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Alkali-metal gases in optical lattices: Possible new type of quantum crystals

A. E. Meyerovich
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817, USA

~Received 3 March 2003; published 12 November 2003!

Similarities between alkali-metal gases in optical lattices with noninteger occupation of the lattice sites and
quantum crystals are explored. The analogy with the vacancy liquid~VL ! provides an alternative explanation
to the Mott transition for the recent experiment on the phase transition in the lattice. The VL can undergo
Bose-Einstein condensation~BEC! with Tc within experimental reach. Direct and vacancy-assisted mecha-
nisms of the band motion for hyperfine impurities are discussed. A large concentration of vacancies can result
in the spatial decomposition of the system into pure hyperfine components. Below the vacancy condensation
the impurity component resembles3He in 3He–HeII mixtures.

DOI: 10.1103/PhysRevA.68.051602 PACS number~s!: 03.75.Hh, 05.30.Jp, 66.35.1a, 67.80.2s

Recently, after the spectacular experimental discovery of
Bose condensation, the study of alkali-metal gases in traps
has become the focal point in atomic, low temperature, and
condensed matter physics. One of the most fascinating fea-
tures is the possibility of seeing in an experiment some of the
phenomena that have been discussed earlier only within the-
oretical models~see the review@1#!. An additional attraction
is that the phenomena in ultracold alkali-metal gases are in-
credibly rich and combine features inherent to diverse con-
densed matter and low temperature systems~Ref. @2# and
references therein!. For example, Bose-Einstein condensa-
tion ~BEC! in trapped gases resembles, but is not quite the
same as, the transition in other superfluid or superconducting
systems@2#. Another example is the dynamics of the hyper-
fine components which resembles the spin dynamics of spin-
polarized quantum gases@3#.

A new example is an ultracold alkali-metal gas in an op-
tical lattice. Alkali-metal atoms are almost localized in mi-
croscopically periodic potential wells induced by the Stark
effect of interfering laser beams~Ref. @4# and references
therein!. The tunneling probabilityt between the wells is
determined by the depth and size of the wells, i.e., by the
intensity and the wavelengthl of the beams. Since this in-
tensity is adjustable, the atoms can be studied in a wide
range of tunneling frequenciest and effective massesm*
;\2/ta2, from an almost free gas with a periodic perturba-
tion to a well-localized ‘‘solid’’ (a5l/25p/k is the lattice
period!. Another parameter is the on-site repulsionU for at-
oms inside the same well.

The standard Hubbard model for electrons predicts@5#
that the alkali-metal atoms in an optical lattice should exhibit
an analog of the Mott metal-insulator transition atU/t
'5.8z (z is the number of nearest neighbors!. At U@t, the
system should become an ‘‘insulator’’ without interwell tran-
sitions ~the particle tunneling between the lattice sites in-
creases the on-site energy byU and is energetically prohibi-
tive!. At U!t, the on-site interaction does not restrict
tunneling between the sites and the atoms are in the ‘‘metal’’
phase. Then, at sufficiently low temperature, the system can
undergo BEC into a lattice superfluid. The energy parameters
U, t, and the potential wellV0 are often measured in units of
the recoil energyEr5\2k2/2m. A typical example is@5#
t/Er;0.07 andU/Er;0.15 forV0 /Er515.

This type of transition has been reported in Ref.@6# for
lattices of sizea5p/k;426 nm with recoil energyEr

5\2k2/2m;1 kHz. At low beam intensity, i.e., at larget,
the experiment revealed a condensate peak in the center of
the trap. This peak disappeared at smallt ~at V0 /Er between
13 and 22!, which might indicate the transition to the Mott
insulator~MI ! phase. However, the identification of the high-
U phase as the MI is not unambiguous. The MI can be ob-
served only when the average number of atoms on the same
lattice site is integer. If the average population is fractional,
the highest on-site energy states are not fully occupied. The
tunneling of the ‘‘excessive’’ particles from a site on which
the highest level is occupied to a site with an unoccupied
level cannot be banned by the on-site interaction. The tun-
neling of the ‘‘excessive’’ particle from siter1 to the empty
neighboring siter2 increases the on-site energy byU on the
site r2 while simultaneously decreasing it byU on the va-
cated siter1. Since both sites are translationally equivalent,
this opens the way to the band motion of the ‘‘excessive’’
particles and to the existence of a partially filled conduction
band. Then the lattice with noninteger occupation stays in the
‘‘metal’’ or ‘‘semiconductor’’ state even at largeU with the
‘‘excessive’’ particles in the conduction band. Reference@6#
contains experimental proof of a large gap between the filled
and conduction bands. However, it is difficult to conclude
whether in equilibrium the conduction gap is empty or not.
Below we suggest an alternative interpretation for Ref.@6#
based not on the analogy with the Mott transition, but on the
analogy with quantum crystals~QCs!.

