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ABSTRACT 

The population approach to pharmacokinetic analysis, and its application to the 

identification of patient characteristics that affect a drug's pharrnacokinetic parameters, 

is achieving greater prominence in the drug development process. Specifically, 

population analyses are a way to gather information that might be difficult to capture in 

some subpopulations. In the fall of 1997, the Food and Drug Administration proposed 

new legislation, commonly known as the ''Pediatric Rule". This new legislation required 

pharmaceutical companies to collect pediatric data for drugs with indications applicable 

to children before the compound would be approved. Other than conducting traditional 

pharrnacokinetic clinical trials, another way to collect this information would be to 

perform a population pharrnacokinetic analysis. Two different examples ofthis approach 

are presented. The first study was conducted on traditional pharrnacokinetic data 

(intense sampling) pooled from four pediatric trials. The second study is an example of 

the ability of the population approach to take advantage of sparse data obtained as a 

secondary objective of a clinical study. 

A population pharrnacokinetic analysis was conducted for azithromycin on data from 

pediatric patients enrolled in four separate clinical trials. A two compartment model with 

parallel zero- and first-order absorption was found to best fit the data. Potential 

covariates were assessed for oral clearance (CL/F), oral volume of distribution in the 

peripheral compartment (V2/F), intercompartmental oral clearance (Q/F), and the first-



order absorption rate constant (ka). Weight was found to be a significant covariate for 

both CUF and V2/F. No covariates were found to be significant for Q/F or ka. 

A population pharrnacokinetic analysis was conducted for prednisolone on data from 

thoracic organ transplant patients. A one compartment model with a fixed first order 

rate of absorption was found to best fit the data. Potential covariates were assessed for 

oral clearance (CUF) and oral volume of distribution (V/F). Sex and concomitant 

ciprofloxacin use were found to be significant covariates for CUF. No covariates were 

found to be significant for V IF. Data was also available on plasma concentrations of 

prednisolone' s metabolite, prednisone. It was not possible to derive a robust and 

clinically meaningful model that incorporated the metabolite data. 
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PREFACE 

This document was prepared in the format of the manuscript plan in accordance to 

section 11-10 of the Graduate School Manual at the University of Rhode Island. The 

dissertation is divided into three sections. 

Section I contains a general introduction to the objectives of the research. Section II 

consists of the main body of this dissertation. This section is composed of three 

manuscripts written in the format required for each scientific journal to which they are, 

or will be submitted. A statement of overall conclusions for the entire dissertation is also 

included in this section. Section III contains one appendix that includes additional 

information and experimental details useful to the understanding of the work in Section 

11. A bibliography follows Section III in which all sources used as references in this 

document are cited. 
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INTRODUCTION 

ln February 1999 the Food and Drug Administration (FDA) issued a final guidance 

governing the development, conduct, and analysis of population pharmacokinetic clinical 

trials (I). The guidance states that population phannacok:inetic analyses are ideal to 

investigate variability and alternative dosing regimens when there is prior knowledge that 

certain factors may affect drug behavior. Traditionally, alternative dosing regimens have 

required a large clinical trial or many smaller clinical trials in sub-populations. lnstead of 

running additional clinical trials, the FDA guidance has suggested that an alternate 

method of analysis, population pharmacokinetic analysis, may provide the same 

information. 

The need to modify the usual dose of a drug in certain populations is determined by 

comparing the pharmacokinetics of the sub-group to the population as a whole. There 

may be so many different sub-populations that it is often unrealistic to run a separate 

clinical trial for each group. Many times, dosages are adjusted empirically across sub­

populations; using either clinician experience or assuming dose proportionality with 

either body weight or age. These empirical approaches increase the tendency for serious 

adverse events or sub-therapeutic concentration levels (2;3). In order to address the 

inadequate dosing information, many researchers have been focusing on new approaches 

to pharmacokinetic analyses and model building. 



Originally, pharmacokinetic modeling concentrated on the individual For example, in a 

traditional standard two stage analysis (STS), a clinical trial is comprised of a small 

number of subjects from whom a large (12-20) number of serial blood samples are 

collected over a dosing interval. Trials are restricted to representative subjects from a 

particular population to limit variability between subjects. An analysis of this type of 

data is done in two stages. For the first stage, plasma concentration time data are 

modeled using nonlinear regression to produce estimates of the pharmacokinetic 

parameters. For the second stage, the individual pharmacokinetic parameters are 

combined and descriptive summary statistics are computed (e.g. group mean and group 

variance). Analysis of the dependencies between the parameter and any covariates use a 

classical statistical approach (stepwise linear regression, cluster analysis, etc.) (1 ;4;5). 

This type of analysis moves from an individual (unit of analysis) out to the population, 

and as a result, the parameter estimates are unbiased and the random effects are 

overestimated (I). There are several logistical issues associated with this approach, 

primarily revolving around the need to perform extensive blood sampling and 

homogeneity of the population ( 1 ;6). These reasons have led to an alternative approach 

known as nonlinear mixed effects modeling. 

A second approach, nonlinear mixed effects modeling, is a way to directly study the 

population' s pharmacokinetics. Nonlinear mixed effects modeling is less stringent than a 

STS analysis; it allows for the use of sparse data (2 or more samples not necessarily from 

the same dosing interval per patient) from a large number ofrepresentative patients in 

the population (I ;4;5;7). The population method pools aU data collected and calculates 

2 



population pharmacokinetic parameters (e.g. volume of distnbution). Additionally the 

focus of the analysis is on the source and correlation of variability in drug concentrations 

among individuals in the population. Thus, population pharmacokinetics focuses on the 

target population (unit of analysis) and moves out to the individual. Population analyses 

also provide quantitative estimates of both the interindividual and intraindividual 

variabilities of the population (4;5). Interindividual variability may be accounted for by 

adding specific patient characteristics into the population model. Patient characteristics 

that cause changes in the dose-concentration relationship can be identified and assessed 

and then appropriate dosing modifications can be determined (1). 

Nonlinear mixed effects modeling will be performed using a software package called 

NONiinear Mixed Effect Model (NONMEM) version 5 level I. I. NONMEM is suitable 

to analyze these types of data and has been extensively utilized by others (8;9). Both 

fixed and random effects are modeled using NONMEM. Fixed effects (e.g. time or 

dose) structure the actual pharmacokinetic parameters (structural portion of model). 

Random effects are comprised of random interindividual variability (unexplainable error 

produced by each individual's variability not accounted by the fixed effects) and 

intraindividual variability (explainable error accounting for the difference between actual 

and predicted concentration values) in the pharmacokinetic parameters (statistical 

portion of model). NONMEM provides estimates of both inter- and intraindividual (i.e. 

residual random error) variabilities in the pharmacokinetic parameters (4;7;9). 



HYPOTHESIS TESTED 

To date, there are no published population pharmacokinetic models for azithromycin in 

the pediatric population and prednisolone in organ transplant patients. For azithromycin, 

small clinical trials have been conducted in pediatric patients to determine alternative 

dosing regimens. The drug's label includes results from some of these trials and only has 

information on adjusting dose by weight (kg). For prednisolone, it appears that a 

standard dose produces a large variability in prednisolone concentrations. There is little 

information on the cause of this variability and on what adjustments should be made to 

doses in certain sub-populations. For the use of prednisolone in organ transplant 

patients, it is critical that an optimum prednisolone concentration be achieved. It has 

been shown that a patient with a higher prednisolone clearance is more likely to suffer an 

allograft loss, while a patient with high prednisolone concentration levels (i.e. low 

prednisolone clearance) is more likely to suffer from adverse events (2;10) . 

The hypothesis to be tested in this investigation is that the population pharmacokinetic 

modeling approach can be used to evaluate and describe the concentration time data 

collected in the azithromycin and prednisolone clinical trials. Using this approach, 

precise est·imates of the pharmacokinetic parameters and their variability will be 

quantifiable and significant covariates will be identified. 
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OBJECTIVES 

The specific aims ofthis dissertation are as follows: 

Azithromycin example: 

I) To develop a population pharmacokinetic model for pediatric patients taking 

azithromycin. This model will include the following pharmacokinetic parameters: 

clearance (CUF), volume of distribution (VD/F), interindividual variability, and 

intraindividual variability. 

2) To identify individual characteristics such as demographic information, disease 

status, and concomitant medications which effect values of pharrnacokinetic 

parameters. 

Prednisolone example: 

3) To develop a population pharmacokinetic model for prednisolone including oral 

clearance (CUF) and oral volume of distribution (II IF) and to assess the 

interindividual variability in thoracic organ transplant patients 

4) To investigate various individual characteristics such as demographic information, 

disease status, and concomitant medications as potential covariates to reduce 

interindividual variability 

5) To develop a population pharmacokinetic model for the evaluation of the optimal 

prednisolone dosing based on individual characteristics. 
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MANUSCRIPT I 

Summary of Recent Proposed Regulation for Assessment of Safety and 

Effectiveness of Drugs and Biological Products in the Pediatric Population 

Published in Clinical Research and Regulatory Affairs 15(2):79-90. 1998 

ABSTRACT 

In the fall of 1997, the United States Food and Drug Administration (FDA) proposed to 

add onto the existing 1994 regulations dealing with the "pediatric use" subsection of 

prescription drug labels. These new regulations were titled Docket No. 97N-0165 

"Regulations Requiring Manufacturers to Assess the Safety and Effectiveness of New 

Drugs and Biological Products in Pediatric Patients"(!). These new rules will require 

pharmaceutical companies to collect data for those drugs whose indications may be 

applicable to usage in children before the compound will be approved (or soon 

thereafter). In some cases, manufacturers will also have to provide this information 

(within a length of time determined by both the FDA and the manufacturer) for drugs 

already marketed. It is proposed that, by including safety and effectiveness information 

on the label, the pediatric population will be less likely to have serious adverse events or 

subtherapeutic treatments. This article will cover in detail the 1997 proposed regulations 

and what it will mean for industry. 



INTRODUCTION 

The United States Food and Drug Administration (FDA) claims that pediatric labeling 

often is incomplete, inadequate, and even nonexistent for many prescription drugs. In 

most cases, the label contains no information on safe and effective doses for children. To 

address this issue, FDA passed regulations in December of 1994 which made it easier for 

manufacturers to include pediatric information in the "pediatric use" subsection of 

prescription drug labels. The 1994 regulations amended an earlier set of regulations 

from 1979 requiring fuU clinical trials in the pediatric population as a basis for labeling 

for use in this population. The 1994 legislation built on to the 1979 regulations with 

three points: I) data could be extrapolated from adult studies, if the course of the 

disease and the drug effects were similar in both the pediatric and adult populations, 2) 

companies had to reexamine data to determine whether pediatric labeling of their 

marketed products needed to be modified, and 3) FDA was given authority to request 

specific pediatric use information. The purpose of these regulations was to make it 

easier for manufacturers to include pediatric information on the labeling of their 

products. Although the Pharmaceutical Research and Manufacturers of America 

(PhRMA) believes that industry has been in compliance with the regulations (2), the 

FDA believes many companies are still not providing adequate information (Proposed 

Rule Section II (1)). Consequently, in the fall of 1997, FDA proposed new regulations to 

address what it perceives as the pharmaceutical industry's poor compliance to the I 994 

regulations. 



Post 1994 Regulations to Present 

FDA states clinical studies in the pediatric population have been conducted for only a 

small fraction of drugs currently on the market. The labeling of many of these drugs 

contain limited, if any, information on either the use of the drug in the pediatric patient or 

on specific dosing requirements for the different pediatric age groups. The FDA 

conducted a survey and found that although there was adequate pediatric labeling for 

vaccines and antibiotics, the labeling for many drugs used to treat common childhood 

illnesses and other more serious conditions, contained little information fo r pediatrics. 

From data collected by IMS America, Ltd. regarding prescription drug usage, FDA 

compiled the I 0 most prescribed drugs in pediatric patients, on an outpatient basis (Table 

I). For these I 0 drugs, FDA claims the label either lacked information for the 

subpopulation for which the drug was being prescribed, or the information was 

inadequate (Proposed Rule, Section I (1)). PhRMA responded to these claims by noting 

that the data was obtained in 1994 and therefore out-dated. After 1994, the 

manufacturers claim that either they have provided additional pediatric information 

within the label or that there is no need for additional labeling information- particularly 

for Ampicillin and Auralgan (2). The Center for Drug Evaluation and Research (CDER) 

identified the top ten drugs prescribed (on both an inpatient and outpatient basis) in the 

pediatric population and asked the companies that market these drugs to voice their 

concerns over the proposed changes in regulations (Proposed Rule, Section 11 (I)). 

FDA claims that physicians have to either guess on an appropriate dosage (causing a 

potential for subtherapeutic levels or adverse events due to toxicity) or prescribe only 
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those drugs with which they have had experience prescribing in the pediatric population 

(causing a potential for a less effective form of therapy) (Proposed Rule, Section I (I)). 

An informal study by the American Academy of Pediatrics in 1990 found that only 20% 

of the new molecular entities (NME's) approved between 1984-1990 had pediatric 

information (not all of the NME' s had potential use in the pediatric population) and that 

56% of the NME's approved in 1991 that had potential use in the pediatric population 

had some pediatric labeling at the time of approval. In 1996 (2 years after the passing of 

the 1994 regulations regarding pediatric use labeling) only 37% of the NME's that had 

potential use in the pediatric population had some pediatric labeling at the time of 

approval. The pediatric labeling that was present on the NME's in 1991 and 1996 may 

not have been adequate for all groups within the pediatric population (Proposed Rule 

Section lII (1)). PhRMA states that 20 of the approved drugs in 1996 would have 

potential use in the pediatric population. Of these 20, 19 have been studied or will be 

studied in pediatric patients, showing an improvement in industry' s response to the 1994 

regulations (2). 

Description of the Proposed Rule 

The proposed rule would be intended for new chemical entities and new biological drug 

products. A new chemical entity is defined as "a drug that contains no previously 

approved active moiety." There are three main points to this proposed rule: 1) before 

approval, a new chemical entity must have safety and efficacy information on relevant 

pediatric age groups for the claimed indication, 2) drugs already marketed will need to 
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provide more pediatric information if the label is lacking in relevant information, and 3) 

FDA can call for meetings to discuss the need for pediatric studies early in the 

development process and postmarketing. FDA bas broken down the pediatric 

population into 4 subgroups: I) neonates- birth to one month of age, 2) infant- one 

month to two years of age, 3) children - two years to twelve years of age, and 4) 

adolescent - twelve years to sixteen years of age. A safety and efficacy assessment 

would be required for pediatric patients, in all age groups, for the claimed indication. A 

manufacturer. would not be responsible for providing information for any off-label 

indications. Companies would not need to provide new information for any supplements 

filed for new indications (Proposed Rule Section V.A (l)). 

Pediatric formulations would be required in the studies to ensure bioavailability and the 

consistency of the dosing. By using a pediatric formulation in a study, data will be more 

meaningful and an accurate analysis can be made for safety and effectiveness in the 

pediatric population. If a manufacturer were unable to produce an appropriate pediatric 

formulation for a given age group, then a waiver would be granted. FDA was seeking 

comments on using cost of generating a formulation to be grounds for a waiver 

(Proposed Rule Section V.E (!)). 

Waivers 

Pediatric studies would not be necessary if FDA granted a full or partial waiver 

(Proposed Rule Section V.B.4 (!)). Pediatric assessments are not necessary if I) the 

product will not be a meaningful therapeutic benefit over already existing treatments and 

12 



if it will not be widely used in the pediatric population, 2) if studies would be impossible 

or impractical to carry out, and 3) ifthe compound would pose undue risk to the 

pediatric patients. A full waiver would be granted if one or more of the conditions above 

applied to the entire pediatric population. A partial waiver would be granted if there was 

a need to avoid studies in a specific age group within the pediatric population. FDA was 

seeking comments regarding whether there should be other situations that might merit a 

waiver - e.g. costs. 

One of the questions that FDA faced was how to quantify "meaningful therapeutic 

advances" . FDA addressed this issue by deciding that it would be meaningful if a 

substantial number of patients were to use this new compound. The proposal discusses 

two different methods for determining a substantial number of patients. The first method 

would be to assess the number of times the drug would be used annually within the 

pediatric population. If it is estimated that I 00,000 or more prescriptions may be written 

for patients within the pediatric population, then the drug would qualify as being given to 

a substantial number in all age groups. A partial waiver would be granted if fewer than 

I 5,000 prescriptions were to be written for a specific age group. The second method 

would assess the number of patients affected by the disease or condition that the drug is 

designed to treat. If I 00,000 pediatric patients were affected, then the compound would 

be used in a substantial number of pediatric patients. A partial waiver would be granted 

if fewer than I 5,000 patients comprised a particular age group (Proposed Rule Section 

V.B.4 (I)). PhRMA argues over the true representation of the diseased population by 

using prescription numbers as a basis for calculating a drug as being used in a substantial 

13 



number of patients. For many diseases (e.g. asthma) multiple prescriptions are refilled 

several times in a given year for a single patient. PhRMA believes that there would be 

potential for gross exaggerations of diseased children for certain diseases. PhRMA 

recommends deciding a meaningful therapeutic advance by unmet medical needs and not 

by arbitrarily decided numbers which may not be a true measurement of the diseased 

population (2) . 

There may be instances where the deferral of submissions of pediatric studies may be 

necessary (e.g. if the New Drug Application (NOA) submission or approval is ready for 

adults before pediatric testing is complete). It may be inappropriate to begin pediatric 

testing before the safety and efficacy data in adults has been collected. The deferred 

submission would need to be provided not more than 2 years after the date of the initial 

approval. Applicants would need to provide pediatric information in their Annual 

Progress Reports (APRs) to show compliance (Proposed Rule Section V.B.3 (1)). 

Legal Ramifications for Inadequate Pediatric Labeling Information 

In the proposed rule, FDA states "Denying or withdrawing approval of an otherwise safe 

and effective drug or biological product is not a satisfactory remedy, because removal of 

a product from the marketplace could deprive other patients of the benefits of a useful 

medical product." Therefore, FDA is looking into injunctive actions against companies 

that fail to provide the necessary pediatric information. Violation of an injunctive action 

could result in the manufacturer being fined (Proposed Rule Section V.G (1)). 
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What legal authority would FDA have over enforcing this proposal? The proposal cites 

provisions that apply to FDA's authority over enforcing this proposal. For example, 

FDA has authority to classify a drug as misbranded if the label is false or misleading, 

dangerous to health when prescribed, recommended, or suggested in its labeling, or fails 

to provide adequate directions for each intended use. There are other legal reasons 

cited in Section VI of the regulations. Still, industry questions whether FDA has any 

legal authority over forcing manufucturers to provide this data (2). 

Analysis of Impact 

An assessment of the impact of the proposed regulation is difficult to ascertain. The 

FDA has estimated the number of additional studies and the cost that would have 

accrued had these regulations been in place over the period 1991-1995. The drugs 

approved over this period were categorized according to their potential use in the 

pediatric population. The drugs were divided into 3 categories: 1) therapeutically 

important, 2) other approvals, and 3) all other approvals. The "therapeutically 

important" drug category was composed of those drugs that would have a potential use 

in the pediatric population. The "other approval" category comprised drugs that would 

have a potential to be used extensively in the pediatric population. The final category, 

"all other approvals", consisted of drugs that would not be used for a pediatric patient. 

This data was tabulated in Table 2. Of the 142 drugs approved, 60 (42%) were 

estimated to have pediatric use and 82 (58%) did not. To estimate the additional studies 

that would be required to provide adequate data, FDA assumed that much of the data 

could be extrapolated from previous studies. Therefore, the 60 drugs that required 
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pediatric information were further sub-divided into 3 groups according to the amount of 

additional work required. The first of these 3 groups consisted of30 drugs that would 

have required the least amount of new data; 23 drugs that already had some pediatric 

labeling information and 7 drugs that already had ongoing pediatric studies at the time of 

approval. Of these 30 drugs, FDA estimated that 15 would need limited additional data 

in the form ofa study with approximately 50 patients. Of the remaining 30, 23 of the 

drugs would have needed additional studies with approximately I 00 patients, and 7 

drugs would have required extensive safety and effectiveness involving 300 patients. 

Therefore, if these regulations had been in effect, the manufacturers would have needed 

additional studies for 45 of the 60 drugs. This would have involved 5, 150 patients 

(I 5·50+23· 100+7·300) or clinical trials of9 drugs involving 1,030 patients per year. In 

addition, FDA is also authorized to request additional data for already marketed 

compounds. FDA estimated two additional already marketed drugs per year into their 

assessment. FDA further estimated that these additional 2 drugs require an additional 

400 patients. Thus, totaling NMEs and already marketed drugs, there are 11 drugs and 

1,430 patients per year. FDA has also noted that not all compounds will be approved. 

To account for the additional pediatric studies that will occur for drugs that will not 

ultimately be approved, FDA has further padded the numbers by increasing the estimate 

by 30%, or 14 drugs and 1,850 pediatric patients per year (Proposed Rule Section X.B 

(I)). 

Costs of studies vary proportionately with the complexity of the clinical trial. FDA hired 

a private consulting firm to estimate the costs of Phase IV trials. The firm estimates that 
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for a fever or vaccine trial, the cost would range from $300-$500 per patient, for renal 

disease the cost would be $3600 per patient, and for epilepsy the cost would be $5,000 

per patient. Many researchers estimate $1 ,500-$3,400 per patient as an average cost. 

To include all costs incurred during a study, FDA has estimated the cost to be $5,000-

$9,000 per patient. Based on this estimate, the annual cost to conduct the additional 

studies for the 1,850 patients in any given year would have cost the industry $9 .25 

million-$16.65 million per year. This estimate does not include any additional 

expenditure for the manufacturing of the pediatric formulation. FDA estimates that the 

cost of the additional formulations will not cost more than $1 million per year for each 

drug (estimating that a total of 4 drugs per year will need additional formulations 

bringing the total to $4 million for additional formulations) . There will also be additional 

paperwork due to the increased regulations and FDA estimates these costs at $220,000 

per year. The total estimation comes in at $13.5 million - $20.9 million per year 

(Proposed Rule Section X.C.(l)). Delays in the submittal ofa NDA might result in a 

further potential impact for the manufucturer due to extended drug development 

time lines. These estimates do not include additional staff that will be needed by FDA to 

process the supplements to already existing NDAs, increases in the number of studies 

included in future NDAs, and the additional meetings being held during the development 

process to ensure adequate pediatric trials (2). 

Benefits of Regulations 

These regulations address providing adequate dosing information in the label for 

pediatric age groups. This information will be used to avoid adverse drug reactions and 
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undertreatment in this population. Additionally, the information should increase the 

availability ofnewer medications to the pediatric population. FDA compiled a list of the 

top 25 NME's responsible for the highest number of adverse events in pediatric patients. 

Eight (8) of these NME's had no pediatric labeling information (1 ,273 adverse events) 

and 5 lacked label information for children under 12 (434 adverse events). Out of these 

13 NME's, 11 would have been required to submit further pediatric labeling information 

under these proposed regulations (Proposed Rule Section X.E.(1 )). 

DISCUSSION 

What will these proposals mean for industry? Obviously, there will be more initial cost 

for manufacturers in that will need to run more clinical studies and create new pediatric 

formulations. What about compounds that are off patent or are unpatentable drugs? 

What sort of incentive is there for companies to spend additional resources on drugs that 

they no longer have patent protection? Some of the smaller manufacturers will simply 

not be able to fund these additional requirements. It is argued that the FDA estimates of 

the cost of additional studies and the creation of new formulations are far too low. 

PhRMA believes that there could be potential delays in drug development time and NDA 

approvals. Additionally, the issue oflegal consent will be hotly disputed. Will parental 

consent be considered enough? Industry is concerned that children recruited in these 

studies will possibly be injured and subsequently sue for unlawful consent (2). 

