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1College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, United States, 2 Biological
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Non-perennial streams dominate the extent of stream networks worldwide. Intermittent

streams can provide ecosystem services to the entire network—including nitrate uptake

to alleviate eutrophication of coastal waters—and are threatened by lack of legal

protection. We examined 12 intermittent streams in the temperate, humid climate of

the Northeast USA. Over 3 years of monitoring, continuous flow was observed a median

of 277 d yr−1, with no-flow conditions from early summer into fall. Estimated median

discharge was 2.9 L s−1 or 0.36mm d−1. All intermittent streams originated from source

wetlands (median area: 0.27 ha) and the median length of the intermittent stream from

the source wetland to the downstream perennial stream was 344m. Through regional

geospatial analysis with high resolution orthophotography, we estimated that widely

available, “high resolution” (1:24,000) hydrography databases (e.g., NHDPlus HR) only

displayed 43% of the total number of intermittent streams. Whole-stream gross nitrate-N

uptake rates were estimated at six intermittent streams during continuous flow conditions

using pulse additions of nitrate and a conservative tracer. These rates displayed high

temporal variability (range: no detect to over 6,000mg N m−1 d−1); hot moments were

noted in nine of the 65 pulse additions. Whole-stream gross nitrate-N uptake rates were

significantly inversely related to discharge, with no measurable rates above 7 L s−1.

Temperature was significantly positively correlated with whole-stream gross nitrate-N

uptake rates, with more hot moments in the spring. Microbial assays demonstrated that

nitrate cycling in intermittent streams are consistent with results from low order, perennial

forested streams and highlighted the importance of debris dams and pools—potential

locations for transient storage. Our assessment suggests that intermittent streams in our

region may annually contribute 24–47% of the flow to perennial streams and potentially

remove 4.1 to 80.4 kg nitrate-N km−2 annually. If development in these areas continues,

perennial streams are in danger of losing a portion of their headwaters and potential

nitrate uptake areas may become nitrate sources to downstream areas. These results

argue to manage fluvial systems with a holistic approach that couples intermittent

and perennial components.
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INTRODUCTION

Non-perennial streams contribute over half of the discharge in
the global river network (McDonagh et al., 2011; Datry et al.,
2014; Costigan et al., 2016; Skoulikidis et al., 2017). However, they
are often neglected in water legislation worldwide (Fritz et al.,
2017). In the European Union, the Water Framework Directive
(European Commission, 2000) incorporates hydrological and
ecological criteria for stream protection, but most member
states have not defined intermittent waterways (Fritz et al.,
2017). In 2015 in the United States, a draft Clean Water
Rule (U.S. Environmental Protection Agency, 2015) proposed
to extend protection to non-perennial streams, but the rule
was suspended (Fritz et al., 2017). Non-perennial streams are
at risk of being buried, channelized or degraded by land-use
changes associated with urbanization, mining, agriculture and
other human activities (Acuña et al., 2014).

Many non-perennial streams are in the headwaters. Their
protection is critical to the integrity of river networks and
provides important ecosystem services to downstream users
(Acuña et al., 2014; Leigh et al., 2015). The scientific community
has identified these non-perennial streams as essential habitat
and refugia for a high diversity of aquatic organisms as well
as critical to the flux of water, sediment, carbon, nutrients, and
organisms to higher order perennial streams (Freeman et al.,
2007; Meyer et al., 2007; Elmore and Kaushal, 2008; Wohl,
2017). However, the value of these non-perennial waterways
for protection has been undermined by the historical gap in
identifying the extent and connectivity of these intermittent and
ephemeral streams on maps of common scale (i.e., 1:24,000;
Leibowitz et al., 2008; Benstead and Leigh, 2012; Datry et al.,
2014; Ryan, 2017; Wohl, 2017). With the advancement of
improved mapping, modeling, and field work in recent years,
the extent and functional importance of intermittent streams
(Benstead and Leigh, 2012; Fritz et al., 2013; Leigh et al.,
2015; Nadeau et al., 2015; Williamson et al., 2015) and their
connections to wetlands (Tiner, 2003; Marton et al., 2015; Lane
and D’Amico, 2016; Rains et al., 2016) can be refined.

In this study, we continue to explore the value of non-
perennial streams. We examine intermittent streams (streams
that cease to flow seasonally or occasionally for weeks to months)
in the temperate, humid climate of the glaciated Northeast of
the United States—a region likely to have a high density of
intermittent streams that have been not been examined (Larned
et al., 2010; Datry et al., 2014, 2017; von Schiller et al., 2017).
We gathered information on hydroperiod (i.e., the extent of time
that the streams had flowing water precluding the formation
of fragmented pools; Boulton, 2003), stream structure and
source wetland characteristics on 12 intermittent streams. Flow
duration has been difficult to determine historically (Hanson,
2001; Biggs et al., 2017); our extensive monitoring contributes
to the understanding of flow dynamics in intermittent streams
in temperate, humid climates. We also expand our results with a

Abbreviations: DEA, Denitrification enzyme activity; DOC, Dissolved organic

carbon; NHD,National HydrographyDataset; NWI, NationalWetlands Inventory;

Q, discharge; U, total nitrate-N uptake.

mapping exercise to assess the density of intermittent streams in
this region. We expect that the hydroperiod of these intermittent
streams have been underestimated. In addition, if the density of
intermittent streams have been underestimated, many wetlands
may be found to discharge directly to stream channels and
thus provide more rapid connections to fluvial networks than
previously estimated (Rains et al., 2016). Many regulations and
policies for wetland protection have been linked to whether
they are “geographically isolated wetlands” or directly connected
to stream channels or navigable waters (Leibowitz et al., 2008;
Rains et al., 2016), lending considerable importance to this
question. In the humid climate of the Northeast USA, these
geographically isolated wetlands are connected hydrologically to
stream networks via groundwater.

Nitrate-Nitrogen (NO−
3 -N) has been examined within

intermittent streams over the last decade, often focused on sites
in Mediterranean climates (von Schiller et al., 2017). Many
studies have provided insight into the processes associated with
NO−

3 -N uptake and release that can vary during the shifting
mosaic of wet-dry-rewetting (Schade et al., 2005; von Schiller
et al., 2011, 2017; Bernal and Sabater, 2012), but information is
lacking on nitrate uptake during continuous flow.We considered
different approaches (in-situ and microcosm) to explore different
aspects of N cycling at different scales. We focused on the
time of continuous flow to examine environmental factors
driving whole-reach gross NO−

3 -N uptake. We hypothesize that
whole-reach gross NO−

3 -N uptake will be mostly associated
with the presence of pools and debris dams with the presence
of both organic matter and longer residence times. We expect
that whole-stream gross NO−

3 -N uptake rates will increase
with lower levels of water in the channel (e.g., lower depth,
velocity, and discharge—Q). Precipitation events can contribute
to higher water levels and may also stimulate changes in the
configuration in the stream. This research will help improve
the scientific understanding of the timing, contribution of flow
and whole-reach gross NO−

3 -N uptake of intermittent streams
within larger stream networks. Our methods of exploring
hydrological connectivity can contribute to the local and state-
level conversations among land managers deciding on how
to identify and protect intermittent streams, regardless of the
Federal policies in place at the time.