There is a strong similarity between the ultracold particles
in optical lattices and atoms in QCs, such as solid helium, in
which the tunneling is sufficiently high to ensure band mo-
tion of atoms unless prohibited by large on-site repulsion
~see the review@7# and references therein!. In helium crys-
tals, atomic band motion is banned, as for all MIs, when all
the lattice sites are occupied byidentical particles with oc-
cupancy equal to 1. If, however, some of the lattice sites are
empty, nothing prohibits tunneling of atoms from the occu-
pied onto the vacant sites, leading, as a result of translational
symmetry, to the band motion of vacancies, i.e., to the for-
mation of peculiar band quasiparticles—vacancy waves.
Similar quasiparticles are formed when some of the atoms
occupy interstitial sites and can tunnel through the QC. A
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slightly different situation occurs when some of the lattice
sites are occupied by atoms of a different kind from the host
matrix ~impurities!. The impurities can also tunnel through
the QC despite the fact that each site still has occupancy
equal to 1. The tunneling constant for impurities is smaller
than for the vacancies since the exchange of places between
the impurity and host atoms involves high-energy intermedi-
ate states with either double on-site occupancy or the atom in
an interstitial position. The impurity-host exchanges could be
so low that a more efficient mechanism of impurity motion
could be vacancy-assisted diffusion. The behavior of va-
cancy and impurity waves in QCs is well understood@7#.
However, the most exciting possibility in QCs—superfluidity
and BEC in a system of vacancy waves—has not been real-
ized for ‘‘classical’’ QCs, namely, solid4He, despite two
decades of intensive effort~Refs. @8,9# and references
therein!. The reason is that there are no zero-temperature
vacancies in solid4He: with decreasing temperature, the
concentration of vacancies drops exponentially, always re-
maining insufficient for BEC.

The alkali-metal atoms in optical lattices resemble QCs
with a very appealing difference: the BEC in the system of
vacancy or ‘‘impurity’’ waves could be within reach. When
the occupancy of the individual wells is close to an integer,
the system resembles a QC with either a small concentration
of vacancies or ‘‘excessive’’ atoms. If the occupancy is
slightly below the integerK, K511Int@n/N#, wheren and
N are the densities of atoms and lattice sites, then the density
of vacancies isnv5KN2n!N. If the occupancy slightly
exceeds the integer number, then the density of ‘‘excessive’’
atomsne[N2nv is ne5n2NInt@n/N#!N. Since the tun-
neling probabilitiest are the same for vacancies and ‘‘exces-
sive’’ atoms, tv5te ~in both cases, an atom tunnels to an
empty site!, many properties of the system are symmetric
with respect to the vacancies and excessive atoms.~This is
not so for the usual QC in which the lattice potential is built
of the atom interaction and the potential relief is different for
a vacancy and an ‘‘excessive’’ atom.!

Below we consider the situation with large on-site inter-
action U, when the lattice system with integer site occupa-
tion would become a MI, making the BEC transition impos-
sible. The analogy with QCs automatically excludes fully
occupied lowest on-site states and does not require the con-
cept of countersuperfluidity@10#.

In the tight binding approximation for vacancies in a
simple cubic lattice,

ev~p!5D/222tv( cos~pia/\!, ~1!

where D512tv is the bandwidth. At largeU, the fixed
chemical potentialmv is finite, in contrast tomv50 for ther-
mally activated vacancies in solid helium. Whennv is small,
the BEC transition temperature for the vacancies can be de-
termined using the standard equations for lattice gases with
low band filling:

Tc56.6a2tvnv
2/3, ~2!

and similarly for excessive atoms. A good extrapolation be-
tween these two limiting cases is

Tc56.6a4tvnv
2/3~N2nv!2/3. ~3!

