4 and CYP2Cl9 are the predominant isozymes 

involved (16,29 ,31 ). Other isozymes, CYP2D6 and CYP2C9 are involved to a lesser 

extent (11 ,13,25,29). Nelfinavir has one major metabolite, the M8 metabolite (nelfinavir 

hydroxy-t-butylamide), which is exclusively catalyzed by CYP2C19 (10,16,29). The M8 
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metabolite has been shown to have an antiviral potency in vitro similar to nelfinavir itself 

(1 , 15, 16, 1825,31). Studies have demonstrated that CYP2C19 exhibits genetic 

polymorphism (17) and that 2 - 6% of Caucasians and 18 - 22% of Asians are poor 

metabolizers of CYP2Cl9 (15). In addition to being a substrate, nelfinavir is also an 

inhibitor of some CYP450 isozymes, namely CYP3A4, CYP2Cl9, CYP2D6 and 

CYP1A2 (13 ,15). Only inhibition ofCYP3A4 appears to be of clinical significance 

(13,15) and it seems that nelfinavir is a less potent inhibitor of CYP3A4 than indinavir 

and ritonavir (14,15,19,20). It has also been suggested that nelfinavir may induce as well 

as inhibit CYP3A4, however, the net effect of nelfinavir on this isozyme appears to be 

inhibition rather than induction (15,20). 

On the basis of nelfinavir ' s involvement with the cytochrome P450 enzyme system, there 

is the potential for drug interactions to occur especially as patients with HIV disease are 

often taking multiple concomitant medications. 

The development of resistance to protease inhibitors, like other antiretroviral therapies, is 

of major concern. It has been observed that resistance is more likely to develop when 

plasma concentrations of protease inhibitors are subtherapeutic (6) . Therefore it is 

important to characterize the pharmacokinetics of nelfinavir in a representative patient 

population and to try and identify variables that may lead to lower plasma concentrations 

which in tum may increase the risk of therapeutic failure . 
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( Thus, the objectives of this study were to determine the population pharmacokinetic 

parameters of nelfinavir and their variability in an HIV infected patient population, to 

determine the influence of patient characteristics on the pharmacokinetic parameters of 

nelfinavir and to investigate potential drug interactions for an effect upon the 

pharmacokinetics of nelfinavir. 

METHODS 

Concentration-time data were obtained from patients enrolled in a phase III clinical 

study, which was primarily designed to evaluate the safety and efficacy of nelfinavir in 

HIV infected patients. A secondary objective of the study was to determine the 

population pharmacokinetic parameters of nelfinavir. Safety and efficacy results have 

been reported elsewhere (5 ,24). This paper deals only with the pharmacokinetic aspects 

of the study. 

Study Population 

The study population included patients aged 13 years or older who had received either no 

prior antiretroviral therapy or less than 1 month of treatment with zidovudine (AZT). 

Patients were required to have a baseline plasma HIV RNA titer 2: 15,000 copies/ml. 

Participants in the trial were randomized to receive nelfinavir 500 mg three times a day, 

nelfinavir 750 mg three times a day or placebo. In order to balance treatment groups, 

patients' CD4 counts (less than 100 cells per µl, 100 to 300 cells per µl or greater than 

300 cells per µl) were used in a dynamic randomization procedure. All patients received 

concomitant therapy with AZT 200 mg three times a day and lamivudine (3TC) 150 mg 
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twice a day. Concentration-time data were obtained from 174 participants who received 

one of the nelfinavir dosage regimens. These patients were enrolled at 27 investigative 

sites. 

Exclusion criteria at baseline examination included: prior antiretroviral therapy; therapy 

with immune modulators or vaccines within one month of baseline; patients of 

procreative potential who were not practicing double-barrier contraception; elevated 

LFTs, hemoglobin or bilirubin levels; decreased neutrophil or platelet counts; renal 

insufficiency; acute pancreatitis or hepatitis; significant fever or diarrhea; malabsorption 

syndrome; severe intermittent medical conditions including opportunistic infections; 

active substance abuse; neoplastic disease requiring radiation or cytotoxic therapy and 

lastly, females taking oral contraceptives. The appropriate institutional review boards 

approved the study and written informed consent was obtained from all participants. 

Plasma Samples 

The pharmacokinetic study was designed such that patients had blood samples drawn for 

analysis of nelfinavir concentrations during clinical follow-up visits. In general, each 

individual provided two blood samples per visit: a pre-dose trough level and a post-dose 

level taken approximately two hours after a dose. The majority of individuals were 

sampled at week 2 and week 8 of the study hence all concentrations were considered to 

be at steady state. Ultimately, 509 samples from 174 patients were used in the 

pharmacokinetic analysis. This was an average of approximately 3 samples per patient 

with a range of 1 to 6. Plasma samples were analyzed for nelfinavir and M8 
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concentrations using a modified version of a previously published HPLC assay (28). This 

assay was modified to include analysis of the M8 metabolite. 

Data Preparation and Pharmacokinetic Analysis 

Clinical, pharmacokinetic and demographic data relevant to the population 

pharmacokinetic analysis were extracted from the raw data and merged and formatted 

using SAS (version 6.09) on an IBM ES-9000 computer. The pharmacokinetic analysis 

was performed using NONMEM (version 4.0, double precision) (3) on an IBM ES-9000 

computer. There are several statistical methods that can be implemented in NONMEM to 

calculate parameter estimates (3). Initially, the analyses were performed using the first 

order (FO) method and subsequently confirmed using the first order conditional 

estimation (FOCE) method. 

Pharmacokinetic Model 

Several models were used to fit the data. A one-compartment and a two-compartment 

open model with first-order absorption and first-order elimination were tested. A zero­

order input to a one-compartment model was also tested using an input period of 3 hours 

(the average value of the time taken to reach the maximum concentration previously 

reported as 2-4 hours (1)). The first-order input to the one-compartment model was 

parameterized as the first order absorption rate constant (ka), oral clearance (CL/F) and 

volume of distribution (V/F) and the zero-order input to the one-compartment model was 

parameterized as oral clearance (CL/F) and volume of distribution (V IF). The two­

compartment model was parameterized as the first-order absorption rate constant (ka), 
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oral clearance (CL/F), volume of the central compartment (V c/F), volume of distribution 

at steady state (V ss/F) and intercompartmental clearance (Q). The model that best fit the 

data was selected for further analyses. 

Statistical Model 

An exponential error model and a proportional error model were evaluated to describe 

interindividual variability. The models were as follows: 

8j = 8'exp(lJ9j) - exponential error model, and 

8j = 8'*(1 +(ri9.)) - proportional error model 
J 

th 
where 8j is the estimate for a pharmacokinetic parameter in the j individual as predicted 

by the regression model, 8' is the population mean of the pharmacokinetic parameter, 

and ri9 . represents the random variable with zero mean and variance o}, that 
J 

distinguishes the /h individual pharmacokinetic parameter from the population mean 

value predicted by the regression model. Terms for interindividual variability were 

included in CL/F, V dlF and ka. 

Intraindividual (residual) variability was modeled using either a proportional error model 

or a combined proportional and additive error model. The following equations were used: 

C-· = C'· ·*(l + i::l ··)and lJ lJ lJ 
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( th 
where Cij is the observed serum concentration for the j individual at time i, C'ij is the 

th 
model predicted serum concentration for the j individual at time i, and tlij and i::2ij are 

the components of proportional and additive error (with zero mean and variance cr2
), 

respectively. 

Data Analysis Strategy 

The pharmacokinetic and statistical models were evaluated to determine the basic model 

that best fit the data. A statistically significant decrease in the minimum value of the 

objective function (as measured by the Log Likelihood Difference) when comparing 

reduced models to fuller models, visual inspection of the data and precision of 

pharmacokinetic parameter and variability estimates were used as criteria to determine 

the best basic model. 

After the basic model was constructed, a model building process was employed to 

examine the influence of patient covariates on the estimates of the pharmacokinetic 

parameters. The effect of the following patient covariates were evaluated: age, weight, 

gender, ethnic origin, dose, baseline HIV disease status, history of liver disease, raised 

liver function tests (LFTs), CYP2Cl9 metabolizing status of the patient and concomitant 

medications. 

Age and weight were examined as continuous variables. Gender, dose, ethnic origin and 

history of liver disease were examined as categorical variables. The effect of an increase 

in LFTs was examined as a dichotomous variable, either grade two and higher or less 
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than grade two. The HIV disease status of the patient at entry into the study was 

characterized by baseline CD4 count and baseline viral load. The CD4 count was 

categorized into 3 groups as follows: less than 100 cells per µl, 100 to 300 cells per µl or 

greater than 300 cells per µI. Viral load measurements were also split into 3 categories: 

greater than 100 000 copies/ml, 50 000 to 100 000 copies/ml or less than 50 000 

copies/ml. The ability of an individual to metabolize nelfinavir to the M8 metabolite was 

investigated as a potential covariate both as a continuous variable and as a categorical 

variable. The CYP2Cl9 metabolizing status of the patient was determined, where 

possible, from the M8 to nelfinavir peak concentration ratios and categorized into 3 

groups. An individual with a ratio of less than 0.1 was classed as a poor metabolizer, an 

individual with a ratio of 0.1 to 0.3 as an intermediate metabolizer and an individual with 

a ratio greater than 0.3 as an extensive metabolizer (16). As CYP3A4 and CYP2C19 play 

an important role in the elimination of nelfinavir (11, 13,31) concomitant medications 

known to inhibit or induce these isozymes were examined as potential covariates. The 

effects of macrolide antibiotics and quinolone antibiotics were examined as a class rather 

than on an individual basis to increase the number of patients in each group. In this study, 

patients taking an azole antifungal consisted mainly of patients taking fluconazole, thus, 

the effect of fluconazole alone was investigated as was the effect of concomitant therapy 

with rifabutin. 

A decrease in the minimum value of the objective function of 3.8 or greater following 

introduction of a single covariate into the model was considered statistically significant 

(p=0.05) using the x2 distribution if the 95% confidence intervals (CI) for the estimate 
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( did not include the null value. If the change in the objective function was 3.8 or greater 

but the 95% CI for the estimate included the null value, the effect of the variable was 

considered to be of borderline significance and that covariate was not included in the full 

model. All significant variables were included in the full model. 

A backward elimination process was then employed to eliminate covariates from the full 

model in order to develop the final model. An increase in the objective function of 3.8 or 

greater (p=0.05) on removal of a covariate from the full model signified that the variable 

was important and that covariate was retained in the final model. 

Additional Data 

It was to prove difficult to obtain accurate estimates of V d/F and ka during this analysis. 

To assess the impact of possible misestimation ofVd/F and ka on the ability to estimate 

CL/F, the parameter of most interest, Vd/F and ka were fixed to more reliable values and 

only CL/F was estimated in the modeling process. Additional data from a traditional 

pharmacokinetic study consisting of more samples per individual in a given dosing 

interval were analyzed using NONMEM to obtain values for V d/F and ka. These values 

were subsequently used to fix Vd/F and ka in the analysis of the population data. Thus, 

analysis of the population data was performed using two models: Model 1 in which all 3 

pharmacokinetic parameters were estimated and Model 2 in which fixed estimates of 

V d/F and ka were used. 
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Briefly, the data from the traditional study consisted of 190 observations from 19 HIV 

infected patients who received nelfinavir monotherapy at doses of 500 mg or 750 mg tid. 

Data were obtained from a phase II clinical trial, the results of which have previously 

been reported (18). Each patient provided 10 plasma samples at the following times: pre­

dose, 0.5 , 1, 1.5, 2, 3, 4, 5, 6 and 8 hours post-dose during a steady-state dosing interval 

on day 28 of treatment. No patient was taking a drug that is a known inhibitor or inducer 

ofCYP3A4. 

RESULTS 

The demographic characteristics of the 174 patients in the population analysis are 

summarized in Table 1. The mean age (range) was 37 (21-63) years and mean total body 

weight was 78 (42-140) kg. The patient population was predominantly male (89%) and 

Caucasian (78%). 

A one-compartment and a two-compartment model with first-order absorption and frrst­

order elimination were used to fit the data. It was not possible to obtain model 

convergence when the two-compartment model was fit to the data, thus a one­

compartment model was used. The first-order absorption model provided a significantly 

better fit to the data as compared to the zero-order absorption model. Thus, the best basic 

model consisted of the one-compartment model with first-order absorption and first-order 

elimination. Interindividual variability was best described using an exponential error 

model and intraindividual variability by a combined proportional and additive error 

model. 
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As previously mentioned, two models were employed in the analysis, Model 1 in which 

all 3 pharmacokinetic parameters were estimated and Model 2 in which V d/F and ka were 

fixed to estimates obtained from analysis of the traditional pharmacokinetic data. The 

parameter estimates from analysis of the traditional data were as follows: CL/F 39.1 (30.1 

- 48.1) L/hr, Vd/F 229 (161 - 297) Land ka 0.845 (0.60 - 1.13) h-1
• Thus Vd/F and ka 

were fixed to 229 L and 0.845 h-1
, respectively in Model 2. 