MATERIALS AND METHODS

Sites
We selected 12 intermittent streams—all located in
forested settings in Washington and Kent Counties in Rhode
Island, USA (Figure 1). We identified potential unmapped
stream locations with the following geospatial attributes: (1)
depicted as sets of tight, uphill pointing crenulations on 1:24,000
scale USGS contour maps but with no identified stream lines, (2)
located on forested, public land without recent disturbance, and
(3) situated upstream from all culverts and road crossings. Once
we field verified the presence of these streams, we randomly
selected the streams to include in the study. All sites were
located on glacial till with slopes > 3%. We established a 30-m
study reach (Frissell et al., 1986) within each stream that was
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FIGURE 1 | Intermittent stream study sites and the National Wetland Inventory (NWI) wetlands examined for hydrological connections in geospatial analysis. All 12

intermittent stream locations were monitored to determine hydroperiods and wetland attributes. Six of those intermittent streams were used for assessment of

whole-reach gross nitrate-N uptake during baseflow conditions, transient storage modeling, and microbial assessment.

representative of the stream features found between the source
(which was consistently found to be a hillslope wetland seep)
and the downstream perennial stream. A fixed staff gauge was
installed in the channel at each study reach, and we recorded the
stage above the thalweg during weekly or biweekly visits.

Hydroperiod and Wetland Attributes
We created waypoints on a Garmin hand held GPS (model
GPSMAP R© 64s) as we walked upstream from the perennial
stream through the intermittent stream to the source wetland
that according to USGS 1:24,000 scale maps did not connect
to a stream channel outlet. Also, we mapped the outer margins
of the wetland by walking around the wetland with the GPS.
The data were converted into shapefiles manually via heads
up digitizing, generating polygons for wetlands and lines for
streams, using ArcGIS Version 10.3.1 (Environmental Systems
Research Institute ESRI, 2011). Within ArcGIS, we calculated

the length of stream reach hydrologically connecting the source
wetland to the downstream perennial stream, area of the source
wetland, and the watershed area of the study sites.

We defined the hydroperiod (i.e., the extent of time when the
channel had flowing water) of the intermittent streams using two
monitoring devices: (1) stacked Thermochron iButtons (model
DS1921G, Embedded Data Systems, Lawrenceburg, KY) and
(2) High frequency Odyssey Capacitance Water Level Probes
(Dataflow Systems; Christchurch, New Zealand).

Themochron iButtons
In 2009 we installed two Thermochron iButtons in
compartments at 2 and 32 cm above the stream bed within
a vertical PVC pipe housed within a secondary slotted PVC
pipe. These sensors were located within the thalweg at the
midpoint of the study reach. These iButtons are widely used to
measure, record and store temperature data from 1 to 255min
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intervals. We collected temperature data six times per day at
these two depths in the stream channels. The iButton installed
at 32-cm measured ambient air temperature. The temperature
readings from the 2-cm stage iButton served to indicate
presence or absence of water based on comparison with the air
temperature. When the two temperatures diverged by > ±1◦C
(level of iButton accuracy), we assumed that water presence was
indicated. Based on our weekly or bi-weekly field observations,
temperature divergence at the 2-cm depth generally indicated
water flow in the stream channel; however, in some cases it could
have indicated a stagnant pool in which case the hydroperiods
may have been slightly overestimated.

In the late fall and winter, the temperature of flowing water
was expected to be warmer than the air temperature at 32-
cm iButton. In the late spring and summer, the temperature of
flowing water was expected to be cooler than the 32-cm iButton.
When the 2-cm and 32-cm iButtons were within 1◦C of each
other, the air and water temperature were similar likely indicating
no water in the channel at 2 cm. However, in late spring and early
fall, water and air temperatures are often very similar in our area
during part of the day (Example in Supplement 1). To confirm
presence or absence of flow, we examined the weekly or biweekly
field observations of stage and/or the daily rainfall data (weather
data from Kingston, RI; within 15 km from all sites; U.S. Climate
Data, 2018). After large rain storms, we visited the sites and found
that the stream stage rarely rose above 32 cm.

Odyssey Capacitance Water Level Probe
The probes were calibrated to the nearest millimeter and
programmed to record depth daily. To obtain insight into the
flow regime via stage-discharge relationships at a subset of six
sites, we began to replace the iButtons with water level probes
in mid-2010. Continuous stage was not recorded at all six sites
at the same time periods due to equipment shortages. From
January 10, 2012 to January 9, 2013, four sites shared the same
daily one-year data logger collection period. We determined the
Q and the normalized Q (i.e., Q divided by watershed area).
We assumed that the excess precipitation (annual precipitation
minus evapotranspiration) per unit area was roughly equivalent
across the study area, so the normalized Q was used to determine
if there were differences between the groundwater recharge area
to the wetlands vs. the watershed area derived from surficial
topography. We used graphical methods to separate baseflow
from storm flow (Viessman and Lewis, 2003) at these four sites.
We excluded days when there was no flow in our analysis as the
goal was to describe flow conditions.

We examined stream bank vegetation (Summer 2010) and
riparian soils (Spring 2016) at the intermittent streams to
determine if they contained wetland indicators that would meet
the regulatory classification of wetlands, an important factor in
many resource management decisions. We conducted vegetation
surveys along the right and left banks along each study reach—
assessing four zones extending out 6m orthogonally from the
defined stream channel. We identified the species of all plants
in the overstory, understory, and ground cover and estimated
their abundance to determine the dominant species. We used
the updated National Wetland Plant List (standard reference

for hydrophytic indicator rating of vascular plants in the USA;
Lichvar et al., 2016) to determine the wetland indicator status
(i.e., the likelihood the plant would be in a wetland) of each
dominant plant. We determined the wetland indication for all
sites based on the U.S. Army Corps of Engineers (2012) manual
for the Northeastern USA Sites indicated wetland status if they
passed the rapid test for hydrophytic vegetation (all dominant
species are rated obligate or facultative wetland or a combination
of both) or the dominance test (more than 50 percent of the
dominant plant species are rated obligate, facultative wetland
or facultative).

We created three transects perpendicular to the stream
on both banks of the stream channel—up to 18m from the
channel—to examine the extent of hydric soils along each stream.
Hydric soils are important indicators of wetland conditions as
they are formed under conditions of saturation long enough
during the growing season to develop anaerobic conditions in
the upper portion of the profile. Along the transects, soil augers
were used to identify the presence/absence and extent of hydric
soil indicator A11 (U. S. Department of Agriculture, 2010), i.e.,
presence of a soil layer with a depleted or gleyed matrix starting
at a depth ≤ 30 cm from the soil surface.

