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ABSTRACT 

The basic helix-loop-helix (bHLH) proteins are int imately associated with developmental 

events such as cell differentiation and lineage commitment. The HLH domain in the bHLH 

motif is responsible for dimerization whereas the basic region mediates sequence specific DNA 

binding. Human DEC, mouse STRA and rat SHARP proteins represent a new c lass of bHLH 

proteins. In each species, two members are identified wi th a sequence identi ty of>90% in the 

bHLH region and - 40% in the total protein, respectively. Based on sequence alignment and 

domain analysis, DEC/STRA/SHARP proteins show high s imilarities (- 40%) to Drosoph ila 

Hairy and E(spl) as well as the mammalian homologues (e.g., HES) in the bHLH domain. 

However, they lack the C-terminal WRPW motif which is present at all other Ha iry/E(spl)/Hes 

proteins and mediates transcription repression. These structural d ifferences distinguish 

DEC/STRA/SHARPs from other bHLH proteins and indicate that they have dist inct biological 

functions. The purpose of this dissertation is to elucidate the oncogenic roles of DEC I and 

determine the molecular actions of DEC I on transcription regulation. 

Expression measurments demonstrate that DEC I is abundantly expressed in cancer tissues but 

not in adjacent nonmal tissues. In stable transfectants, DEC I inhibits ce ll proliferation, 

antagonizes serum deprivation-induced apoptosis, and selectively decreases the activities of 

several major caspases. Western blott ing analyses identify that antiapoptot ic protein survivin is 

a fu nctional mediator responsible for DEC I-directed antiapoptotic activity. DEC I and survivin 



exhibit a paralleled expression pattern in paired tumor-normal tissues. In co-transfection 

experiments, DEC I stimulates the survivin promoter, and this mechanism relies on the physical 

interactions with Sp I sites in the proximal promoter. In contrast, DEC I and its structurally 

related protein DEC2 show an inverted expression pattern in paired tumor-normal tissues. 

Forced expression of DEC I causes proportional decreases in the expression of DEC2 in stable 

transfectants. Co-transfection with DEC I represses the activity of a DEC2 promoter reporter 

by as much as 90%. The DEC I mediated transcription repression is achieved by direct binding 

to the E-box element in the proximal promoter of DEC2. The established activation of the 

survivin promoter provides a molecular explanation for its oncogenic involvement, and the 

differential activities toward DEC2 and survivin promoters establish that DEC I can act as a 

repressor or an activator depending on the genomic context of a target gene. 
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INTRODUCTION 

Gene expression within eukaryot ic cells is primarily regulated at transcription level. The 

transcription of genes is contro lled by complex interactions between transcription faclors and 

their corresponding DNA sequences in target genes. Transcription factors have two functiona l 

domains: one for sequence-specific DNA binding and one for transcription activation 

(Brivanlou et al, 2002). In some cases this dual requirement is shared between partner proteins, 

hence the s ite-specific DNA binding domain and transcription activation domain occur on 

separate proteins. Based on the structural features of the DNA binding domain, transcription 

factors fa ll into four major structural families: (I) Helix-turn-helix; (2) Zinc finger; (3) Leucine 

zipper; and (4) Helix-loop-helix. 

Helix-loop-helix transcription factors 

Helix-loop-helix (HLH) transcription factors play important roles in a wide array of 

developmental processes such as myogenesis (MyoD/E4 7) (Weintraub et al, 1991; Zhuang et al, 

1994), neurogenesis (NeuroD, Ashaete-scute/Daughterless) (Villares et al, 1987; Caudy et al, 

1988), hematopoiesis and sex determ ination (E 12/Da/ESC) (Chen et al, 1990; Benton et al, 

1993). Other functions of HLH proteins include regulation of cell proliferation and apoptos is 

(Myc/Max) (Morgenbesser et al , 1995; Bissonnette et al, 1994), phospholipid/pigment metabo-

lism (Ino2/Delila) (Zhao et al, 1993 ; Goodrich et al, 1992) and xenobiotic response 

(AHR/ARNT) (Hirose et al, 1996; Burbach et al, 1992). HLH proteins are divided into two 

broad functiona l groups based upon their tissue distribut ions (Murre et al, 1994, 1992). Class I 



HLH proteins, also known as E proteins like E12 and E47, have a ubiquitous expression pattern 

and are capable of forming either homo- or hetero-dimers. Class II HLH proteins such as MyoD 

and NeuroD exhibit a tissue-restricted expression pattern and usually form hetero-dimers wi th 

class I HLH proteins. Other classification systems have also been proposed based on the 

structural domains or evolutionary relationship (Atchley and Fitch, 1997; Massari and Murre, 

2000). 

I . Structure and DNA binding activity of HLH proteins 

Structurally, all helix-loop-hel ix proteins possess a HLH motif which comprises two highly 

conserved helical segments (helix I and helix 2) of hydrophobic residues separated by a 

non-conserved sequence of variable length (the loop). The loop contains a stretch of amino 

acids unfavorable for helix formation. The HLH domain is usually adjacent to a short region of 

bas ic resid ues that constitute the sequence-specific DNA binding interface (Ellenberger, 1994). 

Therefore, Helix-loop-helix proteins are also referred to as basic helix-loop-helix (bHLH) 

proteins. X-ray structures of many bHLH proteins have confirmed the belief that bHLH 

proteins bind DNA as dimers in which the conserved HLH domain mediates dimerization and 

the basic region defines the DNA binding sequence (Ferre et al, 1993, 1994; Ma et al , 1994). 

The basic region, immediately N-terminal to the first hel ix, consists of a cluster of I 0-20 

hydrophilic residues rich in lysine and arginine and binds to the major groove of the DNA in the 

X-ray structure. 
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The response DNA element recognized by bHLH proteins is usually shon palindromic 

sequence CANNTG where N represents any base, most commonly either CG or GC. CANNTG, 

also known as E-box, is found in promoter and enhancer elements that regulate large numbers 

of pancreatic-, lymphoid- and muscle-specific genes (linlewood and Evan, 1998). As shown by 

X-ray structure, each monomer of the bHLH protein binds one half-site of the E-box. 

Oligonucleotides flanking the core E-box sequence also contribute, at least in part, to the 

specific interactions between the E-box and bHLH proteins. Although most ofbHLH proteins 

are able to bind the E-box, there are some exceptions. Some bHLH proteins that have 

pra line-containing basic regions have higher affin ity toward another hexamer core sequence, 

CACNAG, also known as N-box (Akazawa et al , 1992). AHR-ARNT comp lex, known to 

activate xenobiotic gene transcriptions, usually binds to the dioxin response element 

TNGCGTG. (Wu and whit lock, 1993; Basci et al, 1995). 

2. Transcription regulation by HLH proteins. 

After binding to DNA, the HLH protein can either act ivate or repress transcription. 

I l Act ivation of transcription. 

A prototypical example of transcription activator is the E protein, including E2A (E47 and El2}, 

E2-2, and HEB (Henthorn et al, 1990). As described previously, E proteins are ubiquitously 

expressed and capable of fanning homo-dimers or hetero-dimers with class II HLH proteins. 

Two transact ivation domains, AD I and AD2, have been mapped to the N-terminal regions in 



E2A and HEB proteins (Aronheim et al, 1993; Massari et al , 1996). Amino acid substitutions in 

conserved hydrophobic residues within these motifs abolish transactivation activity. Removal 

of the N-terminal tranactivation domains of E2A abrogates its inducing abi lity on 

B-lineage-specific gene expressions in macrophage cells (Kee and Murre, 1998). Recent 

reports have demonstrated that transcription coactivators, p300 and/or CBP, interact with E 

proteins when bound to DNA (Eckner et al, 1996). The recruitment of p300/CBP is mediated by 

either direct interaction (Figure I A) or indirect interaction. (Figure I B). P300/CBP have been 

shown to contain histone acetyltransferase (HAT), an enzyme involved in chromatin 

modification (Bannister and Kouzarides, 1996). 

A 
Activation 

B 

c 

Activation 

E-box 

Figure 1. Models for transcription activation by E proteins 
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More recently, stud ies reports that LDFS, a conserved motif located in the ADI domain in E 

protein, is capable of interacting wi th a nuclear protein complex, termed SAGA (Figure I C) 

(Massari et al , 1999). SAGA has intrinsic HAT act ivity. The components of SAGA are highly 

conserved from yeast to mammals. This includes a subset of the TATA bind ing 

protein-associated factors (TAFs), the HAT Gcn5, the Ada and Spt proteins, and Tral (Grant et 

al, I 998a, I 998b; Ogryzko et al, 1998). Amino acid subst itutions of the conserved residues 

within ADI domain abolish the SAGA binding in vitro and transcription activat ion in vivo 

(Massari et al, 1999). Moreover, AD I lost the transactivition activity in yeast strains lacki ng 

functional SAGA complex. Both p300/CBP and SAGA complex have HAT activities. 

Transcription activation in eukaryotes is strongly promoted by histone acetylation. Hence, the 

E proteins act ivate transcription through interacting with protein complexes that have HAT 

activity. 

2) Repression of transcription. 

Over the last few years, considerable progress has been made toward understanding the 

repressive act ivi ties of Drosoph ila hairy and Enhancer-of-split proteins (Fisher and Caudy, 

1998; Parkhurst, 1998). These proteins contain a tandem arrangement of the bHLH domain and 

an adjacent sequence known as the Orange domain, so we refer to these proteins as 

bHLH-Orange or bHLH-0 proteins. The hairy-related proteins contain proline residue with in 

their basic domain and prefer binding to N-box as a homo-dimer or hetero-dimer. Once bound 



to DNA, these proteins recruit a co-repressor known as Groucho ( Figure2 A). The interaction 

with Groucho is mediated through a 4-amino acid motif, WRPW (Trp-Arg-Pro-Trp), present at 

the C terminus of all hairy-related proteins. A more recent study demonstrates that Groucho can 

functionally interact with Rpd3 (Chen, 1999), a hi stone deacetylase (HDAC). This findin g 

raises the possible mechanism that Groucho represses the transcription through recruiting 

chromatin modification enzyme. 

A 

Repression 

B 

No DNA binding 

Figure 2. Models for transcription repression by HLH proteins 

Another example of negative regulation on transcription by HLH protein is dominant negative 

effect. Id and emc proteins represent a class of HLH proteins that have distinct structural 

features (Benezra et al , 1990; Ellis et al , 1990). These proteins contain a HLH domain but lack 

the adjacent basic domain necessary for DNA binding. Heterodimerization wi th these proteins 

results in a HLH dimer that is incapable of bind ing to DNA (Figure2 B). Thus far, four Id 
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proteins (ldl to ld4) have been identified. All of them share a homologous HLH region and 

have similar affinities to various E proteins (Langlands et al, 1997). E proteins play important 

roles in cell differentiation and activate transcription through homo or hetero-dimer formation. 

Id proteins dimerize with E proteins and attenuate their function as transcription activators. For 

example, Id I inhibits muscle differentiation by dimerizing with E 12 protein and prevent it from 

forming active myogenic MyoD/E 12 hetero-dimer (Neuhold and Wold, 1993). 

3. Dimerization partners are important fo r the functions of HLH proteins 

Given the fact that some HLH proteins are active as hetero-dimers, the availability of each 

dimerization partner is clearly an important factor in dictating which particular dimer will form. 

Although some HLH proteins (like E proteins) are able to form functional homo-dimers, their 

activities can be modulated through hetero-dimerization with other partners. Consistent with 

this, many HLH proteins show strict spatial and temporal expressions during cell 

differentiation. Therefore, patterns of expression of HLH proteins are critical in maintenance of 

cell lineages and decision of cell fates. 

Myc/Max/Mad proteins give a good example in understanding how HLH proteins exhibit their 

biological act ivities through dimerizing with different partners (Figure 3). The Myc family of 

proteins has been shown to regulate a wide range of processes, including oncogenic 

transformation, apoptosis and cell cycle progression. Previous studies indicate that c-Myc 



protein level correlates with cell proliferative state (Evan and Littlewood, 1993). Thus, c-Myc 

is always expressed in mature, proliferative cells. Withdrawal of growth factors triggers rapid 

and synchronous down-regulation of c-Myc protein level in cells, resulting in growth arrest. 

The biological activity of c-Myc is through dimerizing with another bHLH protein, Max 

(Amati et al, 1993). The Max/Myc dimer binds to classic E-box CACGTG, leading to 

transcription activation. Studies demonstrate that c-Myc interacts with protein complex 

involved in chromatin modification. A SWl-SNF chromatin remodeling complex, hSNFS(lni I), 

interacts with the bHLH-LZ domain of c-Myc (Cheng et al, 1999). TRAPP, related to Tral that 

is present in several HAT complexes, interacts with N terminus of c-Myc (McMahon et al, 

1998). These findings suggest that c-Myc activates transcription, at least in part, by recruiting 

chromatin remodeling complex. c-Myc has a very short half-life of both mRNA and protein 

whereas Max protein is extremely stable. Max protein level is invariant throughout the cell 

cycles. Furthermore, Max can form homo-dimers and bind to the same E-box sequence 

CACGTG as Max/Myc heterodimer does. But Max homo-dimer does not show any activities 

on transcription regulation in vitro (Kretzner et al , 1992). Taken together, the ratio ofMax/Myc 

versus Max/Max is thus critical to determine the Myc activity within cells. 