The basic pharmacokinetic parameter estimates (and 95% CI) from the fit of Model 1 to 

the data were as follows: CL/F 40.7 (37.7 - 43.7) L/hr, Vd/F 731 (531 - 931) Land ka 

1.22 (0.70 - 1.74) h- 1
• The variability in the estimate of CL/F, expressed as approximate 

percent coefficient of variation (%CV), was 36%CV. When a term for interindividual 

variability was included in Vd/F, the value tended towards zero. Thus it was not possible 

to model interindividual variability in V d/F. A large degree of interindividual variability, 

214 %CV was associated with ka. Model 2 provided estimates of CL/F and its variability 

of 39.4 (36.3 - 42.5) L/hr and 39% CV respectively. These estimates agreed well with the 

estimates obtained using Model 1 and both estimates of CL/F agreed favorably with the 

estimate that was obtained from analysis of the traditional data. 

Patient covariates that significantly influenced CL/F using both Models 1 and 2 are 

shown in Table 2. Neither age, weight, dose level, gender, ethnic origin, baseline viral 

load, CYP2C 19 metabolizing status, history of liver disease nor LFTs grade two or 

higher appeared to influence CL/F in this group of patients. However, a baseline CD4 
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count less than 100 cells per µland concomitant use of either a macrolide antibiotic or 

fluconazole resulted in a significant decrease in the estimates of CL/F. The magnitudes of 

reduction in CL/F were similar using both models and were 17-19%, 23-24% and 26-

27% for CD4 count, macrolide or fluconazole use, respectively. A significant increase in 

CL/F of 55% was observed in patients taking rifabutin using Model 1. In contrast, a non­

significant increase of 37% in CL/F was observed using Model 2. Due to the conflicting 

evidence of the effect of rifabutin and the small number of patients in the study taking 

rifabutin, this covariate was excluded from the model building procedure. 

The full model contained all of the aforementioned covariates found to be significant. A 

backward elimination process was then employed to eliminate non-significant covariates 

from the full model to develop the final model. The final model parameters using both 

models are shown in Table 3. The equations for CL/F were as follows: 

1. Model 1, all parameters are estimated: CL/F = 42.7*(1-0.256*flu) L/hr where flu= 1 

if the patient was taking concomitant fluconazole therapy. 

2. Model 2, Vd/F and ka are fixed: CL/F = 41.9*(1 -0.273*flu) L/hr where flu= 1 ifthe 

patient was taking concomitant fluconazole therapy. 

The estimates of CL/F in patients not taking fluconazole were comparable between 

models, 42. 7 L/hr and 41.9 L/hr for Models 1 and 2, respectively. Additionally, the effect 

of fluconazo le was similar in both models resulting in a reduction in clearance of 26 -

27%. Interindividual variability in CL/F was reduced marginally from 36% to 34% and 

from 39% to 36% in Models 1 and 2, respectively. After controlling for use of 
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fluconazole, use of a macrolide antibiotic or a low baseline CD4 count did not 

significantly affect CL/F further. Thus it was not necessary to include either of these 

covariates in the final model for CL/F. 

This data set was also analyzed using the FOCE method in NONMEM. The only 

covariate found to be of statistical significance was concomitant use of fluconazole. In 

contrast to the FO method, a low CD4 count, concomitant use of a macrolide antibiotic 

and concomitant use of rifabutin were either of borderline significance or were not 

significant at all when tested alone in CL/F and thus were not included in the full model. 

Thus, the final model included only the effect of fluconazole. Parameter estimates for the 

final models are shown in Table 4. The estimates of CL/F were 44.9 L/hr and 45 .1 L/hr 

for Models 1 and 2, respectively. These results compare favorably with the results 

obtained from the FO method, 42.7 L/hr and 41.9 L/hr, respectively. Additionally, the 

reductions in CL/F observed in patients taking concomitant fluconazole of 26% and 30% 

for Models 1 and 2, respectively are in good agreement with the reductions of 26% and 

27% obtained using the FO method. 

DISCUSSION 

The pharmacokinetic parameters of nelfinavir were detem1ined in an HIV infected 

population consisting of 174 individuals. A total of 509 plasma concentrations were used 

in the analysis. A one-compartment open model with first order absorption and first order 

elimination best described the data. 
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It proved difficult to obtain accurate estimates of Vd/F and ka in the analysis of this data 

set. In previous Phase I studies, V d/F has been estimated as 2-7 L/Kg or 140-490 L in a 

70 Kg man (1) . The estimate from this analysis was much larger (734 L) and was 

associated with large confidence intervals, as was the estimate of ka, which also had a 

very large degree of interindividual variability. The ability to estimate pharmacokinetic 

parameters well depends upon the timing and number of plasma samples. In this study, 

only one early level per dosing interval was taken in each individual. This level was taken 

at essentially the same time in every individual, two hours after the dose. This is close to 

the reported Tmax of nelfinavir (2 .5-3 hours) (18), a period of the concentration-time 

profile associated with inherent variability as plasma concentrations change markedly. It 

is likely that this inherent variability in observed plasma concentrations within an 

individual, the lack of variability in the timing of the early post dose levels between 

individuals and the small number of early samples per individual (typically 2 overall) 

made it impossible to obtain accurate estimates of Vd/F and ka. Additionally, the 

difficulty in estimating these parameters may be compounded by the lack of information 

in the data set on factors that can influence the absorption and/or bioavailability of 

nelfinavir. Studies have demonstrated that the Cmax and AUC of nelfinavir are 2-3 times 

higher in fed versus fasted subjects (1 ,22). Unfortunately, the timing of the dose relative 

to meals was not controlled in this study. Also, the bioavailability of protease inhibitors 

in general has been found to be sensitive to other physiological factors, such as gastric pH 

(2,26). Due to the problems encountered in estimating V d/F and ka in this particular data 

set, the estimates that were obtained should be interpreted with caution. Estimation of 

these parameters should be made in the future using more informative data. 
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In order to assess any influence of misestimation ofVd/F and ka on the estimation of 

CL/F, two models were used in the analysis. In Model 1, all 3 parameters (CL/F, Vd/F 

and ka) were estimated. In Model 2, the values ofVd/F and ka were fixed to estimates 

obtained from analysis of traditional pharmacokinetic data obtained from 19 individuals 

with HIV infection (229 Land 0.845 h- 1 for Vd/F and ka, respectively). The estimates 

obtained for CL/F and the influence of fluconazole on CL/F were in good agreement 

between the models. This provides support that estimation of CL/F and the evaluation of 

the effect of covariates on CL/F were not affected by possible misestimation ofVd/F and 

ka. Wade et al. previously investigated the effect of misspecification ofka on the ability 

to estimate CL using sparsely sampled simulated data (27) . They found that 

misspecification of ka did not markedly affect the ability to estimate CL. The estimates 

obtained for CL/F were 42.7 L/hr and 42.0 L/hr using Models 1 and 2, respectively. 

These values compare favorably with previous estimates of the CL/F ofnelfinavir of 37.4 

L/hr (30) and 46.0 L/hr (calculated as Dose/AUC0_8h) (18) . 

Azole antifungal agents are commonly prescribed for patients with HIV disease for the 

treatment and prophylaxis of fungal infections (9). In this study, 25of174 patients (15%) 

were receiving concomitant azole therapy. Since 23 of these 25 patients were taking 

fluconazole, it was only possible to assess the effect of this azole antifungal on the CL/F 

ofnelfinavir. Fluconazole is a known inhibitor of CYP3A4 and CYP2C19, the primary 

isozymes involved in the metabolism of nelfinavir (29,31 ). This study found that patients 

receiving concomitant therapy with fluconazole experienced a statistically significant 
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reduction in CL/F of 26-27% compared to patients not taking fluconazole. However, it is 

unlikely that an effect of this magnitude would be clinically significant and warrant 

dosage adjustment. A similar decrease in CL/F was observed in a study of 8 healthy 

volunteers treated with ritonavir who received concomitant fluconazole therapy (4). The 

authors found that fluconazole produced marginal increases ofless than 15% in the 

AUCo-Z4h and Cmax of ritonavir ( 4). In contrast, in a study conducted in 11 HIV-infected 

patients receiving indinavir, investigators found that concomitant fluconazole therapy did 

not result in a reduction in the CL/F of indinavir. Indeed, they found a slight decrease in 

AUCo-sh of indinavir that failed to achieve statistical significance (7). The different 

metabolic pathways of these protease inhibitors may account for the inconsistency of the 

results. 

Concomitant use of a macrolide antibiotic and a baseline CD4 count less than 100 cells 

per µl were statistically significant covariates for CL/F when tested alone (Table 2). 

However, the influence of concomitant fluconazole therapy was greater and once this 

effect had been incorporated into the final model for CL/F, the effects of concomitant use 

of a macrolide antibiotic and a low baseline CD4 count were no longer statistically 

significant. It should be noted that 16 of the 35 patients with a low CD4 count were 

taking fluconazole and 8 of the 18 patients receiving concomitant macrolide therapy were 

also taking fluconazole. Thus, the observed influence of a low CD4 count and 

concomitant macrolide therapy may be explained by the high percentage of patients with 

these characteristics who were also taking fluconazole. 
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( In this study, the CYP2C19 metabolizing status of the patient was characterized by the 

M8 to nelfinavir peak concentration ratio. A patient with a ratio ofless than 0.1 was 

classed as a poor metabolizer. It has previously been reported that patients classed as 

poor metabolizers have a lower M8/nelfinavir ratio than either intermediate or extensive 

metabolizers (16). This is probably due to a reduction in CL/F. However, the small 

number of poor metabolizers identified in this study (n=6) may have prohibited the 

detection of a significant effect upon CL/F. 

The effect of rifabutin on the CL/F of nelfinavir was inconsistent using the models in this 

analysis. It is probable that this study did not have sufficient power to assess the influence 

of rifabutin on the CL/F of nelfinavir, since only 5 of the 174 patients in the study were 

taking rifabutin. In both models, there was a trend for concomitant rifabutin to increase 

the CL/F of nelfinavir (from 37-55%). However, only when all three pharmacokinetic 

parameters were estimated did the increase achieve statistical significance. There is 

evidence from other clinical sh1dies that rifabutin induces the metabolism of nelfinavir 

(1). In one study, concomitant administration of rifabutin decreased the AUC and Cmax of 

nelfinavir by 32% and 25%, respectively (1). 

The FO method in NONMEM involves linear assumptions that the FOCE method does 

not which increases the risk of obtaining biased parameter estimates. However, the FOCE 

method is computationally more complicated than the FO method, resulting in a 

substantially longer time to run an analysis. A limited comparison of some linear 

approximation methods (e.g. the FO method) with computationally more intensive 
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approximation methods (e.g. FOCE method) has shown that the linear approximation 

methods perform adequately (23). In this study, the population pharmacokinetic 

parameters were obtained initially by implementing the FO method in NONMEM and the 

results confirmed using the FOCE method. The final models using both methods did 

compare favorably showing that, in this instance, the FO method provided adequate 

estimates. Overall, the estimates of CL/F (ranged from 41.9 L/hr to 45.1 L/hr) and the 

effect of fluconazole on CL/F (reduction in CL/F of26% - 30%) were similar. However, 

the FOCE method proved to be more discerning in that it did not initially identify the 

covariates identified by the FO method as statistically significant alone (low CD4 count 

and concomitant use of a macrolide antibiotic or rifabutin) that were subsequently 

dropped during the final model building process due to lack of significance. 

In conclusion, the population pharmacokinetic parameters of nelfinavir were best 

described using a one-compartment model with first-order absorption. Estimation of 

V d/F and ka was difficult using this data and the values obtained should be interpreted 

with caution. CL/F was estimated as 42. 7 L/h (Model 1) and 41 .9 L/h (Model 2). Patients 

receiving concomitant therapy with fluconazole had a 26-27% reduction in CL/F. A 

reduction of this magnitude is unlikely to be of clinical significance. The study probably 

did not have sufficient power to assess the influence of concomitant rifabutin. However, 

the consistent though statistically insignificant increased CL/F observed among patients 

taking rifabutin in this study is in keeping with evidence of an interaction from previous 

studies. 
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( Table 1: Characteristics of 174 Patients Evaluated in the Population 

Pharmacokinetic Analysis of Nelfinavir 

Characteristic Number Percent of Total 

of Study 

Patients Po~ulation 

Gender (Men/ Women) 155/19 89/ 11 

Mean Age, years (range) 37 (21-63) 

Mean Total Body Weight, kg (range) 77.7 (42-140) 

Baseline CD4 Count (cells per ~Li) 

< 100 35 20 

< 300 and > 100 59 34 

> 300 80 46 
Baseline Viral RNA (copies /ml) 

> 100,000 68 39 

> 50,000 and < 100,000 43 25 

< 50,000 63 36 

Race, 

Caucasian 136 78 

Black 21 12 

Asian 3 2 

Hispanic 7 4 

Latin American 4 2 

Native American 3 2 

Concomitant Medications 

Azole (fluconazole) 25 (23) 15 (13) 

Macrolide 18 10 

Quinolone 12 8 

Rifabutin 5 3 

History of liver disease 60 34 

Liver function tests (LFTs) grade 2 or higher 5 1 29 

Metabolic Status (Ratio of nelfinavir: M8) 

Poor Metabolizer (ratio < 0. 1) 6 3 

lntermediate Metabolizer (ratio > 0. 1 and < 0.3) 67 38 

Extens ive Metabolizer (ratio > 0.3) 37 21 
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Table 2: Summary of Analyses of Significant Effects of Patient Covariates tested alone in Clearance 

Hypothesis Parameterization Null Parameter Values Change in Significance• 
Value (95%C.!} objective function 

Model One 

•Do the following affect CUF? 