We also recorded additional information from the study
intermittent streams to compare them to perennial streams.
Stream sinuosity (ratio of channel length to valley length) and
stream bed particle size (Wolman, 1954) were documented at
each site. In every stream reach, we surveyed the stream bed at 1-
m intervals noting geomorphic features present, i.e., pool, debris
dam, run or riffle.

Transient Storage
We used the OTIS-P (One-Dimensional Transport with Inflow
and Storage with automated parameter estimation; Runkel,
1998) to model hydraulic transport parameters in five of our
intermittent streams (these five are part of the subset of six
sites used to explore NO−

3 -N dynamics below). The field data
were derived from constant-rate injections of Br− (Kilpatrick
and Cobb, 1985) during Spring 2013. We collected stream water
in a carboy, amended it with bromide (Br−), and pumped it
into the stream over the course of an hour at a steady rate
of 130ml h−1 with a MasterFlex L/S portable peristaltic pump
(Cole Parmer, Vernon Hills, IL). Water samples were collected
every minute at multiple stations up to 30m downgradient of
the injection and stored at 4◦C until analysis. We calculated the
degree of entrainment (AsA

−1; transient storage area divided
by channel area; Harvey and Wagner, 2000) and F 200

med
which

represents howmuch transient storage affects the travel time over
a standardized 200m reach (Runkel, 2002). We chose to calculate
these parameters to compare to other streams as they are widely
reported in the literature.

Geospatial Analysis of Wetland
Connections to Intermittent Streams
We examined the extent of unmapped intermittent streams that
may connect wetlands via channelized surface runoff to perennial
streams in our area. We used ArcGIS to select a contiguous area
of 150 km2 that serves as the headwaters for several river systems
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in Rhode Island and contained the 12 study sites. Within this
area, we only included hilly, forested moraine landscapes that
mirror the settings of the study sites. The final analysis zone was
117 km2.

We located 443 NWI palustrine wetlands within the study
zone with theNationalWetland Inventory (NWI) dataset (RIGIS,
2014, 1:24,000). We randomly selected 100 of these wetlands
to determine the type of hydrological connection (channelized
surface runoff vs. groundwater flow) of these wetlands to streams
via two coverages: (1) National Hydrography Dataset High
Resolution (NHDPlus HR) stream coverage (1:24,000; USGS,
2018) representing the highest resolution stream data available
across the entire Northeast US and (2) the 2011 RIDEM Digital
True Color Orthophotography (RI DEM 2011, resolution of
0.15m spatial resolution or 1:300 scale). We considered the
0.15m spatial resolution Color Orthophotography to represent
“true” conditions. Wetlands within 17m (digital tolerance)
of NHDPlus HR streams were considered “connected” to
surface stream channels based on this 1:24,000 coverage. To
aid the interpretation of the orthophotography, two people
both reviewed a set of 15 NWI wetlands to ensure they both
agreed if there were a visually apparent stream leaving the
wetland. The interpreter was conservative in the assessment;
only clearly visible surface stream channels were considered
“connected.” If NHDPlus HR coverage indicated that the
wetland was not connected to a NHDPlus HR stream but
the orthophotography depicted a stream outlet, we assumed
that an intermittent stream, like our study sites, hydrologically
connected the wetland via channel flow to the perennial stream.
Within ArcGIS, we measured the straight distance from the NWI
wetland to the origin of the nearest perennial stream (depicted
on the NHDPlus HR coverage) as an approximation of the
extent of the intermittent stream reach. We then applied a 1.1
sinuosity factor to the length estimate based on the sinuosity
of the 12 intermittent streams to estimate stream lengths for
this study.

Whole-Reach Gross Nitrate-N Uptake and
Retention
We used a subset of six intermittent streams for assessment
of whole-reach gross NO−

3 -N uptake rates during baseflow
conditions from 2010 through 2012. To examine the whole-reach
gross NO−

3 -N uptake of these intermittent streams, we amended
the stream with NO−

3 -N and a conservative tracer, Br−, and
examined concentrations downstream. We completed a total of
65 pulse additions (a.k.a., slug-injection; Kilpatrick and Cobb,
1985) on the six intermittent streams over 3 years. There were at
least three replicate pulse additions in the spring, fall, and winter
seasons on each stream. We tried several pulse additions during
summer low flow conditions, but we were unable in a reasonable
field day to recover a substantial portion of the pulse injections,
so we discontinued summer additions.

Ten liters of streamwater were enriched with NO−
3 -N and Br−

in a carboy and poured into the stream quickly. We collected
water samples 30m downstream at one-min intervals until we
expected the plume to have passed by, usually within 3 h. We

targeted the pulse additions to raise stream concentrations by
10mg Br− L−1 and 1–2mg NO−

3 -N L−1; we used more Br−

as the analytical resolution was lower compared to NO−
3 -N.

All water samples collected were stored on ice in the field,
filtered upon return to the laboratory, and stored at 4◦C
until analysis.

Using the time-concentration data of the Br− conservative
tracer from the pulse additions, we calculated Q and mean
velocity per Kilpatrick and Cobb (1985). Deviation from the
known starting tracer NO−

3 -N: Br− ratio in downstream
samples allowed us to calculate the whole-reach gross NO−

3 -
N uptake as mass of NO−

3 -N lost per meter of stream
per day (Williams et al., 2015). The data represent NO−

3 -
N “potential” rates as NO−

3 -N levels in the stream during
the pulse additions were elevated rather than at ambient
stream concentrations.

Microbial Assays
We used laboratory assays to obtain insights into denitrification
potential and other microbial processes of different types of
stream substrates (debris dam material—dominated by leaves
mixed with some decomposed organic material, pool sediments,
and riffle/run sediments). The denitrification enzyme activity
assay (DEA) is designed to assay the maximum potential activity
of denitrification enzymes present in the soil at the time of
sampling. Although the production of these enzymes has been
shown to be inducible by the onset of anaerobic conditions, with
rapid destruction following the onset of aerobic conditions in
the laboratory, they have been shown to persist for long periods
under field conditions (Smith and Tiedje, 1979; Groffman, 1987;
Martin et al., 1988). As a result, DEA has been found in
multiple studies to vary much less in time and space than actual
denitrification activity, make it a useful index of variation in the
potential for denitrification in different places (Groffman and
Tiedje, 1989; Groffman et al., 2006).

In the Fall of 2011, we collected stream material to assess
DEA, potential net mineralization, potential net nitrification, and
respiration from the six subset streams where we conducted
pulse additions. Samples were collected into zip-lock bags,
transported to the lab on ice, and stored at 4◦C until assays
commenced within 2 weeks. Following Groffman et al. (2005),
we created a slurry of the debris dam materials by using a
blender to shred the leaf material within added stream water
for use in the assays. As described by Groffman et al. (1999,
2006), DEA samples were amended with NO−

3 -N, dextrose (as
a carbon source), chloramphenicol (to limit protein synthesis),
and acetylene (to halt denitrification process at N2O), incubated
under anaerobic conditions for 90min. Gas samples were
removed from incubation flasks at 30 and 90min and analyzed
for nitrous oxide (N2O).