In addition to Myc proteins, four other proteins, Mad I, Mad3, Mad4 and Mxi I, also form 

hetero-d imers with Max. These dimers recognize the same E-box CACGTG as Mad/Myc or 

Mad/Mad dimer does. Unlike Max/Myc which actives transcription, or Max/Max which is 



transcription s ilent, Mad and Mxi I actively repress transcription in reporter assay (Ayer et al , 

1993). Mad proteins can directly interact with mammalian homologs of the yeast repressor 

Sin3 through the N-terminal Mad repression domain (SID) (Ayer et al, 1995). Sin is identified 

as a component of a protein complex that includes nuclear receptor co-repressors, N-CoR and 

HDAC (alland et al, 1997). Therefore, Max/Mad represses transcription through interacting 

with a protein complex containing HDAC activity. Mad proteins have been shown to exhibit 

growth inhibitory activity, which is opposite to Myc's funct ion. Both Mad and Mxi I are able to 

suppress co-transformation of rat embryo cells by c-Myc and activate ras alleles (Lahoz et al , 

1994; Koskine et al, 1995). Opposite expression panerns of Mad and Myc proteins are 

observed in differentiated cells and tissues where Max remains relatively constant. All these 

data suggest that activity of genes responsible to these bHLH transcription factors can be 

simply modulated by changes in the ratio of Myc versus Mad (or Mxi I). 

9 
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Figure 3 The Myc network 
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DEC/STRA/SHARP helix-loop-helix transcription factors 

Human DEC! (differentially expressed in chondrocytes), mouse STRA 13 (stimulated with 

retinoic acid), and rat SHARP2 (split and hairy related protein) represent a structurally distinct 

class of bHLH proteins and are identified independently by three research groups. Shen et al 

(1997) identifies Bt2cA MP-inducible gene, DEC! , from primary culture of human embryonic 

chondrocytes. Boudjelal et al ( 1997) demonstrates that STRA 13 is induced by stimulation of 

embryonal carc inoma cells (P 19) with retinoic acid. 

bHLH Orange 

h. DEC2 

h. DEC! 

h. HES- I 

D. Hairy 

D. E(spl)m3 

280 

WRPW 

337 

412 

482 

Figure 4. Schematic representation of the structures ofDEC2 and related bHLH proteins. 

Percentages indicate amino acid identity in the bHLH region or the Orange domain between the 

respective proteins and DEC2. The number of am ino acids are shown on the right. h. human; D. 

Drosophila. 

Rossner et al ( 1997) identifies SHARP2 in an effon to identify new bHLH proteins in 

differentiated rat neurons and find that it is distantly related to Drosophila enhancer-of-split and 

hai ry gene family. Human, mouse and rat DEC2 are subsequently identified by Fujimoto et al 

II 



(2001). DEC2 proteins have >90% identity to DECl /STRA 13/SHARP2 in the bHLH regions 

and -40% identity in the total proteins (Figure 4). 

Protein sequence alignment reveals that DEC/STRA/SHARPs show higher similarities (-40%) 

to Drosophila Hai ry and E(spl) as well as the mammalian homologues (e.g., HES) in the bHLH 

domain (Figure 4) (Giebel et al , 1997; Poortinga et al, 1998; Fisher et al , 1996). Simi lar to 

Hairy/E(spl)/Hes, DEC/STRA/SHARPs contain an orange domain just C-term inal to the 

bHLH domain and a proline residue in the basic region. However, the proline residue is located 

2 ami no acid residues more N-terminal (Figure 5). Beside bHLH domain and orange domain, 

Basic domain 
Hesl 28 PKTASEHRKS SKPI MEKRRR ARINESLSOL 57 
Hes2 7 VEDAADVRKN LKPLLEKRRR ARINESLSQL 36 
Hess 10 MLSPKEKNRL RKPVVEKMRR DRINSSIEQL 39 
E (spl) M3 5 MSKTYQYRKV MKPLLERKRR ARINKCLDDL 34 
E(spl)M7 7 MSKTYQYRKV MKPLLERKRR ARINKCLDEL 36 
Hairy 25 ETPLKSDRRS NKPI MEKRRR ARINNCLNEL 54 
Dpn 34 GLSKAELRKT NKPIMEKRRR ARINHCLNEL 63 
DECl 46 SEDSKETYKL PHRLIEKKRR DRINECIAQL 75 
DEC2 48 RDDTKDTYKL PHRLIEKKRR DRINECIAQL 77 

Figure 5. The basic regions of Hairy/E(spl)/Hes proteins and DEC proteins. The basic domains 

of representative proteins are aligned. The conserved residues are emphasized in bold type. 

Notably, proline residues in DEC proteins are located more N-terminal. The regions of the 

basic domains are indicated by residue numbers adjacent to the sequence. 

DEC/STRA/SHARPs do not show similarity to any known proteins; especially, they lack the 

C-terminal WRPW motif which is present at all other Hairy/E(spl)/Hes proteins and mediates 

transcription repression. These structural differences di stinguish DEC/STRA/SHARPs from 
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other bHLH proteins and indicate that they have distinct biological functions. 

I. Transcriptional regulation mediated by DEC/STRA/SHARPs 

Although DEC/STRA/SHARPs lack the WRPW domain which is required for transcription 

repression in Hairy/E(spl)/Hes proteins, they are sti ll found to act as transcription repressors in 

different cell systems. STRA 13 is found to repress its own promoter and c-myc promoter 

reporter genes (Sun and Taneja, 2000). Both repressions require the c-terminal region which 

interacts with HDAC-Sin3A co-repressor complex as well as basal transcription factors 

TATA-binding protein (TBP), TFllD and TFllB (Boudjelal, 1997). STRA 13 represses its own 

promoter through an HDAC-dependent pathway and can be abrogated by trichostatin (TSA), a 

speci fi c HDAC inhibitor. c-Myc repress ion by STRA 13 is HDAC-independent and involves 

interaction with basal transcription facto r TFllB. Thus, STRA 13 represses transcription 

through either interacting with histone deacetylase or affecting basal transcription machinery. 

Most bHLH proteins bind DNA as either hetero- or homo-dimers to E-box. Hairy/E(spl)/Hes 

proteins which have proline-contain ing basic regions prefer binding to the N-box. Like 

Hairy/E(spl)/Hes, DEC/STRA/SHARPs also contain a proline residue at basic region. 

However, several groups demonstrate that DEC/STRA/SHARPs bind to E-Box CACGTG as 

homo-dimers (Zawel et al, 2002; St-Pierre et al, 2002). Whether DEC/STRA/SHARPs bind to 

N-box remains to be clarified. 
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2. Expression regulation of DEC/STRA/SHARPs 

Both DECl /STRA 13/SHARP2 and DEC2 are shown to be ubiquitously expressed but have 

different expression patterns. Many st imuli have been shown to rapidly induce the mRNA 

levels of DECl /STRA13/SHARP2 within one hour in different cultured cell systems. These 

stimuli include: nerve growth factor (NGF), kainic acid (Rossner et al, 1997), platele-derived 

growth factor (PDGF), transforming growth factor-P (TGF-P) (Zawel et al, 2002), parathyroid 

hormone (PTH), and cyclic adenosine monophosphate (cAMP) (Shen et al, 200 I, 2002). Most 

of these hormones and growth factors modulate proliferation and differentiation via changes of 

the intracellular cAMP, a secondary messenger. Furthermore, Teramoto et al (200 I) located two 

consensus sequences for the cAMP-responsive element in the promoter region of DEC I gene. 

All these findings suggest that DECl /STRAl3/SHARP2 is a direct target ofcAMP in a wide 

types of cells. Some other stimuli, like retinoic acid (Boudjelal et al, 1997), TSA and serum 

starvation, start to increase DEC I expression at 6 hours and the high level of DEC I is sustained 

for more than 24 hours. This data indicated that there might be a different signaling pathway 

responsible for DEC I induction. 

Another pathway that regulates the transcription of DEC/STRA/SHARP proteins is through 

hypoxia-inducible factor-I (H IF-1 ), a transcription activator. The induction of 

DEC/STRA/SHARP proteins by hypoxia has been demonstrated by many groups (lvanova et al, 

200 1; Yun et al, 2002). HIF-1 , usually exists as an hetero-dimerofHIF-lnand HIF-IP, is a key 

14 



player in regulati ng 0 2 homeostasis. Under normoxia, HIF-lc:t interacts with von 

Hippel-Lindau tumor suppressor protein (pYHL) and undergoes proteosome mediated 

degradation. Under hypoxia, HIF-1 a becomes stabilized and trans located into nucleus, where it 

heterodimerizes with HIF-113 and binds to hypoxia response element (HRE) to in itiate 

transc ri pt ion of target genes. Functional HREs that bind to HI F- la in electrophoretic mobility 

shift assay are fo und in the promoter regions of both DEC I and DEC2 (Miyazaki et al, 2002). 

Disruption of these HREs abrogates the induction activity of HI F- l c:t in reporter assay. 

Moreover, DEC I/STRA 13 is shown to be down-regulated by pYHL (lvanova et al, 200 1). The 

increase ofDECI/STRAl 3 mRNA occurs in wild-type MEF cells but not in HIF-la-/- MEF 

cells. All these data demonstrate that DECl /STRA 13 is the direct target gene regulated by 

HIF-lc:t. 

In addition to transcription regulation, STRA 13 is also found to be regulated by protein 

degradation (lvanova et al, 200 I). The yeast two-hybrid screening reveals that human 

ubiquitin-conjugating enzyme (UBC9) interacts with the c-terminus of STRA 13 protein. 

Co-expression of STRA 13 and UBC9 increases ubiquitination of STRA 13 and shortens its 

half-li fe. Proteasome inhibitor treatment accumu lates STRA 13 and blocks its degradation. 

These results suggest that STRA 13 is degradated through ubiquit in-dependent proteasome 

pathway. 
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Overall, the regulation of DEC/STRA/SHARP proteins is either through transcription 

activat ion by cA MP and HIF- la. or through protein degradation pathway associated with 

UBC9/ubiquitin. 

3. Biological functions 

Although DEC/STRA/SHARP proteins are regulated by hypoxia and some environmental 

sti muli , their biological roles are poorly defined. Distinct tissue distribution patterns indicate 

that these proteins are important in cell differentiation. In P1 9 embryonal carcinoma cell lines, 

overexpression of STRA 13 results in neuronal differentiation, while wild-type P 19 cells only 

undergo mesodermal/endodermal differentiation (Boudjelal et al, 1997). Two rat SHARP 

proteins have been shown to play roles in terminal neuronal differentiation and adaptive 

changes to environmental stimuli (Rossner et al, 1997). Human DEC I is found to promote 

chondrocyte differentiation both at the early and terminal stages (Shen et al, 2002). 

In addition to neuronal and chondrocyte differentiation, STRA 13 has been found to regulate 

lymphocyte activation . STRA 13 is highly expressed in unstimulated, rest ing B cells and is 

strongly repressed during B cells act ivation as well as a variety of stimuli that activate B cells 

(Seimiya et al, 2002). Forced expression of STRA 13 in B cells delays the cell cycle progression 

into S phase. This data suggests that STRA 13 is a negative regulator of B cell activation by 

affecti ng cell cycle progression. In contrast, STRA 13 plays a different role in T cell 
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development (Sun et al , 200 1 ). Up-regulation of STRA 13 is found upon activation of CD4+ T 

cells. STRA 13 knockout mice exhibit defects in several phases of T cell activation. These 

defects include reduced cytockine production like IL-2, IFN-y and IL-4; impaired 

differentiation of T cells into effector cells; and ineffective el imination of activated T and B 

cells. 

More recently, DEC I and DEC2 have been found to function as regu lators of the mammalian 

molecular clock (Honma et al , 2002). The circadian rh)'lhms of mammals are regulated by four 

clock-gene fam ilies that form a transcription-translation feedback loop. Clock and Bmal I bind 

to the E-box elements in the promoter region of Per as a hetero-dimer and activate its 

transcription. The Per protein, in turn, acts with Cry protein and represses its own transcription. 

Like all these four gene families, DEC! and DEC2 are expressed in the suprechiasmic nucleus 

of the hypothalamus in a circadian fashion. Gel mobility shift assay and luciferase assay 

demonstrated that DEC I and DEC2 bind to the proximal E-box elements in Per promoter and 

strongly repress the transcription of Per. Yeast two-hybr id assay reveals that both DEC I and 

DEC2 bind stereo-specifically to Bmal I. Thus, DEC proteins repress the Per transcription 

through competition fo r E-box with Clock/Bmal I and/or interaction with Bmal 1. 
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STATEMENT OF PURPOSE 

The basic hel ix-loop-helix (bHLH) proteins belong to a fami ly of well-characterized transcri-

ption factors that are involved in cell differentiation, xenobiotic response and oncogenesis. 

Human DEC, mouse STRA and rat SHARP represent a new and structurally distinct class of 

bHLH proteins. In each species, two related members are identified with sequence identity of 

>90% in the bHLH regions and -40% in the total proteins. The bHLH proteins contain two 

functional domains: helix-loop-helix (HLH) domain and the adjacent basic domain. The HLH 

domain is responsible for the dimerization whereas the positively charged basic region 

mediates sequence-specific DNA binding. Based on the sequence al ignment, 

DEC/STRA/SHARP proteins closely resemble Drosophila Hairy and E(spl) as well as the 

mammalian homologues (e.g. , HES). In addition to the bHLH domain, these proteins contain 

an orange domain wh ich is approximate 30 amino acids closer to the C-terminus and is thought 

to mediate transcription repression. Beside bHLH domain and orange domain, 

DEC/STRA/SHARP proteins do not show sim ilarity to any known proteins. Especially, they 

lack the C-termi nal WRPW domain which is present at all other Hairy/E(Spl)/Hes proteins and 

recruits the transcription co-repressor Groucho. These structural differences indicate that 

DEC/STRA/SHARP may have distinct biological functions and unique mechanisms on 

transcription regulation. 