CD4 <100 cells per µ1 CL/F=81 *(1-84*cd4) 0 84 = 0.19 (0.02, 0.36) 10.0 14 Significant 
Concomitant Medications 

Fluconazole CL/F=81 *(l-84*flu) 0 84 = 0.26 (0.11, 0.40) 17.225 Significant 
Macrolide CL/F=81 *(l-84*mac) 0 84 = 0.24 (0.02, 0.46) 10.784 Significant 
Rifabutin CL/F=81 *(l-84*ri:t) 0 84 = 0.55 (0.32, 0.77) 6.035 Significant 

Model Two 

•Do the fo/lowi ng affect CUF? 

CD4 < I 00 cells per µl CL/F=81 *(1-84*cd4) 0 84 = 0.17 (0.01 , 0.33) 6.978 Significant 
Concomitant Medications 

Fluconazole CL/F=81 *(l-84*flu) 0 84 = 0.27 (0.15, 0.40) 18.53 1 Significant 
Macrolide CL/F=81 *(l-84*mac) 0 84 = 0.23 (0.06, 0.41) 10.132 Significant 
Rifabutin CL/F=8I*(1-84 *ri:t) 0 84 = 0.37 (0.17, 0.57) 3.012 Not Significant 

a p = 0.05 
Abbreviations: CL/F =clearance: LLD= log-likelihood difference; NA= not applicable; flu = concomitant fluconazole therapy; 
mac= concomitant macrolide therapy; rif = concomitant rifabutin therapy. 



( Table 3: Final Population Pharmacokinetic Parameters for Model 1 and Model 2 

(First Order Method) 

Model 1• Model 2• 

Parameter Parameter lnteq1atient Parameter Estimates Interpatient 

(units) Estimates (95% CI) Variabilityb (95% CI) Variabilityb 

(95% CI) (95% CI) 

8lcL/hr 42.7 (39.3 - 46.1) 34 (27 - 39) 41.9 (38.7 - 45 .1) 36 (28 - 43) 

82 (Vd/F) L 736 (501-971) NI 229 fixed 81 (65 - 94) 

83 (ka) h-1 1.19 (0.200 - 2.18) 142 0.845 fixed NI 

94c 0.256 (0.111 - 0.401) 0.273 (0.150 - 0.396) 

cr21 0.106 (0.028 - 0.184) NA 0.025 (-0.015 - 0.064) NA 

cr22 (mg/L) 0.265 (0.014 - 0.516) NA 0.537 (0.300 - 0.778) NA 

• Model l - all 3 parameters are estimated; Model 2 - Yd and ka fixed to 229 Land 0.845h-1
, respectively. 

b 
approximate coefficient of variation (%CV) 

c CL/F = 8 l *(1- 84*flu) L/hr where flu= l if the patient was taking concomitant fluconazole therapy, else 
flu=O. 
Abbreviations: CL/F = clearance; Vd/F = volume of distribution; ka = absorption rate constant; cr2 l = 
variance of proportional component of residual error; cr22 = variance of additive component of residual 
error; NI= Not Identifiable; NA= not applicable 
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Table 4: Final Population Pharmacokinetic Parameters for Model 1 and Model 2 

(FOCE Method) 

Model la Model 2a 

Parameter Parameter Interpatient Parameter Estimates lnterpatient 

(units) Estimates (95% CI) Variabilityb (95% CI) Variabilityb 

(95% CI) (95% CI) 

81CL/hf 44.9 (40.9 - 48.9) 34 (28 - 40) 45.1 (41.6-48.6) 34 (27 - 39) 

82 (Vd/F) L 769 (363 - 1175) 53 229 fixed 99 (76 - 117) 

83 (ka) b-I 1.34 (-1.76 - 4.44) 58 0.845 fixed NI 

84c 0.26 (0.13 - 0.40) 0.305 (0.181 - 0.429) 

cr2 1 0.090 (-0.001 - 0.18) NA 0.035 (-0.005 - 0.075) NA 

cr22 (mg/L) 0.28 (0.003 - 0.55) NA 0.47 (0.28 - 0.66) NA 

• Model 1 - all 3 parameters are estimated; Model 2 - Yd and ka fixed to 229 Land 0.845h-1
, respectively. 

b 
approximate coefficient of variation (%CV) 

c CL/F = 81*(1-84*flu) L/hr where flu=l if the patient was taking concomitant fluconazole therapy, else 
flu=O. 
Abbreviations: CL/F = clearance; Vd/F = volume of distribution; ka = absorption rate constant; cr2 l = 
variance of proportional component of residual error; cr22 = variance of additive component of residual 
error; NI= Not Identifiable; NA= not applicable 
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ABSTRACT 

Simulation studies are useful tools to investigate issues of study design when planning a 

prospective pharmacokinetic analysis of sparsely sampled data. In this study simulated 

data was used to investigate different study designs consisting of 2 samples per individual 

and to investigate the influence of different sizes of a sub-population on the ability to 

detect that sub-population. A one-compartment model with intravenous input was used. 

Two levels of interindividual variability were investigated (30% and 60%), 

intraindividual variability was fixed at 25% and the sub-population had a 30% reduced 

value of clearance (CL). 

The ability to detect the sub-population and to obtain accurate parameter estimates 

deteriorated when interindividual variability was increased from 30% to 60%. When 

interindividual variability was low (30%), a sub-population in which the average value of 

CL was 30% lower than in the general population, could be identified. However, none of 

the designs studied here could consistently identify the sub-population when 

interindividual variability was high (60%). In general, estimates of pharmacokinetic 

parameters were more precise and less biased than estimates of the variability parameters. 

Accurate pharmacokinetic parameter estimates could be obtained using some of the 

designs at both levels of interindividual variability. In contrast, variability parameters 

were unacceptable using all of the designs when interindividual variability was high. The 

performance of one design, which consisted of three sampling windows covering the 

whole dosing interval, was superior to the other designs investigated. 
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Other design factors such as the total sample size, the level of intraindividual variability 

and the use of a different algorithm in NONMEM to estimate parameters were evaluated 

to see if the study design could be further improved upon. This was carried out at the high 

level of interindividual variability. Although modification of some of these factors did 

result in improvement in both the ability to detect the sub-population and in the accuracy 

of parameter estimates, it was still not possible to accurately estimate all of the variability 

parameters using a 2 sample per individual design. 
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INTRODUCTION 

The population approach to pharmacokinetic analysis involves estimating 

pharmacokinetic parameters and their variability within a study population and evaluating 

the effect of demographic and physiological characteristics of the population on the 

pharmacokinetic parameters (1 ). This approach can be used to analyze sparsely sampled 

data from observational studies (2-4) . A number of recent articles in the literature have 

reviewed this topic (5-9) illustrating the considerable interest in the application of this 

approach. Additionally, in February 1999, the Federal Drug Administration (FDA) issued 

a guidance document for the pharmaceutical industry concerning population 

pharmacokinetic studies (10) . This document provides recommendations on the design, 

conduct, analysis and reporting of population pharmacokinetic studies from a regulatory 

perspective. 

As previously mentioned, the population approach can be used when only sparsely 

sampled data are available. When data are sparse the design of the study is important if 

accurate parameter estimates are to be obtained (6, 11). Issues such as the timing of 

samples, the number of samples per individual, the total number of individuals required 

for a population analysis and the quality of the data need to be addressed. 

An example in which the population approach can be effectively implemented is in the 

analysis of sparse data collected during large phase III clinical trials (12) . It is of 

paramount importance that population analyses that are designed to be incorporated into 

these studies should impinge upon the primary objective(s) of the clinical study as little 
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as possible (13) . As the total number of subjects in the study will most likely be dictated 

by the primary objective(s) of the clinical trial this is not an aspect of the study design 

that can be controlled. On the other hand, the number of samples per subject and the 

timing of samples are issues that should be considered when designing the study. To 

encourage good compliance with the study protocol it is important to consider factors 

such as the time spent by clinical investigators, the time spent by the patients in the clinic 

(these studies are mainly conducted on an out-patient basis) and the additional cost of 

assaying samples (6) . For these reasons, a study design that involves taking as few 

samples as possible from each individual is preferable. 

Several investigations of design issues of population pharmacokinetic studies have been 

reported in the literature using simulated data (3 , 11 ,14-23). Many different designs have 

been evaluated such as designs including only 1 sample per individual, designs using a 

one or two-compartment model, and designs using intravenous or oral input. At least 2 

samples per individual are necessary if the approach is to identify intraindividual 

variability and distinguish it from interindividual variability. Thus, if we could assure that 

the quality of the results obtained are not compromised, a 2 sample per individual design 

for a one-compartment model with intravenous input would be a good choice. 

An important application of the population approach is to evaluate the effect of patient 

covariates on the pharmacokinetic parameters within the study population. Techniques 

have been proposed on how best to build a population model to include the effects of 

covariates that may significantly influence pharmacokinetic parameters and explain 
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variability (24,25). However, there is very little information in the literature pertaining to 

the size of a sub-group (possessing the covariate of interest) necessary to successfully 

detect the effect of that covariate. In 1985, Sheiner and Benet published one of the 

earliest papers that specifically addressed the design of population pharmacokinetic 

analyses in drug development trials (1 ). They took an empirical approach and suggested 

that when the full pharmacokinetic screen is implemented (i .e. several samples are taken 

per individual at different times after a dose) then 10-20 individuals in a sub-group would 

suffice and a total of 50 - 100 individuals would be adequate to establish the population 

pharmacokinetics of a drug. This issue was also addressed at an expert meeting on the 

design and conduct of population pharmacokinetic studies held in Europe in 1995 (13). 

Again 20 individuals were proposed for the size of a sub-group based upon the 

experiences of the individuals present. Vozeh et al. suggested that even as few as 10 

individuals in a sub-group would be sufficient in some cases to detect the effect of that 

sub-group (6). In contrast, Breant and colleagues found that to detect a sub-population 

with altered pharmacokinetics within their data set, they required approximately 40 

patients and 4 - 5 blood levels per patient (26). None of these papers specifically 

addressed the magnitude of the effect to be identified, although it was stated that 

decisions should be made on a case by case basis (13) . 

Thus, the objectives of this study were i) to determine if accurate parameter estimates 

could be obtained using different study designs consisting of only 2 samples per 

individual, ii) to evaluate the influence of the size of a sub-group with a 30% reduced 

clearance on the ability to consistently identify that sub-group, and iii) to evaluate the 
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influence of the size of a sub-group on the ability to estimate pharmacokinetic and 

variability parameters in both populations. 

METHODS: 

Pharmacokinetic Model 

Data were simulated based upon the population pharmacokinetic parameters of 

theophylline. The values used were 2.94 L/hr for clearance (CL) and 31.5 L for volume 

of distribution (V d) (27, 28). A one-compartment model with intravenous bolus input was 

used. Plasma concentrations were simulated following a single dose of 300mg. 

Statistical Model 

Interindividual variability in both CL and V d were modeled using an exponential error 

model : 

8j = 8'*exp(rie.)) 
J 

where 8j is the estimate for a pharmacokinetic parameter in the jth individual as predicted 

by the regression model, 8' is the population mean of the pharmacokinetic parameter, 

and rie . represents the random variable that distinguishes the jth individual 
J 

pharmacokinetic parameter from the population mean value predicted by the regression 

model. It was assumed that rie. is a normally distributed random variable with zero mean 
J 

and variance ro2
. 

Intraindividual (residual) variability was also described using an exponential error model: 

Cij = C'ij * exp(Eij) 
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where Cij is the observed serum concentration for the jth individual at time i, C'ij is the 

model predicted serum concentration for the jth individual at time i, and Eij is the residual 

error that represents the difference between the observed concentration and the model 

predicted concentration. Eij was assumed to be normally distributed with zero mean and 

variance cr2
. 

Variability in interindividual variability and intraindividual variability will be represented 

by their standard deviations which are CO cL, co vd and cr for interindividual variability in 

CL, interindividual variability in Vd and intraindividual variability, respectively. When 

the logarithmic model is used to describe either interindividual or intraindividual 

variability, co and cr may be regarded as approximate coefficients of variation. 