Rates of potential net N mineralization, nitrification and
microbial respiration weremeasured in 10-d incubations at 25 ◦C
(Groffman et al., 2006). Inorganic nitrogen ions (ammonium,
NH+

4 , and NO−
3 ) were extracted with 2M KCl at the beginning

and end of the incubation and stored at 4 ◦C until analysis.
The headspace was also sampled at the end of the incubation.
Rates of potential net N mineralization were calculated from the
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accumulation NH+
4 of plus NO−

3 N. Rates of net nitrification were
calculated from the accumulation of NO−

3 -N alone during the
incubation. Rates of microbial respiration were calculated from
the accumulation of carbon dioxide (CO2) during the incubation.

Analytical Analyses
Stream samples were analyzed for NO−

3 -N with the open tubular
cadmium reduction method (4500-NO3−; Eaton et al., 1998)
and for Br− with the phenol red colorimetric method (4500-
Br−; Eaton et al., 1998) on an Astoria Pacific Model 303A
Segmented Continuous Flow Autoanalyzer (Astoria-Pacific Inc.).
Soil extracts were also analyzed for NO−

3 -N with the same
method as stream samples. Soil extracts were analyzed for
NH+

4 -N with the automated phenate method (4500-NH3; Eaton
et al., 1998) on the Astoria Pacific Model 303A. We analyzed
for dissolved organic carbon (DOC) on a Shimadzu Total
Organic Carbon Analyzer. Gas samples were analyzed for N2O
with an electron capture detector and for CO2 with a flame
ionization detector on a gas chromatograph (GC-2014; Shimadzu
Scientific Instruments).

Statistical Analyses
As the data were not normally distributed, the whole-reach
gross NO−

3 -N uptake rates were compared by Kruskal Wallis
ANOVA by ranks for seasons and sites. Pairwise Mann-Whitney
U-Tests were used to tease out significant differences indicated
by the Kruskal Wallis ANOVA. We used Spearman Rank
Correlation statistics to examine relationships between whole-
reach gross NO−

3 -N uptake rates and the following metrics:
Q and velocity derived from the pulse addition data, depth
and stream temperature measured before the pulse addition,
DOC concentration from samples collected before the pulse
addition. Spearman Rank Correlation statistics also examined
the relationship between whole-reach gross NO−

3 -N uptake rates
and the most recent rain event total before the pulse additions
(weather data from Kingston, RI; within 15 km from all sites;
U.S. Climate Data, 2018). Statistical significance was set at α

< 0.05 for all analyses. There are varied approaches in the
literature on how to define hot moments” (Bernhardt et al., 2017).
We defined a hot moment as a mild outlier (e.g., values above
Upper quartile + (1.5 x Interquartile range; Molodovskaya et al.,
2012). These statistical analyses were performed with Statistica
Academic (TIBCO Software 2017).

RESULTS

Stream Attributes & Hydroperiod
Over a 3-year period, all 12 field-identified stream channels
were confirmed to be intermittent streams. Based on continuous
monitoring of stage from 2010 to 2012, flow generally ceased
in all streams for periods in summer; only one stream
maintained continuous flow throughout the year in 2012. The
intermittent streams all originated at field-verified, hillslope
wetlands (Table 1) where groundwater seeped onto the surface
and created a surface water channel. Based on surface topography
the median watershed area of the intermittent stream study
reaches was 61 ha (IQR: 35–69), but we recognize that the surface

TABLE 1 | Intermittent stream watershed area, source wetland area, and the

length of intermittent stream from its source wetland to the perennial stream.

Field

intermittent

stream

Watershed

area

Source wetland

area

Length of stream

from wetland to

perennial stream

(ha) (ha) (m)

1 63 0.63 104

2 80 0.75 396

3 107 0.20 249

4 101 0.08 615

5 14 1.78 342

6 41 0.60 630

7 75 2.40 368

8 28 0.27 97

9 5 0.05 452

10 45 0.14 452

11 61 0.09 344

12 61 268

Median wetland

area (ha) (IQR)

Median stream

length (m) (IQR)

Field-reconnaissance 0.27 (0.12-0.69) 344 (263-469)

(n = 12)

High resolution, true color

orthophotography analysis

0.19 (0.08-0.47) 317 (201-618)

(n = 39)

Field measurements with a GPS were used for the 12 intermittent study streams. Area

and length measurements were calculated within ArcGIS.

topography may not capture groundwater flow in hummocky
terrains. The source wetlands of our monitored streams were
relatively small in area (median: 0.27 ha; IQR 0.12–0.69). These
source wetlands were comparable to the source wetland areas in
the geospatial analysis (median: 0.19 ha; IQR: 0.08–0.47;Table 1).
The intermittent stream length from the source wetland to the
downstream perennial stream at the field sites (median 344m;
IQR: 263–469) were comparable to similar intermittent streams
identified using geospatial analysis (median: 317m; IQR: 201–
648; Table 1).

The hydroperiod of the intermittent streams showed a clear
seasonal pattern and varied among sites. For much of the year,
the intermittent streams hydrologically connected the upstream
source wetlands to downstream perennial streams. All sites
flowed throughout winters when not frozen. Continuous flow of
these streams began by day 60 of the Julian calendar. Continuous
flow generally ceased in the summer (median Julian date: 184,
IQR: 174–201; n = 25; number of streams with data varied
over the 3 years of data) and resumed in the fall (median
Julian date: 272; IQR: 248–309; n = 27) (Figure 2A). The
stream channels began to contract in late spring and summer
until flow fragmented into standing water in isolated pools
(Figure 2B). Once continuous flow ceased, these intermittent
streams no longer had visible surface hydrologic connectivity
of the headwater wetlands to downstream perennial waters.
This period of disconnected flow lasted for a median of 88
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FIGURE 2 | Hydroperiods of intermittent streams. (A) Julian dates when

continuous flow ceased and resumed in 12 intermittent streams in the

Northeast USA over 3 years. (B) Example of the discharge (L s−1) over Julian

dates in 2012 derived from stage data at Site 4 and the site-specific

stage-discharge relationship. Arrows indicate when continuous flow ceases

(Julian date 181) and resumes (Julian date 273). *The range excludes outliers

(point which falls more than 1.5 times the interquartile range above the third

quartile or below the first quartile) and extremes (point which falls more than 3.0

times the interquartile range above the third quartile or below the first quartile).

days (IQR: 74–108; n: 23). During the intermittent period, after
rainfall we noted periodic, patchy flow for a few hours to a
few days due to runoff gathering into the intermittent stream
channels or brief elevation of the water table. As with the initial
drawdown, this brief intermittent flow was often followed by
shallow standing pools for a few hours to days until the stream
bed dried.