PhRMA has suggested that FDA follow European countries, Canada, and Japan when 

looking to create additional regulations regarding pediatric clinical trials. In Europe, 
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pediatric studies begin after the completion of Phase III trials and their age groups are 

different from those assigned by FDA. Canada tests drugs in children after safety and 

efficacy has been determined in the adult population. Japan excludes children from 

Phase I and II trials and conducts trial in neonates and infants only after older children 

have been studied (2). 

Clearly, there is much debate over whether these regulations should be passed, by FDA 

and industry, as well as health care providers and parents. There is a need for further 

discussion on this matter both from the viewpoint of the child and also the realistic 

requirements that can be placed on the pharmaceutical industry. It has been 

recommended that a committee be formed, comprised of these individuals, to address 

these many difficult questions. Until then, there are too many unresolved issues to 

proceed with further implementation of the current proposed regulations as they stand. 
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Table 1 Listing of Top 10 Out-patient Prescribed Drugs in Pediatric Patients 

DRUG INDICATION #OF PhRMA Comments 
PRESCRIPTIONS 

1. Albuterol asthma 1,626,000 under Inhalation solution 2 
12 strengths for ages 2+, 

aerosol for children age 
4+. 

2. Phenergan allergic 663,000 under 2 Label includes relevant 
reactions information in various 

subsections. 
3. Ampicillin infections 639,000 under 12 No label information, 

however physicians have 
dosin_g_ knowled_g_e. 

4. Auralgan ear pain 600,000 under 16 Grandfather clause - no 
NOA on file (marketed 
for over 40 years). 

5. Lotrisone topical 325,000 under 12 Statement in label not to 
infections use in diaper dermatitis 

due to harmful 
concentrations in infants 
and young children. 

6. Prozac depression and 349,000 under 16 Studies nearing 
OCD _Q,000 under !l com_.E!etion. 

7. Intal asthma 109,000 under 2 Solution in age 2+ and 
aerosol 399,000 metered dose inhaler for 
under 5 age 5+. 

8. Zoloft d~ession 248,000 under 16 Pediatrics use 10197. 
9. Ritalin attention deficit 226,000 under 6 Evaluation for under 6 

disorders, years of age in process. 
narcolepsy 

10. Alupent asthma 184,000 under 6 Revised label 2/97 for 
dose age 6 and over and 
one dose for 12 and 
older. 

Total over 5 million ':i!?ar 

Abbreviations: OCD=obsessive compulsive disorder, PhRMA= Pharmaceutical 
Research and Manufacturers of America, NDA=new drug application 
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Table2 
Pediatric Labeling ofNME's and Biological Products Approved 1991-1995 
with Potential Pediatric Use 

#NMEs % of All % Some Pediatric % No Pediatric 
A_£E!"OVed Labelin__g_ Information 

Some 47 33 34 % (16/47) 66 % (31 /47) 
Potential 
Pediatric Use 
Wide 13 9 54 % (7/13) 46 % (6/13) 
Pediatric Use 
Total 60 42 38 % _{_23/6Ql 62% _JJ7/6Ql 

#Of the 142 NME and B10log1cal Products approved m this penod, 60 were deemed to 
have potential use in the pediatric population. 

Abbreviations: NME=new molecular entity 
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MANUSCRIPT II 

Population Phannacokinetics of Azithromycin in the Pediatric Population 

ABSTRACT 

A population pharmacokinetic analysis was conducted for azithromycin on data from 

pediatric patients enrolled in four separate clinical trials. The data, which consisted of 

526 serum concentrations from 58 patients administered one to five daily oral doses of 

azithromycin ranging from 5 mg/kg to 12 mg/kg per day, was analyzed in NONMEM. A 

two compartment model with parallel zero-order and first-order absorption was found to 

best fit the data. Potential covariates were assessed for oral clearance (CL/F), oral 

volume of distribution in the peripheral compartment (V2/F), intercompartmental oral 

clearance (Q/F), and the first-order absorption rate constant (ka). Models were initially 

developed using the first order (FO) method and subsequently refined using the first 

order conditional estimation (FOCE) method. Weight was found to be a significant 

covariate for both CL/F and V2/F. Neither age, gender, the presence of anemia, cancer, 

pneumonia, nausea, colitis, nor the concomitant usage of albuterol, amikacin, captopril, 

ceftazidime, ceftriaxone, digoxin, diphenhydramine, dopamine, fentanyl, furosemide, 

midazolarn, morphine, nystatin, ranitidine, sulfamethotrexate, ticarcillin, nor vancomycin 

appeared significant for any pharmacokinetic parameter. 
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INTRODUCTION 

Azithromycin is an azalide antibiotic (a subset of macrolide antibiotics), is active against a 

wide spectrum of microorganisms, and bas a low side effect profile ( 1-4). Azithromycin is 

indicated for pediatric usage for the treatment of acute otitis media, community-acquired 

pneumonia, and pharyngitis/tonsillitis (5). Following administration, azithromycin 

undergoes extensive and rapid distribution in tissue. Thereafter, distribution from tissue is 

the rate limiting process for elimination of azithromycin, thus leading to a long terminal 

half-life (around 55-70 hours for both adult and pediatric populations) (1 ;2;4-6). Because 

of these properties, azithromycin is administered once daily and for a shorter duration 

than other macrolide antibiotics ( 1 ;2;7-10). Appendix I provides a more extensive 

overview of the pharmacokinetics of azithromycin. 

Clinical trials have been conducted in pediatric patients to determine the 

pharmacodynarnic and pharmacokinetic characteristics in this group compared to the 

adult population (9-11 ). These studies, and other safety clinical trials, showed that once 

daily dosing was well tolerated and efficacious in pediatric patients (7-12). Results from 

two of these studies have been used for the development of dosing guidelines in 

pediatrics (5;10;1 l). Current recommended dosages for pediatric patients are 

determined by indication. For the indications of otitis media and community-acquired 

pneumonia, pediatric recommendations are for I 0 mg/kg on day 1 and 5 mg/kg doses on 

days 2-5. A higher dose of 12 mg/kg for days 1-5 is recommended for children with 

pharyngitis/tonsillitis (5). In contrast, a 500 mg single dose given on day 1, followed by 
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250 mg single doses on days 2-5 is recommended for adults with these indications 

(5;13). 

After a single oral dose of 500 mg azithromycin in an adult population, the following 

pharmacokinetic parameters have been reported: peak serum concentration (Cmax) of 

around 0.4 mg/L, time to peak concentration (Tmax) of2.5 hours, area under the 

concentration time curve from 0-24 hours (AUCo-2•) of2.36-2.60 µg·hr/mL, steady state 

volume of distribution of23-3 l Ukg, clearance of9 mL/min/kg (0.54 L/hr/kg), and 

bioavailability of37% (no standard deviations were provided with these results) 

(I ;2;4;5;13-15). When azithromycin was administered to children 0-5 years of age (I 0 

mg/kg day I; 5 mg/kg days 2-5), Cmax was 0.224 +/- 0.120 µg/ml, Tmax was 1.8 +/-

0.4 hours, and AUCo-24 was 1.842 +/- 0.651 µg ·hr/mL. Ln a different study, when 

azithromycin was administered at the same dose to children 6-15 years of age (I 0 mg/kg 

day I ; 5 mg/kg days 2-5), Cmax was 0.383 +/- 0.142 µg/mL, Trnax was 2.4 +/- I. I 

hours, and AUCo-24 was 3.109 +/- 1.033 µg·hr/mL (5;10;1 l). Comparing these two 

studies, children 0-5 years old versus children 6-15 years old have significantly lower 

Cmax and AUC values while their oral clearance is significantly higher (9;11). Thus, it is 

proposed that age may prove to he an important covariate for oral clearance. The 

coefficient of variation for oral clearance (CL/F=4.83 L/hr/kg) in a different pediatric 

study was reported to he 74%, but the cause of the variability was not identified (9). 

Otitis media and pharyngitis are very common infections, especially in the younger 

pediatric population (8; 12) and an understanding of the contribution ofage or other 

factors that may explain interpatient variability in clearance may prove beneficial. The 
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lack of information on variability may be addressed by utilizing nonlinear mixed effects 

modeling (i.e. population pharmacokinetic models) for azithromycin in the pediatric 

population. 

Nonlinear mixed effects modeling permits the use of sparse data (2 or more plasma 

concentration samples not necessarily from the same dosing interval per patient) from a 

large number ofrepresentative patients in the population ( 16-18). The population 

method pools all data collected and calculates population pharmacokinetic parameters 

(e.g. CL/F). Additionally the focus of the analysis is on the source and correlation of 

variability in pharmacokinetic parameters among individuals in the population (19) . 

Thus, population pharmacokinetics focuses on the study population (unit of analysis) 

initially and moves out to the individual. Population analyses also provide quantitative 

estimates of both the interindividual and intraindividual (i.e. residual) variabilities of the 

population (l 7;18). lnterindividual variability may be accounted for by adding specific 

patient characteristics (e.g. demographic information, concomitant medication usage, 

etc.) into the population model. Patient characteristics that cause changes in the dose­

concentration relationship can be identified, assessed, and then appropriate dosing 

modifications can be determined to enhance efficacy or to reduce the chance ofadverse 

events (16;17). 

The purpose of this investigation was to evaluate whether a population pharmacokinetic 

modeling approach could be used to develop a model for data combined from four 
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pediatric trials and to determine if any patient characteristics could be identified that 

might provide useful information when selecting a dose of azithromycin in children. 

METHODS AND MATERIALS 

Patients. Plasma concentration-time data were obtained from pediatric patients enrolled 

in four Phase 1 clinical studies (see Table 1). These four clinical trials were conducted to 

evaluate safety, efficacy, and pharmacokinetics after oral administration ofazithromycin 

in pediatric patients. Results for three of the four studies (Protocols 054, 136, and 172) 

have been reported elsewhere (9-11 ). The fourth study (Protocol 043) was terminated 

early due to difficulties with patient enrollment. Protocol 043, 054, 136, and 172 were 

conducted during 1993, 1993, 1991, and 1992-1993 respectively. The appropriate 

institutional review boards approved all protocols. The patient's parent or a legal 

guardian gave written informed consent prior to inclusion in the study. 

This retrospective combined data analysis was conducted on all pediatric patients with 

measurable azithromycin concentration-time data collected in the four Phase I clinical 

trials. A random selection of20% of the patients from the combined dataset was 

reserved to assess the predictive performance of the model, i.e. internal validation of the 

final model. The data from the remaining 80% of the patients was used for the model 

development. Two patients in Protocol 054 (I male 2 year old weighting l 3kg and 

concomitantly medicated with captopril, furosemide, and morphine; I male I year old 

weighting 9kg with colitis and concomitantly medicated with captopril, digoxin, 

diphenhydramine, dopamine, fentanyl, furosemide, morphine, and nystatin) were 
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excluded from the combined data analysis because they had no measurable azithromycin 

concentration levels at any time point. Thus, there were a total of 58 pediatric patients 

used for the combined data analysis: 46 were included in the model development dataset 

and 12 were included in the validation dataset. Characteristics of the pediatric patients 

included in the dataset are presented in Table 2. 

Azithromycin administration. Azithromycin (oral suspension) was used for dosing for 

each clinical trial as instructed in each of the four protocols. In Protocol 043, a single 

daily dose of azithromycfu (12 mg/kg) was administered on days 1-5. In Protocol 054, a 

single daily dose of azithromycin ( 12 mg/kg) was administered on day I. Pediatric 

patients that were enrolled in the multiple dose portion of the clinical trial also received 

single daily doses of azithromycin ( 12 mg/kg) administered on days 2-5 (9). In Protocols 

136 and 172, a single daily dose ofazithromycin (10 mg/kg) was administered on day 1 

and single daily doses of 5 mg/kg on days 2-5 ( 1 O;I I). For Protocols 043, 054 and 136, 

azithromycin powder was reconstituted to I 00 ml volwne to yield 40 mg/ml 

azithromycin concentration (9;10). For Protocol 172, azithromycin was provided in a 20 

mg/ml suspension (11). Azithromycin was dosed in the morning either one hour before 

or two hours after the morning meal (9-11 ). In Protocols 043, 136 and 172, patients 

fasted overnight before receiving their final dose on day 5 (10;1 I) 

Blood Collection and Sample Analysis. For Protocol 043 , serwn samples were 

collected at 0 (just prior to dosing), 0.5 , I , 2, 4, 6, 8, 12, 24, 48, 72, 96, 120, and 144 

hours post dose on day 5. In Protocol 054, serum samples were collected at 0 (just prior 
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to dosing), I, 2, 4, 6, 8, 12, 24, 48, 72, 96 and 120 hours post dose on day I. For 

patients enrolled in the multiple dosing portion of the trial, additional samples were 

collected at I , 2, 4, 6, 8, 12, 24, 48, 72, 96, and 120 hours post dose on day 5 (9). For 

Protocols 136 and 172, serum samples were collected at 0 (just prior to dosing), 0.5, I, 

2, 4, 6, 8, 12, 24, 48, and 72 hours post dose on day 5 (IO; 11 ). Concentrations of 

azithromycin in the serum samples, for all of the protocols, were determined by a high­

performance liquid chromatography-mass spectrometry method as published elsewhere 

(9-1 1 ;20). 

There were a total of 526 concentration values used in the model development dataset 

and 148 concentration values in the validation dataset. No steady state assumptions were 

made with any concentration values. 

Data Preparation and Phannacokinetic Analysis. Demographic, plasma collection 

time, medical history, concomitant medication, concentration, dosing history, physical 

examination, and adverse event data relevant to the pharmacokinetic analysis were 

extracted from raw data sources and merged using SAS v6. l 2 on a V AXNMS 

mainframe (Digital Equipment Corporation, Maynard, MA.). Twenty percent (20%) of 

patients from each protocol were then randomly removed from the model building 

dataset to form the validation dataset. The remaining 80% of the data was used for the 

model development dataset. The pbarmacokinetic analysis was performed using 

NONiinear Mixed Effect Model (NONMEM) version 5 level I. I double precision on a 

Pentium III computer with a Visual Fortran 5.0 compiler (21-25). 
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Data Analysis Strategy. 

An approach proposed by Mandema, et. al. ( 1992) was used for the data analysis: 1) a 

base model was developed for the population, 2) the estimates found during step I were 

used to explore potential covariates with the base model, and 3) a mixed effects model 

was developed to describe the relationship between the covariates and pbarmacokinetic 

parameters (26). 1n this analysis, forward addition ofcovariates was used to generate 

the full model, while a backwards elimination approach from the full model was used to 

determine the final model. 

Pharmacokinetic and statistical models were evaluated to determine the model that best 

described the model development dataset (n=46 patients). To discriminate between 

models, the following criteria were used: 1) a decrease in the objective function value 

(which is proportional to minus twice the log-likelihood of the data) of3.84 <i 

distribution, df=l , p< 0.05) or greater following the addition ofa single parameter was 

deemed statistically significant; 2) diagnostic plots (e.g. predicted concentration versus 

observed concentration data, predicted concentrations overlaying all concentration data 

versus time, weighted residuals versus predicted concentration values), 3) minimiz.ation 

of variances: reduction ofinterindividual variances and residual variability, and 4) the 

Akaike Information Criterion (AIC) (16;21;26;27). 

Phannacokinetic Model. To compare adult and pediatric models and estimates, a 

population model was initially developed using data from a traditional pbarmacokinetic 

study conducted in healthy normal adult male subjects (age=27-54 years, weight=63-90 
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kg) (28). The subjects had no evidence of a history of disease, were taking no 

concomitant medications, and were emolled in a study to evaluate azithromycin 

phannacokinetics after single oral and intravenous doses. An intensive blood sampling 

regimen was used. A total of twelve subjects started the study but only ten completed 

both anns of the study. Two subjects dropped out after the first arm (one subject in each 

cohort), leaving eleven subjects that completed each arm. The eleven subjects from the 

oral azithromycin administration cohort contributed 120 concentration records to the 

modeling dataset; blood samples were collected at 0 Gust prior to dosing), 0.5, I, 2, 3, 4, 

6, 8, 12, 24, 48, and 72 hours post dose on day I. Several pharrnacokinetic models were 

evaluated to fit the adult data: one-compartment and two-compartment models with 

zero-order, first-order, and a combination zero- and first-order absorption. A two­

compartment model with a combination parallel zero-order and first-order absorption 

best described the data. The two-compartment model with both absorption terms was 

parameterized as oral clearance (CL/F), oral volume of distribution in the central 

compartment (V l/F), oral volume of distribution in the peripheral compartment (V2/F), 

intercompartmental oral clearance (Q/F), the first-order absorption rate constant (ka), 

and the zero-order rate constant (R) (NONMEM subroutines ADV AN4 TRANS4). 

As with the adult dataset, several pharmacokinetic models were used to evaluate the 

pediatric data: one, two, and three compartment models with zero-, first- , and 

combination parallel zero-and first-order absorption terms (14;29;30). For these models, 

the final parameter estimates from the adult model were used as the initial estimates for 
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the modeling of the pediatric data The two compartment model with parallel zero- and 

first-order absorption rates best fit the pediatric data and was used as the base model. 

Statistical Model An additive, proportional, and exponential-error model were 

evaluated for interindividual variability of the pharrnacokinetic parameters (23;3 l). For 

example: 

Additive model: 0i=TV0 + T\i .0 

Proportional model: 0i=TV0-(I + Tt;,9 ) 

Exponential model: 0i=TV0·EXP(Tt;.0) 

where T\i.9 is a random variable distributed with a zero mean and variance of ro2 
9 and 

TV® is the population mean value for 0. 

Residual variability was modeled using a proportional-error model and an additive and 

proportional error model (23;3 1): 

Proportional model: C;i=Cp<e<1.;j' (l+&;j) 

Additive and Proportional model: Cu=C,..,,,;r (I +Enj) + Ei;; 

where C;i is the observed serum concentration value for the jth individual at time=i, 

C,..,,,;i is the model predicted serum concentration for the jth individual at time=i, and Enj 

and E2;i are randomly distributed variables with a zero mean and variance of cr2 • 
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Analysis of Covariates. Once the base pharmacokinetic model was obtained, the 

posthoc Bayesian estimation (first order (FO) method) was implemented to obtain the 

individual parameter estimates to evaluate potential influences of covariates. An 

exponential error model for interindividual variability and a proportional error model for 

the residual variability were initially assumed for the covariate analysis. For each 

pharmacokinetic parameter, the potential influence of covariates on the individual 

pharrnacokinetic parameter estimates was evaluated. This evaluation was performed 

using stepwise linear regression in S-Plus version 4.5. For each pharrnacokinetic 

parameter, covariates were added and removed from the model in an iterative process 

based on a covariate' s calculated residual sum of squares and the AIC. The covariate 

with the largest reduction in the AIC was then added or dropped from the model. The 

stepwise iterations stopped when no additional step decreased the AIC (32). Diagnostic 

plots were also used to screen for the potential influence of covariates on the 

pharrnacokinetic parameters (i.e. covariate versus individual pharrnacokinetic parameter 

estimate). Age and weight were treated as continuous variables. Gender was treated as 

an indicator variable (O=fernale, !=male). The presence of asthma, anemia, cancer, 

pneumonia, nausea, colitis, albuterol, arnikacin, captopril, ceftazidirne, ceftriaxone, 

digoxin, diphenhydrarnine, dopamine, fentanyl, furosernide, rnidazolarn, morphine, 

nystatin, ranitidine, sulfamethotrexate, ticarcillin, or vancomycin at any point in the study 

was represented as an indicator variable (O=no, I =yes). Any concomitant medication, 

adverse event, or disease status in fewer than four of the patients was not tested. 
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Covariates that were found to be statistically significant from the initial screening in S­

Plus were then evaluated in the base model using NONMEM. Each covariate was added 

one at a time into the base model. Covariates were deemed as statistically significant in 

NONMEM as outlined above; i.e. a change of >3.84 in the objective function value, 

diagnostic plots, reductions in variability, and the AIC (I 6;21 ;26;27). A large number of 

covariates were found to be statistically significant in both S-Plus and NONMEM. 

Because of the number of significant variables, the model development was done in a 

forward stepwise manner, in a manner similar to that published by Lee et. al.(33). 

To generate the model in a forward stepwise manner, the change in the objective 

function value was used as the initial criteria for a covariate' s inclusion into the model. 

The list of covariates that generated a change in the objective function value of greater 

than 3.84 for any pharmacokinetic parameter was sorted in descending order. The 95% 

confidence interval was calculated for the covariate parameter estimate that generated 

the largest change in the objective function value. If the 95% confidence interval did not 

include the null value, this parameter was then added to the base model. If the 95% 

confidence interval did include the null value, the parameter was not added and the 

covariate that generated the next largest change in the objective function value was then 

evaluated. Once the initial covariate was identified, the other covariates in the list 

(whose change in objective function value were greater than or equal to 3.84) were 

added individually. Any covariate that did not generate a further change in the objective 

function value of3.84 or greater in this second run was discarded from the model 

building process. Again, the covariates were sorted by magnitude of the change in the 
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objective function value. The top covariate whose 95% confidence interval did not 

include the null value then became the second covariate to be added to the model. This 

process continued until there were no more covariates whose addition into the model 

would generate an objective function value change of greater than 3.84 and whose 

parameter estimate value would not include the null value, thus the full model was 

created. A backward elimination procedure was then performed on the full model. Each 

covariate was removed one at a time from the full model. If the objective function value 

increased by a more conservative value of7.88 <i distribution, df-=l, p< 0.005), the 

parameter was included in the final model. 

The next step in the analysis was the validation of the model. Model validation was 

performed by fixing all parameter estimates (both fixed and random effects) to their final 

model value. The model was then run using the validation dataset (20% of the total 

data). The posthoc Bayesian estimation (POSTHOC option on $ESTIMATION) was 

invoked and the residuals calculated in $ERROR were saved in the $TABLE command. 

The data output from NONMEM was then exported to Microsoft Excel (version 98). 

Bias (mean prediction error) and precision (root mean square error) of the predicted 

concentration values were calculated to describe the predictive performance of the model 

(33-35): 

precision= 
I N 

- _L(pei) 2 

N ,. , 
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I N 

bias=- ~:>e1 
N ,_, 

where pe;= the difference between the ith measured and predicted azithromycin 

concentration value at a given time and N=the number of pairs of predicted and observed 

azithromycin concentrations. Ideally, a value of zero is desired for both precision and 

bias; the smaller the magnitude of the residual, the lower the magnitude of the value of 

precision and bias (35). The 95% confidence intervals of precision and bias were also 

calculated by using the following equation (33-35): 

x., ± lo.97l, N - I . SE(X .. ) 

As another form of validation, the NONMEM analysis using the final model was 

conducted on I 00% of the data. The estimates of the pharmacok:inetic and statistical 

parameters were compared to those obtained with the development of the final model 

dataset (80% of the data) (16;36;37). 

Finally, the analysis was performed using the first order conditional estimation (FOCE) 

method using 100% of the data (17;22;38). Backwards elimination was performed on 

the final model obtained with the FO method to determine covariate signilicance. The 

FOCE estimates of the phannacok:inetic parameters, estimates of the statistical 

parameters, and diagnostic plots were compared with the final FO model using 100% of 
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the pediatric data. Bias and precision of the predicted concentration values were 

calculated to descnbe the predictive performance of the FOCE model. 

RESULTS 

Adult Phannacokinetics: 

The adult dataset was best described by using a two-compartment model with a zero­

order rate of absorption. For the adult model, interindividual variability was described 

with an exponential error term on CUF. The base model equations, parameter 

estimates, percent relative standard error (%RSE), and 95% confidence intervals for the 

adult dataset are given in Table 3 (mean weight=73.6 kg). A previous study modeled a 

similar dataset using a two-compartment model with zero-order absorption (14). The 

previous study found that a zero-order absorption rate was a superior fit for the data 

when compared to a first-order absorption rate model. The pharmacokinetic parameter 

values reported from the previous study were similar in values for oral clearance and oral 

volume of distribution to this analysis. 