Data 

Data were simulated for 100 individuals each of whom contributed two plasma 

concentrations. Thus, one data set consisted of 300 observations, 200 plasma 

concentrations and 100 dosing records. The 100 individuals comprising a data set 

possessed one of two sets of pharmacokinetic parameters. Individuals in Group A had a 

"normal" population value of CL of 2. 94 L/hr and a V d of 31. 5 L whereas individuals in 

the sub-group, Group B, had the same population value for V d but a reduced value for 

CL of2.06 L/hr. This corresponds to a reduction in CL of 30%. A clinical example where 

this may occur is in the case of a drug interaction in which a concomitant medication 

inhibits the metabolism of the study drug causing a reduction in the value for CL. 
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Different ratios of individuals in Group A and Group B were used to investigate the 

influence of the size of the sub-group on the ability to detect that sub-group accurately 

and to estimate the pharmacokinetic and variability parameters in both groups. The ratios 

of patients in Group A to Group B were varied as follows : 90: 10, 80:20 and 70 :30 for 

Groups A and B, respectively. 

Sampling Schedules 

Initially, D-optimal sampling as implemented in ADAPT (29) was used to identify the 

two optimal times to sample based upon a one-compartment intravenous input model. 

They were determined as being as early as possible and as late as possible after a dose. 

To mimic a real life situation in which it is unrealistic to take samples at exactly the same 

time for each individual, a randomized informative block design was used consisting of 

sampling windows (18) . Three designs that used different sampling windows to obtain 

the two samples for each individual were evaluated. The sampling windows for each 

design are shown in Table 1. In Design 1, all patients had the early sample taken between 

0.08 and 1 hour, and a late sample taken between 7 and 8 hours after the dose. Similarly, 

in Design 2 all individuals were sampled between 0.08 and 1 hour, and then between 8 

and 24 hours. In Design 3, the complete dosing interval was split into 3 blocks: the first 

block from 0.08 to 1 hour, the second block from 1 to 8 hours, and the third block from 8 

to 24 hours. Each individual was sampled from two different time blocks. The ratio of 

total samples in the data set was approximately 1: 1: 1 from each block. 
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Data Simulation 

For each of the 100 individuals in a data set, 2 random time points from within the 

appropriate sampling window were generated in Excel. Data were simulated using the 

computer program NONMEM (Non-linear Mixed Effects Modeling) (version 4.0, double 

precision) (30) on an IBM ES-9000 computer. For each scenario, 100 data sets were 

replicated . 

The influence of interindividual variability on the pharmacokinetic parameters was also 

investigated. The study was carried out in the presence of two levels of interindividual 

variability in both CL and Vd, a low level of variability of 30% and a moderately high 

level of variability of 60%. In all cases intraindividual variability was set at 25%. A total 

of 1800 data sets were simulated. 

Effect of Changing Intraindividual Variability 

To investigate the influence of a lower level of intraindividual variability on the ability to 

obtain accurate parameter estimates, Design 3, where the ratio of patients in group A to B 

was 80:20, was repeated using an intraindividual variability of 15% (Design 4). This was 

done in the presence of interindividual variability of 60%. 

Effect of Changing Total Sample Size 

The effect of increasing the total sample size was investigated using Design 3 where the 

ratio of patients in group A to B was maintained at 80:20. The total sample was increased 

from 100 individuals to 200 individuals (Design 5). Thus, the data set used in Design 5 
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consisted of 160 individuals who were sampled from Group A and 40 who were sampled 

from group B. This was done in the presence of interindividual variability of 60% and 

intraindividual variability of 25%. 

Data Analysis 

For each simulated data set, estimation of pharmacokinetic and statistical parameters was 

carried out using NONMEM. Each simulated data set was analyzed using two models i) a 

basic model in which there was no attempt to distinguish between patients from Groups 

A and B and ii) a more complex model (full model) in which an additional parameter was 

included to distinguish between patients in Groups A and B. A drop in the objective 

function of 3. 84 or greater when comparing the full model to the basic model was 

considered statistically significant (p=0.05). In these instances it was concluded that a 

sub-group possessing a reduced value of clearance had been identified using NONMEM. 

Only runs that successfully identified two groups of patients were used to determine the 

accuracy of parameter estimates. The estimation procedure was run in NONMEM using 

the first order (FO) method. 

FO versus FOCE Method 

A number of different methods of calculating parameter estimates can be used in 

NONMEM (30). The first order (FO) method uses a first order approximation method 

that involves linearization of the random effect parameters. This algorithm may produce 

more biased estimates than the first order conditional estimation (FOCE) method. To 

74 



/ 
compare the use of these two mathematical algorithms, Design 3 where the size of Group 

B was 20 was repeated using the FOCE method (Design 6) and the results compared. 

Bias and Precision of Parameter Estimates 

The accuracy of the estimates from each data set were evaluated using the 

percent prediction error (%PE) as described by the following equation: 

%PE = (Ssim - Strue)/ Stme * 1 00 

where Strue is the true population value for the parameter and Ssim is the estimated 

population value of the parameter from one simulated data set. The %PE was calculated 

for the 100 simulated datasets in each scenario. The mean %PE was used as a measure of 

bias and the standard deviation (SD) of %PE was used as a measure of the precision of 

parameter estimation. Previous simulation studies have regarded different magnitudes of 

bias and precision as being acceptable (11 , 17,18,22). In this study, the following 

guidelines were employed: a mean %PE for a parameter ~ 15% was accepted as being 

unbiased and a SD of%PE ~ 35% was accepted as being precise (17) . 

RESULTS 

The percentage of runs in which individuals sampled from Group B were successfully 

identified using the various designs are listed in Tables 2 and 3 and illustrated in Figures 

la and lb. Figure la represents the results when interindividual variability was set at 30% 
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and Figure 1 b represents the results when interindividual variability was set at 60%. The 

following results were obtained on analysis of the data: 

1. The number of runs where Group B was successfully identified was greater for all 

designs when interindividual variability was 30% as compared to 60%. 

2. Both Designs 2 and 3 performed better than Design 1 when interindividual variability 

was 30% but not when interindividual variability was 60%. 

3. In general, using all of the designs, when the size of Group B was increased from 10 

to 20 there was marked improvement in the ability to detect Group B. Increasing the 

size of Group B from 20 or 30 did not offer the same improvement. 

For Designs 1 to 3, bias and precision of pharmacokinetic parameter estimates are shown 

in Tables 4 and 5 and Figures 2 and 3 when interindividual variability was 30% and in 

Tables 6 and 7 and Figures 4 and 5 when interindividual variability was 60%. Bias and 

precision of variability parameter estimates are shown in Tables 4 to 7 and Figures 6 to 9. 

Looking at the pharmacokinetic parameter estimates first, when interindividual variability 

was 30%, all 3 pharmacokinetic parameters were acceptable in terms of bias and 

precision regardless of the design used or the sizes of Group B. When interindividual 

variability was 60% only Design 1 failed to give acceptable estimates. Only the estimate 

of CL of Group B was biased when Group B consisted of 10 individuals. Otherwise, 

using the other designs, all pharmacokinetic parameters were estimated accurately. 
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In general, variability parameters were less well estimated than the pharmacokinetic 

parameters. When interindividual variability was set at 30% (Table 4, Figure 6), Design 1 

performed adequately in terms of bias at all levels. Using Design 3, estimates of cocL and 

co vd were acceptable but estimates of CT were slightly biased. Using Design 2, biased 

estimates of nearly all of the parameters were obtained regardless of the size of Group B. 

However, there was a trend for bias to improve as the size of Group B increased using 

Design 2. 

The situation with respect to precision was different. All levels of both Designs 1 and 2 

produced imprecise estimates of variability parameters although COcL was measured 

precisely using Design 2. There did not appear to be an improvement in precision of the 

r parameter estimates as the size of Group B increased. Using Design 3, estimates were in 
\ 

general more precise than estimates obtained with the other designs but in no case did 

Design 3 produced precise estimates of all 3 variability parameters. However, when 

parameters were found to be imprecise they were only just above the upper limit of 

acceptability. 

When interindividual variability was set at 60%, all designs performed worse than at 

30%. In fact, no design provided estimates of the pharmacokinetic parameters that were 

acceptable in terms of either bias or precision. Taking Design 1 first, COcL and covd were 

unbiased when group B consisted of20 or more individuals but these estimates were 

imprecise. Estimates of CT were biased and imprecise in all cases. Bias and precision of 

some parameter estimates deteriorated as group B got larger. Using Design 3, estimates 
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of CDcL were unbiased only when the size of Group B was 30. Estimates of ro vd were 

unbiased regardless of the size of Group B. Conversely, a was biased in all cases. In 

terms of precision, estimates of CD cL were only marginally imprecise and when Group B 

consisted of 20 individuals the estimates of both rocL and ro v d were acceptable although 

the estimate of a in this scenario was more imprecise as compared to the other cases. 

There does not appear to be an obvious trend in the level of imprecision using Design 3. 

Design 2 produced the most biased estimates. In fact, all parameters were biased 

regardless of the size of Group B and the estimates of a were enormously biased, in the 

magnitude of300% in each case. However, in terms of precision, Design 2 performed 

comparably to Designs 1 and 3. Estimates of both CDcL and ro vd were acceptable except 

ro vd when Group B was 30, which was only marginally imprecise. Estimates of a were 

highly imprecise at all levels and like Design 3 there did not appear to be a definite trend 

in precision as the size of Group B varied. 

Effect of Changing Intraindividual Variability 

The influence of the level of intraindividual variability within the data was investigated . 

The original simulations were conducted using a level of 25% (Design 3). To investigate 

the effect of a lower level , the study was repeated where intraindividual variability was 

reduced to 15% (Design 4) . The results using Designs 3 and 4 are shown in Table 8 and 

Figures IOa and I Ob. In terms of bias and precision, reducing intraindividual variability 

from 25% to 15% did not affect the estimation of the pharmacokinetic parameters or the 

interindividual variability parameters. The only noticeable effect was upon the estimates 
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of intraindividual variability. When intraindividual variability was lower, estimates of CT 

were both more biased and less precise. 

Effect of Changing Total Sample Size 

The results of increasing the total sample size from 100 individuals (Design 3) to 200 

individuals (Design 5) are shown in Table 9 and Figures 1 la and 11 b. Using Design 5, 

the estimate of ro CL was unbiased and estimation of CL of Group B, rovd and CT were 

improved. In terms of precision, the biggest change was in the precision of CT which was 

much improved using Design 5 but still not acceptable. The estimate of rovd was 

marginally worse with Design 5 but still within the acceptable limits. 

FO versus FOCE Method 

The results comparing the FO method (Design 3) to the FOCE method (Design 6) are 

shown in Table 10 and Figures 12a and 12b. Unbiased and precise estimates of all 3 

pharmacokinetic parameters were obtained using both methods. Variability parameters 

were less biased and more precise using the FOCE method. Only CT was biased using the 

FOCE method. The FO method produced an imprecise estimate of CT whereas all 3 

variability parameters were precise using the FOCE method. 

DISCUSSION 

The population approach to pharmacokinetics is used to obtain estimates of the 

pharmacokinetic parameters and their variability within a population. The approach is 

versatile in that it can be applied in a variety of different situations e.g. when data is rich, 
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when data is sparse or when a combination of the two kinds of data is available. In the 

case of phase III clinical trials, when data is sparse and there is a large, heterogeneous 

population in comparison to the populations of traditional studies, more realistic 

estimates of the variability of the parameters can be obtained. Patient specific parameters 

such as demographic characteristics or physiological variables can be evaluated as 

potential sources to explain some of the variability. In this way, the behavior of the drug 

in different populations can be characterized and the need for dosage adjustment 

addressed. When data are sparse, particular attention must be given to the design of the 

study as good quality results can only be achieved if good quality data are available. 

There are many factors that are influential and should be taken into consideration when 

the study is being planned. These include the pharmacokinetic characteristics of the drug 

under study, the primary objectives of the study, the timing and number of samples, the 

heterogeneity of the study population and the cost of collecting and analyzing the 

samples. Another consideration to take into account is the size of a sub-population 

possessing a characteristic that is to be evaluated for an effect upon a pharmacokinetic 

parameter. If an effect is to be detected then the sub-population must be of sufficient size 

to provide the study with the power to detect this effect. Simulation studies are ideal tools 

to investigate these types of issues prior to execution of the study. Different designs can 

be investigated to determine the optimal design for a given situation. 

In this study, data were simulated using a one-compartment model with intravenous input 

according to various study designs. Initially 3 designs were evaluated . Each design 

comprised 2 samples per individual and 100 individuals. In Design 1 the samples were 
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taken between 0.08 and 1 hour and between 7 and 8 hours, in Design 2 they were taken 

between 0.08 and 1 hour and 8 and 24 hours and in Design 3 each individual contributed 

2 samples from 2 of the following 3 sampling windows: 0.08 to l hour, l to 8 hours and 8 

to 24 hours. Additionally, different combinations of individuals were used to make up the 

study population. Individuals could be sampled from one of two groups, Group A where 

the population average value of CL was 2. 94 L/hr and Group B where the population 

average value of CL was 2.06 L/hr. The Group B average value represents a 30% 

reduction in CL. The efficiency of the different study designs in obtaining accurate 

parameter estimates was evaluated. 