When intermittent streams were flowing, the median
Q at the four sites with common logger data was
2.9 L s−1 (IQR: 1.7–4.0). When flow was normalized
for watershed area, median Q was 0.36mm d−1 (IQR:
0.19–0.56; Figure 3).

Eleven of the 12 sites had hydrophytic vegetation that
indicate wetland conditions extending beyond 2m of the
stream channel on at least one bank. All riparian zones were
found to have hydric soils. The channel structure of these

FIGURE 3 | Normalized discharge (mm d-1) from January 10, 2012 to

January 9, 2013 at Sites 1, 3, 4, and 6, based on stage-discharge curves

developed during the pulse additions and stage collected with dataloggers.

*The range excludes outliers (point which falls more than 1.5 times the

interquartile range above the third quartile or below the first quartile) and

extremes (point which falls more than 3.0 times the interquartile range above

the third quartile or below the first quartile).

TABLE 2 | Matrix of hydrologic connections of NWI wetlands to streams using

1:300 orthophotography and NHDPlus high resolution (HR) 1:24,000 stream

coverage.

NWI wetlands

connected to stream

using Orthophotos

NWI wetlands not

connected to stream

using Orthophotos

Total

NWI wetlands

connected to streams

using NHDPlus HR

29 3 32

Perennial channelized

surface runoff

Groundwater discharge

wetlands

NWI wetlands not

connected to streams

using NHDPlus HR

39 29 68

Intermittent channelized

surface runoff

Groundwater discharge

wetlands

Total 68 32 100

39/68 = 57% 3/32 = 9%

Omission error Commission error

Overall error of USGS connected wetlands = (29+29)/100 = 58%.

intermittent streams resembled perennial, hillslope headwater
streams throughout the glaciated Northeast USA with a mix of
riffles, runs, and pools (Leopold, 1994). Tree roots, large woody
debris and small woody debris dams primarily controlled the
structure of pools and likely helped to retain organic matter
in the system (Bilby and Likens, 1980). Mean sinuosity of
all sites was 1.1, indicating few meanders. Stream sediments
were generally composed of medium gravel to small cobbles.
From the OTIS -P analysis of five intermittent streams,
As:A had a median of 0.19 (IQR: 0.06–0.2 and F 200

med
was

16.2% (IQR: 5.5-17.3%).
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TABLE 3 | Flow characteristics [Median, (interquartile range)] during slug testing to estimate whole-reach gross nitrate-N uptake across six intermittent streams over three

years.

Parameter All data Non-hot moments Hot moments

n 65 56 9

Depth (cm) 8.7 (6.6–11.8) 8.9 (6.5–12.0) 7.3 (7.0–14.8)

Time to peak concentration (min) 15 (10–27) 15 (10–26) 23 (17–34)

Retention time (min) 107 (20–151) 107 (50–146) 71 (39–205)

Velocity (m s−1) 0.033 (0.019-0.050) 0.034 (0.019–0.051) 0.022 (0.014–0.029)

Discharge (L s−1) 4.7 (2.4–7.7) 5.2 (2.8–8.2) 1.9 (0.9–3.4)

Water temp (◦C) 9.0 (6.7–13.0) 8.3 (6.6–12.2) 13.0 (10.7–14.0)

DOC (mg L−1)U 3.7 (2.5–5.1) 3.8 (2.9–5.1) 2.0 (1.8–3.7)

Whole-reach gross nitrate-N uptake (mg N m−1 d−1) 0 (0–139) 0 (1–41) 1613 (753–3411)

These data only reflect conditions on those 65 days of measurement. Hot moment was defined as > 346.6mg N m−1 d−1 whole-reach gross nitrate-N uptake.
UDOC has n = 39 for all data, n = 36 for non-hot data, n = 3 for hot data.

Geospatial Analysis of Connectivity
Within a 117 km2 area of hilly, forested terrain, we assessed
the classification of 100 of the 443 palustrine wetlands (Table 2)
identified in the NWI (RIGIS, 2014 1:24,000). Using the
NHDPlus HR data (and verified with the orthophotography),
29/100 wetlands were found to be directly connected to
stream channels (Table 2)—which we assume were perennial
streams. This yields a density of 1.1 wetlands connected to
stream outlets km−2 over the entire 117 km2. However, we
found that 39/100 of NWI wetlands classified as groundwater
discharge wetlands (Table 2) in the NHDPlus HR data actually
showed clear stream connections in the orthophotos. While
we don’t know if all of these streams are intermittent (rather
than perennial), the fine scale of these stream features is
comparable to the 12 intermittent streams we assessed in
this study (Table 1). For purposes of evaluating the role
of these small streams at the watershed scale, we assumed
that streams that show connections to wetland outlets only
at very high resolutions have intermittent flow regimes,
yielding a density of an additional 1.5 wetlands connected
to stream outlets km−2. Another 29 of the NWI wetlands
evaluated had no apparent streams in neither NHDPlus HR
nor orthophotography—we suggest that these are groundwater
discharge wetlands.

Whole-Reach Gross Nitrate-N Uptake and
Retention
Ambient NO−

3 -N concentration ranged from no detect
(< 0.02mg N L−1) to 0.04mg N L−1. We only calculated whole-
reach gross nitrate-N uptake from slug tests when the complete
breakthrough curve of Br− concentrations was obtained 30m
downstream from the injection. Across these 65 slug tests,
the time to the peak concentration at the 30m station had a
median of 15min (IQR: 10–27min; Table 3). The tail end of the
breakthrough curve had a longer duration allowing ample time
for N processing; the median transit time for the entire Br- slug
over the 30m stream reach was 107min (Table 3).

The whole-reach gross NO−
3 -N uptake rates displayed high

temporal variability; detectable rates were noted in 37% of pulse
experiments with occasional “hot moments” when rates were

statistically much higher (Figure 4; McClain et al., 2003). During
these 65 slug tests we reported the flow conditions, temperature,
DOC, and whole-reach gross NO−

3 -N uptake rates for the overall
dataset and sub-databases based on hot moment and non-hot
moment conditions (Table 3).Whole-reach gross NO−

3 -N uptake
rates across all sites and seasons ranged from 0 to 6114mgNm−1

d−1 (median: 0; third quartile: 138.6; hot moment > 346.6mg
N m−1 d−1, n: 65). Measurable whole-reach gross NO−

3 -N
uptake was noted in five out of six intermittent streams that
were subjected to repeated NO−

3 -N pulse additions in multiple
seasons. There were no significant differences between sites
(Kruskal-Wallis ANOVA, p > 0.05). In each of the five sites
with measurable whole-reach gross NO−

3 -N uptake, there were
a total of 1-3 hot moments. No significant differences in the
distribution of whole-reach gross NO−

3 -N uptake was observed
between seasons (Kruskal-Wallis ANOVA). Across all five sites (n
= 65), there were nine hot moments – two in the fall and seven
in the spring (Figure 4).