Pediatric Phannacokinetics (FO Method) for Base Model- 80% data: 

In contrast with the adult data, a two-compartment model with zero- and first- order 

absorption rate constants best fit the pediatric model development dataset. The 

parameter estimates calculated from the adult model were used as the initial estimates for 

the pediatric model development dataset. During model development, interindividual 

error terms on CL/F, V2/F, ka, and Q/F significantly improved the model, i.e. a decrease 

in the objective function of3.84 Ci distribution, df=I , p< 0.05) . lnterindividual error 
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terms on Vl/F and R did not significantly improve the fit of the model and were 

excluded from further model development. Interindividual variability was best described 

by an exponential error model. Residual variability was best described by using a 

proportional error model. The base model equations, parameter estimates, percent 

relative standard error (%RSE), and 95% confidence intervals for the pediatric dataset 

are given in Table 4 (mean weight=26.5kg). When standardized by the mean weight, the 

parameter values generally compare well for the pediatric and adult populations (see 

Table 5), although the estimate for V2/F in the pediatric population was approximately 

double that of the adult population. The observed serum concentration versus predicted 

serum concentration values, residual versus predicted serum concentration values, and 

weighted residual versus predicted serum concentration values are plotted in Figures 1-3 

respectively. In Figure I , for larger concentration values, there is a larger spread seen in 

the data There is a trend seen in the residual versus predicted serum concentration plot; 

the larger the value of concentration, the more negative the residual (Figure 2). This 

trend does not appear to be corrected by weighting the residual; smaller values of 

predicted serum concentrations now have larger variability (Figure 3). 

Individual covariate testing (FO Method) for Full/Final Model - 80% data: 

A summary of the forward stepwise model development for inclusion of covariates for 

pharmacokinetic parameters is provided in Table 6. The full model consisted of albuterol 

and weight as covariates for CL/F, ceftriaxone and weight as covariates for V2/F, 

dopamine as a covariate for Q/F, and morphine as a covariate for ka (Table 7). 
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Backwards elimination was then performed to generate the final model. Each covariate 

was removed individually from th.e model. A covariate was retained in the final model if 

there was a significant decrease in the goodness of fit (i.e., objective function value 

decreased by 7.88 Ci distnlmtion, df=I, p< 0.005). Following the backwards 

elimination procedure, only albuterol and weight were identified as significant covariates 

for CUF and only ceftriaxone and weight for V2/F. Additionally, the parameter ro2
V2/F 

was removed from the model since its 95% confidence interval included the null value. 

The final model equations, parameter estimates, percent relative standard error (%RSE), 

and 95% confidence intervals are given in Table 8. The diagnostic plots ofCL/F versus 

weight, CUF versus albuterol, V2/F versus weight, and V2/F versus ceftriaxone for the 

base model parameter estimates are shown in Figures 4-7 respectively. For the figures of 

CUF and V2/F versus weight (Figures 4 and 6), the regression line has a positive slope; 

indicating as weight increases, so does the value of the pharmacokinetic parameter. For 

the albuterol and ceftriaxone plots (Figures 5 and 7), the box plots show the spread of 

the pharmacokinetic parameter values. The confidence intervals for the use of the 

concomitant medication overlap each other on both figures, indicating that there may not 

be any difference between the two groups. There are lower values for %RSE seen with 

0 values (10.6-24.3%) than the variability parameters, ro2 and cl (20.0-44. l %). The 

%RSE for Vl/F, Q/F, ro2
cUF. ro2.., and cr2 are lower for the final model as compared to 

the base model (12.7 vs. 14.2, 10.6 vs. 12.9, 39.5 vs. 43.2. 36.3 vs. 42.0. and 20.0 vs. 

24.9 respectively). The %RSE for ka, R, and ro2 
<YF are higher for the final model as 

compared to the base model (15.5 vs. 14.5, 14.6 vs. 11.1 , and 44. l vs. 39.6 
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respectively). Parameter estimate ranges are as follows: CUF=7-363 Uh, V2/F=900-

4387 L, Q/F=l4-246 Lfh, and ka=0.2-19.l Uh. 

Validation dataset (FO Method) - 20% data: 

The predicted performance of the validation dataset is shown in Table 9 . There are both 

bias and imprecision in the model between the observed and predicted azithromycin 

concentrations as shown with the 95% confidence intervals not including the null value. 

The observed serum concentration versus predicted serum concentration values and 

weighted residual versus predicted serum concentration values plots are shown in 

Figures 8 and 9 respectively. In Figure 8, it appears that the model still had difficulty 

estimating the larger concentration values. ln Figure 9, larger weighted residuals are 

seen for a few smaller predicted concentration values. 

Final Model (FO Method) - 100% data: 

The final model equations, pharrnacokinetic and statistical parameter estimates, percent 

relative standard error (%RSE), and 95% confidence intervals generated using I 00% of 

the data are shown in Table I 0. The diagnostic plots of observed versus predicted serum 

concentration values, observed versus individual predicted serum concentration values, 

residuals versus predicted concentration values, and weighted residuals versus predicted 

serum concentration values are depicted in Figures I 0-13. Figures I 0, 11 and 12 show 

that the model fails to adequately predict large concentration values. Figure 13 shows 

that the weighted residuals are not biased, that is, there is a scatter of weighted residual 

values over the entire predicted concentration range. When I 00% of the pediatric data 
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was used, weight and albuterol were retained as covariates for CL/F and weight and 

ceftriaxone for V2/F. 

Final Model (FOCE Method) - 100% data: 

The final model equations, pharmacokinetic and statistical parameter estimates, percent 

relative standard error (%RSE), and 95% confidence intervals generated using the FOCE 

method on 100% of the data are shown in Table I I . When the final model from the FO 

method was evaluated using the FOCE method, albuterol and ceftriaxone were no longer 

statistically significant covariates. lnterindividual variability was best described by an 

exponential error model on CLIF and ka. Residual variability was best described by 

using a proportional error model. The diagnostic plots of observed versus predicted 

serum concentration values, observed versus individual predicted serum concentration 

values, residuals versus individual predicted serum concentration values, and weighted 

residuals versus individual predicted serum concentration values are depicted in Figures 

I 4- I 7. Figures 14 and IS show that the FOCE model better describes the dataset. 

There was a more uniform distribution of data points spread over the line of identity. 

Figure 16 shows that the residual plots do not differ much between the two models. 

Figure I 7 shows that the weighted residuals are biased for smaller predicted 

concentration values. When 100% of the pediatric data was used with the FOCE 

method, weight remained as a covariate for CUF and V2/F in the final model. 
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Validation dataset (FOCE Method) - 20% data: 

The predicted performance of the validation dataset is shown in Table 12, where it can 

be observed that bias and imprecision were present between the observed and predicted 

azithromycin concentrations: the 95% confidence intervals did not include the null value. 

The values for precision and bias are similar to the values obtained using the FO method. 

The observed serum concentration versus predicted serum concentration values and 

weighted residual versus predicted serum concentration values plots are shown in 

Figures 18-19 respectively. In Figure 18, the model still had difficulty estimating the 

higher concentration values. In Figure 19, larger weighted residuals are seen for a few 

smaller predicted concentration values. Figure 20 shows the overall fit of the model by 

comparing predicted and observed concentration values versus time. At the later time 

points, the model consistently overpredicts the concentration values. 

Model parameters versus published results: 

A further validation of the population analysis can be found by comparing the individual 

study pharmacokinetic results with a prior published analysis. For the 054 study, oral 

clearance and V l /F were reported. There were 23 evaluable patients in the analysis 

resulting in values ofCUF=4.83 +/- 3.59 L/h/kg (CV=74%) and Vl/F=38.1 L/kg (range 

of9.6-l 84.6 L/kg - standard deviation and CV were not provided) (9). The FOCE 

analysis on 100% of the pediatric dataset gave the following estimates of parameters: 

CL/F(%CV) (L/h) = 18.2(31.3) + 2.25(14.3)-weight(kg). Using the mean weight for 

the population (26.5 kg), the value for CUF was 2.93 L/h/kg. For the 100% pediatric 

dataset FOCE analysis, the value for Vl/F was 5.1 (L/kg). While the value for CL/F 
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compares favorably between the two analyses, the value for Vl/F in our analysis appears 

substantially smaller than the prior analysis. 

DISCUSSION 

The study demonstrated that a population pharmacokinetic modeling approach could be 

used to model azithromycin concentration-time data from four pediatric clinical trials. 

Additionally, the study demonstrated that it was possible to identify covariates to explain 

variability in the pharmacokinetic parameters. When the FOCE method was used, 

weight was found to be a significant covariate for CUF and V2/F. 

Weight was an anticipated covariate for both CL/F and V2/F and supports the current 

dosing recommendations for azithromycin based on weight (5). Age has been proposed 

as a potential significant covariate since a higher oral clearance has been seen in children 

0-5 years of age as compared to children that are 6-15 years of age (9) . However, the 

population analysis found that while age created a large difference in the objective 

function value when added individually to the base model, the 95% confidence interval of 

age's parameter estimate included the null value; age was not considered statistically 

significant. Additionally, weight and age were highly correlated covariates. Therefore 

age was not evaluated in further model development. 

When the FO method was used in the analysis, two of the covariates identified as 

significant subsequently become insignificant when the FOCE method was used. 

Albuterol was identified as a statistically significant covariate for CUF and ceftriaxone 
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for V2/F. Albuterol was given to 22% (13 out of 58) of the entire population, while 

ceftriaxone was given to 14% (8 out of 58). No plausible explanation for these effects 

could be found in the literature. However, it is interesting to note that many of the 

patients taking albuterol and ceftriaxone were also taking many concomitant 

medications. Additionally, all but one of the patients taking these medications were from 

the 054 study. The patients in study 054 were different from the children in the other 

three studies in that they received multiple concomitant medications and had more acute 

and chronic illnesses (all children were hospitalized); 12 of the 26 patients were cancer 

patients. Children in studies 043, 136, 172, and the non cancer patients in 054 were 

enrolled in their respective protocols for otitis media or pharyngitis (9-11 ). 

Consequently, all concomitant medications were taken by approximately half of the 

patients in study 054 (12 out of58 patients, or 21%). Thus, this analysis may not have 

had sufficient power to fully evaluate the interacting potential of many of these drugs. 

When the FOCE method was used, both albuterol and ceftriaxone ceased to be 

significant in the model. 

A previous analysis found a large interpatient variability in the parameter estimates for 

study 054 (9). In this study analysis, there were statistical differences (p<0.0001) in oral 

clearance in children <=5 years old (CL/F=4.27 Uhr/kg) compared to the group of 

children 6 years of age (2.27 Uhr/kg) and greater. In contrast the present analysis did 

not find age to be a statistically significant covariate for oral clearance. 
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Model misspecification may have led to the poor fit of the model for large concentration 

values. A two compartment model was found to best fit the data However, more recent 

studies indicate that azithromycin follows three compartmental pharmacokinetics 

(29;30). This could possibly explain the under-prediction of concentrations at later 

times. In the previous analysis of study 054, a zero-order input was used to model drug 

absorption (9). In the present study, the data was best fit using both zero order input 

and simultaneous first order input. While the diagnostic plots and also the change in the 

objective function value signaled a better fitting model when both inputs were used, the 

plots still showed that there was bias and imprecision when calculating the predicted 

concentration values with this model. Additionally, the bias and imprecision in the model 

was seen with the results of the predictive performance using the validation dataset. In 

Figure 20, the predicted concentration values were consistently larger than the observed 

values. This finding would be indicative of a three compartment model being a 

potentially better fit. Further work could be done evaluating a three compartment model 

with various error models using the FOCE method. 

Our models were generated using both FO and FOCE estimation methods in NONMEM. 

The FO estimation method obtains values for T] values after the population parameter 

estimates have been obtained. Therefore these estimates of T] are computed with the 

assumption that the variance model is that of the mean individual. The FOCE method 

does not use this assumption. The values of Tl are computed simultaneously with the 

population estimates (l 7;22). While using the FOCE method, some of the imprecision in 

the model was addressed, as seen in the improvement in the observed azithromycin 
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serum concentration versus predicted azithromycin serum concentration plots. 

However, the weighted residual plots showed an increase in bias for low concentration 

values. 

In conclusion, this study has shown that population pharmacokinetic models can be used 

to model azithromycin serum concentration time data obtained after oral dosing in the 

pediatric population. A two-compartment model with a parallel NONMEM calculated 

zero-order and first order absorption rate constant was used to describe the 

concentration versus time data for the pediatric data pooled across four clinical studies. 

When using the FO method, weight and albuterol for CUF and weight and ceftriaxone 

for V2fF were found to significantly decrease their respective parameter estimates. 

When using the FOCE method, weight for both CL!F and V2fF was found to 

significantly increase the value for their respective parameter estimates. The model using 

the FOCE method best describes the dataset, though there was still bias in the final 

model. 
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Table I. Features of Pediatric Studies Included in the Population Phannacokinetic 

Analysis of Azithromycin 

Protocol Design Azithromycin Oral Total Number of 
Number Dosage Patients* 

Gender and A_g_e 
043** Open label, noncomparative, Single dose 12 n=5 

non-randomized trial in patients mg/kg for days 1-5 3 male; 2 female 
with Group A beta-hemolytic 2-12 years of 
streptococcal (GABHS) 
pruUyngitis 

age 

054 Open label, noncomparative, Single dose 12 n=26 
non-randomized trial to mg/kg on day l; 15 male; 11 
characterize the disposition and single dose 12 female 
tolerance of azithromycin after mg/kg on days 2-5 0-15 years of 
single and multiple oral doses age 
in patients with and without 
cancer 

136 Open label, noncomparative, Single dose I 0 n=14 
non-randomized trial in patients mg/kg on day 1; 5 male; 9 female 
with Group A beta-hemolytic single dose 5 mg/kg 6-15 years of 
streptococcal (GABHS) on days 2-5 age 
~tis 

172 Open label, noncomparative, Single dose l 0 n=13 
non-randomized trial in patients mg/kg on day I; 7 male;6 female 
with acute otitis media single dose 5 mg/kg 1-5 years of age 

ond~2-5 
* Number of patients m study with measurable concentrations of azJthromycm 

** Protocol 043 was discontinued early due to poor study enrollment 
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Table 2. Characteristics of Pediatric Patients Evaluated in the Population 

Pharmacokinetic Analysis of Azithromycin 

Characteristic Model develQJ>_ment dataset Validation dataset 
Total number of_.E.atients 46 12 
Male 26 7 
Female 20 5 
A__g_e Jr..ear& 
We!g!it{kg} 

s.ssJ:ran__g_e=0-1~ 
26.5 ]!-an__g_e=4-8Ql 

4.83J:ran~l-1~ 
2s.2 :Iran~7-8~ 

Albuterol* 10 3 
Amikacin* 5 I 
Anemia* 6 1 
Asthma 4 2 
Cancer• 9 3 
CaQtCJ]>_ril* 3 I 
Ceftazidime* 4 2 
Ceftriaxone• 6 2 
Colitis 14 6 
Digman• 4 1 
Dyihenh_y_dramine* 4 I 
DCJ]>_amine* 3 I 
Fentan_.I!* 2 2 
Furosemide* 5 1 
Midazolam* 4 1 
M~hine* 4 0 
Nausea 9 1 
N_l'.'tatin* 4 1 
Pneumonia* 5 3 
Ranitidine* 7 2 
Sulfaroethotrexate• 4 2 
Ticarcillin* 5 0 
V ancom_y_cin* 10 4 

• All of the children with these charactensttcs are from Protocol 054. 
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Table 3. Base Model Equations, Parameter Estimates, Percent Relative Standard Errors 

(%RSE), and 95% Confidence Intervals (Adult Dataset) 

Parameters Estimated %RSE 95% Confidence 
Values Intervals 

CUF~ 138 12.0 106,170 
Vl/F (L)=02 849 17.2 563,1140 

_Q_IF J.UhL e, 240 16.6 162,318 
V21F(L}=®• 2990 14.0 2170,3810 
R J_mJlZ!E ®s 215 9.86 173,257 
C0

2 
CLIF 0.229 41.6 0.042,0.416 

cl 0.291 17.5 0.191,0.391 

Abbreviations: CUF = oral clearance, Vl/F = oral volume of distribution in the central 
compartment, Q/F = intercompartmental oral clearance, V2/F = oral volume of 
distribution in the peripheral compartment, R= zero-order absorption rate constant, 
co2cUF =interpatient variability ofCL/F, cl =variance of residual error. 
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Table 4. Base Model Equations, Parameter Estimates, Percent Relative Standard Errors 

(%RSE), and 95% Confidence Intervals (Pediatric Model Development Dataset (80% of 

Data))- FO Method 

Parameters Estimated %RSE 95% Confidence 
Values Intervals 

CL/F (Llh°"""FE>1 55.3 13.7 40.5,70.1 
VJ!F(i}=02 258 14.2 186,330 

QIF (i)h)= 03 120 12.9 90,150 
V2/F (L):" e. 1900 12.3 1443,2357 
ka~e, 1.86 14.5 1.33,2.39 
R~06 89.6 I I.I 70,109 
~CUF 0.600 43.2 0.092, l.108 
~O/F 0.245 39.6 0.055,0.435 
~V2/F 0.353 39.7 0.079,0.627 
~ka 2.450 42.0 0.431 ,4.469 
~ 0.215 24.9 0.109,0.321 

Abbreviations: FO=fust order, CUF = oral clearance, Vl/F =oral volume of distribution 
in the central compartment, Q/F = intercompartmental oral clearance, V2/F = oral 
vo lume of distribution in the peripheral compartment, ka= first-order absorption rate 
constant, R= zero-order absorption rate constant, ro2 cUF =interpatient variability of CL/F, 
ro

2
<YF = interpatient variability ofQ/F, olV21F = interpatient variability ofV2/F, ro2

ka = 
interpatient variability ofka, cr2 =variance of residual error. 
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Table 5. Comparison of Parameter Estimates for Adult and Pediatric Model 

Development Dataset (80% of Data) on a Mean per kg Weight Basis 

Parameters Adult Parameter Estimate Pediatric Model 
Development 
Parameter Estimate 

CL/F i_Ubtk_&=0, 1.9 2.1 
v l /F j_L/k_&= 02 11.5 9.7 

_QIF J!:.lhlk__gE e, 3.3 4.5 
V2/F ];::!k:&= ®• 40.6 71.7 
ka(h'l=®s -- 1.86 
Rj_~=®• 2.9 3.4 

Abbreviations: CL/F =oral clearance, Vl/F = oral volume of distribution in the central 
compartment, Q/F = intercompartmental oral clearance, V2/F = oral volume of 
distribution in the peripheral compartment, ka= first-order absorption rate constant, R= 
zero-order absorption rate constant 
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Table 6. Summary of Covariate Analysis (Model Development Dataset (80% ofData)) 

Objective Change in Objective 
Covariate Anal~is Function Value Function Value 

S~l Base Model -2836.404 
Step 2 Add single covariate onto Base Model 

AgeonCL/F * -2994.688 158.284 
Weight on CL/F -2982.568 146.164 

Albuterol on CLIF -2950.983 114.579 
Weight on V2/F -2893.253 56.849 

Age on V2/F -2889.726 53.322 
Nausea on V2/F -2885.832 49.428 

Diphenhydrarnine on V2/F -2877.958 41.554 
Morphine on ka -2876.861 40.457 

Midazolarn on CLIF -2873.100 36.696 
Nausea on CL/F -2866.496 30.092 

Vancomycin on V2/F -2866.369 29.965 
Ticarcillin on CL/F -2865.848 29.444 

Anemia on CL/F -2863.263 26.859 
Colitis on V2/F -2862.736 26.332 

Furosemide on CL/F -2861.176 24.772 
Sulfarnethotrexate on CL/F -2858.981 22.577 

Pneumonia on V2/F -2858.892 22.488 
Ceftriaxone on CLIF -2858.552 22.148 

Cancer on V2/F -2856.941 20.537 
Ceftriaxone on V2/F -2856.429 20.025 
Amikacin on CL/F -2856.103 19.699 
Dopamine on CL/F -2855.336 18.932 

Height on V2/F -2854.314 17.910 
Fentanyl on V2/F , -2852.693 16.289 

Ticarcillin on V2/F -2851.556 15.152 
Ceftazidime on V2/F -2849.378 12.974 

Amikacin on V2/F -2849.152 12.748 
Digoxin on CL/F -2848.791 12.387 
Albuterol on V2/F -2846.670 10.266 

Pneumonia on CL/F -2845.137 8.733 
Dopamine on Q/F -2842.936 6.532 

Weight on Q/F -2842.341 5.937 
Furosemide on V2/F -2842.154 5.750 

Sulfamethotrexate on V2/F -2841.608 5.204 
Vancomycin on CL/F -2841.493 5.089 

Age on ka -2840.979 4.575 
Vancomy_cin on ka -2840.791 4.387 
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Objective Change in Objective 
Covariate Anal_2'Sis Function Value Function Value 
Dopamine on V2/F -2840.533 4.129 
Ticarcillin on ka -2840.486 4.082 
Albuterol on ka -2840.394 3.990 

Weight on ka -2840.354 3.950 
Anemiaonka -2840.133 3.729 

Step 3 Add single covariate onto base model 
lwith weight on CUF 

Albuterol on CL/F -3029.745 47.177 
Weight on V2/F -3017.325 34.757 

Age on V2/F -3013.095 30.527 
Colitis on V2/F -3007.163 24.595 

Ticarcillin on CL/F -3003.158 20.590 
Morphine on ka -3002.987 20.419 

Ceftriaxone on V2/F -3000.477 17.909 
Age on CL/F -3000.030 17.462 

Sulfamethotrexate on CL/F -2997.110 14.542 
Anemia on CUF -2996.912 14.344 

Ceftriaxone on CUF -2995.645 13.077 
Albuterol on ka -2995.220 12.652 
Weight on Q/F -2994.211 11 .643 

Dopamine on Q/F -2993.971 11.403 
Furosemide on V2/F -2992.992 10.424 

Ticarcillin on ka -2992.288 9.720 
Ticarcillin on V2/F -2990.290 7.722 

Vancomycin on V2/F -2989.823 7.255 
Fentanyl on V2/F -2989.478 6.910 

Furosemide on CUF -2989.346 6.778 
Midazolam on CL/F -2988.727 6.159 

Ageonka -2988.611 6.043 
Weight on ka -2988.255 5.687 

Amikacin on V2/F -2987.120 4.552 
Dopamine on CUF -2986.693 4.125 
Vancomycin on ka -2986.552 3.984 
Amikacin on CL/F -2985.769 3.201 

Sulfamethotrexate on V2/F -2985.578 3.010 
Dopamine on V2/F -2985.553 2.985 

Diphenhydramine on V2/F -2985.530 2.962 
Cancer on V2/F -2985.397 2.829 

Vancomycin on CUF -2985.362 2.794 
Height on V2/F -2985.131 2.563 

Albutero1 on V2/F -2985.095 2.527 
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Objective Change in Objective 
Covariate Anal~is Function Value Function Value 

Ceftazidime on V2/F -2984.932 2.364 
Nausea on V2/F -2984.047 1.479 
Digman on CL/F -2983 .903 1.335 

Pneumonia on CL/F -2982.725 0.157 
Nausea on CL/F -2982.570 0.002 

Pneumonia on V2/F -2982.377 -0.191 

Step 4 Add single covariate onto base model 
jwith weight on CL/F, and albuterol on CL/F 

Weight on V2/F * -3070.877 41.132 
Age on V2/F * -3062.283 32.538 
AgeonCL/F * -3052.624 22.879 

Ceftriaxone on V2/F -3049.137 19.392 
Colitis on V2/F -3047.466 17.721 

Furosemide on V2/F -3044.101 14.356 
Ticarcillin on CL/F -3043 .946 14.201 

Anemia on CL/F -3040.798 11.053 
Morphine on ka -3040.763 11.018 

Sulfamethotrexate on CL/F -3038.156 8.411 
Dopamine on Q/F -3035.479 5.734 
Ticarcillin on ka -3035.289 5.544 