In an effort to identify genes that are differentially expressed in colon carcinoma and the 

adjacent normal tissue, we performed cDNA subtraction assays and found that DEC I gene was 
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abundantly expressed in colon carcinoma but not in the adjacent normal tissue. High expression 

level of DEC I is not only observed in colon carcinoma tissue, but in many other cancer tissues 

as well. Some detrimental conditions, like hypoxia and treatment with cytotoxic stimuli , 

markedly induce the expression of DEC I in many cell lines. Cells that lack the functional 

tumor suppressor gene VHL (Von Hippel-Lindau) express higher levels of DEC!. All these 

observations suggest that DEC I is involved in oncogenesis. However, little is known about the 

functions of DEC I in oncogenesis. The studies performed in manuscript I aimed to determine 

whether DEC! plays a role in oncogenesis. To test this possibility, stable transfectants were 

prepared in which DEC I can be inducibly expressed by tetracycline. These stable transfectants 

are used to test the effects of DEC! on proliferation and apoptosis, two events involved in 

oncogenesis. The studies described in manuscript II aim to extend the studies of manuscript I 

and to determine the signaling pathways that lead to antagonism of apoptosis. 

Transcription regulation by the bHLH proteins is primarily mediated by binding to cis-acting 

DNA elements present in the target genes via the basic region in the bHLH sequence. These 

DNA elements contain core sequences CANNTG or CANNAG, which are commonly referred 

to as E-box or N-box, respectively. Generally, praline-containing basic regions have higher 

affinity toward the N-box whereas the basic regions without a praline preferentially recognize 

the E-box. DEC I contains a praline residue at its basic domain. A recent study shows that 

mouse STRA 13 binds to typical E-box sequence CACGTG. DEC I and DEC2 have been shown 
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to have different tissue distributions. E-box elements are located in the promoter regions of 

both DEC I and DEC2. So we hypothesized that DEC I and DEC2 are mutually regu lated. The 

studies performed on manuscript Ill are to determine the molecular actions of DECI on the 

transcription regulation of DEC2. To test this, a genomic fragment of the DEC2 promoter 

which harbors two proximal E-box elements is inserted into a luciferase reporter. Deletion and 

site-d irected substitution mutants of both DEC2 reporters and DEC I constructs are generated 

to test the requirement of E-box and structural domains of DEC I on transcription regulation of 

DEC2. Electrophoretic mobility sh ift assay is used to test the DNA-protein interact ions. 

In general, the studies described in this dissertation establish the oncogenic roles of DEC I and 

elucidate the s ignal ing pathway leading to this function . The studies on transcription 

regulations mediated by DEC I provide molecular mechanisms that expand our basic 

understandings of DEC I functioning as a transcription factor. 
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MANUSCRIPT I 

DECJ /STRA 13/SHARP2 IS ABUNDANTLY EXPRESSED JN COLON 

CARCINOMA, ANTAGONIZES SERUM DEPRIVATION INDUCED APOPTOS IS AND 

SELECTIVELY INHIBITS 

THE ACTIVATION OF PROCASPASES 

ABSTRACT 

The basic helix-loop-helix (bHLH) proteins are intimately associated with developmental 

events such as cell differentiation and lineage commitment. The HLH domain in the bHLH 

motif is responsible for dimerization whereas the basic region mediates DNA binding. Based 

on sequence alignment and domain analysis, DEC/STRA/SHARPs represent a new class of 

bHLH proteins. This report describes the functional characterization of DECI (Qifferentially 

i<xpressed in fhondrocytes). Subtractive experiments and blotting analyses demonstrated that 

DEC I was highly expressed in colon carcinomas but not in the adjacent normal tissues. Several 

cell cycle blockers markedly induced DEC I expression. Stable transfectants with a 

tetracycline inducible construct demonstrated that DEC I caused proliferation inhibition, 

antagonized serum deprivation-induced apoptosis, and se lectively inhibited the activation of 

procaspases. These activities were highly correlated with the abundance of 

tetracycline-induced DECI. Stable transfectants expressing a mutant DECJ (lacking the DNA 

binding domain) exhibited neither proliferation inhibition nor apoptotic antagonism, 

suggesting that DNA binding is required for these actions. Enzymatic assays and 
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immunoblotting analyses demonstrated that induction of DEC! by tetracycline markedly 

decreased the act ivation of procaspase 3, 7, and 9 but not 8. The selecti ve suppress ion on the 

acti vation of pro-caspases 3, 7 and 9 over 8 suggests that DEC I-mediated antiapoptosis is 

achieved by blocking apoptotic pathways initiated through the mitochondria. The data 

functiona lly distinguish DEC! from other bHLH proteins and directly link this factor to 

oncogenesis. 
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INTRODUCTION 

The basic helix- loop-he lix (bHLH) proteins belong to a family of transcription factors 

(Littlewood and Evan, 1998). These proteins are known to play important roles in myogenesis 

(MyoD/E47) (Weintraub et al , 1991 ), neurogenesis (NeuroD) (Villares and Cabrera, 1987), cell 

proliferation and differentiation (Myc/Max) (Bissonnette et al, 1994), sex detennination 

(E 12/Da/ESC) (Cronmiller et al , 1988), regulation of immunoglobu lin genes (TFECffFE3) 

(Beckmann et al , 1990), phospholipid metabolism (lno2/Delila) (Nikoloff et al, 1992) and 

xenobiotic response (AHR/ARNT) (Hirose et al , 1996). The bHLH proteins are structurally 

featured by their bHLH motif(Littlewood and Evan, 1998). The bHLH motif is divided into 

two functional domains: the helix-loop-helix (HLH) domain and an adjacent basic region. The 

HLH domain, consisting oftwo-amph ipathic CL-helices connected by a nonconserved loop ofa 

varying length, is responsible for the dimerizat ion between HLH proteins. The basic region, 

just N-terminal to the first helix, consists of a cluster of 10-20 amino acids rich in lysine and 

arginine residues and mediates sequence-specific DNA binding (Littlewood and Evan, 1998; 

Massari and Murre, 2000; Murre et al, 1994). 

Human DEC, mouse STRA and rat SHARP represent a new and structurally distinct class of 

bHLH proteins (Boudjelal et al , 1997; Fujimoto et al, 2001; Rossner et al, 1997; Shen et al, 

1997). In each species, two related members are identified with a sequence identity of>90% in 

the bHLH region and -50% in total. Based on sequence alignment, DEC/STRA/SHARPs 
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closely resemble Drosophila Hairy and E(spl) as well as the mamma lian homologues (e.g., 

HES) (Fisher et al, 1996; Biebel and Campos-Ortega, 1997; Poortinga et a l, 1998). They share 

the highest sequence identity (-40%) in the bHLH domain. The basic region contains a praline 

residue usually located in repressive bHLH proteins (Littlewood and Evan, 1998). Like 

Hairy/E(spl)/Hes, DEC/STRA/SHARPs contain an orange domain, wh ich is approximate 30 

amino acids away from the second helix of the bHLH motif and is thought to mediate local 

repression ofbHLH activators. In contrast to Hairy/E(Spl)/Hes proteins, DEC/STRA/SHARPs 

Jack the C-terminal WRPW motif. Through this sequence, Hairy/E(spl)/Hes recruit a 

corepressor known as Groucho to the transcription regulatory complex (F isher et al , 1996; 

Chen et al, 1999). Recruitment of Groucho is responsible for a vast array of biological 

activities of Hairy/E(spl)/Hes proteins including cellular differentiation and lineage 

commitment (Fisher et al, 1996; Chen et al, 1999; Hojo et al, 2000; Ohtsuka et al , 2001). 

Lack of the functiona lly important WRPW motif suggests that DEC/STRA/SHARPs have 

rather distinct biological functions and do so through different mechanisms. In a cultured cell 

system, mouse STRA 13 has been shown to promote neuronal but repress mesodennal and 

endodermal differentiation (Boudjelal et al, 1997). NIH 3T3 cells transfected with STRA 13 

exhibit a reduction in colony forming numbers compared with cells transfected with an empty 

vector (Sun and Taneja, 2000). Disruption of STRA 13 gene results in defective T cell 

activation and the genesis of autoimmune disorders in aging mice (Sun et al, 200 I). Two rat 

31 



SHARP proteins have distinct tissue distributions but both are present in a subset of mature 

neurons and drastica lly induced by neurotrophins and glutamatergic neurotransmission 

(Rossner et al, 1997), suggesting that the rat proteins are involved in the regu lation of terminal 

differentiation and in the adapti ve changes to environmental st imuli . Both mouse STRA 13 and 

rat SHARP! are shown to cause transcriptional repression (S un and Taneja, 2000; 

Garriga-Canul et al, 2001). Human DEC ! is present in a wide range of tissues including some 

oftumortissues and tumor-derived cell lines (Fujimoto et al, 200 1; Shen et al, 1997; lvanova et 

al, 2001 ; Zawel et al , 2002). Absence of the von Hippel-Lindau tumor suppressor proteins 

up-regulates the expression of DEC I gene (lvanova et al, 200 I). These findings suggest that 

DEC I has both physiological and oncogenic significance. 

Th is report describes the functional characterization of DEC I. Subtractive experiments with 

matched samples demonstrate that DEC I is highly expressed in colon carcinomas but not in the 

adjacent normal tissues. DEC I expression is markedly induced by several growth arrest factors. 

Stable transfectants demonstrate that DEC I causes a nutrient-dependent proliferation 

inhibition, antagonizes serum deprivation-induced apoptosis and selectively inhibits the 

activat ion of procaspases. In contrast, stable transfectants expressing a mutant DEC I (lacking 

the DNA binding domain) show neither proliferation inhibition nor apoptot ic antagonism, 

suggesti ng that DNA binding is required for these actions. These findings functionally 

characterize DECJ and directly link this factor to oncogenesis. 
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MATERIALS AND METHODS 

Chemicals and supplies 

Hydroxyurea, nocodazole and amino acid deficient media were purchased from Sigma. The 

goat anti-rabbit-lgG conjugated with alkaline phosphatase or horseradish peroxidase and ECL 

substrate were from Pierce. Substrates for caspases were from Biomol. Antibodies 

recognizing cleaved procaspases were from Cell Signaling. DMEM medium and PCR reagents 

were from Gibco. Unless otherwise indicated, all other reagents were purchased from Fisher 

Scientific. 

A cDNA encoding the full-length DEC I was isolated by a cDNA-trapping method (Hu and Yan, 

1999). In order to establish stable transfectants, several DEC I constructs were prepared with 

the tetracycline inducible pcDNA4ffO vector. These constructs included DEC I-sense, 

DEC 1-antisense and DEC I-mutant. The constructs were prepared by a PCR-based method 

with the DEC I cDNA as the template. The primers used for PCR amplification were extended 

to include appropriate endonuclease sites to faci litate cloning. DEC I-sense insert (the entire 

coding sequence) was generated with primers S-1 (ccggaattcATCCAGACGCTCCGCTAGTG) 

and A-1 (ctgctctagaGCAGGAAGTAGCGAGGAAGG) whereas DECl-antisense insert was 

generated with primers S-1 and A-2 (acttaagcttGGTAGGAAGTAGCGAGGAAGG). Primers 

A-1 and A-2 contained the same sequence but different endonuclease sites, which enabled the 
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PCR-generated fragments to be ligated into the vector in sense or antisense orientation. 

DEC I-mutant insert was generated by two steps of PCR. The N-terminal fragment was 

generated wi th primers S-1 and A-3 (CTCGTTAATCCGGTCACGCTCCTTGCTCTCGCTC-

CG) whereas the C-terminal fragment was generated with primers S-2 (CGGAGCGAGAGC-

AAGGAGCGTGACCGGATTAACGAG) and A-1. These two fragments were then annealed 

through the fusion primers A-3 and S-2, and the missing strands were subsequently filled. The 

resultant sequence, lacking the region encoding the DNA binding domain, was then amplified 

again wi th primers S-1 and A- 1, and subcloned into the pcDNA4ffO vector. The resultant 

constructs were subjected to sequencing analyses. 

Tissue co llection and processing 

Samples were collected from patients who underwent subtotal colon resection fo r histologi-

cally confirm-ed colonic adenocarcinoma. A total of four samples were co llected. The age of 

the patients was between 4 1 and62 with two male and two female. The size of tumors was - 5 

cm in diameter and located at the sigmoid or left colon . The degree of differen tiation of tumors 

was moderate as determined by patho-logical examination. Samples were freshly processed fo r 

RNA isolation and protein extraction. Total RNA was isolated with a Tri-reagent as described 

previously (Zhang et a l, 1999). For the preparation of protein extracts, tissues were 

homogenized in lysis buffer (20 mM Tris-HCI, pH 7.4, 1% Triton X-1 00, 1% sodium deoxy-

cholate, 0.1 % SDS, 0.2 mM PMSF and I mM DTT). The homogenates were centri fuged at 
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12,000 g for 30 min to remove any insoluble precipitates. As controls, specimens from the 

adjacent , grossly normal tissues were sim ilarly processed. Use of human tissues was approved 

by the Institutional Review Board. 

PCR-select cDNA subtraction 

Differential expression of genes between colon carcinomas and the adjacent normal tissues was 

studied by PCR-select cDNA subtraction with a PCR-select cDNA kit (Clontech). PolyA(+) 

RNA was isolated by two cyc les of oligo(dT)-ce llulose column chromatography. The poly A(+) 

RNA from four individual cancer tissues was pooled, so was the polyA(+) RNA from the 

adjacent normal tissues. First strand cDNA was synthesized with AMY reverse transcriptase 

and the second-strand synthesis was completed with RNase H and DNA polymerase I. The 

collection of cDNAs from both tester (cancer) and driver (normal) was blunted by Rsa I 

digestion. The tester cDNAs (tumor tissue) were then divided into two portions, which were 

ligated to adaptor I and adaptor 2R, respectively. Tester cDNAs ligated to each adaptor were 

separately mixed with the driver cDNAs to remove sequences present in both tumor and normal 

tissues. The reactions were then combined to allow remaining single stranded cDNAs to 

hybr idize. The hybridized duplexes wi th one strand having adaptor I and the other having 

adaptor 2 represented the sequences with a higher abundance in tumor tissue than the adjacent 

normal tissues because only the cDNAs from the tumor tissues were ligated to these adaptors. 