Median water temperature across spring pulse addition
replicates was 13.7◦C, whereas the fall median was 7.4◦C.Whole-
reach gross NO−

3 -N uptake rates were significantly positively
correlated (Spearman Rank) with water temperature (n: 65, rs:
0.28, p: 00231). Whole-reach gross NO−

3 -N uptake rates were
significantly inversely correlated (Spearman Rank) with depth (n:
65, rs: −0.31, p: 0.0124), Q (n: 65, rs: −0.57, p: 0.000001), and
velocity (n: 65, rs:−0.37, p: 0.0026). We considered if the periods
immediately after dry phases may be more biogeochemically
active as found by Leigh et al. (2015). We examined the wet-
dry periods before the fall pulse additions as the streams began
to rewet and flow. However, the fall addition experiments were
often 26 to 124 days after the stream channel had rewetted.
Significant correlations (Spearman Rank, n= 15) did not emerge
between whole-reach gross NO−

3 -N uptake and the number of
days since rewetting. While we are not able to directly correlate
loss of debris dams and pools to rainfall events, we observed that
whole-reach gross NO−

3 -N uptake rates were inversely related to
the rainfall event total proceeding the pulse addition (Spearman
Rank; n: 65, rs: −0.25, p: 0.0417). The median ambient DOC
concentration across the six sites was 3.7mg C L−1 (IQR: 2.5–
5.1). We found no significant correlation between whole-reach
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FIGURE 4 | Distribution of whole-reach gross nitrate-N uptake rate

measurements by season organized by whole-reach gross NO−
3 -N uptake

rate = 0, rate = 1 – 346.5mg N m−1 d−1, and rate ≥ 346.6mg N m−1 d−1,

above this rate is considered a “hot moment”) in streams 1–5 from pulse

addition experiments. We did not observe measurable whole-reach gross

NO−
3 -N uptake rates at site 6.

gross NO−
3 -N uptake and DOC concentration (Spearman Rank,

n = 39). Parsing out the parameters into non-hot moments and
hot moments (Table 3), echoes the trends in the correlations. Hot
moment slug tests generally had shallower stream depth, lower
velocity, lower Q, and warmer water temperatures.

N Cycling in Stream Substrates
Denitrification potential differed with stream substrates
(Table 4). In the intermittent streams, pools and riffles had
higher mean denitrification potential compared to debris dams
(an order of magnitude higher). The denitrification potential,
potential net mineralization and nitrification was higher in
the pools and riffles compared to the debris dams (Table 4).
We found microbial respiration was substantially higher in
debris dams of the intermittent streams compared to the other
features (Table 4).

DISCUSSION

Hydroperiod, Wetland Attributes &
Transient Storage
Both the hydrophytic vegetation and hydric soil surveys indicate
that the intermittent stream channels and their riparian areas
have wetland characteristics. The similarity in the geospatial
characteristics of the study intermittent streams and their source
wetlands with those analyzed in a larger region (Table 1)
suggests that these sites were representative of other intermittent
streams in the region. The progression of wet-dry-rewetting
stages observed in the intermittent streams (Figure 2) echoes the
description in the review summary by Datry et al. (2017).

The variability in normalized Q (Figure 3) indicates
differences between the groundwater and surface water recharge
areas which is common in heterogeneous media that can result

from glacial drift sediments in the study area (Winter et al.,
2003). This complex pattern of media may create complicated
flowpaths that impact the hydroperiod, transient storage, and
whole-reach gross NO−

3 -N uptake. Stormflow contributed
between 3 and 26% of the annual flow at the four sites where
we completed baseflow separation. These values are typical for
forested watersheds dominated by groundwater flow with very
little overland runoff as observed in Chambers et al. (2017) in
the watershed of Cork Brook, RI, USA – a forested, first order
stream where stormflow contributed 8% of the annual flow.

Transient storage values obtained from the OTIS-P model in
five of the intermittent streams were comparable to or higher
than other perennial streams cited in the literature (Valett et al.,
1996, 1997; Haggard et al., 2001; Thomas et al., 2003; Lautz and
Siegel, 2007; Dodds et al., 2008; Duff et al., 2008; Pennino et al.,
2014; Arango et al., 2015). The intermittent stream As:A IQR was
comparable to that in the perennial streams in the literature (IQR:
0.05-0.33). The intermittent stream F 200

med
was higher than the

perennial stream studies with a median of 3.1% (IQR: 0.8–16.8).
The data indicate that intermittent streams may have similar or
more transient storage relative to a wide assortment of perennial
streams which could lead to higher NO−

3 -N retention.

Geospatial Analysis of Connectivity
We compared the extent that intermittent streams serve as
outlets of channelized flow for wetlands that appear to have
only groundwater discharge based on widely available “high
resolution” hydrographic data (USGS, 2018; 1:24,000) to much
higher resolution True Color orthophotography (RIDEM, 2011;
1:300). Lane and D’Amico (2016) conducted a similar hydrologic
connectivity analysis of NWI wetlands to USGS NHDPlusV2
streams across the USA. Using a buffer of 10m they estimated
that groundwater discharge wetlands in Rhode Island occur at
a density of 2.4 wetlands km−2 which is comparable to our
study results using the NHDPlus HR (68% yielding a density
of 2.6 groundwater discharge wetlands km−2). Field surveys in
nine regions of the US estimated that most regions have more
than 200% intermittent stream channel length than depicted
in NHDPlus maps (1: 24,000 or 1: 100,000 scales; Fritz et al.,
2013). Nadeau et al. (2015) also found poor agreement between
field verified intermittent streams and USGS 1:24,000 maps in
the Pacific Northwest. We found that the percent of wetlands
connected to stream outlets by intermittent streams was 135%
higher than our estimate of such wetlands from NHDPlus HR
geospatial data.

By examining long-term average streamflow gauged by USGS
(Armstrong et al., 2004), we evaluated the relative importance
of these intermittent streams in contributing streamflow to local
perennial streams in different seasons. In the south coastal region
of southern New England where the study site is located, median
streamflow was estimated at 2.11 and 1.12mm d−1 in the spring
(March to May) and fall (Oct to Dec), respectively (Armstrong
et al., 2004). In the spring, median flow of intermittent streams
(generated from dataloggers in 2012 at Sites 1, 2, 4, and 6;
Figure 3) was 0.50mm d−1 (0.33mm d−1, adjusted for an
intermittent stream density of 1.5 km−2) thereby intermittent
streams that serve as the outlets of wetlands may contribute
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TABLE 4 | Mean rates (SE) from incubations of different stream substrates (n = 6 for intermittent streams; n = 3 for Groffman et al., 2005).