Ticarcillin on V2/F -3034.070 4.325 
Weight onka -3033.796 4.051 

Amikacin on V2/F -3033.720 3.975 
Ceftriaxone on CL/F -3032.002 2.257 
Midazolam on CL/F -3030.397 0.652 

Age on ka -3030.153 0.408 
Dopamine on CL/F -3029.803 0.058 

Furosemide on CL/F -3029.751 0.006 
Albuterol on ka -3027.386 -2.359 

Vancomycin on ka -3025.119 -4.626 
WeisJ!! on _Q/F -3023.072 -6.673 

Step 5 Add single covariate onto base model 
with weight on CL/F, albuterol on CL/F, and 
lceftriaxone on V2/F 

Weight on V2/F -3082.405 33.268 
Age on V2/F -3078.131 28.994 
Age onCL/F -3074.059 24.922 

Morphine on ka -3062.637 13 .500 
Furosemide on V2/F -3061.865 12.728 
Ticarcillin on CL/F -3057.697 8.560 
Dqp_amine on_Q/F -3057.359 8.222 
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Objective Change in Objective 
Covariate Anal_r_sis Function Value Function Value 

Colitis on V2/F -3056.345 7.208 
Ticarcillin on ka -3054.317 5.180 

Weight onka -3054.127 4.990 
Ticarcillin on V2/F -3053.223 4.08~ 
Amikacin on V2/F -3052.872 3.735 

Sulfamethotrexate on CL/F -3050.762 1.625 
Anemia on CL/F -3050.621 1.4811 

Step 6 Add single covariate onto base model 
with weight on CL/F, albuterol on CL/F, 
ceftriaxone on V2/F, and weight on V2/F 

Age onCL/F* -3096.981 14.576 
Dopamine on Q/F -3089.298 6.893 
Morphine on ka -3088.954 6.549 

Weight onka -3087.621 5.216 
Ticarcillin on ka -3087.414 5.009 

Ticarcillin on CL/F -3086.086 3.681 
Furosemide on V2/F -3085.382 2.977 
Ticarcillin on V2/F -3084.643 2.238 

Age on V2/F -3083.425 1.020 
Colitis on V2/F -3082.406 0.001 

Step 7 Add single covariate onto base model 
with weight on CL/F, albuterol on CL/F, 
lceftriaxone on V2/F, weight on V2/F, and 
~oparnine on Q/F 

Age on CL/F • -3102.415 13.117 
Morphine on ka -3094.727 5.429 
Ticarcillin on ka -3094.110 4.812 

Weig_ht on ka -3092.860 3.562 
Step 8 Add single covariate onto base model 
with weight on CL/F, albuterol on CL/F, 
jceftriaxone on V2/F, weight on V2/F, dopamine 
on Q/F, and morphine on ka 

Ticarcillin on ka -3095.264 0.537 
• 95% confidence interval of parameter estimate includes the null value. 
Abbreviations: CL/F = oral clearance, Q/F = intercompartmental oral clearance, V2/F = 
oral volume of distribution in the peripheral compartment, ka= first-order absorption rate 
constant 
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Table 7. Backward Elimination Results from Full Model (Model Development Dataset 
( 80% ofDataJl: FO Method 

Pj11111lleter Value of Change in p Value 
parameter objective 

function value 
CL/F 
Weight 01=0 89.5 < 0.005 
Albuterol 0,=0 57.0 < 0.005 

V2/F 
Ceftriaxone 09=0 9.5 < 0.005 
Wei&!!! 010=0 33.3 < 0.005 

Q/F 
D~arnine 011=0 6.9 NS 

ka 
M~hine 012=0 5.4 NS 

Abbreviations: FO----first order, CL/F = oral clearance, V2/F = oral volume of distribution 
in the peripheral compartment, Q/F = intercompartmental oral clearance, ka= first-order 
absorption rate constant, NS=not significant. 
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Table 8. Final Model Equations, Parameter Estimates, Percent Relative Standard Errors 

(%RSE), and 95% Confidence Intervals (Model Development Dataset (80% of Data)) -

FO Method 

Parameters Estimated %RSE 95% Confidence 
Value Intervals 

CL/F (Uh)=01 + <"),·weight+ 
®s·albuterol 

®, 43.9 14.6 31.4,56.4 
®, 1.22 24.3 0.64,1.80 
®s - 20. l 20.4 -28.1 ,-12.1 
Vl!F(I.:)= ®2 258 12.7 194,322 
~IF]Qii}_= ®, 110 10.6 87,133 
V2/F (L)= ®•+ ®9·cefr+ ®1o·weight 

®· 1270 14.8 902,1638 
0 9 -588 18.9 -806,-370 
®10 32.4 20.4 19.5,45.3 
ka]i5:= ®s 1.81 15.5 1.26,2.36 
R Im:::&/iil= ®• 105 14.6 75,135 
ro2cUF 0.769 39.5 0.173, 1.365 
(j)~ 0.286 44.I 0.039,0.533 
ro'V21F --- --- ---
ffi2.. 2.26 36.3 0.65,3.87 

__t_ 0.23 20.0 0. 14,0.32 

Abbreviations: FO=first order, CL/F =oral clearance, Vl/F = oral volume of distribution 
in the central compartment, Q/F = intercompartmental oral clearance, V2/F = oral 
volume of distribution in the peripheral compartment, ka= first-order absorption rate 
constant, R= zero-order absorption rate constant, ro2cUF =interpatient variability ofCL/F, 
ro2

QIF = interpatient variability ofQ/F, ro2V21F = interpatient variability ofV2/F, ro\, = 
interpatient variability ofka, o2 =variance ofresidual error, cefr=ceftriaxone use. 
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Table 9. Predictive Performance of Azithromycin Population Pbarmacokinetic Model 

for Validation Dataset (20% of Data)- FO Method 

Parameter Value (ug/mL) s.d. (ug/mL) 95% Confidence Interval 
J\lg/_mJd 

Precision 0.1026 0.1644 J:o.078l ,o.122n: 
Bias 0.0167 0.1016 (0.0001,0.0334) 

Abbreviations: FO=first order, s.d.= standard deviation 
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Table 10. Final Model Equations, Parameter Estimates, Percent Relative Standard 

Errors (%RSE), and 95% Confidence Intervals with 100% of the Pediatric Data using 

FO Method 

Parameters Estimated %RSE 95% Confidence 
Value Intervals 

CL/F (L/h)=01 + E>1·weight+ 
e,·albuterol 

e, 43.5 15.9 29.9,57.1 
e, 1.47 20.0 0.89,2.05 
e , -20.7 25.l -30.9,-10.5 
Vl!F(i:)= 02 307 14.8 218,396 

[QIF (Lib)= 0 3 114 10.8 90,138 
V2/F (L)= ®•+ 09·cefr+ 0 10·weight 

e, 1230 13.3 911 ,1549 
0 9 -597 19.3 -822,-372 
010 38 26.0 26,50 
ka(h-=l)= Els 1.94 14.9 1.37,2.51 
R(mg/h)= e 6 106 12.4 80,132 
ffi2cUF 0.887 38.7 0.215,1.559 
o70/F 0.293 39.6 0.066,0.520 
o7V2/F --- --- ---
~. 2.26 38.9 0.54,3.98 
~ 0.31 25.4 0.16,0.46 

Abbreviations: FO=first order, CL/F =oral clearance, Vl/F =oral volume of distribution 
in the central compartment, Q/F = intercompartmental oral clearance, V2/F = oral 
volume of distribution in the peripheral compartment, ka= first-order absorption rate 
constant, R= zero-order absorption rate constant, oi

2cUF =interpatient variability ofCL/F, 
oi

2
Q!F = interpatient variability ofQ/F, oi

2
v21F = interpatient variability ofV2/F, oi'•• = 

interpatient variability ofka, u2 =variance ofresidual error, cefr=ceftriaxone use. 
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Table 11 . Final Model Equations, Parameter Estimates, Percent Relative Standard 

Errors (%RSE), and 95% Confidence intervals with 100% of the Pediatric Data Using 

FOCEMethod 

Parameters Estimated %RSE 95% 
Value Confidence 

Intervals 
CUF (L/h)=El1 + @,-weight 

e, 18.2 31.3 7.1,29.4 
81 2.25 14.3 1.62,2.88 
Vl!F-(L)= 8 2 134 21.3 78,190 

_Q_IF (Llh)= e, 103 I I.I 81 ,125 
V2/F (L)= ®•+ Ela ·weight 

e. 1180 14.2 851,1510 
Ela 26.9 15.4 18.8,35.0 
kal!O._=e, 0.656 17.2 0.435,0.877 
RJ:m~= El6 187 28.3 83,291 
ffiTcUF 0.428 20.0 0.260,0.596 
ffi

2
ka 0.761 40.2 0.160, 1.360 

cl 0.287 22.1 0.163,0.411 

Abbreviations: FOCE=first order conditional estimation, CUF =oral clearance, Vl/F = 
oral volume of distribution in the central compartment, Q/F = intercompartmental oral 
clearance, V2/F =oral volume of distribution in the peripheral compartment, ka= first­
order absorption rate constant, R= zero-order absorption rate constant, ro2 cUF 
=interpatient variability ofCL/F, ro2., = interpatient variability ofka, cl =variance of 
residual error. 
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Table 12. Predictive Performance of Azithromycin Population Phannacokinetic Model 

for Validation Dataset (20% of Data)- FOCE Method 

Parameter Value (ug/mL) s.d. (ug/mL) 95% Confidence Interval 
J!!gLmL..2_ 

Precision 0.1048 0.1699 J:o.0191,o.12STI:: 
Bias 0.0236 0.1025 J:o.0068,0.040~ 

Abbreviations: FOCE=first order conditional estimation, s.d. = standard deviation 

67 



Figure I . Observed Azithromycin Serum Concentration versus Predicted Azithromycin 

Serum Concentration Values for the Base Model (80% of data) - FO Method 
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Figure 2. Residuals versus Predicted Azithromycin Serum Concentration Values for the 

Base Model (80% of data) - FO Method 
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Figure 3. Weighted Residuals versus Predicted Azithromycin Serum Concentration 

Values for the Base Model (80% of data) -FO Method 
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Figure 4. CL/F versus Weight for Base Model parameter estimates (80% of data) - FO 

Method 
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Figure 5. CUF versus Albuterol for Base Model Parameter Estimates (80% of data) -

FOMethod 
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Figure 6. V2/F versus Weight for Base Model Parameter Estimates (80% of data) - FO 

Method 
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Figure 7. V2/F versus Ceftriaxone for Base Model Parameter Estimates (80% of data)-

FOMethod 
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Figure 8. Observed Azithromycin Serum Concentration versus Predicted Azithromycin 

Serum Concentration Values for the Validation Dataset (using Final Estimates from Final 

Model with 80% data) - FO Method 
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( Figure 9. Weighted Residuals versus Predicted Azithromycin Serum Concentration 

Values for the Validation Dataset (using Final Estimates from Final Model with 80% 

data) - FO Method 
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Figure I 0. Observed Azithromycin Serum Concentration versus Predicted Serum 

Azithromycin Concentration Values for 100% of the Pediatric Data Using FO Method 
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Figure 11. Observed Azithromycin Serum Concentration versus Individual Predicted 

Serum Azithromycin Concentration Values for 100% of the Pediatric Data Using FO 

Method 
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Figure 12. Residuals versus Predicted Azithromycin Serum Concentration Values for 

I 00% of the Pediatric Data Using FO Method 
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( Figure 13. Weighted Residuals versus Predicted Azithromycin Serum Concentration 

Values for I 00% of the Pediatric Data Using FO Method 
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Figure 14. Observed Azithromycin Serum Concentration versus Predicted Serum 

Azithromycin Concentration Values for 100% of the Pediatric Data Using FOCE 

Method 
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Figure 15. Observed Azitbromycin Serum Concentration versus Individual Predicted 

Serum Azitbromycin Concentration Values for I 00% of the Pediatric Data Using FOCE 

Method 
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Figure 16. Residuals versus Predicted Azithromycin Serum Concentration Values for 

100% of the Pediatric Data Using FOCE Method 
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Figure 17. Weighted Residuals versus Predicted Azithromycin Serum Concentration 

Values for 100% of the Pediatric Data Using FOCE Method 
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Figure 18. Observed Azithromycin Serum Concentration versus Predicted Azithromycin 

Serum Concentration Values for the Validation Dataset (using Final Estimates from Final 

Model with 80% data) - FOCE Method 
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Figure 19. Weighted Residuals versus Predicted Azithromycin Serum Concentration 

Values for the Validation Dataset (using Final Estimates from Final Model with 80% 

data) - FOCE Method 
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Figure 20. Observed and Predicted Azithromycin Serum Concentration Values versus 

Time for the Validation Dataset (using Final Estimates from Final Model with 80% data) 

- FOCE Method 
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MANUSCRIPT ill 

Population Phannacokinetics of Prednisolone in Heart and Lung Transplant 

Patients 

ABSTRACT 

A population pharmacokinetic analysis was conducted for prednisolone on data from 

thoracic organ transplant patients. The data consisted of 496 plasma prednisolone 

concentrations and 496 plasma prednisone concentrations from 41 patients administered 

total daily oral doses of prednisolone ranging from 5-80 mg per day. A population 

pharmacokinetic analysis was conducted in NONMEM on estimated unbound 

prednisolone concentrations. A one compartment model with first order rate of 

absorption was found to best fit the data. Potential covariates were assessed for oral 

clearance (CL/F) and oral volume of distribution (V IF). Sex and concurrent 

ciprofloxacin use were found to be significant covariates for CL/F. No covariates were 

found to be significant for V/F. Neither age, weight, type of transplant, presence of 

cystic fibrosis, or concurrent use of acyclovir, amphotericin, cefotaxime, ceftazidime, 

flucloxacillin, ganciclovir, imipenem, itraconazole, lyposomal amphotericin, nor septrin 

appeared to be significant for any pharmacokinetic parameter. The unbound 

prednisolone and total prednisone concentration data were simultaneously modeled using 

the final parameter estimate of the apparent volume of distribution from the analysis of 

prednisolone alone and a literature value for the apparent volume of distribution of 
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prednisone was used. It was not possible to obtain meaningful models for the 

simultaneous modeling of the prednisolone/prednisone data. 
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INTRODUCTION 

Prednisolone, a synthetic corticosteroid, is an important imrnunosuppressant used in 

organ transplant patients to suppress allograft rejection. Transplant patients are often 

treated chronically with empirically determined prednisolone doses (1;2). Because of the 

lack of individual dosing regimens, the tendency for increased serious adverse events or 

sub-therapeutic concentrations is great. The future of imrnunosuppression therapy will 

be geared towards individualizing a patient's dose (3). 

General steroid information 

Corticosteroids are prescribed for their imrnunosuppressive and anti-inflammatory 

effects. These effects are produced by the binding of the steroid to cytosolic receptors in 

many different tissues. These activated receptors then go on to the cell nucleus and 

increase the transcription of certain genes that regulate the synthesis of specific proteins, 

second messengers, or enzymes (2). Some effects are seen immediately (e.g. changes in 

cortisol plasma concentrations) and appear directly related to the pharmacokinetics of 

the steroid; other effects (e.g. eosinophil counts), have a slow onset (6-8 hours) and slow 

dissipation of the response (24-36 hours) back to baseline (2;4). 

Because steroids are nonselective immunosuppressants (i.e. they affect many gene­

mediated responses simultaneously), these drugs may predispose patients to a greater 

risk of infections and other side effects (5). These adverse events may include: 

cushingoid features, hemorrhage, psychoses, myopathy, osteoporosis, cataracts, 

hyperlipidemia, growth retardation in children, and hypertension (2;6-8) . Often the 
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frequency of side effects are increased in patients undergoing chronic therapy, patients 

with low serum albumin concentrations, and patients receiving certain concomitant 

medications (e.g. oral contraceptives) that affect the protein binding and metabolism of 

prednisolone; all factors that increase a patient's steroid exposure. Patients with low 

serum albumin concentrations may have greater steroid exposure due to altered protein 

binding and/or a reduced hepatic function (2;9). A study of240 medical inpatients 

receiving prednisone showed a correlation between the frequency of side effects, the 

mean daily prednisone dose, and the serum-albumin levels. Side effects were more 

common with those patients that received higher prednisone doses and in patients with 

low serum-albumin concentrations ( 4;9). 

Prednisolone Pharmacokinetics 

For immunosuppression of organ transplants, prednisolone is administered either orally 

or intravenously. When prednisolone is administered orally, it is administered as 

prednisolone or as its prodrug prednisone, which is metabolized to active prednisolone 

(2;10;11). 

Absorption 

Oral prednisolone has a bioavailability (F) of60-100% (2;11-14). The lower 

bioavailability has been seen with higher steroid doses. Patients who exhibit sub­

therapeutic responses with prednisolone often experience poor absorption of drug ( 4). 
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Prednisolone has a prompt rate of absorption with a peak concentration (Cmax) 

occurring between one and two hours post dose (Tmax) (1;2;4;15-17). 

Distribution 

The reversible binding of drug to proteins follows the law of mass action: 

(Dj+(P) :: (DP) 

where D= the molar concentration of unbound drug, P= the unoccupied protein, DP= 

the drug protein complex, k 1 = the forward rate constant, and k2= the reverse rate 

constant. The ratio ofkl/k2 is known as the equilibrium association constant or affinity 

constant (Ka) (18;19). Ka provides information as to the affinity between the drug and 

its binding site on the protein; drugs that are strongly protein bound have large values of 

Ka (19). The inverse of Ka (i.e. I/Ka) is known as the equilibrium dissociation constant 

(Kd). 

A drug' s extent and ability to bind to proteins will affect its pharmacokinetic parameters, 

specifically clearance and volume of distribution ( 18; 19). In the typical therapeutic 

concentration range for most drugs, the fraction unbound remains constant; only a small 

fraction of the binding sites on proteins are occupied. For a given concentration of 

protein, the fraction unbound is constant. Consequently, the pharmacokinetic 

parameters of most drugs are independent of dose (19) . However, for some drugs, 

protein binding varies with concentration level and thus these drugs exhibit concentration 

dependent pharmacokinetics. 
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Plasma protein binding of prednisolone appears to be dose related, resulting in nonlinear 

pharmacok:inetics (2;4;10;16;17;20-24). The nonlinearity is attributed to prednisolone 

binding to two different proteins; transcortin (i.e. corticosteroid binding globulin) which 

exhibits a low capacity and high affinity for prednisolone and albumin which exhibits a 

high capacity and low affinity for prednisolone (2;4;9;20;23-27). Prednisolone protein 

binding can be expressed: 

D• = N,P,K,Dr + NaPaKaDr 
(I+ K·Dr) (1 + KaDr) 

where Db is the concentration of prednisolone bound to both transcortin and albumin 

sites, N, is the number of binding sites for transcortin, K. is the affinity constant for 

transcortin, P, is the molar concentration oftranscortin protein, N, is the number of 

binding sites for albumin, K, is the affinity constant for albumin, P, is the molar 

concentration of albumin, and Dr is the unbound concentration of prednisolone 

(16;23;24;28;29). Assuming K,D,<< l , there is one prednisolone binding site per 

molecule of albumin, and prednisolone only binds to transcortin and albumin 

(16;23;24;28;29), then bound concentration ofprednisolone can be reduced to: 

D• = N, P,K,DJ +PaKaDr 
(1 + K;Dr) 

Nonlinear prednisolone protein binding occurs because of limited concentrations of 

transcortin in plasma (24). At low concentrations of prednisolone, binding to transcortin 

is maximal at 90-95%, but at large concentrations, saturation occurs thus producing only 

60% transcortin binding (2;4;10;24;30). Therefore at low doses, the increased fraction 

bound of prednisolone to transcortin makes less prednisolone available to distribute to 
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receptor sites (2). The binding capacity (N1P1) and Ka of prednisolone to transcortin 

have been reported to be (5 .45-8.00)xl0-7 Mand (l .40-3.39)xl 07 UM respectively 

(2;9;18;28;3 l). The normal concentration of transcortin in plasma is approximately 0. 7 

µM and falls in proportion with serum-albumin levels (9). It is thought that only 

unbound prednisolone is biologically active ( 4; 10;22). Cortisol also complicates the 

binding ofprednisolone since it competes with prednisolone for binding sites to 

transcortin (31 ). There appears to be a circadian cycle affecting the binding capacity of 

transcortin to prednisolone; binding is least at 8a.m. when cortisol levels are high and 

greatest at midnight when cortisol levels are low (2;32). 

The other protein that prednisolone extensively binds to is albumin. The binding 

capacity (N,P,) and Ka ofprednisolone to albumin have been reported to be (6.23-

7.00)xl04 Mand (1.40-3.00) x 103 LIM, respectively (2;9;24;28;3 l). The normal 

concentration of albumin in plasma is 35-55 g/L (2; 19;3 l ) . Albumin concentration 

decreases with age and is lower in cystic fibrosis patients (19). 

At oral prednisolone doses of l 5mg and 50mg, the protein binding of prednisolone has 

been reported at 87% and 74% respectively (19). The dose dependency ofprednisolone 

pharmacokinetics has been primarily attributed to nonlinear protein binding ( 4). The 

apparent steady state volume of distribution based on total and unbound prednisolone 

concentrations were reported to be 35-114 Land 323-530 L respectively for doses 

ranging from 1.25 mg eight times daily to I 00 mg once daily; larger doses produced 

larger values total prednisolone volume of distribution, while the free prednisolone 
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volume of distnbution was not dose dependent (17). The apparent volume of 

distribution for total prednisone was reported to be 0.97 L/kg (33). 

Metabolism 

Prednisolone is extensively metabolized by both the liver and kidney (2;10;22;34) . 

Prednisolone and prednisone undergo biotransforrnation to a variety of oxidation 

products ( 4;24;35). The four most important metabolites for prednisolone reported are: 

prednisone, 20-13-hydroxyprednisolone, 6-~-hydroxyprednisolone, and 20-a­

hydroxyprednisolone. Another minor metabolite that has been reported is 20-~­

hydroxyprednisone ( 11 ). 

As discussed earlier, the bioavailability of prednisolone is high, thus there is limited 

presystemic metabolism of prednisolone (36). Prednisolone displays restrictive 

clearance; clearance is sensitive to fraction unbound in the plasma and the activity of the 

drug metabolizing enzymes (2; 19;34). 

Prednisolone undergoes reversible metabolism (interconversion) to prednisone. The 

enzyme 11-~-hydroxydehydrogenase is responsible for the interconversion process 

(IO; 13 ;20). Prednisone is also reconverted back to prednisolone. The interconversion of 

prednisolone and prednisone has been reported to be a nonlinear process. This 

nonlinearity can be seen in the area under the concentration versus time curve (AUC) for 

prednisolone and prednisone. The ratio of AUC prednisolone/ AUC prednisone increases 

with increasing doses ofprednisolone (2;11;20;24). lfthe interconversion were linear, 
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the ratio of the AUCs would remam constant with increasing doses; as the concentration 

of one of the steroids increases, the other steroid would increase in a proportional 

manner. Prednisolone dominates the interconversion process and the prednisolone 

concentrations can be as much as 10 times the prednisone concentrations (2;4;11;21;24). 

The dose-dependent interconversion of prednisone and prednisolone complicates an 

assessment of the phannacokinetic parameters ofprednisolone (2;22;24;29). 

Conventional linear pharmacokinetic parameter calculation methods that assume no 

interconversion underestimate clearance and overestimate volume of distribution (37). 

The absence of an intravenous formulation of prednisone for humans makes the exact 

assessment of the interconversion process difficult (I 0). 

Excretion 

The unchanged prednisolone and metabolites recovered in the urine from a dose of 

intravenous prednisolone are reported to be approximately 42% (11). Prednisolone, 

prednisone, and 6-~-hydroxyprednisolone recovered in the urine are reported to be 

approximately 20%, 2%, and 6-10% of the dose respectively (2;4;11 ;13;38). Three 

other metabolites, 20-~-hydroxyprednisolone, 20-a-hydroxyprednisolone, 20-~­

hydroxyprednisone have reported values recovered in urine around 7%, 5%, and 0.6% 

respectively ( I I). 