After fi lling the missing strand of the adaptors, these sequences were amplified by PCR with 
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nested primers, which were designed to effectively amplify the hetero-adaptor sequences. The 

enriched, different ially expressed sequences were purified and ligated into the pTarget vector 

(Promega). The resultant clones were isolated and subjected to sequencing analysis. 

Subcellular localization of DEC I 

Cells (human embryonic kidney 293T) were plated in 35 mm culture dish in DMEM medium 

supplemented with I 0% feta l calf serum at a density of 3 x Io' cells per dish. On day 2 when 

the cells reached -70% confluence, cells were transfected with DECI or the corresponding 

empty plasmid for 4 hr with Lipofectamine (Gibco). Thereafter, the media were replaced with 

fres h media. The transfected cells were cultured for an additional 48 hr. Cells were washed 

once with PBS and scraped from the dish in PBS. Cells were pelleted by centrifugation at 3000 

g and rapidly resuspended in three pellet volumes of homogenization buffer (JO mM HEPES, 

pH 7.9, 1.5 mM MgCI,, 10 mM KCI). The resuspended cells were then subjected to a glass 

Dounce homogenizer for ten strokes. The cytoplasm and nucleus were separated by 

centri fugat ion at 3,000 g for 15 min, and the nuclear pellets were resuspended in lys is buffer 

(homogenization buffer plus 0.5% Triton-JOO and 0.5% SOS). Cell fractions were analyzed for 

DEC I abundance. 

Stable transfection 

Stable transfection was conducted with T-Rex-293 cell line, which was derived from the human 
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embryonic kidney 293 cells. This line had been stably transfected with the pcDNA6ffR 

plasmid, which encoded the tetracycline repressor and allowed the inserted sequence to be 

inducibly expressed by tetracycline. The T-Rex 293 cells were seeded at 50% confluence and 

cultured overnight. Transfection was conducted with DEC I-sense, DEC 1-antisense or 

DEC I-mutant (I µg) for 4 hr by Lipofectamine. Transfected cells were cultured in full media 

for 24 hr, then split into fresh media. The split cells were seeded to I 0% confluence and 

cu ltured in media containing both Zeocin™ (300 µg/ml) and blasticidin (5 µg/ml) to select 

stable transfectants of pcDNA4ffO-DECI and maintain the integration of the pcDNA6ffR 

construct, respectively. Positive foc i resistant to both antibiotics were picked up and expanded. 

The induced expression of DEC I was determined by Western analyses. 

Proliferation assay 

Stable transfectants expressing sense, antisense or mutant DEC I were seeded in a 96-well plate 

( 12,500/per well) and cu ltured in DMEM media supplemented with fetal bovine serum (0-10%) 

in the presence or absence of tetracycline (0-1 µg/ml) . After an incubation at 37°C for 48 hr in a 

humidified atmosphere with 5% C02, the proliferation rate was determined with the CellTiter 

kit (Promega) by measuring formazan formation converted from tetrazolium at 570 nm. The 

background value of the seeding cells was also determined and subtracted. 

DNA Fragmentation 

37 



Stable transfectants (-80% confluence) were subj ected to apoptotic induction by culturing in 

serum-free media in the presence or absence of tetracycline ( I µg/ml). After a 48-hr incubation, 

cel ls ( I x 106
) were collected, washed with PBS and lysed with lys is buffer (5 mM Tris-HCI, 

pH 8.0, 20 mM EDTA, 0.5% Triton-100, 0.1% SOS). The high molecular weight DNA was 

removed by centrifugation at 14,000 g for 30 min. The supernatants were then sequential ly 

extracted wi th equal vo lumes of a mix of phenol :chloroform: isoamyl alcohol (25:24: I) and 

chloroform. The soluble DNA was precipitated with 2.2 volumes of ethanol in the presence of 

0.5 M NaCl. The DNA was resuspended with TE and treated with DNase-free RNase (0. 1 

µg/µ I) for 3 hr at 30°C to remove RNA. DNA fragmentation was analyzed by agarose 

electrophoresis ( 1.5%). Cell lysates were also prepared and analyzed for the expression of 

DEC I . In order to quantitatively specify the degree of DNA fragmentat ion as a function of the 

expression levels of DEC I, same experiments (the sense line only) were conducted but various 

concentrations (0- 1 ftg/ml) of tetracycline were added to proportionally increase the induction 

of DEC I. 

Caspase activity 

Caspase activities were determined wi th colorimetric substrates. Ac-DEVD-pNA, 

Ac-IETD-pNA and Ac-LEHD-pNA were used for caspase 317, 8 and 9, respectively. Stable 

transfectants were seeded at a --60% confluence in 6-we ll plates. After cells reached - 80% 

confluence, the media were replaced with serum-free media and cultured in the presence or 
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absence of tetracyc line(! µg/ml) for 48 hr. Cells were then harvested, washed with PBS and 

Jysed on ice for 30 min in lysis buffer ( I 00 µI/per well). The Jysis buffer contained I 0 mM 

Tris-HCI, pH 8.0, I 0 mM EDTA, 0.5% Triton X- I 00, 0. I mM PMSF, I mM OTT, pepstatin ( I 0 

µg/m l} and leupeptin (I 0 µg/ml). The lysates were then subjected to centrifugation at I 0,000 g 

for I min at 4°C. To determine caspase activity, JOO µ I supernatant (I mg/ml) was mixed with 

I 00 µI reaction buffer [20 mM Tris-HCI, pH 7.4, 4 mM EDTA, 0.2% CHAPS, 0. 1 mM PMSF, 

I mM OTT, pepstatin ( I 0 µg/ml) and leupeptin ( 10 µg/ml)). To the mix, co lorimetric substrate 

was added at a final concentration of200 µM. After a 2-hr incubation at 37°C, the amount of 

released p-nitroanilide was determined by measuring the absorbance at 4 10 nm, and the relative 

activity was calculated. 

Northern and Western analyses were conducted as described previously (Zhu et al, 2000; Yan et 

al , 1995). Preparation of an antibody against a peptide (CSQALKPIPPLNLETKD) derived 

from DEC I was described elsewhere (Zhu et al, 1999). Protein concentrat ion was determined 

with BCA assay (Pierce). Data are presented as mean ± SD of at least three separate 

experiments, except where results of blots are shown in which case a representative experiment 

is depicted in the figures. Comparisons between two values are made with Student's t test at a 

value of P < 0.05. 
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RESULTS 

Molecular cloning and tumor-related expression of DEC I 

In an effort to identify genes that are differentia lly expressed between colon carcinomas and the 

adjacent normal tissues, we performed cDNA subtractive experiments. Four matched samples 

were used. One of the genes identified encoded a bHLH protein. A full-length cDNA encoding 

this protein was isolated from a liver library by a cDNA-trapping procedure as described 

previously (Hu and Yan, 1999). The cDNA was 3,361 nucleotides long inc luding a 179-bp 

polyA tail. A lignment analysis revealed that this cDNA had a 98% sequence identity with 

DEC 1, a gene that was identified from differentiated embryo chondrocytes (Shen et al, 1997). 

Most of the nucleotide substitutions were in the 3' non-translation region, and none of the 

substitutions in the coding region caused amino acid substitut ions. 

We next exam ined the abundance of DEC I in colon carcinomas and the adjacent normal tissues 

by Northern and Western analyses. As shown in Figure 1-1 A, without exception, DEC 1 gene 

was expressed abundant ly in the colon adenocarcinomas, but on ly little or very low levels of 

DEC I mRNA were detected in the adjacent normal tissues (>20 folds based on densitometrical 

analysis). Consistent with the mRNA data, DEC I protein was detected only in the cancerous 

but not in the adjacent normal tissues. As a contro l for specificity of the antibody, transfection 

experiments were conducted. Cytoplasm ic and nuclear fractions were prepared from cells 

transfected with DEC 1 or the corresponding empty SPORT plasmid. As shown in Figure 1-1 B, 
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Figure 1-1. Expression ofDECl in colon carcinoma and the adjacent normal tissues 

Total RNA (I 0 µg) from colon carcinoma and the adjacent normal tissues was subjected to 

agarose electrophoresis and transferred to a Nytran nylon membrane. The blots were detected 

with 32P labeled probes from cDNA encoding DECI. To normalize the abundance of 28S 

rRNA , the same membrane was reprobed with a [32P]ATP labeled oligonucleotide hybridizing 

28S rRNA. For Western blotting analysis, homogenates (I 0 µg) from colon adenocarcinoma 

and the adjacent tissues were subjected to SOS-PAGE. The immunoblot was incubated with 

the ant ibody against DEC I. The primary antibody was then located by alkaline 

phosphatase-conjugated goat anti-rabbit IgG. (8) Specificity of the prepared antibody. The 

plasmids harboring the DEC! cDNA (transfected) or no insert (control) were used to transfect 

293T cells and the subcellular fractions were prepared as described in the Materials and 

Methods. The fractions (5 µg) were subjected to SOS-PAGE and analyzed for DEC I 

expression (Right). 
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this antibody detected a protein with a molecu lar weight of - 52 kDa, which is consistent with 

the cDNA-based calculated molecular weight. This protein was present only in the nuclear 

fraction of the DEC I transfected cells (transfected) not in the empty vector-transfected cells 

(contro l), suggesting that this antibody is highly specific and DEC I is a nuclear protein (Figure 

1-28). 

Effects of cell confluence and cycle blockers on DEC I expression 

Given the fact that DEC I is abundantly expressed in tumor but not in the adjacent normal 

tissues, its expression is likely linked to cell proliferation state and cycle progression. In order 

to test this possibility, the expression of DEC I was first studied as a function of cell confluence. 

OLD cells, a colon carcinoma-derived cell line, were seeded in a 12-well cu lture plate at 

various densities (1-8 x 10'). On day 3 when wells with the top three seeding densities were 

confluent or post-confluent, cells were harvested. At this time, the cells at the two lowest 

seeding densities were still rapidly proliferating. Total RNA and cell lysates were prepared and 

analyzed for the expression of DEC I. As shown in Figure 1-2A, confluent and post-confluent 

cells (seeded at higher densities) expressed high levels of DEC I, whereas cells in proliferative 

states (seeded at lower densities) expressed little DEC I. It should be emphasized that the same 

amount ( I 0 µg) of total protein was used for each sample. Consistent with the protein data, 

DEC I mRNA levels were drastically elevated in the confluent and post-confluent cells. 
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Figure 1-2. Regulation of DECI expression by cell cycle blockers 

The abundance of DECI mRNA and proteins was determined by Northern and Western 

analyses with JO µg of total RNA and JO µg of cell lysates, respectively. (A) Expression of 

DEC I as a function of cell confluence. OLD cells were seeded in a 12-well culture plate at 

various densities ( J-8 x JO'). On day 3, total RNA and lysates were prepared and analyzed for 

the expression of DEC I. (B) Effects of cell cycle blockers on DEC I expression. Cells were 

seeded at a 30% con.fluence. After a 12-hr incubation, media were replaced with cycle block 

media (Go block, 0.1 % serum; 0 1 block, amino acid deficient media; S block, 3 mM 

hydroxyurea; and 0 2 block, 500 ng/ml nocodazole). After a 30 hr-incubation, lysates were 

prepared and analyzed for DEC! expression. (C) Time course ofhydroxyurea and nocodazole 

on DEC I expression. Cells were treated as described in section B and harvested al indicated 

times, and lysates were analyzed by Western blot. Data are presented as representative results 

obtained in al least three independent experiments. 
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Confluent and post-confluent cells tend to have better cell-cell contact and usually undergo 

growth arrest with less number of cells continuing cycle progression. Therefore, 

confluence-induced expression of DEC! is likely due to cell contact, growth arrest or both. In 

order to test these possibilities, cells were cultured at subconfluence in the presence of cell 

cycle blockers. For 0 0 block, cells were cultured in normal growth media but supplemented 

with only 0.1% serum. For 0 1 block, cells were cultured in amino acid deficient media (no 

methionine and isoleucine ). For S block, cells were cultured in nonnal growth media 

containing hydroxyurea. For G2 block, cells were cultured in nom1al growth medium 

containing nocodazole. Cells were cultured in the cycle block media for 30 hr, and lysates (10 

µg of total protein) were prepared and analyzed for the levels of DEC I. As shown in Figure 

1-28, both hydroxyurea and nocodazole were shown to markedly induce DEC!. TI1e time 

course study showed that the induction was observed as early as 6 hr after treatment (Figure 

1-2C) and reached the maximum 30 hr after treatment. It should be noted that similar 

experiments were conducted with T-Rex 293 cells. These cells expressed markedly lower 

levels of DEC! and the induction was not evident (data not shown). 

Cell growth rate as a function of DEC I expression 

The cell cycle arrest-related expression of DEC! suggests that this protein slows cell cycle 

progress, thus, has proliferation-inhibitory effects. In order to test this possibility, constructs 

DEC I-sense, DEC 1-antisense or DEC I-mutant (Figure 1-3A) was used to stably transfect 
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Figure 1-3. Establishment of DEC! stable transfectants 

(A) Diagrammatic presentation of constructs encoding sense, antisense and mutant DEC!. (B) 

Tetracycline induced expression of DEC! in stable transfectants. The transfected cells were 

cultured in the presence or absence of tetracycline (Tet, I µg/ml) for 24 hr, and lysates were 

analyzed for the abundance of DEC I (5 µg protein). (C) Concentration-dependent induction of 

DEC! by tetracycline. Stable transfectant expressing the sense DEC! was cultured in media 

containing tetracycline (0- 1 µg/ml) for 24 hr. DEC I induction was analyzed as described in 

section B. The Figure shows representative results. 
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T-Rex 293 cells, which allowed the inserted gene to be inducibly regulated by tetracycline. As 

shown in Figure 1-38, addition of tetracycline caused a robust expression of the sense and 

mutant DEC!. The mutant, lacking the DNA binding domain, had a slightly faster 

electrophoretic mobility. No DEC! was detected in cells transfected with the antisense 

construct whether or not tetracycline was added to the media. In addition, the induction by 

tetracycline occurred in a concentration-dependent manner (Figure 1-3C). 