Stream Substrate Denitrification potential Potential net mineralizationU Potential net nitrification Microbial respiration

(µg N kg−1 h−1) (mg N kg−1 d−1) (mg N kg−1 d−1) (mg C kg−1 d−1)

This

study

Groffman

et al. (2005)

This

study

Groffman

et al. (2005)

This

study

Groffman

et al. (2005)

This

study

Groffman

et al. (2005)

Debris Dams 108 (72) 2248 (1414) −1.22 (0.79) −2.66 (0.20) 0.17 (0.10) 0.40 (0.35) 1378 (227) 56 (6)

Pools 1299 (760) 101 (59) 0.93 (0.42) 0.19 (0.12) 1.21 (0.69) 0.16 (0.07) 99 (43) 24 (17)

Riffles 1007 (730) 35 (19) 0.40 (0.10) 0.03 (0.13) 0.72 (0.38) 0.09 (0.05) 80 (48) 6 (2)

UNegative values suggest immobilization.

24% of the spring flow from perennial streams in this region.
In the fall, median flow observed in the same intermittent
streams in 2012 was 0.54mm d−1 (0.35mm d−1 adjusted for
density of 1.5 km−2) yielding 47% of the fall flow from perennial
streams in this region. We assume that groundwater baseflow
constitutes the bulk of difference in normalized flow between
the intermittent streams and the perennial streams. Thus, many
wetlands that are mapped as groundwater discharge sites appear
to be directly connected to the stream network by intermittent
streams—thus provide a substantial portion of perennial flows
in spring and fall when the flow regime is elevated in
this region.

Potential Drivers of Whole-Reach Nitrate-N
Uptake
To compare to other intermittent and low order streams, we
converted our non-zero rates to total NO−

3 -N uptake (U in units
of µg N m−2 h−1). The complete range of U in this study’s
intermittent streams was within the range of rates reported in
other studies (Table 5). There are many possible drivers, some
of which may co-vary or correlate, of whole-reach gross NO−

3 -N
uptake in the intermittent streams. Like this study, many others
have found higher NO−

3 -N uptake with lower Q, velocity or
water depth in headwater and perennial streams (Poff et al.,
1997; Alexander et al., 2000, 2007, 2009; Peterson et al., 2001;
Seitzinger et al., 2002). When we plot the significantly negative
relationship between each of these factors v. whole-reach gross
NO−

3 -N uptake rates, we discovered cut-offs above which no
whole-reach gross NO−

3 -N uptake occurred. With Q (Figure 5),
we found that substantial whole-reach gross NO−

3 -N uptake only
occurs when Q is less than 7 L s−1. Velocity and depth co-vary
with Q so accordingly, we found that substantial whole-reach
gross NO−

3 -N uptake only occurs when velocity is < 0.043m s−1

and depth is<15 cm. Kellogg et al. (2010) was able to estimate in-
stream denitrification rates in streams using water depth, travel
time, and Q.

The higher incidence of hot moments in the spring vs.
fall corresponded to higher temperatures. The occurrence of
hot moments in the spring may also have been driven by
sunlight. Hefferman and Cohen (2010) estimated that 35% of
denitrification in their river may be fueled by photosynthesis in
the prior day. Lupon et al. (2016) attributed diel fluctuations in
stream NO−

3 -N concentrations to photoautotrophic N uptake.
While we did not look at diel patterns or light intensity, sunlight

TABLE 5 | Total nitrate-N uptake (U) comparisons with other studies.

Study Total Nitrate-N Uptake (U)

µg N m−2 h−1

This study—Northeast USA intermittent

streams, whole reach assessment

Median of non-zero value: 147 (IQR:

82-430); (37% of values >0; range:

0-3184; n = 65)

Arce et al. (2015)—Mediterranean

intermittent streams, microcosm incubation

830

Bernal et al. (2012)—Mediterranean, whole

reach assessment

576 (SD: 6420) semi-arid

360 (SD: 1080) sub-humid

Von Schiller et al. (2009)—Mediterranean

intermittent stream, microcosm incubation

562 (forest); 3852 (urban);

16,164 (urban)

Mulholland et al. (2004)—1st order stream

in TN, USA, whole reach assessment

1152 (reference)

Kemp and Dodds (2002)—Kansas USA

stream microcosm incubation

0–217 (range)

Hall et al. (2009)—72 streams across the

USA, whole reach assessment

900–12,000 (range of

medians, n = 72)

We only used non-zero data for this comparison.

may have contributed to the higher incidence of hot moments of
whole-reach gross NO−

3 -N uptake in the spring as canopy cover
was not completely full until the summer.

Other studies have demonstrated that progressive drying of
stream beds drives an increase of NO−

3 -N in soils that will release
with rewetting (Pohlon et al., 2013; von Schiller et al., 2017; Arce
et al., 2018), but a model by Tritthart et al. (2011) indicated
microbial respiration increases when streams rewet which may
lead to some uptake of NO−

3 -N. Furthermore, Fromin et al.
(2010) found that the structure of microbial communities was not
strongly reduced after drying events. Sporadic rainfall during dry
periods – which we generally observe in our humid, temperate
climate—may modulate these N effects (von Schiller et al., 2017;
Arce et al., 2018).

Transient storage can be a driver of NO−
3 -N uptake in stream

ecosystems. Mulholland et al. (2009) found that denitrification
was related to longer residence times in transient storage
indicated by F 200

med
. Transient storage within a stream reach can

temporarily detain solutes in the hyporheic zone, small eddies,
or stagnant pools of water that are flowing slower than the main
channel; streams with high transient storage have been found to
serve as substantial sinks for NO−

3 -N (Baker et al., 2011; Stewart
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FIGURE 5 | Whole-reach gross nitrate-N uptake rates (mg N m−1 d−1) from

pulse addition experiments vs. discharge (L s−1). Above 7 L s−1, we did not

observe measurable whole-reach gross NO−
3 -N uptake during the pulse

addition experiments. The entire dataset from pulse addition experiments is

included.

et al., 2011). The extended transient storage in these intermittent
streams may be hotspots of whole-reach gross NO−

3 -N uptake.
We expect that the structure of these streams may be related to
the observed extended transient storage in the study streams. The
channels are supported by woody debris from the forest; debris
dams create pools with enhanced opportunity for water residence
on the surface and within the subsurface. However, the debris
dams and pools of intermittent streams are not stable as we noted
qualitatively in frequent visits to the sites. We noted that debris
dams disappeared, new debris dams established, and new pools
developed in the intermittent streams multiple times over a year
as observed by Uehlinger (2000), Smith and Kaushal (2015), and
Reisinger et al. (2017). Flow related to storm events has been
related to displaced debris dams and pools along with scoured
biofilms within the stream (Kaushal et al., 2018).