Garg et.al. preformed an extensive analysis on the interconversion ofprednisolone and 

prednisone (11). They performed a two-way crossover study between two treatments: 

oral prednisone tablets and intravenous prednisolone sodium phosphate. They found the 
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irreversible elimination clearances ofprednisone and prednisolone to be 53 .9 mVmin and 

196 mVmin respectively. The clearance for the conversion ofprednisolone to prednisone 

was reported as 836 mVmin. The clearance for the conversion of prednisone to 

prednisolone was reported as 8822 mVrnin; I 0 times higher then the clearance of 

prednisolone to prednisone. Since the clearance of prednisone not reconverted to 

prednisolone was relatively small and the clearance of prednisone reconverted to 

prednisolone was relatively high, this implied that most prednisone was converted to 

prednisolone. The recycled fraction (RF), the probability of a molecule being converted 

to its metabolite and back at least once, was reported to be 0.76 for prednisolone. A 

large RF indicates a greater role of interconversion between a drug and its metabolite. A 

RF of0.76 suggests that a large interconversion process occurs between prednisolone 

and prednisone (11). 

As reported by Jusko et. al. , in a study with six normal male subjects dosed 5mg, 20mg, 

and 50mg oforal prednisone, the oral clearance of total prednisolone was around 8, 12, 

and 16 L/h respectively ( 4). The increase in oral clearance was statistically significant. 

Rohatagi et. al. found similar results for oral clearance of total and unbound prednisolone 

to be 6-19 L/h and 64-128 L/h respectively across oral prednisolone doses of 1.25 mg 

eight times daily- I 00 mg once daily (17). These investigators found dose dependent 

increases in clearance based on total but not unbound concentrations. The mean oral 

clearance of prednisone was reported to be 0.216 Lib/kg (39). It has been reported that 

prednisone does not exhibit nonlinear protein binding (I 0). 

97 



Nonlinearity of Prednisolone Pharmacokinetics 

Total prednisolone concentrations exhibit both dose-dependent clearance and dose 

dependent steady state volume of distribution (2;4;1O;16;17;24;37). Saturation of 

prednisolone binding to plasma transcortin, a saturation of the interconversion processes, 

saturation of elimination pathways, concentration dependent clearance of unbound 

prednisolone concentrations, and tissue-binding sites may all be responsible for the dose 

dependency (10;37) . Apparent clearance and steady state volume of distribution increase 

two fold between 5-40mg ofprednisolone (2;16;20;24;40). Because of the nonlinearity 

seen with total prednisolone concentrations, it has been recommended that unbound 

prednisolone concentrations be measured (2;24). When using unbound prednisolone 

concentrations, both clearance and steady-state volume of distribution become more 

constant with dose (l 7;23). However, some investigators report that some nonlinearity 

still exists. The remaining nonlinearity has been proposed to be caused by nonlinear 

renal clearance, dose dependency of the interconversion process, and differences in the 

degree of nonlinearity in the disposition of prednisolone and prednisone 

(4;10;11;20;24;35;40). 

The half-life of unbound prednisolone appears to remain constant (range= 2.3-3.5 hours; 

mean=2.9 hours) over different doses. This is probably because the volume of 

distribution and clearance are equally affected by nonlinear effects (2;4; 11; 17). 
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Prednisolone population characteristics 

Table I provides a comparison of some population pharmacokinetic parameters. 

Age 

One study reported tbat total prednisolone clearance was not different between children 

and adults (41), while another study found a 49% higher clearance (on a per kg basis) in 

children younger than 12 years of age than children over 12 years ( 42). No information 

was found regarding volume of distribution in children. Compared to young adults, 

elderly patients have a higher frequency of adverse events, lower unbound prednisolone 

clearance (Table I) and smaller unbound prednisolone steady-state volume of 

distribution (14). These differences have been attributed to a decrease in both renal and 

nonrenal clearances. The clearance of 6-P-hydroxyprednisolone decreases linearly with 

the nonrenal clearance of unbound prednisolone, thus indicating the activity of liver 

enzymes responsible for prednisolone metabolism diminishes in the elderly (24). 

Gender 

While gender has been found to alter the pharmacokinetics of prednisolone, there have 

been reported differences in the effect. In two studies, both unbound and total 

prednisolone clearances in adults were reported as being 20% greater in females than 

males (Table I) (40;43). No statistically significant differences in gender were found in 

volume of distribution for unbound and total prednisolone ( 40). In another study, 

Magee et.al. reported tbat unbound prednisolone clearance normalized to total body 

weight was approximately 20% higher in white males and 40% higher in black males as 
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compared to females ( 44). The unbound prednisolone apparent volume of distribution 

normalized to total body weight was approximately 30% higher in white males and 40% 

higher in black males than females ( 44). 

Concomitant Medications 

Inducers 

It has been reported that the metabolism of prednisolone increased when administered 

concomitantly with anticonvulsants or rifampicin (2;4; I 0;22). Phenytoin increased both 

the total clearance ( 48%) and nonrenal clearance (77% females; 65% males) of unbound 

and total prednisolone (Table I} (2;4;43;45). The increase in total clearance was due to 

the increase in nonrenal clearance. The urinary excretion of 6-P-hydroxyprednisolone 

was greater post phenytoin dosing ( 43). Phenytoin does not affect prednisolone' s 

volume of distribution, protein binding, or renal clearance (24;43). 

Inhibitors 

The metabolism of prednisolone was inhibited when administered concomitantly with 

oral contraceptives. Oral contraceptives cause: I) a decrease in unbound prednisolone 

clearance and steady-state volume of distribution, 2) an increase in serum transcortin 

concentrations, 3) an increase in half-life, and 4) lower affinity constants for both 

prednisolone-albumin and prednisolone-transcortin complexes 

(2;4;15;22;27;29;30;38;46). Three studies compared the effects of oral contraceptive 

use with different doses of prednisolone. Total prednisolone clearance, unbound 

prednisolone clearance, and total prednisolone volume of distribution were all lower in 

100 



oral contraceptive users than the control cohort (Table 1). The lower values for total 

body clearance were attributed to a reduction in nonrenal clearance and increased 

cortisol binding to transcortin (27;29;30). The reduction in nonrenal clearance has been 

attributed to a reduction in the activity of hepatic 6~-hydroxylase (27). Plasma cortisol 

concentrations have been reported as being twice as high in oral contraceptive users 

(30;46). At lower doses of prednisolone; cortisol displaces prednisolone from transcortin 

binding sites but not albumin binding sites ( 40;46). Oral contraceptive users have 

decreased unbound prednisolone clearances at low doses ofprednisolone as compared to 

high doses (30;40). 

Inhibition of predniso lone metabolism has also been seen with concomitant 

administration of other medications. Concomitant administration of diltiazern resulted in 

a reduction of the total clearance ofprednisolone (Table I), while naproxen and 

indomethacin reduced the clearance of unbound prednisolone by 35% and 40% 

respectively (2;4 7). Two studies found minor or no changes in AUC and half-life of 

prednisolone when given concomitantly with itraconazole (36;48). Both analyses 

concluded that CYP3A4 was a subsidiary pathway for prednisolone metabolism. 

Zurcher et.al. found that ketoconazole, a potent inhibitor ofCYP3A4, decreased the 

total body clearance and volume of distribution of both unbound and total prednisolone. 

The AUC of unbound prednisolone increased by 50% with concurrent ketoconazole use. 

It was proposed that ketoconazole decreases renal clearance by impaired tubular 

secretion and nonrenal clearance by inhibited 6~-hydroxylase activity. Since the unbound 

prednisolone volume of distribution decreased while transcortin and albumin levels 

IOI 



remained constant, they concluded that altered protein binding was not the reason for the 

reduction in volwne of distribution; the mechanism that reduced the volume of 

distnbution was not known (13). Contrary to Zurcher's findings, Yamashita et.al. found 

no significant inhibition with concomitant ketoconazole use ( 49). In summary, the role 

of the CYP450 enzyme system with prednisolone pharmacokinetics remains unknown. 

Cystic Fibrosis (CF) 

Prednisolone clearance and steady-state volwne of distribution were approximately 50% 

higher in adolescent CF patients compared to a control cohort of age matched adolescent 

asthmatic patients (50). It is believed that enhanced biotransformation is the underlying 

reason for the differences seen in clearance; more frequent steroid doses may be 

necessary in the treatment of CF patients (50) . 

Additional differences in pharmacokinetic parameters were seen comparing CF patients 

with normal subjects. Dove et.al. found that the total prednisolone nonrenal clearance 

and unbound fraction of prednisolone were larger in CF patients. Albumin and total 

protein serum concentrations for CF are low; therefore increased volume of distribution 

could be related to decreased protein binding (50). 

Menopause 

After a 25mg intravenous and 30mg oral dose of prednisolone in premenopausal and 

postrnenopausal women, Harris et.al. found that total and unbound prednisolone 

clearances were smaller and half-lives were larger in postmenopausal women (Table 1 ). 
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There were n<i observed significant differences in volume of distribution, protein binding, 

or bioavailability ofprednisolone between these groups of women. They proposed that a 

change in the activity ofat least one enzyme system involved in the metabolism of 

prednisolone occurs in postmenopausal women (34). 

Prednisolone specifics in organ transplantation patients 

Rejection levels have been shown to be similar between high and low prednisolone 

clearance groups. While rejection levels were similar, an increased frequency ofrejection 

and corresponding allograft loss was found in high prednisolone clearance patients; the 

number of rejection episodes has been shown to be an important risk factor for allograft 

failure (1;2;5;10;51;52). Combination drug therapy (e.g. cyclosporine) is typically used 

for adequate immunosuppression and to minimize adverse events (38;52;53). Bergrem 

el. al. evaluated cushingoid versus non-cushingoid transplant patients taking I Omg oral 

prednisolone and found that cushingoid patients had lower total and unbound 

prednisolone clearances (Table I). The cushingoid patients had a poorer transplant 

function than the non-cushingoid patients, as determined by creatinine clearance ( 15). In 

a renal transplant study conducted by Ost et.al., the total prednisolone clearance in 

cushingoid patients did not differ from non-cushingoid patients (I). 

Specific Aims of this Research 

Ultimately, the goal of immunosuppression is to taper the dose of prednisolone and 

eventually switch a patient to either the lowest efficacious dose or an alternate-day 

therapy regimen while not compromising a patient's therapeutic response (2; I 0). Steroid 
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dosage is tapered as rapidly as possible after transplantation, although without an 

objective guide to safe steroid withdrawal, this can hasten recurrent rejection (5). The 

overall patient survival rate is linearly correlated with frequency of rejection episodes; i.e. 

the more episodes, the less likely a patient is to survive (5;51;52). Ideally, a reduction in 

the maintenance dose is warranted if the disease symptoms are under control or if 

transplanted organ function is suitable (2). It is desirable to develop an individualized 

dosing regimen for prednisolone based on measurable parameters (23). 

An understanding of the time course of concentration values would be helpful to 

optimize irnmunosuppressive therapy. To date, a population pharmacokinetic study of 

prednisolone has not been performed in humans. The intent of this research is to develop 

a population pharmacok.inetic model of prednisolone, which can be used to optimize the 

dosing regimen of prednisolone in organ transplant patients. 

Specific aims of this research are: 

I) To develop a population pharmacokinetic model for prednisolone including oral 

clearance (CL/F) and oral volume of distribution (V IF) and to assess the 

interindividual variability in thoracic organ transplant patients 

2) To investigate various individual characteristics such as demographic 

information, disease status, and concomitant medications as potential covariates 

to reduce interindividual variability 

3) To develop population pharmacok.inetic models for the evaluation of the optimal 

prednisolone dosing based on individual characteristics. 
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METHODS AND MATERIALS 

Patients. A randomized, open-label clinical trial was conducted in 50 thoracic organ 

transplant patients to compare the pharmacok:inetics and pharmacodynamics of two 

cyclosporine formulations (Neoral, the microemulsion formulation (n=28) versus 

Sandimmune, the original formulation (n=22)). The appropriate institutional review 

boards approved the protocol. The patients, prior to inclusion in the trial, gave written 

informed consent. The trial was conducted over the first postoperative year after organ 

transplant, with supplementary visits occurring approximately at the end of weeks I, 2, 

3, and 4 and at the end of months 3 (week=l2), 6 (week=26), 9 (week=38), and 12 

(week=52) . Results from this trial have been previously published by A. Trull et.al. (51). 

Of the 50 patients, 41 patients had serum samples that were assayed for prednisolone, 

prednisone, and cortisol on at least one of the supplementary visits. These 41 patients 

had the following types of transplants: heart and lung (n=I 9), double lung (n=7), or 

single Jung (n= 15) transplant. This retrospective data analysis was conducted on all of 

the 41 patients with measurable prednisolone concentrations. Characteristics of the 

patients are presented in Table 2. 

Prcdnisolonc Administration. 

The dosing of prednisolone was individualized for each patient. Initially, a patient was 

dosed with a large dose (maximum dose of 40mg) ofprednisolone every 12 hours 

(maximum daily dose of 80mg). Each day, the total daily dose of prednisolone was 
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reduced by Smg (or in some cases 2.Smg) until the lowest possible maintenance dose 

was achieved for the patient. The larger doses ofprednisolone (e.g, 25mg) were 

supplied by Hoechst Marion Roussel (West Malling, Kent), while the smaller doses (e.g. 

Smg) were supplied by either APS Ltd (Eastbourne, East Sussex) or CP Pharmaceuticals 

Ltd (Wrexham, Clwyd). The dosing interval was increased to 24 hours once a daily 

dose of l 5-20nig was achieved. Figure I shows the distribution of doses by plotting the 

percent of concentration samples versus the dose given. 

A patient continued on the lowest daily maintenance dose unless they started to reject 

their transplant. Rejection episodes were treated with high intravenous doses (500-1000 

mg/day) ofmethylprednisolone over a period of three consecutive days. Ifa dose of 

methylprednisolone was given the day prior, or on the day of the sample collection, then 

the sample collection was not used in this analysis (64 records). 

Table 3 provides a partial account of the dosing history for patient #4. Patient #4 

received a total daily dose of 50mg on day I. The total daily dose was reduced by Smg 

each day thereafter until day 8. The patient began to have symptoms of organ rejection 

and on day 11 they were dosed with intravenous methylprednisolone. The 

methylprednisolone treatments continued until day 14. On day 14, the patient once again 

started on a high oral prednisolone dose, and continued the Smg step down in dose until 

day 22. The same dosing pattern was followed for the rejection episode that occurred 

on day24. 
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Blood Collection and Sample Analysis. 

Plasma samples were collected from patients approximately at the end of weeks I , 2, 3, 

and 4 and at the end of months 3 (week=12), 6 (week=26), 9 (week=38), and 12 

(week=56). The primary objective for the study was to collect cyclosporine 

concentrations at these visits for each patient. If enough sample remained, then an 

additional assay was conducted for total prednisolone, total prednisone, and total 

cortisol. Measurements of total prednisolone, total prednisone and total cortisol were 

made using a fully validated high-performance liquid chromatography (HPLC) technique 

as descnlled in a previous publication (54). 

Of the concentration records that were obtained, if the values ofprednisolone, 

prednisone, and cortisol were all equal to 0, then that record was removed. Thus there 

remained a total of 496 prednisolone and 496 prednisone concentrations (n=992 

concentration values). The lower limit of detection (LLD) and lower limit of 

quantification (LLQ) for both prednisone and prednisolone were 2.1 µg/L (signal-to­

noise ratio no less than 3) and 7 µg/L (signal-to-noise ratio no less than I 0) respectively 

(54). For prednisolone, there were 60 (12.7%) and 45 (9.1%) concentration values 

below the LLQ and LLD respectively. For prednisone, there were 147 (29.6%) and 74 

(14.9%) concentration values below the LLQ and LLD respectively. Because we were 

able to address the residual error associated with low concentration values in our model, 

we used all concentration values regardless of whether they were below the LLQ or LLD 

(55;56). 
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Data Preparation and Pharmacokinetic Analysis. Demographic, plasma collection 

time, primary diagnosis ofreason for transplant, type of transplant, concomitant 

medication, plasma concentration, laboratory examination, and dosing history data 

relevant to the pharmacokinetic analysis were provided in Microsoft Excel (Excel 2000) 

spreadsheets. For covariates that were not evaluated every day, values were carried 

forward in time for that covariate until a new measurement was taken. Two patients had 

an outlier value for one covariate. The outlier was changed to the last known value for 

that patient. Thus, on day 20, patient #8 had a cystatin C value changed from I 0.9 to 

1.46. On day 70, patient #69, had a bilirubin value changed from 210 to 10. Creatinine 

clearance was calculated (using the Cockcroft-Gault formula) for each record as: 

Males: l .23·(140-age)weight (kg)/serurn creatinine (µmol/L) 

Females: 1.04· (140-age)weight (kg)/serurn creatinine (µmoVL) (57). 

Prednisolone has a reported half-life of2.3-3.5 hours (4). Since it was not possible to 

ascertain that steady state bad been achieved, the dosing history for the five days prior to 

an observed concentration record was included in the database. A covariate, "dose", 

was generated to represent the dose that a patient was taking in relation to their 

corresponding plasma concentrations at hours 0, 2, and 6 post dose. 

Total prednisolone concentrations were assayed in this study. The unbound fraction was 

estimated based on patients' albumin concentrations and a published algorithm, which 

included values for transcortin and albumin binding capacities and affinity constants 
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(9;24;3 l ). The first step was to convert the total prednisolone concentrations (ng/ml) to 

molar concentrations using a molecular weight of360.4 for prednisolone (21). The 

values used for the binding capacity (N,P,) and affinity constant (Kt) for transcortin were 

5.69xl0-7M and 3.0lxl07 UM respectively (24). The values used for the albumin 

binding capacity (N.P.) were calculated for each patient using their molar albumin 

concentrations (molecular weight of albumin=66,300) (18). The value used for the 

affinity constant (K.) for albumin was 2 .05xl03 LIM (24). Again, assuming that 

K.Di<<l, there is one prednisolone binding site per molecule of albumin (N.= l ), and that 

prednisolone only binds to transcortin and albumin(23;24;28;29), excel solver can be 

used to solve for Dr in the following equation: 

O = Di _ N1PK1D1 _ p al(alJi _Di 
(l+JGDt) 

where D, = total prednisolone concentration and DF unbound prednisolone 

concentration (16). The unbound fraction (fu) was then calculated as: 

fu=Df 
Dt 

Unbound prednisolone plasma concentration (ng/ml) was then calculated as: 

Cp unbound prednisolone= Cp total prednisolone·fu. 

The AUC for total prednisolone, unbound prednisolone, and total prednisone were 

determined by the trapezoidal rule (58). 
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The pharmacokinetic analysis was performed using NONiinear Mixed Effect Model 

(NONMEM) version 5 level I. I double precision on a Pentium IV computer with a 

Visual Fortran 5.0 compiler (59-62). NONMEM was run using PDx-Pop (v. 1.1) (63) 

Data Analysis Strategy. 

An approach proposed by Mandema, et.al. (1992) (64) was used for the data analysis: 

1) a base model was developed for the population, 2) the estimates found during step 1 

were used to explore potential covariates with the base mode~ and 3) a mixed effects 

model was developed to describe the relationship between the covariates and 

pharmacokinetic parameters. 

Pharmacokinetic and statistical models were evaluated to determine the model that best 

fit the model dataset. To discriminate between models, the following criteria were used: 

1) a decrease in the objective function value (which is proportional to minus twice the 

log-likelihood of the data) of3.84 (i distribution, df=l, p< 0.05) or greater following 

the addition of a single parameter was deemed statistically significant; 2) diagnostic plots 

(e.g. predicted concentration versus observed concentration data, predicted 

concentrations overlaying' all concentration data, weighted residuals versus predicted 

concentration values), 3) minimization of variances: reduction ofinterindividual 

variances and residual variability, and 4) the Akaike Information Criterion (AIC) (65;66). 

110 



Prednisolone Phannacokinetic Base Model 

Initially, a population base model was developed using only the prednisolone data. A 

one compartment model with first order absorption was used to fit the unbound 

prednisolone concentration data in order to determine prednisolone's pharmacokinetic 

parameters prior to the inclusion of the metabolite (prednisone) data. There were not 

enough concentrations captured during the absorption phase to adequately model the 

absorption rate constant (k.). Instead, k. was determined by using a range of values and 

finding which model had the lowest objective function value. The range of values fork. 

was found by using Excel solver to solve fork. based on the following equation: 

kn 
log(- ) 

T m"' = 2.303 • __ k_ 
(lea- k) 

where T max= time at which the peak concentration occurs, k.= absorption rate constant, 

and k= the elimination rate constant (57) The elimination rate constant, k, can be 

represented as: 

k=0.693/t112 

where t112= prednisolone's half-life (57). Based on literature values, the Tmax and half-

life ranges for prednisolone are 1-2 and 1.8-3.41 hours respectively (4;11;24;28). A 

range of absorption rate constants were determined by using combinations of the 

minimum and maximum Tmax and half-life values. Models were generated using each 

absorption rate constant. The model that produced the smallest objective function value 

was determined to be the best fit: a one-compartment model with a first-order 

absorption rate of2.84 hr"' . The one-compartment model was parameterized as oral 
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clearance (CL/F), apparent volume of distribution 01 IF), and the first-order absorption 

rate constant (k.) (NONMEM subroutines ADV AN2 TRANS2). 

Analysis of Covariates with Prednisolone Base Model 

Once the base prednisolone phannacokinetic model was obtained, the posthoc Bayesian 

estimation (FO method) was implemented to obtain the individual parameter estimates to 

evaluate potential influences of covariates. An exponential error model for interindividual 

variability and a combined additive and proportional error model for the residual 

variability were initially assumed for the covariate analysis. For pharmacokinetic 

parameters CLIF and V/F, the potential influence of covariates on the individual 

pharmacokinetic parameter estimates were evaluated. Age, weight, and time post 

transplant were treated as continuous variables. Type of transplant was treated as a 

categorical variable (O=single lung transplant, 1 =double lung and heart transplant, 

2=double lung transplant). Gender was treated as an indicator variable (O=female, 

I =male). A concomitant medication was considered as present (O= not present, 

I =present) if it was taken at any point within five days or on the same day as a 

concentration value. The following concomitant medications were evaluated as 

covariates: flucloxacillin, cefotaxime, ceftazidime, imipenem, ciprofloxacin, acyclovir, 

ganciclovir, amphotericin, itraconazole, lyposomal amphotericin, and septrin. The 

presence of cystic fibrosis was evaluated as a categorical covariate (O=not present, 

I =present). Because menopausal status was not collected in this study, a variable was 

created that was a marker for women over and under the age of fifty with O=under 50 

and I =over fifty. Creatinine clearance and cystatin C were evaluated as continuous 
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covariates and included in the model as markers for renal function. Creatinine clearance, 

cystatin C, time post transplant, and all concomitant medications were only evaluated on 

CUF. Cortisol was evaluated as a continuous variable and was only evaluated on VIF. 

All other covariates were evaluated on both CLIF and V IF. 

Each covariate was added individually to the base model If the inclusion of the 

covariate caused a decrease of the objective function value of at least 3.84, the covariate 

was deemed as being statistically significant. Covariates that were found to be 

statistically significant from the initial screening were then added simultaneously to the 

base model to generate the full model A backward elimination procedure was then 

performed on the full model. Each covariate was removed one at a time from the full 

model. If the objective function value decreased by a more conservative value of7.88 

Ci distribution, df=l , p< 0.005), the parameter was included in the final model. 

Prednisolone and Predoisone Pharmacokinetic Base Model 

The prednisone and prednisolone concentration data was simultaneously modeled. The 

values for both V IF terms (VPIF=apparent volume of distribution for prednisolone and 

VM/F=apparent volume of distribution for prednisone) were fixed and therefore not 

estimated. Since there were no statistically significant covariates found on V IF in the 

covariate analysis, VPIF was fixed to the population average value determined in the 

prednisolone base model based on unbound prednisolone concentrations (VP/F=420 L). 