With the above values ofEr anda, the estimate for the BEC
transition in the vacancy liquid ~VL ! is Tc

;331027(tv /Er)xv
2/3(12xv)2/3 K, where xv5a3nv is the

fraction of unoccupied highest on-site states.
Although Tc for the VL can be quite high, there are two

reasons whyTc is lower than the BEC temperature for a free
gas. First, the density of participating particles is lower~only
the vacancies or the excessive atoms in the highest on-site
state are subject to condensation!. In the experiment@6# with
the occupancy between 2 and 3, this leads, at least, to a
factor 522/3 in Tc and even stronger lowering ofTc if the
system is close to integer occupancy. Second, the effective
mass of vacancy waves or excessive particles,m*
5\2/2ta25m(Er /p2t), could be much larger than the mass
of the free atoms,m. In an experiment, one has limited con-
trol over the vacancy concentration. On the other hand, the
tunneling frequency depends exponentially on the intensity
of the laser beams. This makesm* a readily adjustable pa-
rameter that can make the superfluid transition in the VL~3!
observable.

All this suggests a probable alternative to the Mott tran-
sition for the experiment@6#. At large t, the experiment con-
firmed the presence of BEC, probably in the ‘‘free’’ alkali-
metal gas rather than in the VL. At smallt, the experiment
showed the absence of a condensate. However, the experi-
ment, by design, cannot distinguish between the MI and the
VL. It is possible that the experiment showed the
superfluid-VL transition rather than the superfluid-MI transi-
tion.

The analogy with QCs allows one to make several other
predictions. First, the role of ‘‘impurity waves’’ can be
played by atoms in different hyperfine states. Experimen-
tally, such impurities can be studied by means similar to the
NMR methods for3He diffusion in solid 4He. In principle,
impurities become band particles spread across the system
with tunneling frequencyt i . However, when the on-site in-
teractionU is large,t i for direct exchange of impurities with
the host atoms and, therefore, the impurity wave bandwidth
become very small, of the order oft i;tv

2/U!tv . WhenU is
sufficiently large, such direct tunneling can often be disre-
garded.

If the number of upper-state vacancies is noticeable, the
vacancy-assisted processes dominate the impurity motion
with an effective intersite tunneling ratet i;tvxv@tv

2/U ~in
this context, the asymmetry of the vacancy-assisted motion
@11# is not important!. At T.Tc , the vacancy-assisted pro-
cesses are responsible for independent tunneling transitions
between the adjacent sites. This is not a band motion but a
more traditional impurity diffusion with an effective diffu-
sion coefficient

Di;
tva2

\

nv

N2nv
. ~4!
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For vacancy-assisted impurity tunneling, in contrast to the
pure system~3!, t i and the mean free paths are not symmetric
with respect tonv→0 andnv→N. In the former limit, the
free paths are atomic while in the latter limit the impurities
recover their band properties with the large mean free path
determined by impurity-impurity scattering or the scattering
by the few remaining upper-state host atoms.

The situation changes dramatically after the vacancy sys-
tem undergoes the superfluid transition~3!. Then the impu-
rity becomes a completely delocalized quasiparticle in a va-
cancy superfluid background similar to3He impurities in the
superfluid 4He @12#. The effective mass of such quasiparti-
cles atT50 is mi* ;\2/2tvxv and goes up with temperature
with a decrease in density of the vacancy condensate. The
interaction effects in this quasiparticle gas are negligible, and
the properties of the system can be evaluated using the stan-
dard equations for an ideal lattice gas of quasiparticles. At
low enough temperatures, this impurity component of den-
sity ni will also undergo its own BEC with

Tci.6.62tva5nvni
2/35a3nv

1/3ni
2/3Tc , ~5!

where Tc is the temperature for the vacancy condensation
~2!. The emerging two-condensate system should exhibit
properties similar to those of liquid3He-4He mixtures with
two condensates below the3He transition@13#. Since this
BEC is based on vacancy-assisted tunneling, this two-
condensate system is different from the one considered in
Ref. @10#.

This picture of vacancy-assisted impurity motion works
well when the concentration of the hyperfine impuritiesxi
5a3ni is low. At higherxi the vacancy motion in this trans-
lationally inhomogeneous environment is accompanied by
host-impurity permutations suppressing the band motion.
This is similar to the vacancy motion in solid3He with a
disordered spin system. Then the vacancies autolocalize
within homogeneous domains of size

R5F p\2

2m* NT@~xi21!ln~12xi !2xi ln xi #
G 1/5

, ~6!

which are filled by particles in one hyperfine state~Nagaoka
polarons!. If the density of vacancies is large,nv

1/3R*1, this
should lead to the decomposition of the system into macro-
scopic hyperfine domains. The difference between this de-
composition and the vacancy-driven spin polarization of
solid 3He @14# is that the transition takes place when the
concentration of the zero-point vacancies and the ‘‘polariza-
tion’’ ~the concentration of hyperfine components! are fixed.
In contrast to the formation of dynamic, transient domains in
experiment@3#, this decomposition leads to stationary do-
mains. If the hyperfine impurities are bosons, this decompo-
sition is not always necessary below the vacancy BEC.