First, the ability to identify the sub-population was investigated. When interindividual 

variability was low, the performance of Design 1 was substantially worse than Designs 2 

and 3 in identifying Group B. In order to detect group B, where the population average 

value of CL is reduced, the study design must provide informative data about CL. The 

half-life of the drug in this study was 7.4 hours. Using Design 1, the late sample was 

taken between 7 and 8 hours after administration of the drug i.e. approximately one half­

life after dosing. Ette et al used a single sample per individual design and found that 

when the late sampling point was approximately one half-life after dosing, performance 

of the study design was worse than when the sample was taken at a later time (19) . They 

found that the optimal time period to gain information about CL was 1.4 - 3 half-lives 

after administration of the drug. The results observed in this study are consistent with this 

observation which suggests that Design 1 performed badly because it did not contain 

enough relevant information to obtain accurate estimates for CL of either group A or 
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group B. On the other hand, Designs 2 and 3 did contain information within the optimal 

period to estimate CL and thus these designs performed better. 

At a level of 30% interindividual variability, increasing the size of Group B from 20 to 30 

individuals did not improve upon the ability to detect Group B. Thus, the previously 

suggested size of a sub-population of 20 (1 , 13) appears to be acceptable to detect a 30% 

or greater change in CL when interindividual variability is low. 

In the case of rugh interindividual variability (60%), it became substantially more 

difficult to detect group Busing all designs. In fact, none of the designs were consistently 

able to detect the sub-population. Even when the size of the sub-population was 30, the 

number of runs in wruch the sub-population was successfully identified was only 60 to 

70% for the various designs. In contrast to the performance observed when 

interindividual variability was low, increasing the size of Group B from 20 to 30 

individuals resulted in marked improvement in detecting group B for Designs 1 and 3. 

Design 1 performed better than Designs 2 and 3 in detecting the sub-group when the size 

of the sub-group was 30, 69% detected versus 59% and 62% for Designs 2 and 3, 

respectively. There is no obvious reason why this would be the case and it may just be a 

spurious finding considering the overall low performance of all designs. 

None of the study designs investigated here were adequate when variability was high. A 

study by Breant et al used real data on cyclosporine where WcL was approximately 30 -

40% and ro vd was 60- 100%. They investigated the effect of sample size on the ability to 
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accurately determine the pharmacokinetic parameters of a one-compartment model (26) . 

By stepwise addition of 1 sample at a time starting from just 1 sample in 1 patient they 

found that parameter estimates tended to converge when 10 - 20 patients contributed 2 -

4 blood samples each. However to detect a sub-population with altered pharmacokinetics 

they required more patients and more samples per patient (approximately 40 patients and 

4 - 5 blood levels per patient). A drawback to their study was that an optimal sampling 

strategy was not employed in selecting the blood levels. The lack of planned sampling 

times and the small number of subjects in total may have contributed to the large number 

of samples required per individual to detect the sub-population. The situation in this study 

was similar in that none of the 2 sample designs investigated performed adequately. 

Consequently, more samples per individual may be required to detect a 30% reduction in 

CL when interindividual variability is 60% or higher. Under these circumstances, the 

previously reported size of 20 for a sub-population would not be sufficient. 

An alternative approach to increasing the number of samples per individual may be to 

increase the total size of the study population. This was investigated using Design 3 (100 

individuals) and Design 5 (200 individuals) . The percentage of individuals in group B 

was maintained at 20% and interindividual variability was set at 60%. Increasing the 

total sample size resulted in marked improvement in the ability to detect the sub­

population. The percentage of runs in which group B was successfully identified 

increased from 49% to 80%. Thus, increasing the total number of individuals in the study 

population yet maintaining the number of samples per individual at 2, aided in identifying 

the sub-group. 
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When interindividual variability was 60% and either intraindividual variability was 

reduced to 15% or the FOCE method was used to analyze the data, the effect on the 

ability to detect the sub-group was only minimal. When the size of group B was 20% of 

the total population, changing either of these design factors resulted in an increase from 

49% to 53% and 54%, respectively, of runs in which the sub-population was successfully 

identified. 

This study shows that, especially when the drug exhibits a high degree of interindividual 

variability, in the range of 60%, a non-significant effect of a covariate may be a 

consequence of inadequate power to detect an effect rather than a lack of effect 

altogether. Only a maximum of approximately 60 - 70% of runs for a given design 

successfully identified the sub-population in this study under these conditions. Thus, 

caution needs to be taken when interpreting non-significant effects of covariates in 

population pharmacokinetic studies. 

The accuracy of estimates of the pharmacokinetic parameters of the model were used to 

evaluate the different designs. When interindividual variability was low, accurate 

estimates of CL in Group A, CL of group B and V d were obtained regardless of the size 

of Group Band irrespective of the design used (Tables 4 and 5). Estimates of Vd were 

stable across designs and different sizes of Group B. In all designs tested at least two­

thirds of the population were sampled during the period 0.08 to 1 hour after the dose. It is 

the very early times after administration of a single dose that provides information about 
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the parameter, Yd. Thus, it would appear that all of the designs included sufficient 

information to accurately estimate V d. However, the designs differed in the amount of 

information that was available to obtain estimates of CL. As previously mentioned, the 

optimal time to obtain information about CL has been shown to be 1.4 -3 half-lives after 

a dose. Both Designs 2 and 3 consisted of sampling windows that encompassed this 

period and so they would be expected to perform better than Design 1. When the size of 

the sub-population was 10 this was clearly evident, both bias and precision were 

substantially worse with Design 1 as compared with Designs 2 and 3. In general, the 

estimates of both CL of Group A and CL of Group B were worse for Design 1 as 

compared to Designs 2 and 3. However, estimates were still within acceptable limits of 

precision using Design 1. 

When interindividual variability was high (60%), all 3 pharmacokinetic parameters were 

estimated with less precision and greater bias than at the lower level of interindividual 

variability (30%). Intuitively this makes sense that as the variability inherent in a 

parameter increases it becomes harder to accurately estimate that parameter with the 

same fixed population. Overall , the performance of Design 1 was poorest in terms of 

estimating both CL of Group A and CL of Group B. This is likely to be due to the reason 

given previously, the lack of informative data on these parameters. For Designs 1 and 3 

there was marked improvement in the bias of the estimates of CL of Group B when the 

size of that group was increased from 10 to 20. Very little change was observed when the 

size of Group B was increased from 20 to 30. In contrast, Design 2 performed similarly in 

terms of estimating the CL of Group B irrespective of the size of Group B. All 
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individuals in Design 2 had a sample taken in the time range necessary to estimate CL 

accurately, compared to only two-thirds of individuals in Design 3 and none in Design 1. 

This may explain why Design 2 performed better than the other designs when the size of 

Group B was 10. In general, using all designs, precision of CL estimates improved as the 

size of Group B increased but estimates were acceptable at all levels. As seen with the 

low level of interindividual variability, when interindividual variability was high, 

estimates ofVd were stable and accurate in terms of both bias and precision across 

designs and irrespective of the size of the sub-group. 

It is accepted that for a fixed sample size, pharmacokinetic parameters are estimated more 

accurately than the associated variability parameters (11 ,22,31). This observation was 

confirmed at both levels of interindividual variability studied here. When interindividual 

variability was low, Design 1 produced acceptable estimates of all variability parameters 

in terms of bias yet all of the estimates were imprecise. In a previous simulation study, 

Shein er and Beal found that an imprecise estimate of covd prohibited the detection of bias 

in that parameter (3). Thus, the high level of imprecision observed in estimating all of the 

variability parameters using Design 1 may have masked the ability for bias to be 

detected. With Design 2 almost all of the parameters were biased regardless of the size of 

the sub-group. However, precision of COcL was better with Design 2 than it was with 

Design 1 although this was the only parameter using Design 2 to be acceptable in terms 

of precision. This is probably a direct consequence of the more informative study design 

with respect to CL. Design 3 performed the best overall in estimating the variability 

parameters. The majority of parameters were acceptable in terms of bias, the exception 
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being cr. Precision of estimates was relatively unaffected by the size of Group B and 

estimates were precise or only marginally imprecise in most instances. Design 3 differed 

from the two previous designs in that three sampling windows were used to obtain 

samples even though the number of samples per individual remained at two. In so doing, 

the whole of the concentration-time profile was covered from 0.08 hours to 24 hours after 

the dose. Ensuring that samples were taken at random has been shown in the past to be a 

robust design (1 , 12,32). The use ofrandom sampling can protect against misspecification 

of the underlying structural model and situations where a single model is not adequate for 

all individuals . Optimal sampling has been shown to be of benefit when samples are 

sparse (33 ,34). However, a drawback to its use is that optimal sampling does not take 

into consideration interindividual variability so an optimal time for one individual may be 

sub-optimal for another especially if interindividual variability is high (18). The use of 

sampling windows employed in Design 3 ensured that there was a randomness of the data 

throughout the dosing interval including times that provide optimal information on the 

parameters of the model. This may account for the superior performance of this design 

compared to the other two designs. Using Design 3, when the size of Group B was 10 or 

20, the variability estimates were virtually identical in terms of precision. When the size 

of Group B was increased to 30, estimates of fficL and rovd improved but the estimate of cr 

deteriorated. In a previous simulation study in which a 2 sample per individual design 

was implemented, there was difficulty differentiating between interindividual and 

intraindividual variability (15) . Inclusion of a third sample per individual was required to 

effectively partition the two types of variability. At a low level of interindividual 

variability, this phenomenon was apparent using Design 2 and Design 3. It was most 
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obvious with Design 2 perhaps because of the large difference in time between the two 

samples from each individual in this design (the first sample was taken between 0.08 and 

1 hour and the second sample between 8 and 24 hours) . Some of the individuals in 

Design 3 had samples taken closer together which may have aided in partitioning the 

variability correctly with this design. 

As seen with the pharmacokinetic parameters, estimation of the variability parameters 

deteriorated when interindividual variability was increased to the higher level of 60%. 

Design 2 performed worst overall at estimating the variability parameters at this level of 

interindividual variability. All estimates were highly biased, especially estimates of a 

which exceeded 300%. Estimates of CD cL and CD v d were for the most part precise but the 

estimates of a were very imprecise. There was no trend for estimates to improve when 

the size of Group B was increased. Both CD cL and ro v d were associated with negative 

biases and a with positive biases. This is possibly a result of the difficulty in 

differentiating between interindividual and intraindividual variability associated with the 

2 sample design. None of the levels of Design 1 provided unbiased estimates of all of the 

parameters. There was a trend for bias in CD c L and a to increase and bias in ro v d to 

decrease as the size of Group B increased. This may be a consequence of the difficulty 

associated with estimating these parameters from only two samples as already mentioned. 

Design 3 provided unbiased estimates of ro v d irrespective of the size of group B and 

unbiased estimates of CDcL only when the size of Group B was 30. In all cases, the 

estimates of a were highly biased. There was no apparent trend in the precision of 

parameter estimates using Design 3. When the size of the sub-group was 20, precision in 
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( COcL and rovd improved but at the expense of precision in cr. This problem in partitioning 

variability was seen with all of the study designs although with Design 2 it was more 

pronounced. With Designs 1 and 3, at least some of the individuals had samples that were 

closer together in time which may have helped to partition the variability. 

Design 3 in which the sub-population consisted of 20 individuals was chosen as a base 

model to evaluate 3 additional modifications to the study design. First, the effect of 

reducing the level of intraindividual variability was investigated (Design 4), second the 

effect of increasing the size of the total study population was considered (Design 5) and 

finally, the effect of using the FOCE algorithm in NONMEM instead of the FO method 

was investigated (Design 6). Each additional factor was considered separately at the high 

level of interindividual variability of 60%. 

The level of intraindividual variability selected for this study (25%) represents a 

moderately variable drug (16) . Previous simulation studies (3,11) have often used a more 

modest level of 15%, a value these researchers feel is more commonly observed 

clinically. When the effect of decreasing the intraindividual variability from 25% to 15% 

was studied, the only parameter estimate that was markedly affected was cr. Both bias and 

precision were worse when intraindividual variability was 15%. As previously 

mentioned, when only two samples are taken per individual there are problems 

distinguishing the two types of variability. The erroneous partitioning of interindividual 

variability into intraindividual variability leads to a proportionally larger error in the 

intraindividual variability when the starting value is low. 
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( Initially in this study, designs were investigated using a fixed number of samples per 

individual in a fixed total population. Precision of parameter estimates is influenced by 

the total size of the study population. Thus, increasing the size of the total population 

from 100 individuals (Design 3) to 200 individuals (Design 5) should result in more 

accurate parameter estimates. This is in fact what was observed (Table 9). The biggest 

change occurred in the precision of CT which was much improved using Design 5 although 

it was still not acceptable. The estimate of ro v d was slightly worse with Design 5 but still 

within the acceptable limits. Thus, doubling the sample size did not lead to acceptable 

estimates of all parameters although some improvement was observed. Using Design 5 

the estimate of CDcL was unbiased and estimation of CL of Group B, ro v d and CT improved 

in terms of bias when compared to Design 3. Increasing the total sample size further may 

lead to further improvements in the parameter estimates. 