In order to detem1ine the effects of DEC I on cell proliferation, the stable transfectants 

expressing sense, antisense or mutant DEC I were cultured in the presence or absence of 

tetracycline. After a 48 hr-incubation, the proliferation rate was determined. As shown in 

Figure l-4A, the sense but not the antisense or mutant lines exhibited a significant proliferation 

inhibition. Such an inhibitory effect was correlated well with the amount of semm 

supplemented in the media (Figure 1-48). The serum-related inhibition was more evident in 

cells seeded at higher densities (data not shown). Furthennore, the inhibition activity was 

correlated well with the abundance of induced DEC! (Figure 1-4C). 

DEC I antagonizes apoptosis during serum-deprivation 

In some cases, highly proliferative cells tend to be susceptible to detrimental conditions 

whereas the opposite is tme with quiescent or slow proliferative cells. In order to test whether 

DEC I was antiapoptotic, DEC! stable transfectants were cultured in serum-free media. After a 
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Figure 1-4. Effects of DEC! on cell proliferation 

Stable transfectants were plated in 96-well plates ( 12,500/well) and cultured in the presence or 

absence of tetracycline (Tet, I µg/ml) for 48 hr. The proliferation rate was detennined with a 

Cel!Titer kit by measuring the absorbance at 570 nm (Promega). To precisely reflect the 

proliferation rate, control plates were seeded as same as experiment plates but the absorbance 

was detennined 4 hr after seeding. Data are expressed by subtracting the absorbance from the 

control plates. (A) Proliferation rate of sense, antisense and mutant lines cultured with or 

without tetracycline (I µg/m l). (B) Proliferation rate as a function of serum concentrations. (C) 

Proliferation rate as a function of tetracycline concentrations. Results were obtained in at least 

three independent experiments. *Significantly different from cells cultured without 

tetracycline. 
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48-hr incubation, the morphological changes were studied microscopically. When cultured in 

the presence of tetracycline, the sense line displayed an appearance of normal cells (Figure 

I-SA, top left). However, the same line, when cultured without tetracycline, underwent rapidly 

apoptotic changes including condensed nuclei, blebbing of plasma membrane, decreased cell 

size and fom1ation of aggregates (Figure I-SA, top right). In contrast, the mutant line 

underwent apoptotic changes whether or not tetracycline was added to the media (Figure I-SA, 

middle). Similarly to the mutant line, tl1e antisense line underwent a cell dying process (Figure 

I-SA bottom). Jn contrast to the apoptotic appearance seen with the mutant line, the changes of 

the antisense line were associated by excess granule deposit, enlarged cell body, shrank cell 

processes and lack of clear cell border. ln addition, the contact among the processes between 

two cells was markedly reduced compared with the sense line cultured in the presence of 

tetracycline (Figure I-SA). 

In order to link the morphological changes to DNA fragmentation, another hall-marker for cell 

apoptosis, stable transfectants were subjected to serum deprivation in the presence or absence 

of tetracycline. After a 48-hr incubation, soluble DNA was isolated and analyzed by agarose 

gel electrophoresis. As shown in Figure 1-S8, no DNA laddering was detected in the sense line 

when cultured in the presence of tetracycline. In contrast, the antisense and mutant lines or the 

sense line cultured without tetracycline had extensive DNA ladders. DNA laddering in the 

sense line was inversely correlated with the abundance of tetracycline-induced DEC I (Figure 

l-S8). 
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Figure 1-5. Antagonistic effects of DEC J on serum deprivation-induced cytotoxicity 

(A) Morphological assessment of DECl-mediated protection against serum deprivation. 

Stable transfectants expressing sense, antisense or mutant DEC I were plated at -40% 

confluence and grown in full-media in the presence or absence of tetracycline (Tel, I µg/ml). 

After a 12 hr-incubation, the cells were then cultured in serum free media (tetracycline was kept 

the same). After a 48 hr-incubation, morphological changes were assessed (100 x). (B) Effects 

of DEC! on DNA fragmentation in serum-deprivation induced apoptosis. Stable transfectanls 

were grown in full-media in the presence or absence of I µg/ml tetracycline unti l reaching 

-80% confluence. The media were then replaced by serum free media (tetracycline was kept 

the same). After a 48 hr-incubation, DNA fragmentation was analyzed by agarose 

electrophoresis (1.5%). Cell lysates (5 µg) were also prepared from the same cells and 

analyzed for the expression of DEC I. 
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Selective inhibition of DEC I on the activation of procaspases-317. 8 and 9 

Caspases are a group of cycteinyl aspartate-specific proteases that are known lo be activated 

during apoptotic process (Cryns and Yuan, 1998; Luscher and Eisenman, 1990). Next we 

examined whether expression of DEC I caused changes on the activity of caspases-3/7, 8 and 9. 

Stable transfectants underwent serum deprivation in the presence or absence of tetracycline. 

Cell lysates were prepared and assayed for the activity of caspases-3/7, 8 and 9. As shown in 

Figure l-6A, when cultured in the presence of tetracycline, the sense line showed a marked 

decrease on the activity of caspases-3/7 and 9 but not 8. The decrease on caspase-3/7 activity 

was more profound than that on caspase-9. In both cases, the decreases were inversely 

correlated with the abundance of induced DEC!. In contrast, the antisense and mutant lines 

exhibited little changes on the caspase activity whether or not tetracycline was added (data 

shown only on caspase-3/7) (Figure 1-6B). 

Although caspases show a preference for peptidyl substrates, they are not very specific. In 

order to further establish the selectivity of DEC! on the activation of several procaspases, 

immunoblotting analyses were performed with antibodies specific to cleaved procaspase 3, 7, 8 

or 9. As shown in Figure 1-6C, when cultured in the presence of tetracycline, the sense line 

showed a marked decrease on the levels of cleaved procaspases3, 7 and 9. In contrast, little 

changes were detected on the levels of cleaved procaspase 8. These results are consistent with 

the data from enzymatic assays (Figure 1-6A) and provide further evidence that DEC! 
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Figure 1-6. Effects of DEC J on the activity and protein levels of caspases-317, 

8 and 9 

Stable transfectants were cultured in full media in the presence or absence of tetracycline (0- 1 

µg/ml) overnight and then subjected to serum deprivation for 48 hr. Lysates were prepared and 

assayed for caspase activity or immunoblotting analyses. (A) The dependence of suppressed 

activation ofprocaspases-317, 8 and 9 on the induced DECI in the sense line (the activity was 

recorded as a percentage oftliat when cells were cultured without tetracycline). (B) Relative 

activity of caspase-3/7 in stable transfectants expressing sense, antisense or mutant line upon 

serum deprivation. (C) Relative abundance of caspase 3, 7, 8 and 9. Lysates (50 µg) from the 

stable transfected sense line cultured in the absence or presence of tetracycline (I µg/ml) during 

semm starvation were analyzed by Western blotting with antibodies specific to cleaved 

procaspase 3, 7, 8 or 9. The blots were developed by chemiluminescent substrate. 
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selectively suppresses the activation of procaspases. The selective suppression on the 

activation of pro-caspases 3, 7 and 9 over 8 suggests that DECl-mediated antiapoptosis is 

achieved by blocking apoptotic pathways initiated through the mitochondria although the 

precise mechanism remains to be detennined. It should be noted that little changes were 

observed on the expression levels of all four procaspases (inactive fonns) whether or not 

tetracycline was added (data not shown). 
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DISCUSSION 

Human DEC proteins, along with mouse STRA and rat SHARP, represent a new class ofbHLH 

transcription factors (Boudjelal et al , 1997; Fujimoto et al , 2001; Rossner et al, 1997; Shen et al , 

1997). This report describes the functional characterization of DEC I. Subtractive experiments 

with matched samples, followed by Northern and Western analyses, demonstrate that DEC! is 

highly expressed in the tumor but not in the adjacent nonnaJ tissues. DEC I expression is 

markedly induced by several growth arrest factors. DEC! causes a nutrient-dependent 

proliferation inhibition, antagonizes serum deprivation-induced apoptosis and selectively 

inhibits the activation ofprocaspases. Stable transfectants expressing a mutant DEC! (lacking 

the DNA binding domain) show neither proliferation inhibition nor apoptotic antagonism, 

suggesting that DNA binding is required for these actions. These findings functionally 

characterize DEC! and directly link this factor to oncogenesis. 

The proliferation inhibition and anti-apoptosis distinguish DEC! from other bHLH proteins, 

particularly those that have oncogenic significance. The myc oncoproteins exhibit intrinsically 

growth-promoting activity (Luscher and Eisenman, 1990; Packham and Cleveland, 1995). 

Experimentally enforced c-myc expression inhibits differentiation and induces cell 

proliferation. lnstead of suppressing apoptosis, overexpression ofmyc proteins induces it (Penn 

et al , 1990). The TALI protein, while absence in normal adult T lymphocytes, is constitutively 

expressed in >60% of T-cell acute lymphoblastic leukemia. In contrast to DEC!, ectopic 
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expression of TALI promotes cell proliferation and facilitates p53-mediated apoptosis 

(Condorelli et al, 1997). Twist, another bHLH protein involved in developing oncogenic 

phenotypes, promotes both proliferation and survival (Maestro et al, 1999). ID proteins, 

lacking the DNA binding domain, heterodimerize with many other bHLH proteins, therefore, 

act as dominant negative regulators and have a broad spectrum of biological activities (Norton, 

2000). Similar to myc protein, fD proteins are proliferation-promoting and pro-apoptotic 

(Norton, 2000; Kim et al, 1999; Wice and Dordon, 1998). 

The proliferation inhibition and antiapoptosis by DEC! are likely to be active events through 

direct DNA binding. In this report, we demonstrate that only the sense but not the mutant line 

showed proliferation inhibition and antiapoptotic effect. The inability of the mutant to confer 

both activities was unlikely due to the lack of appropriate localization in the nucleus. Studies 

with deletion mutants located the nuclear targeting sequence of DEC I in the C-tem1inal region 

rather than the N-terminus where the bHLH motif is present (lvanova et al, 2001). In addition, 

the mutant line was shown to repress E47-mediated transcription activity toward an E-box 

reporter in a tetracycline-dependent manner (data not shown), suggesting that the mutant line 

produced biologically active proteins. Consistent witl1 these observations, previous study with 

mouse STRA 13 has shown that the middle section of this protein has transcription repressive 

activity (Boudjelal et al, 1997). The repressive activities of STRA 13 are achieved through 

recmiting co-repressor HDAC l or interacting with basal transcription factor TFlfB (Sun and 
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Taneja, 2000). These findings suggest that DECI exerts its biological activities through 

DNA-binding dependent and independent mechanisms. It should be emphasized that STRA 13 

and DECI share the DNA binding domain, however, mouse STRAl3, purified or nuclear 

extracts from STRA 13-transfected cells, has no binding activity toward any known consensus 

N- or E-box sequences (Boudjelal et al, 1997) whereas a OST fusion protein containing the 

N-terminal 122 residues of DECI is recently report to bind to E-box and related to sequence 

(Zawel et al, 2002). 

Proliferation inhibition by DEC I is consistent with the observations that DECI gene is 

up-regulated by agents that cause growth arrest. However, some cycle blockers show only 

minimal effects on DECI induction. For example, deficient medium exhibited potent inhibitory 

activities on cell proliferation but little changes on the levels of DEC! were detected (Figure 

1-2B). Agents with a similar cycle block activity show differential effects on DEC I induction. 

For example, cAMP, hypoxia and amino acid deficient media are all known to arrest cells at GI 

and delay G l /S transition. Only the first two factors were shown to drastically induce DEC I 

(Ivanova et al , 2001; Shen et al, 2001 , Figure l-2B). Generally a sustained induction by cAMP, 

hydroxyurea and nocodazole was observed as early as 6 hr after treatment (Shen et al , 2001, 

Figure 1-2). Cycle synchronization normally takes - 24 hr. Such a rapid induction of DEC I by 

cycle blockers suggests that the induction of DEC I is not due to cycle arrest rather than a prior 

change to such an event. This notion is supported by the fact that DEC I acts as suppressor on 
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cell proliferation (Figure 1-4). It should be noted that induction of DEC! likely provides a 

cytoprotective role as confluent cells usually experience nutrient depletion and cell cycle 

blockers are generally cytotoxic. 

Antiapoptotic activity of DEC I links directly tl1is factor to oncogenesis although it is 

physiologically important as well. DEC I is expressed in a wide range of adult tissues and rat 

SHARPs exhibit an onset of expression as early as the end of embryonic development (E20), 

suggesting that DEC/STRA/SHAR.Ps play a physiological role. In this report, we demonstrate 

that DEC I was abundantly expressed in colon carcinoma but not in the adjacent nonnal tissues, 

suggesting that deregulated expression of DEC! is responsible for its oncogenic potential. 

DEC I -mediated antiapoptotic action against serum deprivation is particularly relevant to tl1e 

survival of tumors. Many cancer tissues particularly solid tumors are poorly vascularized, 

which resembles the condition of serum starvation (Naek et al , 2000; Vaupel et al, 2001; Yu et 

al , 2001). Poor vascularization leads to hypoxia, and survival of hypoxia is an important 

mechanism of tumor expansion. Interestingly hypoxia drastically induces the expression of 

DEC! and the induction is abolished by van Hippel-Lindau tumor-suppressor protein (lvanova 

et al, 2001), a factor that regulates activity of the hypoxia-inducible factor (HIF-1). The HIF-1 

deficient tumors, altl10ugh reduced vascularization, exhibit a higher expansion rate than HfF-1 

expressing tumors (Naek et al, 2000; Vaupel et al , 2001 ; Yu et al, 2001 ). However, it remains to 

be established whether HLF-1 deficient tumors express high levels of DEC! and whether DEC! 
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expression is a contributing factor to the faster expansion of HIF-1 deficient tumors. 