VM/F was fixed at 55 L based on literature values (39). There were a total of four 

possible elimination processes that could be modeled: clearance of prednisolone that is 
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not metabolized to prednisone (CPR), clearance of prednisolone that is metabolized to 

prednisone (CPM), clearance of prednisone that is reconverted to prednisolone (CMM), 

and clearance ofprednisone that is not reconverted to prednisolone (CMR). Model I 

modeled all four rates simultaneously (Figure 2). Because of the difficulty in modeling 

all four rates, several simplified versions of Model 1 were used: Models 2-8 (Figures 3-

9). A summary of the model variations follow. 

Model 1: All four elimination terms are included linearly in the model (Figure 2) 

Model 1 was a complete model ofprednisolone and prednisone, modeling all four 

elimination processes. CPR, CPM, CMM, and CMR were included in the model 

linearly. This model was structurally unstable; it was not possible to obtain estimates for 

any of the individual clearances. There was not enough prednisone information for the 

software to distinguish between the four elimination processes. 

Model 2: No reconversion of prednisone to prednisolone (Figure 3) 

Model 2 was a subset of Model 1; one elimination pathway was removed from Model I . 

The reconversion ofprednisone to prednisolone (CMM) was removed. In this model, all 

other elimination pathways (i.e. CPR, CPM, and CMR) were modeled linearly. It was 

thought that by removing the interconversion, a simpler model might provide insight to 

the pharmacokinetics of prednisone. 
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Model 3: Removal of the reconversion of prednisone to prednisolone and the 

elimination of prednisolone by pathways other than metabolism to prednisone 

(Figure 4) 

Model 3 was a subset of Model 2; one of the elimination pathways from Model 2 was 

removed. It was assumed prednisolone was not metabolized to prednisone (CPR=O). 

The conversion ofprednisone to prednisolone was removed from the model; thus all 

prednisolone was converted to the metabolite prednisone (CPM) and then eliminated by 

means other than reconversion to prednisolone (CMR). CPM and CMR were modeled 

linearly. This model was attempted to see the effect of forcing all prednisolone to be 

metabolized to prednisone. 

Model 4: All prednisone was reconverted to prednisolone (Figure S) 

Model 4 was a subset of Model I. The clearance of prednisone along pathways other 

than reconversion to prednisolone (CMR) was set to zero. In this model, all other 

elimination processes (i.e. CPR, CPM, and CMM) were modeled linearly. This model 

was attempted because the clearance of prednisone is thought to be much smaller than 

the other clearance processes (11). 

Model 5: Relative value of the interconversion clearances were fixed (Figure 6) 

Model 5 was a subset of Model 4 . The reconversion ofprednisone to prednisolone 

(CMM) has been reported to be I 0 times the rate of conversion of prednisolone to 

prednisone (CPM) (11). CMM was fixed at IO times the rate ofCPM. CPR and CPM 

were modeled linearly. 
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Model 6: Nonlinear metabolism of prednisolone to prednisone (Figure 7) 

Model 6 was a subset of Model 4. The conversion of prednisolone to prednisone was 

treated as a Michaelis-Menton process. CMM and CPR were modeled linearly. It has 

been proposed that the conversion of prednisolone to prednisone follows a non-linear 

process, so this model explores the possibility of CPM being nonlinear (2;24 ). 

Model 7: Nonlinear reconversion of prednisone to prednisolone (Figure 8) 

Model 7 was a subset of Model 4. The conversion of prednisone to prednisolone was 

treated as a Michaelis-Menton process. CPM and CPR were modeled linearly. It has 

been proposed that the reconversion of prednisone to prednisolone may follow a non­

linear process, so this model explores the possibility of CMM being nonlinear (2;24 ). 

Model 8: Nonlinear elimination of all prednisolone not metabolized to prednisone 

Model 8 was a subset of Model 4. Prednisolone that was not metabolized to prednisone 

(CPR) was modeled as a Michaelis-Menton process. In this model, the conversion and 

reconversion ofprednisolone and prednisone (CPM and CMM respectively) were 

modeled linearly. It has been proposed that the renal clearance of prednisolone may 

follow a non-linear process, so this model explores the possibility of CPR being nonlinear 

(24). 
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Statistical Model 

An exponential-error model was used to describe the interindividual variability of the 

pharmacokinetic parameters. For example: 

Exponential model: ®j=TV®*EXP(TJ;.e) 

where 11;.e is a random variable distributed with a zero mean and variance of ro2 
9 and 

TV® is the population mean value for®. 

Residual variability was modeled separately for prednisolone and prednisone using an 

additive and proportional-error model: 

C,i=~_,/( I +i:"j) + &2ii 

where Cii is the observed plasma concentration value for the jth individual at time=i, 

~.ii is the model predicted plasma concentration for the jth individual at time=i, &Iii is a 

randomly distributed variable with a zero mean and variance of cr21, and &2;i is a randomly 

distributed variable with a zero mean and variance of cr2 
2. 

RESULTS 

Prednisolone and Prednisone Plasma Concentration-Time Data: 

The fraction of unbound prednisolone at the various total prednisolone concentrations 

was estimated using a patient's specific albumin concentrations. The results are shown 

in Figure I 0. The calculated fraction of unbound prednisolone follows an expected 

curve for saturable protein binding. 
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Figures 11 and 12 show the observed plasma concentration time data for total and 

unbound prednisolone respectively. In Figure 13, the total prednisone curve shows that 

prednisone has a slower elimination since the slope is much shallower between the 2 and 

6 hour post dose values than the slope seen in the prednisolone plots. The dose 

normalized AUC of total prednisolone and unbound prednisolone were plotted versus 

dose in Figures 14 and 15 respectively. The AUC of total prednisone normalized by 

prednisolone dose versus dose was plotted in Figure 16. A negative slope was seen for 

the dose normalized AUC of total prednisolone and total prednisone when plotted versus 

dose (Figures 14 and 16). A slope of zero was seen for the dose normalized AUC of 

unbound prednisolone versus dose (Figure 15). The AUC total prednisolone/ AUC 

prednisone and AUC unbound prednisolone/AUC prednisone versus dose were plotted 

in Figures 17 and 18 respectively. There was a negative slope when AUC total 

prednisolone/AUC prednisone was plotted versus dose, and a positive slope when AUC 

unbound prednisolone/AUC prednisone was plotted versus dose. The AUC unbound 

prednisolone/AUC prednisone versus AUC unbound prednisolone/AUC total 

prednisolone was plotted and exhibited a positive slope (Figure 19). 

Prednisolone Model: 

The plasma prednisolone concentration time data was best described using a one­

compartment model with a first-order absorption rate of2.84 hr·'. lnterindividual 

variability was described with exponential error terms for CL/F and V IF. Residual 

variability was described with a combined additive and proportional-error model. 

Originally, a base model was developed using total prednisolone concentrations. The 
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observed versus predicted total prednisolone plasma concentrations have a wide spread 

around the line of identity (Figure 20). The weighted residuals versus the predicted total 

prednisolone concentrations have a negative trend. The smaller concentrations are 

underpredicted while the larger concentrations are overpredicted (Figure 21). When the 

unbound prednisolone concentrations were modeled, the diagnostic plots showed a 

better fit. As a result, all further analyses were conducted on unbound prednisolone 

concentrations. 

Results from the unbound prednisolone concentration analysis are shown in Figures 22-

23 and Table 4. In Figure 22, observed unbound prednisolone concentrations were more 

clustered around the line of identity though still underpredicted. The weighted residual 

plot showed that larger values of predicted unbound prednisolone concentrations are no 

longer overpredicted, but the smaller concentrations still had large variability (Figure 

23). The base model results for the unbound prednisolone dataset are given in Table 4. 

CL/F and V/F were found to be 17.2 L/h (0.302 L/h/kg) and 416 L (7.298 L/kg) 

respectively. 

Analysis of Covariates with Prednisolonc Base Model 

Table 5 summarizes the effect of the individual addition of each covariate for CL!F and 

V /F. Sex, ciprofloxacin, septrin, amphotericin, imipenem, and cystic fibrosis were found 

to be statistically significant when included individually in the base model for CL/F. No 

statistically significant covariates for V fF were identified. Additionally, cefotaxime, 

albumin, age, type of transplant, flucloxacillin, acyclovir, dose, and creatinine clearance 
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on CL/F and albumin, age, dose, and sex for V IF had significant changes in the objective 

function value. While these covariates did have objective function value changes >3.84, 

the 95% confidence interval for the covariate parameter estimate included the null value 

and therefore the covariates were not considered in further model development. Time 

post transplant was evaluated differently than the other covariates. Each occasion for 

each patient was treated as having been a separate patient. CL/F was calculated at each 

occasion and then normalized to that patient's first CL/F value (i.e. change in CLIF from 

baseline). The normalized clearance was plotted versus time post transplant (Figure 24). 

No trends were seen in the normalized clearance data; time post transplant was 

determined to be insignificant. At-test assuming equal variances for independent 

samples was also performed to further evaluate itraconazole use. There was no 

statistical difference seen between the mean dose normalized unbound AUC of 

prednisolone between itraconazole and non-itraconazole users. 

All significant covariates were then combined to make the full model, which consisted of 

sex, ciprofloxacin, septrin, amphotericin, imipenem, and cystic fibrosis as covariates for 

CL/F. Backwards elimination was then performed to generate a reduced model. 

Because there is a limit to the number of characters that can be used in a single line of 

Fortran code, the backwards elimination analysis was done in 2 steps. Each covariate 

was removed individually from the first full model (sex, ciprofloxacin, septrin, and 

amphotericin for CL/F). A covariate was retained in the reduced model if there was a 

significant decrease in the goodness of fit (i.e., objective function value decreased by 

7.88 <i distribution, df=l , p< 0.005). Following the first backwards elimination 
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procedure, only sex and ciprofloxacin were identified as significant covariates for CUF. 

The second full model consisted of sex, ciprofloxacin, imipenem, and cystic fibrosis as 

covariates for CLIF. Again, backwards elimination was performed in the same manner 

to generate the final model. Following the second backwards elimination procedure, 

only sex and ciprofloxacin were identified as significant covariates for CLIF in the final 

model (Table 6). 

Table 7 summarizes the final model results for the unbound prednisolone concentration 

data. Interindividual variability was best described with exponential error terms for CUF 

and V IF. Residual variability was described with a combined additive and proportional­

error model. For the final model, lower values were obtained for the %RSE base 

estimates for CLIF and V IF compared to the base model ( 14.1 vs 15.9% and 11.1 vs. 

14.7% respectively) and the variability estimates, m2cUF, m2v/F, a21, and a22 (0.020 vs. 

0.313, 0.109 vs. 0.390, 0.580 vs. 0.697, and 73.5 vs. 79.5 respectively). The variability 

of the interinclividual variability estimates for m2cUF and ro\IF were higher for the final 

model as compared to the base model (135.0 vs. 37.4% and 58.7 vs. 36.7% 

respectively). Parameter estimate ranges were as follows: CL/F=7-73 L/h and 

VIF=135-415 L. The observed versus predicted plasma unbound prednisolone 

concentrations and weighted residual versus predicted plasma unbound prednisolone 

concentrations were plotted in Figures 25 and 26 respectively. In Figure 25, the 

observed unbound prednisolone concentrations were better predicted as seen by more of 

a spread around the line of identity. The model still had difficulty predicting the large 

unbound prednisolone concentrations (Figure 26). 
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Prednisolone and Prednisone Pharmacokinetic Base Model 

As explained in the Methods, a pharmacokinetic model for prednisolone and its 

metabolite, prednisone was developed based on the pharmacokinetic characteristics of 

these species (Figure 2). Since the amount of prednisone formed from prednisolone was 

unknown it was not possible to use this complete model. Several simplified versions of 

the complete model were evaluated as described below. 

Model 2: No reconversion ofprednisone to prednisolone (Figure 3) 

In this model, the reconversion of prednisone to prednisolone (CMM) was ignored. All 

other elimination processes, the clearance of prednisolone not metabolized to prednisone 

(CPR), the clearance of prednisolone metabolized to prednisone (CPM), and the 

clearance of prednisone not reconverted to prednisolone (CMR) were modeled linearly. 

This model was highly dependent on initial estimates and structurally unstable. With one 

set of initial estimates, the clearance of prednisolone was pushed through processes not 

involving prednisone. Thus CPM and CMR were very small. When the initial estimates 

were slightly changed, the model "flipped" and virtually all prednisolone was then 

eliminated through metabolism to prednisone (CPM). 

Model 3: Removal of the reconversion of prednisone to prednisolone and the 

elimination of prednisolone by pathways other than metabolism to prednisone 

(Figure 4) 
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In this model, all of the prednisolone was assumed to be metabolized to prednisone 

(CPM). All elimination processes were modeled linearly. This model proved to be 

structurally sound, but is not in agreement with the known pharmacokinetic 

characteristics of the drug. A recycled fraction of0.76 has been reported for the 

interconversion ofprednisolone and prednisone and urine recovery of unchanged 

prednisolone bas been reported at approximately 20% (11 ). 

Model 4: All prednisone was reconverted to prednisolone (Figure S) 

In this model the clearance of prednisone by pathways other than reconversion to 

prednisolone was removed from the model. Thus all prednisone was reconverted back 

to prednisolone. All other elimination processes (i.e. CPR, CPM, and CMM) were 

modeled linearly. This model provided equivalent values for CPM and CMM. 

Essentially, the model was unable to distinguish between these clearances. The model 

was unable to account for the interconversion of prednisolone and prednisone. 

Model S: Relative value of the interconversion clearances were fixed (Figure 6) 

According to the literature, CMM is estimated to be about I 0 times CPM ( 11 ). Thus in 

this model, CPM was estimated but CMM was fixed to IO times the value ofCPM. All 

processes were modeled linearly. This model did not adequately describe the metabolite 

data as seen in diagnostic plots (Figure 27). The predicted prednisone concentration 

values were not distributed around the line of identity and were underpredicted. 
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The plots with the AUC for total prednisone indicated that their nonlinearity might be 

associated with the interconversion of prednisolone and prednisone (Figures 16-19). 

Models 6 and 7 were attempted to address these concerns. In Models 6 and 7, the 

clearance of prednisone was assumed to occur only through its reconversion to 

prednisolone (i.e. CMR was set to zero). 

Model 6: Nonlinear metabolism of prednisolone to prednisone (Figure 7) 

The conversion of prednisolone to prednisone was assumed to follow Michaelis-Menton 

kinetics. This model was structurally unstable and it was not possible to obtain estimates 

for CPR. 

Model 7: Nonlinear reconversion of prednisone to prednisolone (Figure 8) 

The reconversion ofprednisone to prednisolone was modeled using Michaelis-Menton 

kinetics. This model was structurally unstable. Estimates were obtained for the two 

prednisolone clearances (CPR and CPM). Initially, the model was able to obtain the 

Michaelis-Menton estimates for the reconversion of prednisone to prednisolone, but 

again these estimates were highly sensitive to the initial estimates. 

Model 8: Nonlinear elimination of all prednisolone not metabolized to prednisone 

(Figure 9) 

In this model, the clearance of prednisolone, by processes other than metabolism to 

prednisone, was modeled as a nonlinear process. The conversion and reconversion of 

prednisolone and prednisone (CPM and CMM respectively) were modeled linearly. 
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This model was structurally unstable. This model bad equivalent values for CPM and 

CMM. Essentially, the model was unable to distinguish between these elimination 

processes. 

DISCUSSION 

The study demonstrated that a population pharmacokinetic modeling approach could be 

used to model prednisolone concentration-time data from a thoracic organ transplant 

clinical trial. Additionally, the study demonstrated that it was possible to identify 

covariates to explain variability in the pharmacokinetic parameters. Sex and 

ciprotloxacin were found to be significant covariates for CL/F. It was not possible to 

model prednisolone and prednisone concentration-time data simultaneously. 

The data used for this study consisted of total prednisolone concentrations. A negative 

slope in the dose normalized AUC of total prednisolone versus dose was observed 

(Figure 14); as dose increased the dose normalized AUC decreased. If total 

prednisolone concentrations exhibited linear pharmacokinetics, the slope of Figure 14 

would have been zero (CL=F·Dose/AUC). The negative trend could be explained by 

one of two reasons; either CL increased with dose or F decreased with dose. Previous 

studies have suggested that the nonlinearity in prednisolone's pharmacokinetics is due to 

saturable protein binding. Furthermore Rose et.al. (24)developed a model for the protein 

binding of prednisolone based on prednisolone concentration, albumin concentration and 

transcortin levels. This model was used to estimate the unbound prednisolone 

concentrations associated with each total prednisolone concentration for this analysis. In 
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the model for this analysis, the albumin binding capacity (N.P.) was calculated for each 

patient using their molar albumin concentrations, while the affinity constant (K.) for 

albumin was set at 2.0Sxl03 LIM based on the values obtained in the Rose et.al. paper 

(24). Since transcortin concentrations were not available for the patients in the study, 

the Rose et. al. values for the transcortin binding capacity (N1P1) and affinity constant (K,) 

were used (S .69xl0-7M and 3.0lxl07 LIM respectively) (24). Using a population value 

for the transcortin concentration levels may have introduced bias into the calculation of 

unbound prednisolone. However, a plot of the dose normalized AUC of unbound 

prednisolone versus dose had a slope approaching zero (Figure IS), which indicated the 

pharrnacokinetics of unbound prednisolone were linear. 

Base models were generated for both total and estimated unbound prednisolone 

concentrations. In addition to the nonlinearity seen in Figure 14, it appeared that the 

base model using total prednisolone concentrations was nonlinear based on the negative 

slope seen in the weighted residuals plot (Figure 21 ). As a result all subsequent analyses 

were conducted on the estimates unbound prednisolone concentrations. For the 

unbound prednisolone concentrations, CUF and V/F were approximately 0.302 Lib/kg 

and 7.298 L/kg respectively (mean weight=S7 kg). Two previous studies with a control 

cohort of healthy volunteers found unbound prednisolone CUF and V/F values ranging 

from 0.666-0.694 L/h/kg and 1.340-1 .610 L/kg respectively (Table 1) (27;30). In 

studies with kidney transplant patients taking concomitant cyclosporine, total and 

unbound prednisolone CL/F values ranged from 0.075-0.140 and 0.492-0.S IO L/h/kg 

respectively (Table I) (38;67-70). In this same population, the total and unbound 
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prednisolone V IF values ranged from 0.680-0.720 and 1.480-1.600 L/kg (Table 1) 

(38;70). In studies with kidney transplant patients not taking concomitant cyclosporine, 

total and unbound prednisolone CL/F values ranged from 0.045-0.171 and 0.315-0.886 

L/h/kg respectively (Table 1) (1;15;38;67;68;70;71). These patients had total and 

unbound prednisolone V IF values ranging from 0.224-0. 780 and 1.460-2.100 L/kg 

respectively (Table 1) (1;38;70;71). The unbound prednisolone CLIF value of0.302 

L/h/kg found in the present study compares favorably to both the transplant patients 

taking cyclosporine (0.492-0.510 L/h/kg) and those transplant patients not taking 

concomitant cyclosporine (0.315-0.886 L/h/kg). There is some debate as to whether 

cyclosporine inhibits the metabolism of prednisolone (38;67;68;70). It has been 

suggested that cyclosporine is an inhibitor of CYP3A4 (72), though references as to the 

mechanisms of the inhibition have not been found in a literature search(73). In two 

separate studies, Ost and Langhoff et.al. found that patients taking concomitant 

cyclosporine had lower total prednisolone clearances than those patients taking 

concomitant azathioprine (67;68). Frey et.al. found no differences between concomitant 

cyclosporine and azathioprine users in total or unbound prednisolone clearances (38). 

Rocci et.al. found that concomitant cyclosporine use did not affect the total or unbound 

prednisolone clearances (70). Both Frey et.al. and Rocci et.al. attributed their different 

results to the fact that they measured unbound prednisolone concentrations, conducted 

repeated measurements over a longer interval, and used both intravenous prednisolone 

and oral prednisone to eliminate confounding from the interconversion process (38;70). 

The CLIF values found in the present analysis were about 50% of the healthy volunteers 

and the unbound prednisolone VIF value of7.298 L/kg were considerably larger than the 
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reported values for cyclosporine and non-cyclosporine users (1.480-1.600 and 1.460-

2.100 Ukg respectively), and about five times larger than the healthy volunteers. There 

was difficulty in estimating V IF in the present study. Data was only collected at 

approximately three time points for all patients (0, 2, and 6 hours post dose). Thus, a 

complete concentration-time profile for the entire population was not captured. 

Furthermore, owing to the paucity of information in the early period following the dose, 

assessment of both volume of distribution and k. were extremely difficult. The k. was 

fixed in this study. 

In the present analysis, the values for unbound prednisolone oral clearance for males 

(n=23) and females (n=l8) were 1.216 Lib/kg and 0.240 L/h/kg respectively; males had 

a significantly larger clearance than females. There have been three reported studies that 

have found sex as a statistically significant covariate for prednisolone CL/F (Table 1) 

(40;43;44). Meffi.n et.al. and Frey et.al. reported that males had a significantly smaller 

unbound prednisolone clearance than females (Table 1) (40;43). In both of these studies, 

a small number of subjects were dosed with intravenous prednisolone (Meffi.n: four 

males, four females; Frey: eight males, six females). In a different study using oral 

prednisone, Magee et. al. found opposite results; males had a significantly larger (20%) 

unbound prednisolone oral clearance than females (44). Magee's study had a larger 

number of subjects (Magee: sixteen males, sixteen females) . Additionally, Magee's study 

controlled for menstrual cycle phase by having each female begin the study at the same 

point in their menstrual cycle ( 44). Magee el.al. suggested that the reasons for their 

different results from Meffi.n et.al. and Frey et.al. may be attributed to their larger sample 

128 



size, different formulation, and that they controlled for the timing of the female menstrual 

cycle, which made it easier to identify a gender effect. Both CL/F and V IF were smaller 

in female subjects, implying that women may have a larger bioavailability of prednisone 

relative to men ( 44). The present analysis had a similar sample size (23 males; 18 

females) to the Magee study. The inability to identify a gender effect for V IF in the 

present study could be a function of the lack of informative data to adequately estimate 

V IF. In the present analysis oral contraceptive usage, menstrual cycle phase, and 

menopause status were not collected. Oral contraceptive usage has been reported to 

reduce unbound prednisolone clearance (2;4;15;22;27;29;30;38;46). The unbound 

prednisolone clearance value of0.240 L/h/kg for females in this study was lower than the 

0.467-0.540 L/h/kg values reported elsewhere (Table 1) (27;30). Postmenopausal 

women reportedly have lower unbound prednisolone clearances than premenopausal 

women by around 30% (Table 1) (34). Since oral contraceptive use and menopause 

status was not captured in this study, its effect was unknown. 

It has been suggested that young women have approximately 1.4 times the CYP3A4 

activity of men (74). Thus, it would be anticipated that females might exhibit larger 

clearances in CYP3A4 substrate drugs than males. The role, if any, ofCYP3A4 in 

prednisolone elimination is not clear. While some authors have found little effects of 

CYP3A4 inhibitors on prednisolone clearance (34;36;48;49), another study found total 

and unbound prednisolone clearances decreased with ketoconazole (13). In the present 

study, itraconazole was not found to reduce the clearance of unbound prednisolone. 

However, it is possible that the study did not have sufficient statistical power to 
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adequately probe the effects of itraconazole. Only seven subjects were talcing 

itraconazole at some point during the study period and these seven subjects provided a 

total of only fifteen samples during concomitant itraconazole use. 

Concomitant ciprofloxacin was also identified as a significant covariate for CL/F; 

ciprofloxacin use reduced the unbound prednisolone oral clearance (by 48% and I 0% in 

females and males respectively). Unbound clearance values for patients using 

ciprofloxacin were 0.125 L/h/kg and I.JOO L/h/kg for females and males respectively. 