The final factor to be evaluated was the effect of using the FOCE algorithm as 

implemented in NONMEM. In early versions of the NONMEM program, only the FO 

method was available. This method involves a linear approximation of the random effect 

parameters in the model that may lead to bias in parameter estimates. In contrast, the 

FOCE method does not use this linear approximation and so may be expected to produce 

less biased parameter estimates. A problem in the past with the FOCE method was that it 

is more complex than the FO method and so requires much more computer time to 

perform an analysis especially with large data sets and/or complex structural models. 

However, the improvement in the speed of computers means that this is not as great of an 

issue today. In this study, there was a substantial difference between the two methods 
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with respect to estimation of the variability parameters (Table 10). Using the FOCE 

method, all parameters were precise and only cr was biased. However, with the FO 

method, cr was more biased and imprecise and coc1 was biased. In general terms, all of the 

variability parameters were better estimated when the FOCE method was used in 

NONMEM as opposed to the FO method. This is in keeping with the observations of 

Jonsson and colleagues who found that the FOCE method produced more accurate 

estimates of some parameters (14). 

CONCLUSIONS: 

This study evaluated 3 sampling designs in various study populations. The designs were 

evaluated in terms of their ability to provide accurate estimates of the parameters of the 

model and to identify a sub-population with reduced clearance. These results show that 

modification of various details of the design influenced the results obtained. In addition, 

other factors such as the primary objectives of the study and the cost of analyzing 

samples need to be taken into consideration when designing a population 

pharmacokinetic study. Thus each population study should be considered on an 

individual basis and the factors relevant to that situation can be assessed. 

Under the conditions of this study, the following general conclusions on study design can 

be drawn: 

1. When interindividual variability was low (30%), a sub-group of 20 individuals was 

adequate to detect a sub-group in which CL was reduced by 30%. No benefit was 
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observed when the size of the sub-population was increased to 30 but there was 

deterioration when the sub-population was reduced to 10. 

2. When interindividual variability was high (60%), a sub-group of 30 was not enough 

to consistently identify the sub-group. No design identified the sub-group more than 

70% of the time. Thus, when interindividual variability was high, none of the 2 

sample designs evaluated in this study could consistently identify a sub-group with a 

30% reduced CL. 

3. When interindividual variability was high, increasing the size of the sub-group 

beyond 30% of the total population or increasing the number of samples per 

individual may help to identify the sub-group. These effects were not investigated in 

this study. 

4. When interindividual variability was high, increasing the total size of the study 

population from 100 individuals to 200 individuals resulted in marked improvement 

in the ability to identify the sub-group. 

5. Both pharmacokinetic parameters and variability parameters were more difficult to 

estimate when interindividual variability was high. 

6. All designs accurately estimated the pharmacokinetic parameters when 

interindividual variability was 30%. At the 60% level, Vd estimates were stable and 

estimates of CL were acceptable when study designs contained samples taken at later 

times i.e. 1 to 3 half-lives after administration of the drug. 

7. Of the 3 sampling designs investigated, one design consisted of 3 sampling windows 

that covered a period of approximately 3 half-lives. This design performed the best 

overall of the designs and when interindividual variability was low, most of the 
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variability parameters could be estimated accurately using this design whereas the 

other 2 designs performed badly at this level. When interindividual variability was 

high, none of the designs tested were able to produce acceptable estimates of 

variability parameters. Additionally, all designs suffered from the inability to 

differentiate interindividual variability from intraindividual variability. 

8. The difficulty in partitioning variability was more pronounced using a lower level of 

intraindividual variability. When the true value for cr is lower, interindividual 

variability that is wrongly partitioned as intraindividual variability will have a greater 

effect upon the estimate of cr. This explains why the estimate of cr deteriorated at the 

lower level of intraindividual variability. 

9. Increasing the total size of the study population resulted in better detection of the sub­

group and an increase in the accuracy of some parameter estimates. 

10. At the high level of interindividual variability studied, the FOCE method resulted in 

marked improvement of the variability estimates as compared to the FO method. Use 

of the FOCE method did not affect the ability to detect the sub-population. 

In summary, Design 3 performed best overall. This design consisted of 3 sampling 

windows that ensured a random spread of the data throughout the dosing interval 

including the optimal time periods to gain information on individual parameters. 

However, at the high level of interindividual variability studied here ( 60% ), this design 

still did not perform consistently. 
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Table 1: Sampling Windows for Designs 1 to 3. 

Design Time of samples 1 and 2 (hrs) 

1 0.08 - 1 and 7 - 8 

2 0. 08 - 1 and 8 - 24 

0.08 - 1 and 1 - 8 

3 or 

0.08 - 1 and 8 - 24 

or 

1 - 8 and 8 - 24 
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Table 2: Percent of NONMEM Runs in Which Group B was 

Successfully identified when Interindividual Variability was 30%. 

Design a Number of Individuals Percent Runs where Group B 

in Group B was Successfully Identified 

1 10 59 
1 20 73 
1 30 84 

2 10 67 
2 20 94 
2 30 97 

3 10 74 
3 20 93 
3 30 93 

a Details of Designs 1 to 3 are given in Table 1. 
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Table 3: Number ofNONMEM Runs in Which Group B was 

Successfully identified when lnterindividual Variability was 60% 

Designa Number of Individuals Percent Runs where Group B 

1 

1 

1 

2 

2 

2 

3 

3 

3 

4 

5 

6 

in Group B 

10 

20 

30 

10 

20 

30 

10 

20 

30 

20 

20 

20 

was Successfully Identified 

27 

54 

69 

41 

59 

59 

37 

49 

62 

53 

80 

54 

a Details of Designs 1 to 3 are given in Table 1. Designs 4 to 6 are the same as Design 3 
except for the following modifications: Design 4 uses a level of intraindividual variability 
of 15% (Design 3 uses 25%), the total population for Design 5 is 200 individuals (Design 3 
is 100 individuals), and Design 6 was analyzed using the FOCE method in NONMEM 
(Design 3 used the FO method). 
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Table 4: Percent Bias of Parameter Estimates using all Three Designs when 

Interindividual Variability in Clearance and Volume of Distribution were 30%. 

Design Ratio of CL of CL of Vd COcL CO yd 

Group A: Group A Group B 
Grou_p_B 

l " 90:10 3 -9 -7 5 2 10 

80 :20 5 -1 -7 -5 10 3 

l 70 :30 4 2 -7 10 7 -3 

2b 90 :10 -4 -6 -6 -27 -1 6 36 

2 80:20 -4 -1 -5 -27 -16 31 

2 70:30 -4 0 -6 -22 -11 31 

3c 90:10 -l -3 -5 -12 -3 11 

3 80:20 -2 -3 -5 -12 -3 18 

3 70:30 -2 0 -6 -13 -2 18 

Abbreviations: CL =Clearance, Yd = Volume of Distribution, WCL represents interindividual variability of 
CL, wvd represents interindividual variability of Yd, cr represents intraindividual variability. 
• first sample taken between 0.08 and l hour and second sample taken between 7 and 8 hours. 
b first sample taken between 0.08 and l hour and second sample taken between 8 and 24 hours. 

c 2 samples taken from 2 of the 3 following sampling windows : 0.08 to l hour, l to 8 hours and 8 to 24 
hours. 
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Table 5: Percent Precision of Parameter Estimates using all Three Designs when 

Interindividual Variability in Clearance and Volume of Distribution were 30%. 

Design Ratio of CL of CL of Vd ro cL ffivd er 
Group A: Group A Group B 
GrouJ!_B 

l " 90:10 5 16 4 77 42 63 

l 80:20 5 13 4 73 48 50 

l 70:30 5 11 4 74 39 51 

2b 90:10 3 11 3 28 39 57 

2 80:20 4 8 4 27 48 61 

2 70:30 4 7 4 32 44 60 

3c 90:10 4 11 4 36 37 33 

3 80:20 4 11 4 36 38 34 

3 70:30 5 9 4 34 35 43 

Abbreviations: CL =Clearance, Yd= Yolwne of Distribution, ro CL represents interindividual variabili ty of 
CL, ro vd represents interindividual variability of Yd, er represents intraindividual variability. 
• first sample ta.ken between 0.08 and l hour and second sample taken between 7 and 8 hours. 
b first sample taken between 0.08 and 1 hour and second sample taken between 8 and 24 hours. 

c 2 samples taken from 2 of the 3 following sampling windows: 0.08 to l hour, 1 to 8 hours and 8 to 24 
hours. 
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Table 6: Percent Bias of Parameter Estimates using all Three Designs when 

Interindividual Variability in Clearance and Volume of Distribution were 60%. 

Design Ratio of CL of CL of Vd o:>cL o:>vd 
Group A: Group A Grou11 B 
Grou_J!_B 

l" 90 :10 13 -16 -12 -6 30 -23 

l 80:20 13 2 -13 -9 10 31 

70 :30 15 5 -13 -13 7 66 

2b 90:10 -7 -9 -13 -58 -48 330 

2 80:20 -7 -9 -15 -63 -49 321 

2 70 :30 -8 -7 -12 -59 -43 326 

3c 90:10 6 -13 -12 -21 -1 79 

3 80 :20 3 -5 -11 -25 -7 97 

3 70 :30 4 -4 -12 -15 3 83 

Abbreviations: CL =Clearance, Yd= Volume of Distribution, WCL represents interindividual variability of 
CL, wvd represents interindividual variability of Yd, cr represents intraindividual variability. 
• first sample taken between 0.08 and l hour and second sample taken between 7 and 8 hours. 
b first sample taken between 0.08 and 1 hour and second sample taken between 8 and 24 hours. 

c 2 samples taken from 2 of the 3 following sampling windows: 0.08 to l hour, l to 8 hours and 8 to 24 
hours. 
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( Table 7: Percent Precision of Parameter Estimates using all Three Designs when 

Interindividual Variability in Clearance and Volume of Distribution were 60%. 

Design Ratio of CL of CL of Vd CilcL (i)yd cr 
Group A: Group A Group B 
Grouj>_B 

i · 90:10 9 25 7 27 43 109 

1 80:20 9 17 6 47 48 165 

1 70:30 8 18 5 55 39 162 

2b 90:10 6 28 7 22 30 158 

2 80:20 6 15 6 15 25 155 

2 70:30 6 10 7 26 38 183 

3c 90:10 9 21 9 38 45 99 

3 80:20 7 14 7 28 26 102 

3 70 :30 9 14 7 38 58 93 

( 
Abbreviations: CL ==Clearance, Vd ==Volume of Distribution, roCL represents interindividual variability of 
CL, rovd represents interindividual variability of Vd, cr represents intraindividual variability. 
• first sample taken between 0.08 and 1 hour and second sample taken between 7 and 8 hours. 
b first sample taken between 0.08 and 1 hour and second sample taken between 8 and 24 hours. 

c 2 samples taken from 2 of the 3 following sampling windows: 0.08 to l hour, 1 to 8 hours and 8 to 24 
hours. 

( 
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Table 8: Percent Bias and Precision of Parameter Estimates using Different Levels 

of Intraindividual Variability. 

Parameter % Bias % Precision 

Design 3 Design 4 Design 3 Design 4 

Group A CL 3 6 7 8 

Vd -11 -10 7 7 

GroupB CL -5 -2 14 14 

COcL -25 -21 28 25 

covd -7 -6 26 26 

cr 97 163 102 208 

Abbreviations: CL =Clearance, Yd= Volume of Distribution, co cL represents interindividual variability of 
CL, covd represents interindividual variability of Yd, cr represents intraindividual variability. 
Both Design 3 and Design 4 consist of 2 samples per individual taken from three sampling windows - see 
Table 1. 
Design 3: Intraindividual variability = 25%, interindividual variability = 60%. 
Design 4: Intraindividual variability= 15%, interindividual variability= 60%. 
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Table 9: Percent Bias and Precision of Parameter Estimates using Different Total 

Numbers of Individuals. 

Parameter % Bias % Precision 

Design 3 Design 5 Design 3 Design 5 

Group A CL ..... 3 74 6 .) 