It is interesting to notice that the stable transfectant expressing antisense DEC I was 

morphologically different from the mutant line upon semm starvation (Figure I-SA). Instead 

of classical apoptotic changes such as decreased cell size, the antisense line maintained the 

overall shape of the cells. DNA fragmentation displayed similar changes between mutant and 

antisense lines (Figure 1-5), suggesting tliat these cells undergo apoptosis to a comparable 

extent. The morphological difference, however, was likely due to the difference on the levels 

of endogenous DEC 1. No endogenous expression of DEC 1 was detected under the conditions 

employed, and the effectiveness of antisense sequence on blocking the endogenous expression, 

therefore, remains to be established. However, it is conceivable that the antisense line 

expressed less endogenous DEC 1 than the sense or mutant line. It should be pointed out that the 

inserted DEC 1 sequence was inducibly regulated by tetracycline, but the absence of this 

antibiotic did not completely eliminate constitutive expression of the transgene. Therefore, the 

endogenous DECI expression in the antisense line, even cultured in the absence of tetracycline, 

was likely to be suppressed. We tested several lines for each type of stably transfected cells and 

same results were consistently obtained, excluding the possibility that the difference in the 

location of the transgene inserted in the genome was responsible for the morphological 

difference upon apoptotic induction. 
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In conclusion, we demonstrate that DECI causes proliferation inhibition, antagonizes 

apoptosis induced by serum deprivation, and selectively inhibits the activation ofprocaspases 3, 

7, 8 and 9. These activities are highly correlated with the abundance of tetracycline-induced 

DEC!. Both proliferation inhibition and antiapoptotic effect require the presence of the DNA 

binding domain. DECI is present in a wide range of adult tissues, and we demonstrate that this 

gene is abundantly expressed in colon carcinoma but not in the adjacent nonnal tissues. These 

findings together suggest that DEC I is physiologically important and plays an oncogenic role 

when its expression is ectopic and deregulated. DEC/STRNSHARPs are structurally distinct 

bHLH proteins. The data presented in this report functionally distinguish them from other 

bHLH proteins as well. 
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MANUSCRIPT II 

THE EXPRESS ION OF ANTIAPOPTOTIC PROTEIN SURYIVIN IS 

TRANSCRIPTIONALLY UPREGULATED BY DECI PRIMARILY THROUGH 

MULTIPLE SP I BINDING SITES IN THE PROXIMAL PROMOTER1 

ABSTRACT 

Human DEC, mouse STRA and rat SHARP proteins constitute a new and structurally distinct 

class of the basic helix-loop-helix (bHLH) proteins. DEC! is abundantly expressed in tumors 

and protects against apoptosis accompanied by decreased caspase activities. In tl1is study, we 

report that DEC! transcriptionally upregulates the expression of survivin, an antiapoptotic 

protein that interferes with the processing and catalysis of caspases. In paired tumor-nom1al 

tissues, survivin and DEC! exhibited a paralleled expression pattern. Tetracycline-induced 

expression of transfected DEC! caused proportional increases on the levels of survivin. In 

co-transfection assays, DEC! activated a survivin promoter reporter (5-fold) but repressed a 

DEC2 promoter reporter (>90%). In contrast to the repression, the activation was delayed and 

varied depending on serum concentrations and cycle blockers. In addition, the C-tem1inal 65 

residues were required to maximize the activation but not repression. Studies with deletion and 

substituted mutants located, in the proximal promoter, two Sp I sites that supported the 

DEC I-mediated activity. Both DECI and Sp! were involved in the binding of these Sp! sites. 

DEC! has been implicated in oncogenic process and is generally considered to be 

transcriptionally repressive. The established activation of the survivin promoter provides a 
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molecular explanation for its oncogenic involvement and represents the first example that 

DEC I and other members in this class can act as transcription activators depending on the 

genomic context of a target gene. 
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INTRODUCTION 

Human DEC, mouse STRA and rat SHARP constitute a new and structurally distinct class of 

bHLH proteins (Shen et al., 1997; Rossner et al., 1997; Boudjelal et al. , 1997). In each species, 

two members are identified with a sequence identity of >90% in the bHLl-1 region and -40% in 

total proteins, respectively. These transcription factors are involved in various cellular events 

such as cell proliferation, differentiation (Boudjelal et al., 1997; Sun and Taneja, 2000), 

maturation of lymphocytes (Sun et al., 2001), regulation of molecular clock (Honma et al., 

2002) and lipid metabolism (Yun et al., 2002). Transfection with DEC I causes marked 

decreases in cell proliferation, and the decreased proliferation is proportionally correlated with 

the levels of DEC! (Li et al., 2003). Chondrogenic cells expressing high levels of DEC! 

undergo rapid phenotypic changes toward terminal differentiation in response to mitogenic 

stimuli (Shen et al., 2002). Consistent with the promotion of chondrocyte differentiation, 

STRA 13 promotes neuronal but represses mesodermal and endodennal differentiation 

(Boudjelal et al., 1997), and Sl-IARPs are abundantly expressed in a subset of mature neurons 

(Rossner et al. , 1997). STRA 13 deficient mice, although surviving to adulthood, develop 

autoinunune diseases accompanied by accumulation of spontaneously activated T and B cells 

(Sun et al., 2001). Furthem10re, the mouse proteins are found to interact directly with clock 

Bmall protein and regulate the expression of biological clock regulator Per (Honma et al. , 

2002). 
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Another notable characteristic of DEC/STRA/SHARPs is that their expression is rapidly 

induced in response to various types of detrimental stimuli. ln rats that undergo seizure 

induction by kainic acid, the levels of mRNA encoding SHARP I or 2 are sharply elevated 

witl1in I h (Rossner et al., 1997). Similarly, the expression of DEC! is rapidly increased in 

response to hypoxia, a condition that closely mimics the microenvironment of tumors 

(Miyazaki et al., 2002; lvanova et al., 2001). These findings link these transcription factors, 

particularly their elevated expression, to oncogenesis. Several lines of evidence support this 

possibility. First, expression of DEC! appears to be deregulated in several tumor tissues. In 

paired samples from the colon, lung and kidney, DEC! is abundantly expressed in the car-

cinomas but not in the adjacent nom1al tissues (Li et al., 2003). High levels of DEC I mRNA 

are also detected in an array of cancer cell lines from a wide range of organs (Ivanova et al., 

2001). Cells that lack the functional tumor suppressor VHL (von Hippel-Lindau) express 

higher levels of DEC! (Ivanova et al., 2001). Second, DECI is antiapoptotic apparently 

through reducing caspase activities (Li et al., 2002). Forced expression of DEC I effectively 

antagonizes apoptosis induced by serum starvation and causes a marked decrease on the 

activi ty ofcaspases-3/7 and 9 but not 8. In addition, a DEC! mutant, lacking the DNA binding 

domain, shows neither antiapoptotic activity nor inhibitory effects on caspases (Li et al., 2002). 

Caspases are cycteinyl aspartate-specific proteases and exist in normal cells as inactive forms, 

so called procaspases (Cryns and Yuan, 1998; Budihardjo et al., 1999). Upon apoptotic stimuli, 
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procaspases undergo proteolytic processing in a cascading activation manner, which results in 

the forn1ation of active caspases. There are two major activation pathways: the cell surface 

death receptor pathway and the mitochondrial patl1way (Budihardjo et al., 1999). For example, 

binding ofFasL to its receptor results in the formation of the death-inducing signaling complex, 

which recruits and subsequent ly activates the upstream procaspase such as procaspase-8 

(Ashkenazi and Dixit, I 999). ln contrast, the mitochondrial pathway is initiated by 

intracellular death signals, leading to the formation of apoptotic protein complexes (Green and 

Reed, 1999). The complexes initiate the activation cascade from procapase-9 to down-stream 

targets such as procaspase-3. Caspase activation, altl10ugh following a sequential cascade, is 

regulated by several families of proteins. The inhibitor of apoptosis (IAP) family of proteins 

emerges as one of the major classes of proteins that negatively regulate apoptosis. Several lAP 

proteins are found to interact directly with and inhibit tl1e activity of caspases (Yang and Li, 

2000; Miller, 1999; Lacasse et al., 1998; Kasof and Gomes, 2001 ; Reed, 2001). 

Jn this study, we report that DEC 1 is a transcription activator of survivin, a member of the !AP 

family. In the paired tumor-normal tissues, survivin and DEC! exhibited a paralleled expre-

ssion pattern. In co-transfection assays, DECI activated a survivin promoter reporter but 

repressed a DEC2 promoter reporter. Jn contrast to the repression, the activation was delayed 

and depended on serum concentrations and cycle phase. Studies with deletion and substituted 

mutants located, in the proximal promoter, two Sp I sites that supported the DEC !-mediated 
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activity. Both DEC! and Spl were involved in the binding of these Sp! sites. TI1e reported 

activation of the survivin promoter provides a molecular explanation for the oncogenic 

involvement of DEC! and represents the first example that DEC! and other members in this 

class can act as transcription activators depending on the genomic context of a target gene. 
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MATERIALS AND METHODS 

Chemicals and supplies 

Hydroxyurea, mimosine, nocodazole, tetracycline, thymidine, and anti-FLAG antibody were 

purchased from Sigma. Propidium iodide was from BD Biosciences. Antibodies against 

procaspases and XlAP were from Cell Signaling. Antibody against Sp 1 was purchased from 

Geneka Biotechnology. Antibodies against clAP-1, clAP-2 and survivin were from Santa Cruz. 

Goat anti-rabbit-lgG conjugated wi th alkaline phosphatase or horseradish peroxidase and ECL 

substrate were from Pierce. DMEM media and LipofectAM!NE were from lnvitrogen. 

Dual-Luciferase Reporter reagent and DNA binding buffer were from Promega. Unless 

0U1erwise indicated, all other reagents were purchased from Fisher Scientific. 

Tissue collection and processing 

Samples were collected from patients who underwent surgical resection for histologicall y 

confirmed adenocarcinoma. As paired controls, specimens from the adjacent, grossly nom1al 

tissues were harvested. The samples (3 or 4 pairs/each organ) were collected from the colon, 

kidney, and lung with four pairs from each organ. The age of the patients was between 23 and 

68 with seven male and five fema le. The size of tumors was generally 2-5 cm in diameter, and 

U1e degree of differentiation of tumors was moderate or poor as determined by pathological 

examination. Samples were freshly processed for RNA isolation and protein extraction. Total 

RNA was isolated with a Tri-reagent as described previously (Xie et al., 2003). For the 
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preparation of protein extracts, tissues were homogenized in lysis buffer (20 mM Tris-HCI, pH 

7.4, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SOS, 0.2 mM PMSF and I mM OTT). 

The homogenates were centrifuged at 12,000 g for 30 min to remove any insoluble precipitates. 

The protocol of using human pathological tissues was reviewed by the Institutional Review 

Board. 

Reverse transcription coupled polymerase chain reaction (RT-PCRl 

RT-PCR experiments were performed with a Them10Script I kit. Total RNA (2 µg) was 

subjected to the synthesis of the first strand cDNA with an oligo(dT) primer and a 

ThennoScript reverse transcriptase. The reactions were incubated initially at 50°C for 30 min, 

and then at 60°C for 60 min after additional reverse transcriptase was added. The cDNAs were 

then subjected to PCR amplification with cycling parameters as follows: 95°C for 30s, 52°C for 

30s and 68°C for 30 or 40s for a total of 32 cycles. The primers for DEC! amplification were: 

5 '-GTCTGTGAGTCACTCTTCAG-3', 5 ' -GAGTCTAGTTCTGTTTGAAGG-3 '; the primers 

for survivin amplification were: 5'-TCAAGGACCACCGCATCTCTAC-3 ', 5'-GCACTTTC-

TTCGCAGTTTCC-3 ' ; and the primers for 13-actin amplification were: 5'-GTACCC-

TGGCATTGCCGACAGGATG-3', 5'-CGCAACTAAGTCATAGTCCGCCTA-3'. The PCR-

amplified products were analyzed by agarose gel electrophoresis. 

Expression constructs for DEC I and mutants as well as the DEC2 promoter reporter 
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(pDEC2-luc) were described previously (Li et al., 2002; 2003). Survivin promoter reporters 

were prepared witl1 the pGL3-basic luciferase vector (Promega). Deletion mutants of survivin 

reporters were generated by PCR with the pSurvivin-6270 serving as the template. Preparation 

and characterization of the pSurvivin-6270 reporter were described elsewhere (Li and Altieri, 

1999). Substitution mutants (pSurvivin240-M and pSurvivin 154-M) were also prepared with 

PCR with primers containing multiple nucleotide substitutions. The sequences of the primers 

to introduce substitutions are : 5'-CTACGCGTAATAAGGAACGAGCTGGTGATGTATCG-

CTGGGTGCACCGCG-3' (for pSurvivin240-M), and 5'-CTACGCGTCCCGGCACACC

CCTAGTTATCAAGTTTCTACTCCCAGAAGGC-3' (for pSurvivinl54-M). All mutated 

constructs were subjected to sequencing analysis to confirm the desired mutation being made 

without secondary mutations. 

Co-transfection experiment 

Co-transfection experiments were perfom1ed with DEC! stable transfected or the parent line 

(293T). The preparation and characterization of DEC! stable transfectants were described 

previously (Li et al., 2002). Cells were plated in 24-well plates in DMEM media supplemented 

with I 0% fetal bovine serum at a density of 1.6 x Io' cells per well. Transfection was 

conducted by lipofection with LipofectAMINE according to the manufacturer's instruction. 