Ciprofloxacin is a known inhibitor ofCYPIA2 and CYP3A4 activity (75-77). A 

literature search found no reports of interaction studies for prednisolone and CYP I A2 

inhibitors. The results from the present study suggest that CYP I A2 may be a pathway 

for prednisolone metabolism and that CYPIA2 interaction studies may be warranted. 

Other studies have reported that that cystic fibrosis patients have increased total 

prednisolone clearances (50). In the present study cystic fibrosis was not a significant 

covariate for CL/Fin the final model. However, all of the cystic fibrosis patients (n=6) 

were male. Thus, it may be impossible to separate the effects of cystic fibrosis and 

gender in this data set. It is also possible that effects of cystic fibrosis may have elevated 

the estimates for CL/F in males in the present study. It is interesting to note that the 

weight normalized values of CL/F tended to be larger in the male cystic fibrosis patients 

compared to the other male patients (Figure 28). 
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It proved to be challenging to model prednisolone and prednisone simultaneously. When 

a complete model that included all elimination processes was used, the model was 

structurally unstable (Model 1; Figure 2). The amount of prednisone formed from 

prednisolone was unknown; consequently the estimates of the parameters used in this 

model were highly unstable. Many variations of Model 1 were used (Models 2-8; 

Figures 3-9) but they were either structurally unstable or did not adequately describe the 

data. It is believed that part of the difficulty in modeling the data was due to previously 

noted nonlinearity in the pharmacokinetics of prednisolone and prednisone. Figure 16 

showed that the AUC of total prednisone normalized by prednisolone dose decreased 

with increasing dose (negative slope), indicating the presence of nonlinear 

pharmacokinetics. If all clearances of prednisolone had been equally affected by protein 

binding, increasing the dose ofprednisolone simply would have produced a proportional 

increase in the conversion of prednisone. Assuming linear pharmacokinetics of 

prednisone, this scenario would have produced a slope of zero in Figure 16. 

Alternatively, if the conversion ofprednisolone to prednisone was more sensitive to 

protein binding than the other clearances, then as the dose of prednisolone increased, the 

fraction converted to prednisone would have increased disproportionally. Again 

assuming linear pharmacokinetics of prednisone, a positive slope would have been 

expected in Figure 16. Instead, the relationship seen (negative slope) could occur 

through two possible mechanisms: the conversion of prednisolone to prednisone may be 

a saturable process and/or the elimination of prednisone may be nonlinear. The reason 

for the saturable metabolism of the conversion ofprednisolone to prednisone is 

unknown, though it has been proposed that it may be attributable in part to a saturation 
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of 11-~-hydroxydehydrogenase, the enzyme responsible for the interconversion of 

prednisolone to prednisone (I 0;20). Nonlinearity with prednisone was noted in Figure 

18. AUC total prednisolone/AUC prednisone versus dose produced a negative slope 

(Figure 17). When correcting for prednisolone's nonlinearity by using unbound 

prednisolone concentrations instead of total prednisolone concentrations, AUC unbound 

prednisolone/ AUC prednisone versus dose produced a positive slope (Figure 18). 

Knowing that unbound prednisolone exhibited linear pharrnacokinetics, it was the 

nonlinearity of total prednisone driving the increase in slope on this plot. 

The concentration-dependent binding of prednisolone may affect the interconversion 

process. If the interconversion ofprednisone and prednisolone depended solely on the 

concentration of unbound prednisolone, the ratio of unbound prednisolone to prednisone 

would remain constant, regardless of the unbound fraction ofprednisolone in plasma 

(slope=zero ). Instead, a positive slope was seen in Figure 19; interconversion is not 

so lely dependent on protein binding, other factors (e.g enzyme inhibition) must influence 

the interconversion process (24). 

In order to model prednisolone and prednisone concentration time data simultaneously, 

future clinical trials should be designed to address some of the issues encountered in this 

analysis. More concentration values are needed during the absorption time period 

(specifically concentration data in between the 0-2 hour post dose interval). The 

additional data would have allowed one more parameter in this model to have been 

estimated rather than fixed from literature values and would have permitted better 
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estimation ofVfF. If unbound prednisolone concentrations are not measured directly in 

patients, than both albumin and transcortin should be measured in order to permit a more 

accurate estimation of the unbound fraction ofprednisolone. Information regarding oral 

contraceptive usage, menstrual cycle phase, and menopause status would provide a 

better understanding of the impact of these factors in the pharmacokinetics of 

prednisolone. If possible, populations that are anticipated to have altered 

phannacokinetics should be stratified to address potential confounders; in this trial, all 

cystic fibrosis patients were male. Dosing patients with prednisone, in addition to 

prednisolone, would enable the estimation of the pharmacokinetic parameters of 

prednisone. 

In conclusion, this study has shown that population phannacokinetic models could be 

used to model prednisolone plasma concentration time data obtained in a thoracic organ 

transplant population dosed with oral prednisolone. A one-compartment model with a 

fixed first order rate of absorption was used to describe the unbound prednisolone 

concentration versus time data. Sex and ciprofloxacin for CUF were found as 

significant covariates. It was not possible to adequately model prednisolone and 

prednisone concentration time data simultaneously. The results of this study may 

provide help to better dose thoracic transplant patients with oral prednisolone. 
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Table l. Summary of Prednisolone Pharmacokinetics in Various Populations 

First Author Population Total Unbound Total VD Unbound 
(Reference) CL CL (L/kg) VD 

J!,_/h/k_g}_ _{_L/h/k_g}_ _i!./k_fil 
Stuck _{_l '!2_ Elder_!y_ 0.400f --- ---

Youn_g_ --- 0.640 --- ---
Meffinl_4![ Male 0.164! 0.620f 0.669 1.546 

Female 0.193 0.752 0.676 l.543 
Frey (43) Female - before 0.171t 0.693l 0.650 1.690 

_E_he~oin 
Female - after 0.248 0.103 0.620 l.590 
__£_he~oin 

Frey (43) Male- before 0.148' 0.650 0.562f l.550 
_l)hen.Y!_oin 
Male- after 0.210 0.640 0.839 l.540 
phenytoin 

M~ee _{_4'!2_ ¥ White Males 0.178 0.788 0.590 2.180 
Black Males 0.172 0.778 0.613 2.183 
White Females 0.181 0.644 0.453 l.650 
Black Females 0.165 0.554 0.586 l.580 

Meffin _Q Q2_ Control 0.169t 0.6941 0.684r 1.340 
OC users 0.081 0.467 0.550 l.290 

Fr~71_ Control 0.174T 0.666t 0.640T 1.610 
OC users 0.096 0.540 0.540 l.710 

Boekenoogen Control* o.11ot 0.8761 0.8181 2.770 

__G~ 
OC users* 0.082 0.550 0.605 l.840 

Imani_f471_ Control* 0.168t --- --- ---
Diltiazem users* 0.139 --- --- ---

Harris :Q-!5: Premeno~usal 0.1501 0.996t 0.580 2.520 
Postrnen~ausal 0.110 0.696 0.430 1.790 

Ost (67) Transplant - 0.110-
~[OS]JOrine 0.140t 
Transplant- 0.150-
AzathiOJJ!ine 0.160 

Ost (1) - no Cushingoid 0.160 
C}'ClOS]JOrine 

Non-Cushingoid 0.150 
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Gambertoglio Transplant 0.100 0.644 0.460 2.03 
(71)-no Control 
~los.I>Q_rine 

Transplant- o.111t 0.8861" 0.470 1.53 
Anticonvulsant 

Langhoff ( 68) Transplant - -0.114 
~lo~rine 
Transplant- -0.144T 
Azathiqp_rine 

Bergrem (15) Cushingoid* 0.04.5f 0.27:31 0.229 ---
-no 
~los.I>Q_rine 

Non- 0.051 0.315 0.224 ---
cushin~id* 

Frey (38) Transplant - 0.140 0.492 0.680 1.480 
Cy_closp_orine 
Transplant- 0.132 0.499 0.610 1.460 
Azathiq£!ine 

Rocci (70) Transplant - 0.160 0.620 0.780 2.100 
Pre-
_(::y_clo~ine 
Transplant - 0.130 0.510 0.720 1.600 
Post-
Cy_closp_orine 

Jusko (69) - Transplant - Pre 0.094 
with Sirolimus 
~los.I>Q_rine 

Transplant - O.D75 
Post Sirolirnus 

• Mean weight of70kg used 
t P-value <0.05 or smaller for the population comparison 
¥ P-value <0.01 for comparison of gender. Race and gender by race comparisons were 
not significant. 

Abbreviations: VD=volume of distribution, CL=clearance, OC=oral contraceptive 
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Table 2. Characteristics of Thoracic Organ Transplant Patients Evaluated in the 

Population Pharmacokinetic Analysis of Prednisolone 

Characteristic 
Total number ot:.£.atients 41 
Male 23 
Female 18 

~_{year~ 42.9 ~ange=19-66l 
We~ 57.0 ~an~37-8§: 
T ransJ.>_lant type 

Heart and lung 19 
Double lun~ 7 
Sin_Eie lun__g_ 15 

::fistic fibrosis 6 
A21.clovir 8 
Amphotericin 6 
Cefotaxime 10 
Ceftazidime 17 
C!J2!ofloxacin 14 
Flucloxacillin 24 
Ganciclovir 33 
Imi~nem 4 
ltraconazole 7 
Lyp~sornal amphotericin 4 
St!E_trin 31 
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Table 3. Example of Partial Prednisolone Dosing History: Patient #4 

Total Daily 
Oral Prednisolone Prednisolone 

Day Post Prednisolone a.m. p.m. Methylprednisolone 
Patient Transplant Dose( mg) Dose (mg) Dose(mg) Dose (mg) 

4 0 0 0 0 0 
4 J 50 25 25 0 
4 2 45 25 20 0 
4 3 40 20 20 0 
4 4 35 20 15 0 
4 5 30 J5 J5 0 
4 6 25 J5 JO 0 
4 7 20 15 5 0 
4 8 J5 J5 0 0 
4 9 30 15 15 0 
4 10 15 J5 0 0 
4 IJ 0 0 1000 
4 J2 0 0 1000 
4 13 0 0 500 
4 J4 50 25 25 0 
4 J5 50 25 25 0 
4 I6 40 20 20 0 
4 J7 35 20 J5 0 
4 18 30 J5 15 0 
4 J9 25 J5 JO 0 
4 20 20 15 5 0 
4 2J J5 15 0 0 
4 22 10 10 0 0 
4 23 IO IO 0 0 
4 24 0 0 1000 
4 25 0 0 500 
4 26 0 0 500 
4 27 60 30 30 0 
4 28 55 30 25 0 
4 29 50 25 25 0 
4 30 45 25 20 0 
4 3J 40 20 20 0 
4 32 35 20 J5 0 
4 33 30 J5 I5 0 
4 34 25 I5 IO 0 
4 35 20 J5 5 0 
4 36 I5 J5 0 0 
4 37 IO JO 0 0 
4 38 JO JO 0 0 
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Table 4. Base Model for the Pharmacokinetics Model of Prednisolone 

Parameter Estimated %RSE 95% Confidence 
Value Interval 

CLl(tLlh}=e, 17.2 15.9 11.8,22.6 
V/Ffil= 82 416 14.7 296,536 
k. _Ql:'.E e, 2.84[ -- --
W

2
cUF 0.313 37.4 0.084,0.542 

W V/F 0.390 36.7 0.110,0.670 

~ 0.697 22.8 0.385,1.010 

~ 79.5 50.8 0.3,159.0 

t k. was fixed at 2.84 h·' 

Abbreviations: %RSE=percent relative standard error, CL/F = oral clearance, V IF= oral 
volume of distribution, ka= first-order absorption rate constant, w2 

cUF =interpatient 
variability ofCL/F, w2

vlF = interpatient variability ofV/F, d', =variance of proportional 
portion ofresidual error, d 2 =variance of additive portion of residual error. 

A one compartment model with a fixed first order absorption rate constant 
(k.=2.84 hr·'), exponential interindividual variability, and a combined proportional and 
additive residual error were used. 
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Table 5. Analysis oflndividual Covariates for Unbound Prednisolone Base Model 

Objective Change in Objective 
Covariate Anal_Eis Function Value Function Value 

Base Model - No covariates 3554.588 
SexforCUF 3405.003 -149.585 

Cefotaxirne for CLIF * 3487.214 -67.374 
Ciprofloxacin for CUF 3490.455 -64.133 

Septrin for CUF 3512.221 -42.367 
Albumin for V IF * 3544.546 -30.991 

Albumin for CLIF * 3525.231 -29.357 
Amphotericin for CUF 3526.041 -28.547 

lmipenem for CUF 3528.633 -25.955 
Age for CLIF * 3533.241 -21.347 

Cystic fibrosis for CUF 3540.647 -13.941 
Type for CLIF * 3541.016 -13.572 

Flucoxacillin for CLIF * 3542.368 -12.220 
Acyclovir for CLIF * 3543 .551 -11.037 

Age for VIF • 3545.029 -9.559 
Dose for V /F * 3546.328 -8.260 
Sex for V/F * 3546.738 -7.850 

Dose for CL/F * 3547.350 -7.238 
Creatinine clearance for CL/F * 3547.753 -6.835 

Lyposornal arnphotericin for CLIF 3553 .567 -1.021 
Type for VIF 3553.859 -0.729 

Weight for CLIF 3553.942 -0.646 
Weight for VIF 3554.257 -0.331 

Cystic fibrosis for V IF 3554.343 -0.245 
Cystatin C for CLIF 3554.588 0 

ltraconazole for CL/F 3555.423 0.835 
Ganciclovir for CLIF 3558.203 3.615 
Ceftazidirne for CLIF 3636.749 82.161 
Cortisol for VIF ** --- ---

Bold covariates were deemed statistically significant. 
* 95% confidence interval of parameter estimate includes the nuU value. 
** The addition of cortisol as a covariate in the base model caused model instability. 
The diagnostic plots showed that cortisol did not add any further improvement in the fit 
of the model and therefore was not included in any further model development. 

Abbreviations: CLIF = oral clearance, V /F = oral volume of distribution, type=type of 
transplant. 
A one compartment model with a fixed first order absorption rate constant (k.=2.84 hr-
1), exponential interindividual variability, and a combined proportional and additive 
residual error were used. 
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Table 6. Backward Elimination for the Full Model of Unbound Prednisolone 

Removed Covariate Objective Change in p-Value 
Function Objective 

Value Function Value 
Sex, ciprotloxacin, septrin, 
amphotericin for CL/F 
No covariate removed 3439.156 -- --
Sex 3464.470 25.314 < 0.005 
Ciprotloxacin 3445.645 6.489 < 0.005 
Septrin 3370.275 -68.881 NS 
~otericin 3469.252 30.096 < 0.005 
Sex, ciprotloxacin, amphotericin 
for CL/F 
No covariate removed 3370.275 -- --
Sex 3466.281 96.006 < 0.005 
Ciprotloxacin 3399.395 29.120 < 0.005 
~hotericin 3376.170 5.895 NS 
Sex, ciprotloxacin, irnipenem, 
cystic fibrosis for CL/F 
No covariate removed 3365.838 -- --
Sex 3619.883 254.045 < 0.005 
Ciprotloxacin 3376.681 10.843 < 0.005 
lmipenem 3368.618 2.780 NS 
~tic fibrosis 3375.064 9.226 < 0.005 
Sex, ciprotloxacin, cystic fibrosis 
for CL/F 
No covariate removed 3368.618 -- --
Sex 3633. 179 264.561 < 0.005 
Ciprotloxacin 3387.505 18.887 < 0.005 
~tic fibrosis 3376.167 7.549 NS 
Sex, ciprotloxacin for CL/F 
No covariate removed 3376.167 -- --
Sex 3490.455 114.288 < 0.005 
C~otloxacin 3405.003 28.836 < 0.005 

Abbreviations: CL/F = oral clearance, NS=not significant. 

A one compartment model with a fixed first order absorption rate constant (k.=2.84 hr-
1 ) , exponential interindividual variability, and a combined proportional and additive 
residual error were used. 
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Table 7. Final Model for Prednisolone Alone Dataset 

Parameters Estimated %RSE 95% Confidence 
Value Intervals 

CL/F (L/h)=E>1 + E>4·sex+ 0 5·cipr 

e, 13.7 14.1 9.9,17.5 
e. 55.6 11.6 43.0,68.2 
e, -6.6 29.8 -10.5,-2.8 
V/F- (L)= E>2 281 I I.I 220,342 
k.J!Q=e, 2.84_.i -- --
olcUF 0.020 135 -0.033,0.073 
ffi2v/F 0.109 58.7 -0.016,0.234 

~ 0.580 18.6 0.368,0.792 

.!D 73.5 33 .7 24.9,122.0 

t k. was fixed at 2.84 h"' 

Abbreviations: %RSE=percent relative standard error, CL/F = oral clearance, V/F = oral 
volume of distribution, ka= first-order absorption rate constant, w2 cUF =interpatient 
variability ofCL/F, w2

v tF = interpatient variability ofV/F, cr2
1 =variance of proportional 

portion of residual error, cr22 =variance ofadditional portion of residual error, 
cipr=ciprofloxacin use. 

Sex: O=female, I =male 
Ciprofloxacin: O=no concomitant ciprofloxacin use, I =concomitant ciprofloxacin use 

A one compartment model with a fixed first order absorption rate constant (k.=2.84 hr. 
1
), exponential interindividual variability, and a combined proportional and additive 

residual error were used. 
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Figure I. Distribution of Percent(%) of Concentration Samples versus Prednisolone 
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Figure 2. Prednisolone (Parent) and Prednisone (Metabolite) Pharmacok:inetic Model 

1 : All four elimination terms are included linearly in the model 
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Figure 3. Prednisolone (Parent) and Prednisone (Metabolite) Pbarmacokinetic Model 

2: No reconversion of prednisone to prednisolone 
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Figure 4. Prednisolone (Parent) and Prednisone (Metabolite) Pharmacokinetic Model 

3: Removal of the reconversion ofprednisone to prednisolone and the elimination of 

prednisolone by pathways other than metabolism to prednisone 
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Figure 5. Prednisolone (Parent) and Prednisone (Metabolite) Pharrnacokinetic Model 

4: All prednisone was reconverted to prednisolone 
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Figure 6. Prednisolone (Parent) and Prednisone (Metabolite) Pbarmacokinetic Model 

5: Relative value of the interconversion clearances were fixed 
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Figure 7. Preclnisolone (Parent) and Preclnisone (Metabolite) Pharmacokinetic Model 

6: Nonlinear metabolism of preclnisolone to preclnisone 
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Figure 8. Prednisolone (Parent) and Prednisone (Metabolite) Pharrnacokinetic Model 

7: Nonlinear reconversion of prednisone to prednisolone 
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Figure 9. Prednisolone (Parent) and Prednisone (Metabolite) Pharmacokinetic Model 

8: Nonlinear elimination of all prednisolone not metabolized to prednisone 

2-NL 
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Figure I 0. Fraction of Unbound Prednisolone Concentration versus Total Prednisolone 

Concentration (ng/ml} Individual Values for Albumin 
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Figure 11 . Observed Total Prednisolone Concentration (ng/ml) versus Time Post Dose 

(minutes) 
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Figure 12. Observed Unbound Prednisolone Concentration (ng/ml) versus Time Post 

Dose (minutes) 
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Figure 13 . Observed Total Prednisone Concentration (ng/ml) versus Time Post Dose 

(minutes) 
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Figure 14. Dose Nonnalized AUC Total Prednisolone (ng*hr/ml/mg) versus Dose (mg) 
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Figure 15. Dose Normalized AUC Unbound Prednisolone (ng*hr/ml/mg) versus Dose 

(mg) 
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Figure 16. AUC Total Prednisone (ng*hr/mVmg) Normalized by Prednisolone Dose 

versus Dose (mg) 
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Figure 17. AUC Total Prednisolone/AUC Total Prednisone versus Dose (mg) 
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Figure 18. AUC Unbound Prednisolone/AUC Total Prednisone versus Dose (mg) 
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Figure 19. AUC Unbound Prednisolone/AUC Total Prednisone versus AUC Unbound 

Prednisolone/AUC Total Prednisolone 

~6 
0 

"' ·2 

~ 
a_ 

u 
::J 
<( 
-4 ., 
c: 
0 
0 
"' ·2 

~ 
a_ 

-g 2 

.8 
c: 
::J 
u 
;j! 

0 

0.00 0.05 

0 

0 

0.10 0 .15 0.20 0.25 0.30 
AUG Unbound Prednisolone/AUC Total Prednisolone 

172 

0.35 0.40 



Figure 20: Observed Prednisolone Plasma Concentration versus Predicted Prednisolone 

Plasma Concentration Values for the Total Prednisolone Concentration Base Model 
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A one compartment model with a fixed first order absorption rate constant (k,=2.84 hr-
1), exponential interindividual variability, and a combined proportional and additive 
residual error were used . 
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Figure 21 : Weighted Residuals versus Predicted Prednisolone Plasma Concentration 

Values for the Total Prednisolone Concentration Base Model 
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A one compartment model with a fixed first order absorption rate constant (k,,=2.84 hr-
1), exponential interindividual variability, and a combined proportional and additive 
residual error were used . 
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Figure 22. Observed Prednisolone Concentration versus Predicted Prednisolone 

Concentration Values for the Unbound Prednisolone Base Model 
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A one compartment model with a fixed first order absorption rate constant (k,=2.84 hr-
1), exponential interindividual variability, and a combined proportional and additive 
residual error were used. 
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Figure 23. Weighted Residuals versus Predicted Prednisolone Concentration Values for 

the Unbound Prednisolone Base Model 
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A one compartment model with a fixed first order absorption rate constant (k,=2.84 hr-
1), exponential interindividual variability, and a combined proportional and additive 
residual error were used . 
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Figure 24. Normalized Clearance versus Time Post Transplant (Day) for Each 

Patient Using Unbound Prednisolone Base Model Clearance Estimates 
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A one compartment model with a fixed first order absorption rate constant (k.=2.84 hr" 
1
) , exponential interindividual variability, and a combined proportional and additive 

residual error were used. 
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Figure 25. Observed Prednisolone Plasma Concentration versus Predicted Prednisolone 

Plasma Concentration Values for the Final Unbound Prednisolone Alone Model 
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A one compartment model with a fixed first order absorption rate constant (k,=2.84 h( 
1
) , exponential interindividual variability, and a combined proportional and additive 

residual error were used . 
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Figure 26. Weighted Residuals versus Predicted Prednisolone Plasma Concentration 

Values for the Final Prednisolone Unbound Alone Model 

6 
§ 0 

0 
0 

4 0 

"' iii 
::> 
32 2 
"' ., 
Ct'. 

al 
:E 

0 

·~ 0 
~ 

~·· ;poO ..... 
Qo80 

···· 0 
0 

-2 

-4 

0 50 100 150 

Predicted Unbound Prednisolone Concentration {nglml ) 

A one compartment model with a fixed first order absorption rate constant (k.=2.84 hr-
1), exponential interindividual variability, and a combined proportional and additive 
residual error were used . 

179 



Figure 27. Observed versus Predicted Unbound Prednisolone and Total Prednisone 

Concentrations for Model 5 
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CMT 2.00= Unbound Prednisolone Concentrations 
CMT 3.00= Total Prednisone Concentrations 
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( Figure 28. CL/F versus Cystic Fibrosis for Males not Using Ciprofloxacin (Final 

Prednisolone Alone Model) 
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O= no cystic fibrosis; I= cystic fibrosis 

no cystic fibrosis : n= l 7; cystic fibrosis : n=6 

Abbreviations: CL/F = oral clearance 

A one compartment model with a fixed first order absorption rate constant (k.=2.84 hr" 
1
) , exponential interindividual variability, and a combined proportional and additive 

residual error were used. 
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SUMMARY OF CONCLUSIONS 

The population approach to pharmacokinetic analysis has become a common tool in the 

drug development process. Two major advantages of this type of analysis are I) the 

ability to pool data from a population from which it might otherwise be difficult to 

collect information and 2) the ability to model sparse data. Thus, this approach can be 

used to reduce the number of clinical trials that need to be conducted in order to obtain 

alternate dosing information for sub-populations. 