Vd -11 -12 74 56 

GroupB CL -5 -1 14 136 

COcL -25 -12 28 266 

covd -7 -5 26 34 

cr 97 86 102 72 

Abbreviations: CL =Clearance, Vd = Volume of Distribution, ffi cL represents interindividuaJ variability of 
CL, ffivd represents interindividuaJ variability of Vd, cr represents intraindividuaJ variability. 
Both Design 3 and Design 5 consist of 2 samples per individual taken from three sampling windows - see 
Table l. 
Design 3: Total number of individuals= 100, interindividual variability = 60%, intraindividuaJ variability = 
25%. 
Design 5: Total number of individuals= 200, interindividual variability = 60%, intraindividuaJ variability = 
25%. 
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Table 10: Percent Bias and Precision of Parameter Estimates obtained when the FO 

Method was compared to the FOCE Method. 

Parameter % Bias % Precision 

Design 3 Design 6 Design 3 Design 6 

Group ACL 3 9 7 11 

Vd -11 -6 7 7 

Group B CL -5 -8 14 13 

<DcL -25 10 28 24 

<Dvd -7 -2 26 21 

CJ 97 -45 102 25 

Abbreviations: CL =Clearance, Yd= Volume of Distribution, coCL represents interindividual variability of 
CL, covd represents interindividual variability of Yd, cr represents intraindividual variability. 
Both Design 3 and Design 6 consist of 2 samples per individual taken from three sampling windows - see 
Table l. 
Design 3: FO method used, interindividual variability = 60%, intraindividual variability = 25%. 
Design 6: FOCE method used, interindividual variability= 60%, intraindividual variability= 25%. 
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Figures la - b: Percent Runs in which Group B was 
Successfully Identified 

Figure la: Interindividual Variability set at 30% 
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Figure lb: Interindividual Variability set at 60% 
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Design I: I sample. taken between 0.08 and 1 hour, and I taken between 7 and 8 hours 

Design 2: 1 sample taken between 0.08 and 1 hour, and I taken between 8 and 24 hours 

Design 3: 2 samples taken from 2 of 3 sampling windows: 0.08 to I hour, I to 8 hours 

and 8 to 24 hours 
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Figures 2a - c: Percent Bias in Pharmacokinetic Parameter Estimates 
when Interindividual Variability is Set at 30%. 
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Design I: l sample taken between 0.08 and 1 hour, and 1 taken between 7 and 8 hours 

Design 2: 1 sample taken between 0.08 and l hour, and l taken between 8 and 24 hours 

Design 3: 2 samples taken from 2 of 3 sampling windows: 0.08 to 1 hour, 1 to 8 hours 

and 8 to 24 hours 
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Figures 3a - c: Percent Precision in Pharmacokinetic Parameter Estimates 
when Interindividual Variability is Set at 30%. 
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and 8 to 24 hours 
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Figures 4a - c: Percent Bias in Pharmacokinetic Parameter Estimates 
when Interindividual Variability is Set at 60%. 

Figure 4a: Design 1 
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Figures Sa - c: Percent Precision in Pharmacokinetic Parameter Estimates 
when Interindividual Variability is Set at 60%. 
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Figures 6a - c: Percent Bias in Variability Parameter Estimates 
when Interindividual Variability is Set at 30%. 
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Design 1: 1 sample taken between 0.08 and 1 hour, and 1 taken between 7 and 8 hours 
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Design 3: 2 samples taken from 2 of 3 sampling windows: 0.08 to 1 hour, 1 to 8 hours 
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Figures 7a - c: Percent Precision in Variability Parameter Estimates 
when Interindividual Variability is Set at 30%. 
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Figures Sa - c: Percent Bias in Variability Parameter Estimates 
when Interindividual Variability is Set at 60%. 
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Figures 9a - c: Percent Precision in Variability Parameter Estimates 
when Interindividual Variability is Set at 60%. 
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FigureslOa - b: Percent Bias and Precision in Parameter Estimates 
comparing Design 3 to Design 4. 
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Figureslla - b: Percent Bias and Precision in Parameter Estimates 
comparing Design 3 to Design 5. 
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Figuresl2a - b: Percent Bias and Precision in Parameter Estimates 
comparing Design 3 to Design 5. 
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SUMMARY OF CONCLUSIONS 

The population approach to pharmacokinetic analysis is a relatively new approach that 

has gained acceptance as a tool to aid in the drug development process. This is illustrated 

by the number of articles on the subject that have been published recently, both reviewing 

and applying the methodology, and the publication by the Federal Drug Administration 

(FDA) of a document in February 1999 providing guidance to the pharmaceutical 

industry on the conduct, design and analysis of these studies. 

A major advantage of the population approach is the ability to apply the methodology in 

situations when only sparse data per individual is available. By doing so, large, 

heterogeneous populations can be studied to obtain estimates of the variability of the 

pharmacokinetics of the drug in a population more representative of the true population 

to be treated. Additionally, the effects of patient covariates, such as body weight and 

gender, can be evaluated for an influence on the pharmacokinetic parameters and the 

variability of the drug. If applicable, decisions to modify the dose in specific sub­

populations can then be taken based on this knowledge. 

The pharmacokinetic parameters of the protease inhibitor, nelfinavir were determined 

using sparse data obtained from patients enrolled in a phase III clinical study and the 

effects of patient covariates on the pharmacokinetic parameters were investigated. The 

data was such that the majority of patients in the study had blood samples taken on two 

study visits for analysis of nelfinavir concentrations. Two samples were taken on each 
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occasion in accordance with a study protocol at two hours post-dose and immediately 

pre-dose. 

The results showed first, that clearance was estimated accurately and the estimate 

obtained was in agreement with the estimates from previously conducted traditional 

studies. However, problems were encountered in estimating the other structural model 

parameters, volume of distribution and the absorption rate constant in addition to their 

variability. This was likely to be a consequence of the study design. Information early in 

the dosing interval , the period that contains information on volume of distribution and the 

absorption rate constant, was insufficient. There was only one early sample per dosing 

interval for each patient and there was very little variability in the timing of these 

samples, most were around 2 hours post dose. In contrast, there was good spread of the 

data at later time points allowing accurate estimation of clearance. Optimal sampling 

times were used in this study to obtain information on the pharmacokinetics of nelfinavir. 

It has previously been shown that there are pitfalls to the use of optimal sampling times 

e.g. ifthere is model misspecification or high interindividual variability which resulted in 

sub-optimal times for some patients. Random sampling has been advocated by many 

investigators to protect against this happening. The randomness of the later time points 

allowed clearance to be accurately estimated. 

In an attempt to assess the impact of poor estimation of volume of distribution and the 

absorption rate constant on the estimation of clearance, these parameters were fixed to 

values obtained from analysis of more extensive data. When the data was re-analyzed 
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using this model, the estimates obtained for clearance and its variability were similar to 

the previous estimates obtained when volume of distribution and the absorption rate 

constant were not fixed . Thus the inability to determine volume of distribution and the 

absorption rate constant did not affect the ability to estimate clearance. 

Due to the difficulties in estimating volume of distribution, the effects of various patient 

covariates were only evaluated on clearance. Concomitant use of the azole antifungal, 

fluconazole was the only covariate found to significantly effect clearance. It resulted in a 

reduction in clearance of nelfinavir of approximately 30%. Concomitant use ofrifabutin 

had previously been shown to affect clearance but it was not significant in this analysis. 

This was probably due to lack of power to detect the effect rather than a lack of effect 

altogether as only 5 of 174 patients were taking this concomitant drug. 

Analysis of this real data set highlighted the fact that a well designed study is essential if 

accurate pharmacokinetic parameters are to be obtained and the effects of covariates are 

to be identified when the population approach is applied to sparse data. Simulation 

studies can be effectively used to investigate various design issues prior to conducting the 

study. Thus, a study using simulated data was conducted to evaluate different study 

designs on the ability to accurately determine parameter estimates. Additionally, the 

effect of different sizes of a sub-population, in which clearance is reduced by 30%, was 

evaluated on the ability to detect that sub-population. 
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The study evaluated 3 different study designs each comprising 2 samples per individual 

in 100 individuals. Individuals were sampled from 2 groups, Group A in which 

individuals had a ' normal ' value of clearance and Group Bin which individuals had a 

30% reduced value of clearance. The one-compartment model with intravenous input was 

used and two levels of interindividual variability were investigated, a low level of30% 

and a high level of 60%. lntraindividual variability was fixed at 25%. 

The ability to detect the sub-population with reduced clearance was better when 

interindividual variability was low. When Group B consisted of 20 individuals this sub­

population could be consistently identified with the designs that included sampling times 

1 to 3 half-lives after the dose was administered. At the high level of interindividual 

variability, none of the designs investigated were consistently able to identify the sub­

population even when that population consisted of 30 individuals. Increasing the total 

number of subjects aided in identifying the sub-population when interindividual 

variability was high. 

Both pharmacokinetic parameters and variability parameters were more difficult to 

estimate when interindividual variability was high. Pharmacokinetic parameters were 

accurately estimated when interindividual variability was 30%. The designs with the later 

sampling times were also able to estimate the pharmacokinetic parameters accurately 

when interindividual variability was 60%. 
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One of the designs investigated performed better than the other designs . It consisted of 3 

sampling windows that covered a period of approximately 3 half-lives. When 

interindividual variability was low, most of the variability parameters could be estimated 

accurately using this design whereas the other 2 designs performed badly even at this 

level. None of the designs tested were able to produce acceptable estimates of variability 

parameters at the high level of variability. Problems were encountered in estimating the 

variability parameters using all of the designs due to the inability to differentiate 

interindividual variability from intraindividual variability. 

Various other design factors were altered to see if accurate variability parameter 

estimates could be obtained. Although increasing the size of the total study population or 

using the FOCE algorithm in NONMEM resulted in improvements in parameter 

estimates, none of the designs provided unbiased and precise estimates of all of the 

variability parameters. 

A well designed 2 sample per individual study produced accurate parameter estimates 

and identified a sub-population with a 30% reduction in clearance when interindividual 

variability was low (30%). However, when interindividual variability was high (60%), 

this design had problems identifying the sub-population and estimating some of the 

variability parameters of the model. 
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APPENDIX A 

The following tables and figures provide additional data on the modeling process that 

was employed in Manuscript II. 

Two data sets were used tn the population analysis of nelfinavir detailed in Manuscript II 

of this dissertation. To di ferentiate between the two data sets, the original data will be 

referred to as the populat on data and the data used to obtain estimates of V d/F and ka 

will be referred to as the 'Taditional data. During analysis of the population data set, 

difficulty was encountered in estimating volume of distribution (Vd/F) and the absorption 

rate constant (ka). To assess the impact of fixing these two parameters to known values 

on the ability to estimate CL/F and to assess the effect of covariates on this parameter, the 

analysis was repeated using fixed values for these two parameters obtained from analysis 

of data from a traditional study. Prior estimates of ka had not been reported in the 

literature hence the reason this data was obtained. Initially a decision had to be made on 

whether to combine the two data sets. The results of analyses using both data sets alone 

and the combination of the two are shown in table 1. Addition of a lag time to the one 

compartment model did not provide a better fit to either the population or the traditional 

data alone whereas a model incorporating a lag time did provide a better fit to the data 

when the two data sets were combined. There was no apparent reason as to why this was 

the case. The estimates of CL/F were similar irrespective of the model used to fit to the 

data or the data set used . The similarity of the estimates of CL/F, the lack of need for a 

lag time parameter when the data sets were analyzed separately and the lack of covariate 
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information contained in the traditional data resulted in the population data set alone 

being used for further analyses. The traditional data set was used solely to provide 

estimates of Vd/F and ka to be used as fixed values for further analyses of the population 

data only. These values were 229 Land 0.845 h-1 for Vd/F and ka, respectively. 

Table 1: Parameter Estimates of the Basic Models of the Different Data Sets. 

Model Descri11tion of Model and MOF Theta 1 Theta 2 Theta 3 
Data _{_CL_}_ 1Y_cll -~a) 

l population data only - no lag 467.7 40.7 733 1.21 
time in model 

2 population data only - lag time 466.96 41.l 743 1.53 
in model 

3 traditional data only - no lag -106.6 39. l 229 0.845 
time in model 

4 traditional data only- lag time -105.6 37.8 286 1.02 
in model 

5 traditional and population data 504 39.9 627 0.953 
- no lag time in model 

6 traditional and population data Would not 
- no lag time in model, where converge 
V IF constrained to be low 

7 traditional and population data 494.4 40.2 631 l.51 
- lag time in model 

Abbreviations: MOF = minim un value of the objective function, CL/F - clearance, Vd/F - volume of 
distribution, ka - absorption rnte constant 

128 



( 

Table 2: Basic Model Parameter Estimates using Four Different Models 

Model Criteria CL/F (L/hr) Vd/F (L) ka (h-1
) Eta !(Estimate of 

variability in CL) 

All parameters estimated 40.7 733 1.21 0.13 

Vd/F fixed to 229 L 38.5 229 0.155 0.129 

ka fixed to 0.845 h-1 40.2 660 0.845 0.127 

V d/F fixed to 229 L and 39.4 229 0.845 0.152 

ka fixed to 0.845 lf1 

Abbreviations: CL/F = cleararce, Vd/F =volume of distribution, ka =absorption rate constant. 