Transfection mixtures contained DEC! or a mutant construct (100 ng), reporter plasmid (100 

ng) and the pRL-TK Ren ilia plasmid (I ng). If DEC! stable line was used, DEC! or its mutant 
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construct was omitted from the transfection mixture. The transfected cells were cultured for an 

additional 24 h, washed once with PBS and resuspended in passive lysis buffer (Promega). The 

lysed cells were subjected to 2 cycles of freezing/thawing. The reporter enzyme activities were 

assayed with a Dual-Luciferase Reporter Assay System. This system contained two substrates, 

which were used to determine the activity of two luciferases sequentially. The firefly luciferase 

activity, which represented the reporter gene activity, was initiated by mixing an aliquot of 

lysates (20 µI) with Luciferase Assay Reagent II. Then the firefly luminescence was quenched 

and tl1e Renilla luminescence was simultaneously activated by adding Stop & Glo Reagent to 

the sample wells. The firefly luminescence signal was normalized based on the Renil/a 

luminescence signal. In a case that the reading on the luciferase activity was too high, the 

lysates were diluted and luciferase activities were then detem1ined to minimize the interference 

on the reading of the Renilla luciferase activity. 

Some co-transfection experiments were performed in media containing a speci fie cell cycle 

blocker. In addition to serum starvation, four commonly used blockers were included: 

hydroxyurea (3 mM), minosine (0.4 mM), thymidine (2 mM) and nocodazole (0.5 µg/ml). 

These blockers are known to arrest cells at GI, late GI, Sand G2/M, respectively. The blockers 

were added 3 h after the cells were transfected. The treated cells were cultured for additional 30 

h. Some cells were lysed and analyzed for reporter activities , whereas others were harvested, 

ethanol-fixed, stained by propidium iodide and analyzed for cell cycles (BD FACSCaliber). 
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Electrophoretic mobility shift assay CEMSA) 

DEC I stable transfected cells (293T) were cultured in the presence or absence of tetracycline(! 

µg/ml) for 36 hand nuclear extracts were prepared with a nuclear extraction kit (Active Motif). 

Nuclear proteins (JO ~tg) were incubated with radiolabeled double-stranded oligonucleotides 

(Table I) in a final volume of 10 µI containing IX DNA binding buffer. For competition experi-

ments, nuclear extracts were first incubated with excess cold probe (50x) and then mixed with 

the radiolabeled probe. Oligonucleotides with a disrupted Sp I site were also used in the 

competition assays. For super-shift assays, an anti-DEC I or anti-Sp I antibody was added 

eitl1er before or after the nuclear extracts were incubated with the radiolabeled probe. The 

protein-DNA complexes were resolved in 6% PAGE and visualized by autoradiography. 

Other analyses 

Western analyses were conducted as described previously (Xie et al., 2002). The anti-DEC I 

antibody against the C-tern1inal peptide was described elsewhere (Li et al. , 2002). Protein 

concentration was detern1ined with BCA assay (Pierce) with bovine serum albumin as the 

standard. Data are presented as mean ± SD of at least four separate experiments, except where 

results of blots are shown in which case a representative experiment is depicted in the figures. 

Comparison between two values were made with Student 's t test atp < 0.05. 
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RESULTS 

DEC I selectively increases the expression of survivin among IAP proteins 

Overexpression of DEC 1 results in decreased activites of caspases-3, 7 and 9, but not caspase 8. 

To detem1ine if DEC 1 selectively represses the expression of procaspases, stable transfected 

lines inducibly expressing DEC! or the DNA binding mutant (DECl-M) were cultured in the 

presence or absence of tetracycline to modulate the expression of DEC! and DECl-M, and the 

levels of procaspases-3 and 8 were determined. As expected, addition of tetracycline caused a 

robust expression of DEC! and DEC l-M (the mutant has a slightly higher electrophoretic 

mobility) (Figure 2-lA). In contrary to the hypothesis, however, neither DEC! nor DECl-M 

caused any changes on the levels of procaspase-3 or 8 (Figure 2-1 A). Three clonal lines for 

each type of stable transfectants were tested, and consistent observations were made. 

The inability of DEC! to alter the expression of the procaspases suggests that DEC! decreases 

the activity of the caspases through inhibiting the activation ofprocaspases. Several classes of 

proteins, notably the inhibitor of apoptosis (!AP) fanlily (Yang and Li, 2000; Miller, 1999), 

have been shown to interfere with the processing and catalysis of several caspases. We next 

examined whether DEC! up-regulates the expression of !AP proteins. DEC! stable line 

underwent serum starvation for 36 h in the presence or absence of tetracycline, and cell lysates 

were collected and analyzed for the abundance of several major IAP proteins including cJAP-1 , 

c!AP-2, XlAP, and survivin. Addition of tetracycline caused a robust induction oftransfected 
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Figure 2-1. Expression of procaspases and inhibitor of apoptosis proteins in DEC ! stable 

transfected lines 

(A) Abundance of and procaspases-3 and 8 in DEC! and DECl-M stable lines as a function of 

induced expression a/DEC! Stable transfected cells by DEC! or DECI-M (lacking the DNA 

binding domain) were seeded in 6-well plate. After reaching - 80% confluence, cells were 

treated with tetracycline ( I µg/ml) for 36 h. Cell Iysates (5 µg) were subjected to SOS-PAGE. 

The immunoblot was incubated with an antibody against procaspases-3, 8 or DEC!. The 

primary antibody was then located by horseradish peroxidase-conjugated goat anti-rabbit lgG 

and visualized with chemiluminescent substrate. (8) Abundance of /AP proteins in DEC! 

stable lines as a function of induced expression of DEC I Stable transfected cells by DEC! were 

seeded in 6-well plate. After reaching - 80% confluence, cells were treated with tetracycline (I 

µg/ml) for 24 h. Cell lysates (5 µg) were subjected to SOS-PAGE. The inununoblot was 

incubated with an antibody against !AP proteins, DEC! or [3-actin. The blots were detected as 

describe above. Three clonal lines were used for each type of stable lines, and consistent results 

were obtained. 
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DEC! (Figure 2-18). However, only survivin was markedly increased in tetracycline-treated 

cells, suggesting that DEC I is a selective regulator on tl1e expression among !AP genes (Figure 

2-18). 

DEC! and survivin show a paralleled expression pattern 

In order to further establish the connection that DEC! up-regulates the expression ofsurvivin, 

two additional experiments were perfonned: survivin induction was monitored as a function of 

DEC! levels, and expression patterns of DEC! and survivin were determined among paired 

tumor-normal tissues from the kidney and lw1g. The DEC I stable line was cultured in media 

containing tetracycline at various concentrations (0-1 µg/ml) and the levels of DEC I and 

survivin were monitored. Consistent with the notion that DEC I up-regulates survivin, 

tetracycline-induced expression of DEC! proportionally increased the levels of survivin 

(Figure 2-2A). In order to detennine whether the correlative expression pattem occurs in vivo, 

samples from paired tumor-normal tissues were analyzed for the abundance of DEC I and 

survivin. As shown in Figure 2-28, both DEC! and survivin were expressed markedly higher 

in the carcinomas tl1an the adjacent normal tissues. Such a tumor-related increase was also 

detected by RT-PCR on both DEC! and survivin (Figure 2-2C), suggesting that 

DECJ-mediated induction ofsurvivin is achieved by increasing the levels ofsurvivin mRNA. 

In summary, the paralleled expression pattern in tumor-nom1al samples and the inducible 

expression of survivin by DEC! in the DEC! stable line support the notion that DEC! is an 

activator on the expression of survivin. 
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Figure 2-2. Induction of survivin by DEC! and abundance of survivin in paired tumor 

and normal tissues from the kidney and lung 

(A) lnducrion ofsurvivin is proporrionallycorrelaredwirh rhe levels of DEC I DECI stable cells 

were seeded in 6-well plate. After reaching -80% confluence, cells were treated with 

tetracycline at various concentrations (0-1 µg/ml) for 36 h. Cell lysates (5 µg) were analyzed 

for the expression of survivin, DEC I and j}-actin. (B) Paralleled expression of DEC! and 

sun,ivin in paired tumor and normal samples for the kidney and hmg Tissue homogenates (50 

µg) from paired tumor-nonnal tissues were subjected to SDS-PAGE, and the immunoblot was 

incubated with the antibody against DEC I, survivin or j}-actin. (C) DEC! and s11rvivi11 mRNA 

in paired 111111or-11or111al tissues for the kidney Total RNA (5 µg) of carcinoma-normal paired 

samples from the colon, kidney and lung was subjected to RT-PCR analyses with a 

ThennoScript I kit. For PCR amplification, a master tube containing all common reagents was 

prepared and equally distributed to individual PCR reaction tubes (DEC!, survivin and j}-actin). 

PCR amplification was conducted wi th cycling parameters as follows: 95°C for 30s, 52°C for 

30s and 68°C for 30 or 40s for a total of 32 cycles. The PCR-amplified products were analyzed 

by agarose gel electrophoresis and visualized by ethidium bromide staining. 
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DECl-mediated induction ofsurvivin varies depending on serum concentrations 

Solid tumors are poorly vascularized, thus hypoxic and deficient in nutrients (Vaupel et al. , 

2001). It is likely that the levels of DEC! , serum concentrations and oxygen tension 

collectively determine the overall induction ofsurvivin. We next examined the effects of serum 

concentrations on the DEC 1 mediated induction of survivin. As shown in Figure 2-3A, the 

expression of DEC I is markedly induced by tetracycline independently of serum 

concentrations. In contrast, the levels of survivin varied markedly depending on the 

concentrations of serum in media. Generally, higher serum concentrations supported higher 

expression of survivin, and in a given serum concentration, higher levels of DECI supported 

higher expression of survivin. Cells cultured with lower serum concentrations (0-2%) 

exhibited markedly higher induction of survivin (between the presence and absence of 

tetracycline in a given serum concentration) (Figure 2-3A}. Remarkably, the induction of 

survivin in cells cultured with less serum, although profound, did not exceed the levels in cells 

cultured with higher serum concentrations (e.g., 5%) (Figure 2-3A). 

Two mechanisms, nan1ely increased survivin stability and/or expression, could be responsible 

for increased level of survivin. To distinguish these possibilities, we perfonned a time course 

study on the changes oftl1e survivin levels in reference to the levels of P-actin. Both DEC! and 

DECl-M lines were included in this study. As shown in Figure 2-3B, little changes on the 

survivin levels were observed in the first 12 h-serum starvation. However, a rapid decline was 

detected after a 12 h-incubation (Figure 2-38). Such time-dependent changes occurred in both 
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Figure 2-3. Time and serum-dependence of DEC l-mediated induction on survivin (A) 

Effects of serum concentrations on the induction ofsurvivin DECI stable cells were seeded in 

6-well plate. After reaching -80% confluence, cells were cultured in media containing various 

amounts of serum (0-5%) in tl1e presence or absence of tetracycline (1 µg/ml) for 36 h. Cell 

lysates (5 µg) were analyzed for the expression of survivin, DEC 1 and P-actin. (B) 

Time-course study 011 DECJ-mediated i11ductio11 ofsurvivin DECI stable cells were cultured in 

the presence or absence of tetracycline (1 µg/ml) for 0-36 h. Cell lysates (5 µg) were analyzed 

for the expression ofsurvivin, DECl and P-actin. (C) Abundance ofsurvivin mRNA in DECl 

and DEC 1-M lines DEC 1 or DEC 1-M stable lines were cultured in the presence or absence of 

tetracycline (1 µg/ml) for 36 h. Total RNA (5 µg) was subjected to RT-PCR analyses with a 

ThennoScript 1 kit for the levels of survivin and P-actin mRNA as described in the legend of 

Figure 2-2 . 
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DEC I and mutant lines, and independently of tetracycline. In contrast, in the 24 and 36 

h-cultures, markedly higher levels of survivin were detected in the presence of tetracycline, but 

such increases were detected only in the DEC I but not DEC-M line. Similarly, 

tetracycline-induced expression of DEC I but not DECl-M supported higher levels ofsurvivin 

mRNA (Figure 2-3C). Addition of actinomycin D, an inhibitor on RNA synthesis, completely 

abolished DEC I-mediated increase on survivin mRNA (data not shown). 

DECl stimulates the survivin promoter 

The increase on survivin mRNA and the repressed increase by actinomycin D suggest that 

DEC I-mediated induction of survivin is achieved through transcription activation. We next 

determined whether DEC! directly activates the survivin promoter. Three reporters were 

included in this study: pSurvivin-6270, pSurvivin-268, and pDEC2-luc. The rationale for the 

reporter selection was that tl1ese reporters contain various numbers of E-box elements and 

DEC I has been shown to alter reporter activity through E-box DNA elements (Figure 2-4A) 

(lvanova et al., 200 I). The pSurvivin-268 reporter was derived from the 3' sequence of the 

pSurvivin-6270 reporter, and both starts from nucleotide -39 (Li and Altieri, 1999). More 

importantly, the pSurvivin-6270 reporter contains more than 30 E-box elements, whereas no 

E-box is present in the pSurvivin-268 reporter. The pDEC2-luc reporter contains a 1,888 

hp-upstream sequence from the DEC2 gene, where two E-box elements (CACGTG) are present 

(Li et al., 2003). We have recently demonstrated that DEC I represses the pDEC2-luc reporter 
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Figure 2-4. DEC! activates the survivin promoter but represses the DEC2 promoter 

{A) Diagrammatica/ presentation ofpDEC2-luc, pSurvivin-6270 and - 268. (BJ Activation of 

the survivin reporters and repression ofpDEC2-luc in full-media DEC! stable transfected cells 

were cultured in 24-well plates at - 80% confluence and transfected again with a reporter 

construct (100 ng) and the pRL-TK Renilla (I ng). The re-transfected cells were cultured with 

media containing 10% serum in the presence or absence of tetracycline (I µg/ml} for 24 h. The 

cells were collected, washed once with PBS and resuspended in passive lysis buffer. The 

reporter enzyme activities were assayed with a Dual-Luciferase Reporter Assay System. The 

firefly luminescence signal was normalized based on the Renilla luminescence signal. (CJ 
Activation of the survivin reporters and repression ofpDEC2-luc in senm1free media DECI 
stable transfected cells were cultured in 24-well plates at - 80% confluence and transfected 

again with a reporter construct (100 ng) and tl1e pRL-TK Renil/a (I ng). The re-transfected 

cells were cultured with serum free media in the presence or absence of tetracycline (I µg/ml) 

for 24 h. The reporter activities were determined as describe above. 
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largely through the E-box in the proximal promoter region (49, 56). It should be emphasized 

that altl1ough the pSurvivin-6270 reporter contains numerous E-box elements, none of them is 

identical to the E-box in the pDEC2-luc reporter (Figure 2-4A). 