Azithromycin Model: 

The azithromycin model was an example of an analysis that pooled data from multiple 

clinical trials. Dosing information in various sub-populations of the pediatric patients 

was analyzed without having to conduct more clinical trials. The objective of this 

analysis was to develop a population pharmacokinetic model for 58 pediatric patients 

taking azithromycin in four separate clinical trials. A two compartment model with 

parallel zero-order and first-order absorption was found to best fit the data. When 

standardized by the mean weight, the parameter values generally compared well for the 

pediatric patients compared to values found in the adult population. Because of the 

richness of the sample times collected in these studies, the FOCE approach was used to 

determine the final model. Weight was found to be a significant covariate for both CL/F 

and V2/F. The final model was an improvement over the base model as seen by 

reductions in %RSE on parameter estimates, reductions in interindividual variability, a 

reduction in the residual variability, and an improvement in the diagnostic plots. While 
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the final model was an improvement, there was still bias and imprecision present in the 

model. Additional model development pursuing a three compartment model may 

address the bias and imprecision. 

The final azithromycin model found in this analysis supports the current weight adjusted 

dosing guidelines for azithromycin. 

Prednisolone Model: 

The prednisolone model was an example of an analysis that utilized sparse data collected 

as a secondary endpoint in a clinical trial . The objective of this analysis was to develop 

a population pharmacokinetic model from 41 thoracic organ transplant patients dosed 

with prednisolone. Unbound prednisolone concentrations were estimated and found to 

follow linear pharrnacokinetics. A one compartment model with a fixed absorption rate 

constant of2.84 hr"' was found to best fit the unbound prednisolone concentration time 

data. Sex and concomitant ciprofloxacin use were found to be significant covariates for 

CL/F. The final model was an improvement over the base model as seen by reductions in 

%RSE on parameter estimates, a reduction in the residual variability, and an 

improvement in the diagnostic plots. The prednisolone and prednisone concentration 

data were simultaneously modeled using final parameter estimates from the prednisolone 

alone model and literature values for the V IF terms. Many models were developed, but 

they all proved to be inadequate because of lack of robustness or lack of clinical 

meaningfulness with our understanding of prednisolone/prednisone pharrnacokinetics. 
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APPENDIX A 

The following text provides additional information on the pharmacokinetics of 

azithromycin. 

The following figures provide additional information on the modeling process that was 

employed in Manuscripts II and ill. 

Figures 1-7 contain NONMEM control streams. For azithromycin, NONMEM was run 

using the command prompt in MS-DOS (Figures 1-4). For prednisolone, NONMEM 

was run using PDx-Pop (Figures 5-7). Figure 8 contains information regarding S-Plus 

box and whisker plots. 
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Azithromycin Pharmacokinetics 

Absorption 

Oral azithromycin has a bioavailability (F) of approximately 37% (1). In a study of 

twelve patients that had ileostomies, it was found that slow or incomplete absorption 

was the most important limitation on the bioavailability of azithromycin, as opposed to 

acid degradation or extensive first-pass metabolism (2). 

Azithromycin has a rapid rate of absorption with a peak concentration (Cmax) occurring 

around 2-3 hours post dose (Tmax) (1;3). 

Distribution 

Azithromycin exhibits a rapid distribution into tissues. Azithromycin is actively 

transported into cells and then slowly released into the extracellular fluid compartments 

( 4) . There are significantly higher azithromycin concentrations in tissues than in plasma 

or serum (10- to 100-fold) (I ;4-6). 

Serum protein binding is low and variable. A bound fraction of0.5 has been observed 

for serum concentration ranges of0.02-0.05 mg/L, and 0.7-0.12 for ranges of0.5-2.0 

mg/L; lower concentrations of azithromycin exhibit greater protein binding (I ;4;5). 

Azithromycin binds predominately to u1-acid glycoprotein (1) . 

The volume of distribution of azithromycin has been reported as being 23-33 Ukg (3-7) . 
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Metabolism 

Metabolism is not a major route of elimination for azithromycin (2;4;8;9). When 

azithromycin is metabolized, the primary route of metabolism is hepatic demethylation 

(10). Unlike other macrolide antibiotics, there has been no evidence of cytochrome P450 

induction or inhibition by azithromycin (9; 11 ; 12). 

Excretion 

Azithromycin is principally eliminated via the liver (5). The major route of elimination is 

through biliary excretion, predominantly as unchanged drug ( 1 ;2;8;9). Over 50% of 

drug related material in the bile is unchanged azithromycin (10) . 

Urinary excretion of unchanged azithromycin appears to be a minor route of elimination 

(<6%) (5;9; 10). The renal clearance of azithromycin is in the range of 6-11.34 L/h 

(3 ;9;10). The plasma clearance ofazithromycin is in the range of37.8-39.9 L/h 

(3 ;5;7;13 ;14). 

Azithromycin has a half life around 55-70 hours (1;4;5;7;14). The apparent steady-state 

volume of distribution (- 30 L/kg) and plasma clearance (- 38 L/h) suggest that the long 

half-life is due to extensive distribution and subsequent release of drug from tissues 

rather than to an intrinsic inability to clear azithromycin (5;7;13 ;14). 
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Figure I . NONMEM Control File for Base Azithromycin Model - FO Method 

$PROB AZITHROMYCIN PEDS 80% Additive Error - RUN BASE PEDS MODEL 
$INPUT ID AMT TIME DATE ADDL II DV RATE 
$DATA NOZERO.CSV IGNORE=C 
$SUBROUTINE ADV AN4 TRANS4 
$PK 
TVCL=THETA(!) 
TVV2=THETA(2) 
TVQ=THETA(3) 
TVV3=THETA(4) 
TVKA=THET A(5) 
TVRl=THETA(6) 

CL=TVCL *EXP(ETA(l )) 
V2=TVV2 
Q=TVQ*EXP(ETA(2)) 
V3=TVV3 *EXP(ET A(3 )) 
KA=TVKA *EXP(ETA( 4)) 
Rl=TVRI 
S2=V2 

$ERROR 
IPRED=F 
IRES = DV - IPRED 
Y = F*(l+EPS(l)) 

$THETA 
(10,100,300) ;CL 
(100,200,500); V2 
(50,150,400) ;Q 
(1000,2900,4000) ;V3 
(0,1,5) ;KA 
(50, I 00,300);Rl 

$OMEGA 0.25 0.25 0.25 0.25 
$SIGMA0.25 

$ESTIMATION MAXEY AL=9999 PRINT=5 POSTHOC METHOD=O 
$COVARIANCE 
$TABLE ID AMT TIME CL V2 V3 Q KA RI RES WRES PRED 
IPRED IRES ETA! ETA2 ETA3 ETA4 NOPRJNT FILE=CLV3KAQ.TOI 
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Figure 2. NONMEM Control File for Full Azithromycin Model - FO Method 

$PROB AZITHROMYCIN PEDS 800/o Additive Error - RUN BASE PEDS MODEL 
WI COVARIATES 

$INPUT ID AMT TIME DATE ADDL II DV RATE RACE=DROP AGE HT=DROP 
WT ANE=DROP CA=DROP PN=DROP NAU=DROP COL=DROP ALB AMI 
CAP=DROP CEFA=DROP CEFR DIG=DROP DIP=DROP DOP FEN=DROP 
LAS=DROP MOR NYS=DROP SUL=DROP TIC VAN VER=DROP 

$DATA NOZEROCO.CSV IGNORE=C 

$SUBROUTINE ADV AN4 TRANS4 
$PK 

TVCL=THETA(l )+THET A(7)*(WT)+ THETA(8)*(ALB) 
TVV2=THETA(2) 
TVQ=THETA(3)+THETA(l l)*(DOP) 
TVV3=THETA(4)+THETA(9)*(CEFR)+THETA(lO)*(WT) 
TVKA=THETA(5)+THETA(12)*MOR 
TVRl =THETA(6) 

CL=TVCL *EXP(ETA(l)) 
V2=TVV2 
Q=TVQ*EXP(ETA(2)) 
V3=TVV3; *EXP(ET A(3)) 
KA=TVKA *EXP(ET A(3)) 
Rl =TVRl 
S2=V2 

$ERROR 
IPRED = F 
IRES = DV - IPRED 
Y = F*(l +EPS(l )) 

$THETA 

(30,50,90) ;CL 
(100,200,400); V2 
(50, 100,300) ;Q 
(800, 1000,2000) ;VJ 
(1 ,2,4) ;KA 
( 50, 100,200);R 1 
(0,1 ,5) ; WT 
(-40, -30, -10) ;ALB 
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Figure 2. NONMEM Control for Full Model (con't) 

(-800,-500,-300) ; CEFR 
(0,30,50) ; WT 
(1); DOP 
(.0001); MOR 

$OMEGA 0.25 0.25 0.25 ;0.25 
$SIGMA0.25 

$ESTIMATION MAXEY AL=9999 PRINT=5 POSTHOC METHOD=O 
$COY ARIANCE 
$TABLE ID AMT TIME CL Y2 V3 Q KAR 1 RES WRES PRED 
IPRED IRES ETA I ET A2 ETA3 NOPRINT FILE=MORKA. TOl 
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Figure 3. NONMEM Control File for Final Azithromycin Model - FO Method 

$PROB AZITHROMYCIN PEDS 100"/o data - Exp Error 
$INPUT ID WT ALB CEFR DOP=DROP AMT TIME DATE ADDL II RATE DV 
$DATA VALIDATE.CSV IGNORE=C 
$SUBROUTINE ADV AN4 TRANS4 
$PK 
TVCL=THETA(l)+THETA(7)*(WT)+ THETA(8)*(ALB) 
TVV2=THETA(2) 
TVQ=THETA(3) 
TVV3=THETA(4)+THETA(9)*(CEFR)+THETA(IO)*(WT) 
TVKA=THETA(5) 
TVRI =THETA(6) 

CL=TVCL *EXP(ET A(!)) 
V2=TVV2 
Q=TVQ*EXP(ETA(2)) 
V3=TVV3 *EXP(ETA(3)) 
KA=TVKA*EXP(ETA(4)) 
Rl=TVRI 
S2=V2 

$ERROR 
IPRED=F 
IRES = DV - IPRED 
Y = F*(l+EPS(l)) 

$THETA 
(0,50) ;CL 
(100,200,500); V2 
(50,150,400) ;Q 
(1000,2900,4000) ;V3 
(0,1,5) ;KA 
(50, I00,300);Rl 
(0,50); WT 
(I) ;ALB 
(100); CEFR 
(10); WT 

$OMEGA 0.25 0.25 0.25 0.25 
$SIGMA0.25 
$ESTIMATION MAXEY AL=9999 PRINT=5 POSTHOC METHOD=O 
$COY ARIANCE 
$TABLE ID AMT TIME CL V2 V3 Q KA RI RES WRES PRED WT ALB CEFR 
IPRED IRES ET A I ET A2 ET A3 ET A4 NOPRINT FILE=V ALIDA TE.TO I 
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Figure 4. NONMEM Control File for Final Azithromycio Model - FOCE Method 

$PROB AZITHROMYCIN PEDS 100"/o data - FOCE Method 
$INPUT CID WT ALB CEFR DOP=DROP AMT TIME DATE ADDL II RATE DV 
$DATA 002.CSV IGNORE=C 
$SUBROUTINE ADV AN4 TRANS4 
$PK 
TVCL=TIIBTA(l)+TIIBTA(7)*(WT) 
TVV2=TIIBT A(2) 
TVQ=TIIBT A(3) 
TVV3=TIIBTA(4)+TIIBTA(8)*(WT) 
TVKA=TIIBTA(5) 
TVRl=TIIBTA(6) 
CL=TVCL *EXP(ET A(I}} 
V2=TVV2 
Q=TVQ 
V3=TVV3 
KA=TVKA *EXP(ETA(2)) 
Rl =TVRI 
S2=V2 

$ERROR 
DEL=O 
IF(F.EQ.O) DEL= I 
W=F 
IPRED=F 
IRES=DV-IPRED 
IWRES=IRES/(W+DEL) 
Y=F+F*EPS(I} 

$TIIBTA 
(10,30,50) ;CL 
(100,200,300); V2 
(50, 150,300) ;Q 
(600, 1000, 1500} ;V3 
(. 5,2,3) ;KA 
(50, I 00,250);RI 
(0,5,10) ; WT 
(10,20,40) ; WT 
$OMEGA 0.5 0.5 
$SIGMA0.25 
$ESTIMATION MAXEY AL=9999 PRINT=5 POSTHOC NO ABORT METHOD= I 
$COY ARIANCE 
$TABLE ID AMT TIME CL V2 V3 Q KA RI RES WRES PRED WT IPRED IRES 
ET Al ET A2 NOPRINT FILE=FOCE. TO I 
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Figure 5. NONMEM Control File for Base Prednisolone Model 

;Model Desc: linear code parent (KA=2.84, tmax=l , thalf-=3 .41 all data W/ FUALB) 
;Project Name: pred 
;Project ID: GM00-001 

$PROB RUN# 228 (base model ka=2.84) 
$INPUT CID DATE TIME DVT=DROP SRT2 AMT2=DROP AMT II ADDL EVID 
CMT FU2=DROP FU DY 

$DATA 005.CSV IGNORE=C 

$SUBROUTINES ADV AN2 TRANS2 SS2 

$PK 

TVCL=THETA( 1) 
TVV=THETA(2) 
TVKA=THET A(3) 

CL=TVCL *EXP(ETA(l )) 
V=TVV*EXP(ETA(2)) 
KA=TVKA 

S2=V 

$ERROR 
DEL=O 
IF(F.EQ.O) DEL= ! 
W=F 
IPRED=F 
IRES=DV-IPRED 
IWRES=IRES/(W+DEL) 

IF(CMT.EQ.2) THEN 
Y=F+F*EPS(l )+EPS(2) 

END IF 

$THETA 
(0, I 0, 1 OO);CL 
(50, 100, IOOO);VP 
(2 .84 FIXED) 

$OMEGA 
0.25 ;[P] INTERIND VAR IN CL 
0.25 ;[P] INTERIND VAR IN VP 
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$SIGMA 
0.1 ;[P] 
0.1 ;[A] 

$EST MAXEY AL=9999 PRINT=S METHOD=O POSTHOC 
$COY ARIANCE 
$TABLE ID CL Y ETA! ET A2 RES WRES DY NOPRINT ONEHEADER 
FILE=228.TAB 
$TABLE ID CLY ETA! ET A2 RES WRES DY NOPRINT ONEHEADER 
FILE=patab228. TAB 
$TABLE ID CLY ETA! ET A2 RES WRES DY NOPRINT ONEHEADER 
FILE=cotab228. TAB 
$TABLE ID CL VET Al ET A2 RES WRES DY NOPRINT ONEHEADER 
FILE=catab228. TAB 
$TABLE ID CL V ETA! ET A2 RES WRES DY NOPRINT ONEHEADER 
FILE=sdtab228. TAB 
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Figure 6. NONMEM Control File for Final Prednisolone Model 

;Model Desc: parent FUALB SEX,CIPR ON CL, CEFO(DROP), 
GANC(DROP),ITRA(DROP),ACYC(DROP) ON V 
;Project Name: BACKPFUALB 
;Project ID: JJOOI 

$PROB RUN# 736 (PARENT SEX,CIPR ON CL) 
$INPUT CID DATE OTPD=DROP NTPD=DROP TIME PDN=DROP PDL=DROP 
DVT=DROP COR=DROP TOT=DROP SDOS=DROP DOSE=DROP SORT=DROP 
PD I =DROP PD2=DROP AMT2=DROP AMT II ADDL EVID CMT TYPE 
AGE=DROP SEX PDG=DROP WT=DROP GTTO=DROP GTT2=DROP 
WBC=DROP HB=DROP NEUT=DROP L YM=DROP MONO=DROP BAS=DROP 
EOS=DROP CRT=DROP ALB=DROP AUCM=DROP AUCP=DROP AUCC=DROP 
AZA=DROP 
MPD=DROP FLU=DROP CEFO CEFT=DROP IMIP=DROP CIPR ACYC GANC 
AMPH=DROP ITRA LAB=DROP SEPT=DROP FU=DROP FUA=DROP 
REA=DROP 
CREA=DROP CCL2=DROP BILI=DROP Al=DROP CSY2=DROP SCRE=DROP CF 
CRCL=DROP CSYC=DROP DY MENO=DROP 

$DATA 007.CSV IGNORE=C 

$SUBROUTINES ADV AN2 TRANS2 SS2 

$PK 
TVCL=THETA(l)+THETA(4)*SEX+THETA(5)*CIPR 
TVV=THET A(2) 
TVKA=THETA(3) 

CL= TV CL *EXP(ETA( I)) 
V=TVV*EXP(ETA(2)) 
KA=TVKA 
S2=V 

$ERROR 
DEL=O 
IF(F.EQ.O) DEL=! 
W=F 
IPRED=F 
IRES=DV-IPRED 
IWRES=IRES/(W+DEL) 

IF(CMT.EQ.2) THEN 
Y=F+F*EPS(l )+EPS(2) 
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END IF 

$THETA 
(10,20,60);CP 
(100,400,SOO);VP 
(2.84 FIXED) 
(O, lO);SEX 
(-lO);CIPR 

$OMEGA 
0.25 ;[P] INTERIND Y AR IN CP 
0.25 ;[P] INTERIND Y AR IN VP 

$SIGMA 
0.1 ;[P] 
0.1 ;(A] 

$EST MAXEY AL=9999 PRINT=5 METHOD=O POSTHOC NO ABORT 
$COY ARIANCE 
$TABLE ID CLY ETAI ETA2 SEX CIPR ITRA DATE RES WRES DY NOPRINT 
ONEHEADER Fil..E=736.T AB 
$TABLE ID CLY ET Al ETA2 SEX CIPR ITRA DATE RES WRES DY NOPRINT 
ONEHEADER FILE=patab736. TAB 
$TABLE ID CL YETAl ETA2 SEXCIPR ITRA DATE RES WRES DYNOPRINT 
ONEHEADER FILE=cotab736. TAB 
$TABLE ID CLY ETAl ETA2 SEX CIPR ITRA DATE RES WRES DY NOPRINT 
ONEHEADER Fil..E=catab736.T AB 
$TABLE ID CLY ET Al ETA2 SEX CIPR ITRA DATE RES WRES DYNOPRINT 
ONEHEADER FILE=sdtab736. TAB 
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Figure 7. NONMEM Control File Example Using Nonlinear Rates for Prednisolone 
and Prednisone Simultaneous Model - Model 6 

;Model Desc: p&m - 2c model -non linear k23 , linear k32 
;Project Name: METABOLITE 
;Project ID: GM00-001 

$PROB RUN# 521 (PARENT AND METABOLITE) 
$INPUT C ID DATE OTPD=DROP NTPD=DROP TJME PDN=DROP PDL=DROP 
DVT=DROP CORT=DROP TOT=DROP SDOS=DROP DOSE SORT=DROP 
PDl=DROP PD2=DROP AMT2=DROP AMT II ADDL EVID CMT TYPE 
AGE=DROP SEX PDG=DROP WT=DROP GTTO=DROP GTT2=DROP 
WBC=DROP HB=DROP NEUT=DROP L YM=DROP MONO=DROP BAS=DROP 
EOS=DROP CRT=DROP ALB=DROP AUCM=DROP AUCP=DROP AUCC=DROP 
AZA=DROP 
MPD=DROP FLU=DROP CEFO CEFT=DROP IMIP CIPR=DROP ACYC 
ANC=DROP AMPH=DROP ITRA LAB=DROP SEPT=DROP FU=DROP 
FUA=DROP UREA=DROP CREA=DROP CCL2=DROP BILI=DROP AJ=DROP 
CSY2=DROP SCRE=DROP CF=DROP CRCL=DROP CSYC=DROP DY 

$DATA 010.CSV IGNORE=C 

$SUBROUTINES ADV AN6 TOL=3 

$MODEL NP ARAM=7 NCOMP=3 
COMP=(GUT, DEFDOSE) 
COMP=(PARENT,DEFOBS) 
COMP=(MET AB) 

$PK 
;CPM=THETA(l)*EXP(ETA(l)) 
CPR=THETA(J)*EXP(ETA(l)) 
VP=THETA(2)*EXP(ETA(2)) 

CLM=THETA(3)*EXP(ETA(3)) 
VM=THETA(4)*EXP(ETA(4)) 

VMAX=THET A(S)*EXP(ETA(S)) 
KM=THET A(6)*EXP(ETA(6)) 

S2=VP 
S3=VM 

Kl2=THETA(7) 
K23=CPMNP 

K32=CLM/VM 
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K20=CPR/VP 

$DES 
DADT(l)=-Kl2*A(l) 
DADT(2)=Kl2* A(l)-K20* A(2)-VMAX* A(2)/(KM*VP+A(2))+K32* A(3) 
DADT(3)=VMAX* A(2)/(KM*VP+A(2))-K20* A(3) 

$ERROR 
DEL=O 
IF(F.EQ.O) DEL=l 
W=F 
IPRED=F 
IRES=DV-IPRED 
IWRES=IRES/(W+DEL) 

IF(CMT.EQ.2) THEN 
Y=F+F*EPS(I )+EPS(2) 

END IF 
IF (CMT.EQ.3) THEN 
Y=F+F*EPS(3)+EPS(4) 

END IF 

$THETA 
(0,2,30);CPR 
(420 FIXED);VP 
(0,50, 1 OO);CLM 
(55 FIXED);VM 

(0,6000);VMAX 
(0, l 5000);KM 

(2.84 FIXED) 

$OMEGA 
0.001 ;[P] INTERIND VAR IN CPR 
0.3 ;[P] INTERIND VAR IN VP 
0.008 ;[P] INTERIND VAR IN CLM 
0.008 ;[P] INTERIND VAR IN VM 
0.001 ;[P]] INTERIND VAR IN VMAX 
0.001 ;[P]] INTERIND VAR INKM 

$SIGMA 
0.1 ;[P] 
0.1 ;[A] 
0.1 ;[P] 
0.1 ;[A] 
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$EST MAXEY AL=9999 PRINT=S NOABORT POSTHOC 
$COV 
$TABLE ID VMAX KM CPR VP CLM VM K32 K20 ETA! ETA2 ETAJ 
ETA4 RES WRES DV CMT IPRED IRES IWRES NOPRINT ONEHEADER 
FILE=52 l . TAB 
$TABLE ID VMAX KM CPR VP CLM VM K32 K20 ETA! ET A2 ET A3 
ET A4 RES WRES DV CMT IPRED IRES IWRES NOPRINT ONEHEADER 
FILE=patab521 .TAB 
$TABLE ID VMAXKMCPR VPCLMVMK32K20ETAI ETA2ETA3 
ETA4 RES WRES DV CMT IPRED IRES IWRES NOPRINT ONEHEADER 
FILE=cotab52 l . TAB 
$TABLE ID VMAXKMCPR VPCLMVMK32K20ETAI ETA2ETA3 
ETA4 RES WRES DV CMT IPRED IRES IWRES NOPRINT ONEHEADER 
FILE=catab521.TAB 
$TABLE ID VMAXKM CPR VP CLM VMK32 K20 ETA! ETA2 ETAJ 
ET A4 RES WRES DV CMT IPRED IRES IWRES NOPRINT ONEHEADER 
FILE=sdtab521 . TAB 
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Figure 8. 
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The lower and upper lines of the box designate the 25 and 75"' percentile respectively. 

The whiskers of the plot are the nearest value not beyond a standard span from the 

quartiles. The standard span is calculated as I .5·interquartile range. 

Lines outside of the box and whiskers are outliers. 
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