One feature of the optical lattices is quite different from
more ‘‘traditional’’ QCs such as helium. Since the periodic
potential in QCs is built of atomic interactions, the vacancy
motion is tied to the deformation of the lattice. For alkali-
metal atoms in optical lattices, the lattice is the external po-
tential of the laser beams and the particle displacement is

decoupled from the deformation of the lattice. As a result,
the low-frequency collective modes above and below the
BEC are decoupled from the lattice variables.

An important issue for QCs is the sensitivity of the
narrow-band particles to external fields. Since the energy of
band particles cannot change by more than the bandwidthD,
the external fieldV(r ) makes the motion finite and localizes
the particles in an area of sizedr;as, s5D/(]V/]r )a.
For the usual QC, the important fields are the particle inter-
action, lattice deformation, and external forces. In the optical
lattice, the most important field is the trapping potentialV
5 1

2 ar 2. In wide traps~smalla), this trapping potential does
not cause noticeable Umklapp processes and the overall
Hamiltonian of a particle~or a vacancy! in the optical lattice,
H5e(p)1 1

2 ar 2, can be treated quasiclassically. Analysis of
this Hamiltonian can be performed in the momentum repre-
sentation in which1

2 ar 25 1
2 \2a¹p

2 and the problem reduces
to that for a particle with ‘‘mass’’ 1/a in the ‘‘potential’’
e(p). The quantum problem is simplest near the band
minima where the quantized motion is harmonic with the
characteristic frequencyv0* 5(2ta)1/2a/\. Since the effec-
tive ~tunneling! massm* 5\2/2ta2 is larger than the mass of
free particles, this frequency is (m/m* )1/2 times lower than
for the free particles. The quantization in the trapping poten-
tial V(r ) is usually not important and the motion is close to
classical. At larges the motion is unrestricted. Whens
→1, even the classical motion becomes compressed toward
the multiwell shells around the center of the trap , withs
giving the thickness of the shell, to which the particle motion
is restricted, in terms of the well sizea. In the experiment
@6#, v0* ;75(t/Er)

1/2 Hz and is small, whiles*100(t/Er).
The shells narrow to a single well layer at the beam intensity
for which t/Er&0.01.

The inhomogeneity of the trap also leads to the nonuni-
form spatial redistribution of particles@5,15#. If the change
of the trapping potential from well to well is large in com-
parison with the temperature (D/Ts@1), the shells with
lower energy are fully filled, have integer population, and
become a MI. The rest of the shells~most likely, but not
necessarily, the outer ones! will have noninteger population
and resemble a VL with a rather large density of vacancies.
In the experiment@6#, the parameterD/Ts;10210/T with T
in Kelvin. If it is small, the redistribution of particles be-
tween the shells is insignificant. If this parameter is large, the
system represents a thick shell withs*100(t/Er) of
coupled well layers in the quasi-two-dimensional VL state
with the rest of the shells in the MI state with filled upper
levels. This may actually increase the BEC temperature for
the VL since the VL, although restricted to a lower number
of shells, can have a higher density of vacancies. To resolve
this issue experimentally one should measure the tempera-
ture T. To avoid this issue entirely, one can minimize or
eliminate completely the overall trapping potential which be-
comes unnecessary when the atoms are localized within the
optical lattice.

In summary, we explored the analogy between alkali-
metal gases in optical lattices with noninteger occupation
and large on-site interaction and QCs. This analogy provides
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an alternative explanation for the experiment@6# as a transi-
tion between the BEC and VL states. BEC transition for the
VL is predicted. The transition temperature seems to be
within experimental reach. The presence of a large number
of unoccupied states provides a vacancy-assisted mechanism
for diffusion of hyperfine impurities and can sometimes lead
to a spatial decomposition of the system into pure hyperfine
components. The properties of the hyperfine mixture depend

on whether the system is above or below the BEC tempera-
ture for the VL. At even lower temperatures one can observe
a transition to the state with two—vacancy and impurity—
condensates, which is different from Ref.@10#. One of the
ways to identify the VL phase is to study the~pseudo!spin
diffusion by methods similar to@3#.

The work was supported by NSF Grant No. DMR-
0077266.
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