Initially, four different models were fitted to the population data set and the basic models 

were evaluated (Table 2). Three of the models used a fixed estimate for Vd/F, ka or both 

parameters. The parameter(s) were fixed to the estimates obtained from analysis of the 

traditional data as mentioned previously. These results showed that estimates of CL/F 

were similar irrespective of the model used. Only two of these models were used in the 

full analysis of the population data in Manuscript II. These were Model 1 (all parameters 

are estimated) and Model 2 (Vd/F fixed to 229 Land ka fixed to 0.845 h-1
) . 
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( Table 3: Results of Covariates that were found to be Statistically Significant in 

Clearance using Four Different Models3
• 

Model Criteria Cd4 Mac Rif Flu 

All parameters estimated 0.81 0.76 1.55 0.74 

V d/F fixed to 229 L 0.81 0.75 1.53 0.74 

ka fixed to 0.845 h-1 0.81 0.76 1.53 0.74 

V d/F fixed to 229 L and 0.83 0.77 1.37b 0.73 

ka fixed to 0.845 h-1 

Abbreviations: cd4 - CD4 count less than 100 cells per µl, mac= concomitant therapy with a macrolide 

antibiotic, rif= concomitant therapy with rifabutin, flu= concomitant therapy with fluconazole, Vd/F = 

volume of distribution, ka = absorption rate constant, NS = not statistically significant. 

• This table lists the proportionality constants that clearance (CL/F) is multiplied by when patients in the 

study possessed the characteri stic of interest e.g. CL/F = CL/F * 0.812 for patients with a CD4 count less 

than 100 cells per µl using the model in which all parameters were estimated i.e. patients with a low CD4 

count have a typical value of clearance that is 81 % of the typical value of CL/F for patients who do not 

have a low CD4 count. 

b When the model in which both ka and Yd were fixed was used, the effect of rifabutin on CL/F was not 

significant although the direction and magnitude of the effect were similar to the estimates obtained using 

the other models. 
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Table 4: Results of Covariates tested for an Effect on Clearance using Model 1 and 

Model 2 (FO Method). 

Model One Model Two 
Covariate tested 6inMOF Effect on Significance 6inMOF Effect on Significance 

CUF" CUF" 
Wt 0.24 0.11 NS 1.57 0.11 NS 
Age 0.003 -0.01 NS 0.11 -0.05 NS 

Gender 0.17 0.97 NS 0.14 1.03 NS 
Race = Caucasian 2.02 0.89 NS 2.67 0.88 NS 

Race= Black 0.03 0.98 NS 0.50 1.08 NS 
Race= Asian 0.55 1.15 NS 0.03 1.03 NS 

Race = Hispanic 2.19 1.23 NS 1.11 1.19 NS 
Race = Latin American l .43 l.28 NS 0.81 1.2 l NS 

Race =Native American 0.05 0.95 NS 0.52 1.21 NS 
Dose (500rng or 750rng tid) 0.39 0.96 NS 5.77 1.29 Borderline 

CD4 < 100 cells per µI 10.01 0.81 Significant 7.00 0.83 Significant 
CD4 > 100 and < 300 cells 1.76 1.08 NS 0.66 1.05 Not 

per µl Significant 
CD4 > 300 cells per µl 2.05 1.08 NS 2.37 1.1 NS 

RNA> 100,000copies/ml 5.28 0.88 Borderline 5.15 0.87 Borderline 

RNA> 50,000 and< 0.25 1.03 NS 0.06 l.02 NS 
100,000 copies /ml 
RNA< 50,000 copies /ml .u 1.13 Borderline 4.84 1.15 Borderline 

Concomitant therapy with 0 I NS 0.04 0.98 NS 
quinolone antibiotic. 

Concomitant therapy with 10.78 0.76 Significant 10.13 0.77 Significant 
macrolide antibiotic. 

Concomitant therapy with 6.04 1.55 Significant 3.01 l.37 NS 
rifabutin. 

Concomitant therapy with 17.23 0.74 Significant 18.53 0.73 Significant 
fluconazole . 

History of Ii ver disease 0.002 1 NS 0.29 1.03 NS 
RaisedLFTs 2.65 0.90 NS 2.29 0.91 NS 

Metabolizing status 1.66 8.79 NS 1.11 7.54 NS 
Poor rnetabolizer 0.08 0.98 NS 0.21 0.97 NS 

Intermediate metabolizer 0.77 0.95 NS 0.20 0.97 NS 
Extensive rnetabolizer 1.71 1.09 NS 118 1.08 NS 

• Effect on Clearance (CL/F): if tl1e patient possesses the characteristic of column 1 then the typical value of CL/F 
should be multiplied by the constant in this column e. g. using model 1, a patient taking concomitant fluconazole has a 
significantly reduced clearance o! 74% (typical value*0.74). 
A covariate was considered statis1 ically significant ifthe 6 in the MOF when comparing the basic model to the full 
model was 3.8 or greater and the ')5% confidence interval for the effect did not contain the null value (the null value 
was either 0 or 1 depending on th1! covariate to be tested). A covariate was considered of borderline significance if the 
6 in the MOF was 3.8 or greater ~ nd tl1e 95% confidence interval for the effect contained the null value. If the 6 in tl1e 
MOF was less than 3.8 then tl1e c1wariate was considered to be not significant. 
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Table 5: Results of Covariates tested for an Effect on Clearance using Model 1 and 

Model 2 (FOCE Method). 

Model One Model Two 
Covariate tested 6in Effect on Significance 6. in Effect on Significance 

MOF CL/F" MOF CL/F" 
Wt 0 92 0.09 NS 1.14 0.11 NS 

Age 0.001 -0 .01 NS 0.32 -0 .09 NS 
Gender 0 08 0.97 NS 0.08 1.03 NS 

Race = Caucasian 0 64 0.93 NS 1.66 0.89 NS 
Race =Black 0 14 0.95 NS 0.60 11 NS 
Race= Asian 0.17 1.09 NS -2.29 l NS 

Race = Hispanic l 29 1.2 NS 0.31 1.1 NS 
Race = Latin American l 12 1.3 NS -1.41 1.27 NS 

Race= Native American 0 23 0.88 NS -2 .12 1.17 NS 
Dose (500mg or 750mg l 39 0.9 NS -3.20 1.1 NS 

tid) 
CD4 < 100 cells per µl 5.16 0.84 Borderline 0.57 0.86 NS 
CD4>100 and< 300 0 20 1.03 NS -2.28 1.01 NS 

cells per µl 
CD4 > 300 cells per µ l I 97 1.09 NS -0 .56 l.l NS 

RNA> 100,000copies/ml 2 94 0.89 NS 0.54 0.88 NS 

RNA> 50,000 and< 0 47 0.95 NS 0.04 0.99 NS 
100,000 copies /ml 
RNA< 50,000 copies /ml 5.99 1.18 Borderline 1.06 1.15 NS 

Concomitant therapy 0 07 1.03 NS -2.17 1.05 NS 
with a quinolone 

antibiotic. 
Concomitant therapy 4.66 0.80 Borderline 1.48 0.81 NS 

with a macrolide 
antibiotic. 

Concomitant therapy 3 56 1.44 NS 1.54 1.31 NS 
with rifabutin. 

Concomitant therapy 13.02 0.74 Signifi cant 12.0 0.70 Significa nt 
with fluconazole. 

History of liver disease 0 11 1.02 NS 0.03 1.01 NS 
RaisedLFTs 1 15 0.93 NS -1 .20 0.92 NS 

Metabolizing status 0 21 3.74 NS -2 .23 -2.31 NS 
Poor metabolizer 0 05 1.01 NS 0.48 1.05 NS 

futermediate metabolizer 0 81 0.94 NS -1.48 0.94 NS 
Extensive metabolizer 0 61 1.06 NS -2.26 1.0 I NS 

•Effect on clearance (CL/F): if th<! patient possesses the characteristic of colunm l then the typical value of CL/F 
should be multiplied by the constnnt in this column e.g. using model I , a patient taking concomitant fluconazole has a 
significantly reduced clearance or74% (typical value*0.74). 
A covariate was considered signilicant if the ti in the MOF when the full model was compared to the reduced model 
was 3.84 or greater and the 95% confidence interval for the effect did not contain the null value (the null value was 
either 0 or 1 depending on the co,·ariate to be tested). A covariate was considered of borderline significance if the 6 in 
the MOF was 3.8 or greater and the 95% confidence interval for the effect contained the null value. If the ti in the MOF 
was less than 3.8 then the covariate was considered to be not significant. 
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Figure 1: Concentration versus Time for Patient who received a dose of SOOmg three times a 
day. 
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Figure 2: Concentration versus Time for Patient who received a dose of 750mg three times a 
day. 
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Figure 3: NONMEM Control File for the Final Model (Model 1 and FO Method) 

$PROBLEM nelfinavir data, agouron ag5 llpk (Feb 99) 
$INPUT ID TIME Af.1T SS II DV TAD MET METC MAC RIF AZO FLU L VHX 
$INPUT LFT CD4 
$DATA NFVF LRECL=80 

$SUBROUTINES ADV AN2 TRANS2 SS2 

$PK TVCL=THETA( L)*(l-THETA(4)*FLU) 
TVV=THET A(2) 
TVKA=THETA(3) 
CL=TVCL *EXP(ETA(l )) 
V=TVV 
KA=TVKA *EXP(ETA(2)) 
S2=V 

$THETA (10,30,80) (150,600, 1000) (0.05, 1,3) 
(0,0.3,1) 

$OMEGA (.25) (.25) 
$ERROR Y=F*(l +ERR( l )) + ERR(2) 
$SIGMA 0.10 0.10 
$ESTIMATION MAXEV AL=5000 PRINT=5 POSTHOC 
$COVARIANCE 
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Figure 4: NONMEM Control File for the Final Model (Model 1 and FOCE Method) 

$PROBLEM nelfinavir data, agouron ag511 pk (Feb 99) 
$INPUT ID TIME Al\1T SS II DV TAD MET METC MAC RIF AZO FLU L VHX 
$INPUT LFT CD4 
$DAT A NFVF LRECL=80 

$SUBROUTINES ADVAN2 TRANS2 SS2 

$PK TVCL=THETA(1)*(1-THETA(4)*FLU) 
TVV=THET A(2) 
TVKA=THETA(3) 
CL=TVCL *EXP(ETA(l )) 
V=TVV*EXP(ETA(2)) 
KA=TVKA *EXP(ETA(3)) 
S2=V 

$THETA (10,30,80) (1 50,600,1000) (0.1,1,3) 
(0,0.3, 1) 

$OMEGA (.25) (.25) (.: '. 5) 
$ERROR Y=F*(l +ERR( L )) + ERR(2) 
$SIGMA0.10 0.10 
$ESTIMATION MAXEV AL=5000 PRINT=5 POSTHOC METHOD= l 
$COVARIANCE 
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Figure 5: NONMEM Control File for the Final Model (Model 2 and FO Method) 

$PROBLEM nelfinavir data, agouron ag51 lpk (Feb 99) 
$INPUT ID TIME M1T SS II DV TAD MET METC MAC RIF AZO FLU L VHX 
$INPUT LFT CD4 
$DATA NFVF LRECL=80 

$SUBROUTINES ADVAN2 TRANS2 SS2 

$PK TVCL=THETA(l)*(l-THETA(4)*FLU) 
TVV=THET A(2) 
TVKA=THETA(3) 
CL=TVCL *EXP(ETA(l )) 
V=TVV*EXP(ETA(2)) 
KA=TVKA 
S2=V 

$THETA (10,30,80) (229 FIXED) (0.845 FIXED) 
(0,0.3, 1) 

$OMEGA (.25) (.25) 
$ERROR Y=F*(l +ERR(l)) + ERR(2) 
$SIGMA 0.10 0.10 
$ESTIMATION MAXEV.J\L=5000 PRINT=5 POSTHOC 
$COVARIANCE 
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Figure 6: NONMEM Control File for the Final Model (Model 2 and FOCE Method) 

$PROBLEM nelfinavir data, agouron ag51 lpk (Feb 99) 
$INPUT ID TIME Af.1T SS II DV TAD MET METC MAC RIF AZO FLU L VHX 
$INPUT LFT CD4 
$DATA NFVF LRECL=80 

$SUBROUTINES ADV 1\N2 TRANS2 SS2 

$PK TVCL=THETA( 1 )*( l-THETA( 4)*FLU) 
TVV=THET A(2) 
TVKA=THETA(3) 
CL=TVCL *EXP(ETA(l)) 
V=TVV*EXP(ET A(2)) 
KA=TVKA 
S2=V 

$THETA (10,30,80) (229 FIXED) (0.845 FIXED) 
(0,0.3,1) 

$OMEGA (.25) (.25) 
$ERROR Y=F*(l+ERR(l)) + ERR(2) 
$SIGMA 0.10 0.10 
$ESTIMATION MAXEY AL=SOOO PRINT=S METHOD=l 
$COVARIANCE 
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