Dissolved organic carbon can be a potential driver of
whole-reach gross NO−

3 -N uptake in streams directly by being
consumed in NO−

3 -N uptake (Sobczak et al., 2003; Goodale et al.,
2005) or indirectly by stimulating stream metabolism that may
then lead to the NO−

3 -N uptake (Bernhardt and Likens, 2002).
Bernal et al. (2005) noted that stream Q in intermittent streams
greatly impacts DOC concentration and the ratio of C:N. In
addition to lower storage time during higher flows, DOC could
also be limiting in those conditions. In addition, the lability of the
DOC may be important than the DOC concentration (Sobczak
et al., 2003) which could explain why we did not see a correlation
between whole-reach gross NO−

3 -N uptake and DOC. If the
lability of the DOC is low, it may result in low microbial activity
and less potential for NO−

3 -N removal.

N Cycling in Stream Substrates
Microbial assays demonstrated that denitrification potential in
intermittent stream sediments can be substantial (Table 4).
Denitrification potential in the intermittent stream substrates
was within the same order of magnitude of stream substrates in

three low order, perennial streams in MD, USA (Groffman et al.,
2005). However, the trends were reversed—in this study, pools
and riffles were an order of magnitude greater in denitrification
potential whereas in the Groffman et al. (2005) perennial streams,
the debris dams had the highest mean denitrification potential.
Groffman et al. (2005) attributed the high rates in the debris dams
to high organic carbon levels in these features that contained
primarily mineral soil. The leaf-dominated debris dams in the
study intermittent streams, which were routinely displaced and
recreated, was largely undecomposed and exposed to more
aerobic conditions than the debris dams in the perennial streams
observed by Groffman et al. (2005). In these intermittent streams,
the summer contraction of the streams also lowers the rate of
leaf breakdown even for extended periods after flow resumes
(Datry et al., 2011) which also supports why the intermittent
stream in this study were not as active. However, the high
rates in the pools and riffles may foster denitrification in
intermittent streams.

Rates of potential net mineralization, potential net
nitrification, and microbial respiration were generally higher
in the intermittent streams than observed in the low order
perennial streams studied by Groffman et al. (2005) (Table 4).
The transport, deposition and aeration patterns of sediments
associated with the annual hydrograph (i.e., elevated flows
following by extended periods of drying) of intermittent streams
are likely to enhance both the pool of organic N in the sediments
and the subsequent rates of mineralization and nitrification.
Since pools increase the residence time of stream NO−

3 -N, this
substrate may be important for whole-reach gross NO−

3 -N
uptake in intermittent streams. Microbial respiration in the
intermittent stream debris dams was nearly 14 times higher
than that of the pools and riffles which agrees with work by
Tank et al. (1993) and Hedin (1990) that observed that small
woody debris can play a significant role as a substrate for
microbial metabolism.

Scaling Up Nitrate-N Dynamics
We examined the whole-reach gross NO−

3 -N uptake in the
intermittent streams during baseflow conditions, rather than
during the storm events or the lowest flows or dry conditions
in summer. Therefore, the data reflect only a portion of the flow
regime (albeit, the most common portion, representing a median
of 75% of the year). Bernhardt et al. (2017) demonstrated the
importance of rare events for characterizing ecosystem fluxes;
thus, we scaled up our observations of whole-reach gross NO−

3 -
N uptake rates to assess its significance in the hilly, forested
landscapes of the Northeast USA. Based on the pulse addition
experiments during baseflow, we estimated that 37% of the days
with flow had measurable whole-reach gross NO−

3 -N uptake.
Across all 12 sites over 3 years, flow was observed an average of
277 d yr−1. Combining these estimates, 103 d yr−1 would have
measurable whole-reach gross NO−

3 -N uptake rates. When the
whole-reach gross NO−

3 -N uptake was measurable, we coupled
the interquartile range of the non-zero whole-reach gross NO−

3 -
N uptake rates from the pulse additions (132.9 to 842.3mgNm−1

d−1) with the interquartile range of the length of the intermittent
streams (201 to 618m, Table 1) and the density of intermittent
streams (1.5 km−2).
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Our assessment suggests that intermittent streams can
potentially remove 4.1 to 80.4 kg NO−

3 −N km−2. This estimate
is relatively modest compared to the median N load delivered to
the catchment outlet (336 kg N km−2) for New England (Moore
et al., 2004). However, the whole-reach gross NO−

3 -N uptake
estimates may be low since we excluded six hot moments that
were above the upper quartile of the analysis; these removed
values were 1.3 to 7.2 times the upper quartile value. The transient
storage metrics measured in the six intermittent streams were
comparable or higher than estimates from perennial streams,
indicating the potential for high NO−

3 -N cycling. In addition, our
results did not include times when the stream channels were at
their lowest while still flowing; nutrient retention is expected to
be highest due to high water area to biological active surfaces
(Fisher et al., 1998; von Schiller et al., 2017) and low dissolved
oxygen conditions (von Schiller et al., 2011, 2017). However,
based on data from low order, perennial streams (Vaughan et al.,
2017), nutrient flux at these low flow conditions are expected
to represent a small proportion of annual flux, suggesting that
this omission does not markedly alter the estimates of the
role of intermittent streams in nutrient export. In addition
to providing substantial flows in spring and fall to perennial
streams, intermittent streams in temperate, humid climates like
the Northeast USA appear to contribute to whole-reach gross
NO−

3 -N uptake and retention in the headwaters.

CONCLUSION

We have presented evidence that intermittent streams in
the Northeast USA provide valuable ecosystem services.
Intermittent streams frequently connect wetlands that appear to
be groundwater discharge on traditional map scales (1:24,000
scale) to perennial streams during most of the year, provide
24–47% flow to perennial streams, and contribute to whole-
reach gross NO−

3 -N uptake, especially during hot moments
of low Q. These wetlands that do not have an outlet to a
channelized stream (i.e., groundwater discharge wetlands) are
frequently referred to as “hydrologically isolated”—a phrase
that carries weight in governmental politics and regulations.
Our study demonstrates that high resolution maps show that
the extent of wetlands with channelized outlets is substantially
higher than expected when using traditional maps—with
potential ramifications for regulations and policies that exempt
geographically isolated wetlands from protection. We have
provided evidence of intermittent stream contribution to the
physical and biogeochemical integrity to downstream waters
during the 75% of the year they have continuous flow.

Non-perennial streams are at risk of being buried or
degraded worldwide (Acuña et al., 2014). In the Northeast USA,

the most common threats are urbanization and recreational
developments, (e.g., golf courses); other areas at risk from
agricultural development and intensification. As alterations to
intermittent streams increase, perennial streams lose a portion of
their headwaters and potential whole-reach gross NO−

3 -N uptake
areas may become NO−

3 -N sources to downstream areas. We
encourage policy makers to manage the landscape as a complete
river system encompassing both the intermittent and perennial
waters (Acuña et al., 2014; Leigh et al., 2015).
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