Since DEC I-mediated induction of survivin was markedly more evident in media 

supplemented with lesser serum (S 2%) (Figure 2-3A), the reporter assays were performed in 

full (10% serum) or serum free media. In the presence of serum, induction of DEC! (addition 

of tetracycline) modestly stimulated the activity of both pSurvivin-6270 and 268 reporters 

(Figure 2-48). In the absence of serum, however, both survivin reporters were markedly 

stimulated (Figure 2-4C). The pSurvivin-268 reporter exhibited a higher activation than the 

pSurvivin-6270 (Figure 2-4C). In a striking contrast, the pDEC2-luc reporter was repressed by 

more than 90%, whether or not serum was supplemented (Figure 2-48 and C). 

Activation of pSurvivin-268 was delayed and cycle-dependent 

The activation of the survivin reporter and repression of the pDEC2-luc reporter suggest that 

DECI regulates the transcription through more tl1an one mechanism. A conceivable 

explanation for such opposing activities is that DEC! is a part ofa large transcription regulatory 

complex, and this complex rather than DEC! alone determines the overall transcription 

activities (assumed that the complex varies among different target genes). Another possibility 

is that repression of pDEC2-luc is achieved through direct mechanism, whereas activation of 
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survivin reporters is through indirect mechanism or vice versa. It is expected that the direct 

mechanism would have an earlier onset than the indirect mechanism. In order to test this 

possibility, time-course studies were performed with pDEC2-luc and pSurvivin-268. As shown 

in Figure 2-SA, activation of the pSurvivin-268 reporter was not evident during the first IO 

h-incubation, and the activation was increased with prolonged incubation, particularly after I 0 

h-incubation. In contrast, the pDEC2-luc reporter was markedly repressed as early as 4 h, and 

the overall repression was rather steady during the entire period of incubation (Figure 2-SA). 

The values from the 4 h-cultures in the absence of tetracycline were expressed as 100%. 

The difference on the onset between repression and activation points to two important 

possibilities: (a) pDEC2-luc is a more sensitive target (requiring less DEC!) than 

pSurvivin-268; and (b) activation ofpSurvivin-268 requires the synthesis of additional factors. 

Apparently, comprehensive experiments are required to definitively establish the involvement 

of each possibility. However, an effort was made to gain an initial insight by testing whether 

repression and activation are equally altered by cell cycle arrest. The rationale for this strategy 

is that the expression of survivin is regulated in a cycle-dependent manner (Li et al., 1998), and 

DEC I mouse homologue STRA 13 has been shown to delay cell cycle progression into S phase 

(Seimiya et al., 2002). DEC! stable transfected cells were transfected again with 

pSurvivin-268 or pDEC2-luc and synchronized with cell cycle blockers. As shown in Figure 

2-58, DEC I caused a marked repression of pDEC2-luc independently of cycle blockers. In 
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Figure 2-5. Activation of the survivin promoter by DEC! is delayed and varies depending 

on cell cycle blockers 

(A) Activation of the pSurvivin-268 is delayed DECI stable transfected cells were cultured in 

24-well plates at - 80% confluence and transfected again with a reporter construct (I 00 ng) and 

the pRL-TK Ren ilia (1 ng). The re-transfected cells were cultured witl1 senun free media in the 

presence or absence of tetracycline (1 µg/ml) for 0-36 h. The reporter enzyme activities were 

determined as describe above. The values from the 4 h-cultures in the absence of tetracycline 

were expressed as 100%. (B) Activation of pSurvivin-268 varies depending on cell cycle 

blockers DECJ stable transfected cells were cultured in 24-well plates to -80% confluence and 

transfected again with a reporter construct ( JOO ng) and the pRL-TK Renilla ( I ng). The 

re-transfected cells were cultured in media containing no or a specific cycle blocker (3 mM 

hydroxyurea 3 mM, 0.4 mM mimosine, 2 mM thymidine and 0.5 µg/ml nocodazole). The cells 

were cultured in media supplemented with 10% serum and in the presence or absence of 

tetracycline (1 µg/ml) for 24 h. The reporter enzyme activities were detem1ined as describe 

above. The values from the cultures in the absence of tetracycline were expressed as 100%. 
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contrast, the activation of pSurvivin-268 varied depending on tl1e blockers. A moderate 

activation was detected in cells treated with hydroxyurea, minosine and lhymidine. In contrast, 

nocodazole, a cycle blocker arresting cells at G2/M, showed little effects on the 

DEC I-mediated activation on the reporter. It should be emphasized that hydroxyurea repressed 

but nocodazole activated the pSurvivin-268 reporter compared with vehicle controls (in the 

absence of DEC I), and treatment with a blocker generally achieved a 65-80% of cells arrested 

at a designated cycle as detennined by DNA content analysis (data not shown). 

Requirements of functional domains in DECI to activate the survivin transcription 

DEC! has several functional domains, and some of them (e.g., the orange domain) likely 

interact with other proteins. To determine which functional domains are required for the 

activation of survivin reporter, several DECI mutants with certain functional domains 

selectively disrupted were prepared and tested for the ability to stimulate the pSurvivin-268 

reporter. These mutants are diagrammatically shown in (Figure 2-6, Left). The results of the 

reporter assays with the DECJ mutants on pSurvivin-268 were summarized in Figure 2-6 

(Right). Deletion mutants retaining DNA binding abi lity (DEC 11.,.,, DECJ 1•270, DEC 11•197 and 

DEC! 1.iso) all exhibited some transactivation activities depending on the length of a mutant. 

For example, DECJ 1•347 exhibited -60% of the activity of DEC I, whereas DEC 11.iso, with a 

longer C-terrninal deletion, had only - 20% of the activity of DEC I (the activity from the empty 
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Figure 2-6. Requirements of functional domains in DECI to activate the pSurvivin-268 

Activation of the pSurvivin-268 Cells (293T) were cultured in 24-well plates and transiently 

transfected witl1 DEC I or a mutant ( 100 ng), pSurvivin-268 ( 100 ng) and the pRL-TK Renilla 

( \ ng). The transfected cells were cultured in serum free media for 24 h, and lysates were 

collected and analyzed for luciferase activities. Similarly firefly luminescence signal was 

normalized based on the Renilla luminescence signal. 
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vector was subtracted). In contrast, the mutants with the DNA binding domain or an 

N-terminal deletion (DEC 1-M, DEC 1105412, and DEC1 237_. 12) showed little activity toward the 

pSurvivin-268 reporter. These mutants were previously shown to have no DNA binding 

activity (Ivanova et al., 2001). Among the substitution mutants, the DEC 1 PSM mutant showed a 

higher activity than DEC! in activating the pSurvivin-268 reporter, whereas the other two 

mutants (DEClRssP and DECl psoNR.SsP) showed no activation activity. DEC1 P56A but not 

DEClRssP nor DEC1 PS6NR.SSP was shown to bind to E-box. It should be emphasized that 

Western analyses detected comparable expression with all constructs (results not shown). 

Both DEC 1 and Sp I bind to the proximal promoter of survivin 

Motif analyses identified a clustered Sp l /CDE region (fycle gependent ~lement) in the 

proximal region of survivin promoter and has been shown to mediate its basal expression (Li 

and Altieri, 1999). Some of the Sp 1 sites are slightly altered and arranged in a modified 

configuration (Figure 2-7A). In order to identify DNA sequences that act as potential binding 

sites for DEC 1, ten oligonucleotides were synthesized to span tl1e entire region with partial 

sequences overlapped on one or botl1 ends of an oligonucleotide (Table 1 ). Equal amounts of 

extracts from control or tetracycline-treated cells were allowed to bind to the double stranded 

o ligonucleotides individually, and shifted bands were detected by non-denaturing PAGE. As 

shown in Figure 2-76, one or more shifted bands were detected with seven out of ten 

oligonucleotides including oligonucleotides 41-68, 55-84, 85-114, I 05-126, 115-144, 123-158, 
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Table I. Sequences of Oligonucleotides for Electrophoretic Mobility Shift Assay 

Oligonucleotide Sequence 

41-68 5 '-CCCCGCGGCGCGCCATIAACCGCCAGAT-3' 

55-84 5' -GTGCGCTCCCGACATGCCCCGCGGCGCGCC-3' 

76-105 5 '-GGGGTGGACCGCCTAAGAGGGCGTGCGCTCC-3' 

85-114 5'-GGCCGCGGGGGGTGGACCGCCTAAGAGGGC-3' 

105-126 5'-CTACTCCCAGAAGGCCGCGGGG-3' 

11 5-144 5' -CCCCGCGCCGCCCCGCCTCTACTCCCAGAA-3' 

123-158 5 '-CAACTCCCGGCACACCCCGCGCCGCCCCGCCTCTAC-3' 

145-174 5' -CGCGGCGGGAGGACTACAACTCCCGGCACA-3' 

175-204 5' -CTGGGTGCACCGCGACCACGGGCAGAGCCA-3' 

205-234 5 '-TGTGGGCAGGGACGAGCTGGCGCGGCGTCG-3' 

Note: Oligonucleotides are numbered based on the genomic sequence described previously 

(27), and the sequences underlined are Sp! canonical or Spl sites. 
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Figure 2-7. DEC I selectively increases DNA binding among Spl sites in the proximal 

promoter of survivin 

(A) Diagrammatica/ prese11tatio11 of the locatio11 of Sp/ sites (B) Expressio11 of DEC/ 

selectively alters DNA bi11di11g to Sp/ sites DEC! stable transfected cells were cultured in the 

presence or absence of tetracycline (tel, I µg/ml) for 24 h and nuclear extracts were prepared 

with a nuclear extraction kit (Active Motif). Nuclear proteins ( JO µg) were incubated with 

radiolabeled double-stranded oligonucleotides in a final volume of JOµ! containing IX DNA 

binding buffer. For competition experiments, nuclear extracts were first incubated with excess 

cold probe (50 X in lane 1 or 10 X lane 3) and then mixed with the radiolabeled probe. The 

protein-DNA complexes were resolved in 6% polyacrylamide gel electrophoresis and 

visualized by autoradiography. (C) Disruption of shift bands by anti-DEC! or Sp! antibody 

The gel mobility shift assays were performed as described above but in the presence of an 

antibody against DEC! , Sp! or Flag tag. The protein-DNA complexes were resolved in 6% 

polyacrylamide gel electrophoresis and visualized by autoradiography. 
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A 

Spl -226 

2 6 8 -CGCGTTCTTTGAAAGCAGTCGAGGGGGCGCTAGGT - 23 4-G~ACGAGCTGGCGCG 

G- 2 0 9 -CGTCGCTGGGTGCACCGCGACCA~GCCACG~GGACTACAAC- 154 -T 

Spl-127 

g:ccGG(jl>,CAcccqGcccccccccccc7jc-12 5 -TACTCCCAGAAGGCCGCGGGGGGTGG~ 

G~CGCTCCCGACATGCCCCGCGGCGCGCCATTAACCGCCAGATTT- 3 9 

8 

Tet(l µ g/ml) : + + + + + 

Probes 41~8 55-84 

c 
Probes : 123-145 215-224 

Tet. (I µg/ml): + + + + + + + + 
Antibody s D F s D F 

Antibodies: 
S: Anti-Sp! 
D: Anti-DEC! 
F: Anti-Flag 
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205-234. More importantly, induction of DEC! differentially affected the binding of the 

oligonucleotides. Markedly higher binding activities were detected with oligonucleotides 

115-144, 123-158 and 204-234 with cells cultured in the presence of tetracycline. In addition, 

two shifted bands were detected with oligonucleotides 115-144 and 123-158, but only the upper 

shifted band was intensified as a result of induced expression of DEC I, suggesting that the 

detected binding was highly specific. It should be emphasized that the binding specificity with 

all oligonucleotides was also established with competition assays in the presence of 

corresponding unlabeled probes (data not shown). 

Oligonucleotides 115-144 and 123-158 share an Sp! complex site (SPl-127), whereas 

oligonucleotide 204-234 contains a typical Sp! element (Figure 2-7A), indicating that the 

shifted bands with these oligonucleotides represent DNA-Sp I complexes. In order to directly 

test this possibility, EMSA experiments were perfonned with an anti-Sp I antibody. As shown 

in Figure 2-7C, addition of the anti-Sp I antibody caused disappearance of the shifted band with 

oligonucleotide 205-234 as well as the upper shifted band with oligonucleotide 123-158. A 

super-shifted band witl1 a markedly lesser intensity was also detected with each oligonucleotide. 

Interestingly, a rather high background (so-called smeared bands) was observed between tl1e 

original- and super-shifted bands, suggesting that many intermediated species of D A-protein 

complexes are fonned as a result of the addition of the anti-Sp I antibody. Given the fact that 

binding to these oligonucleotides was increased by the presence of DEC! , we next examined 
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whether DEC! is part of the DNA-protein complexes. Similarly, an antibody against DEC! 

was added to binding mixture. As observed with the anti-Sp I antibody. addition of the 

anti-DEC! antibody resulted in the disappearance of the originally shifted bands accompanied 

by super-shifted bands with a markedly lesser intensity (Figure 2-7C). Addition of an 

anti-FLAG antibody, however, caused no changes on tl1e relative intensity of the shifted bands, 

further establishing the specificity of the observed bindings. 

Sp! si tes-127 and 226 additively activate the survivin promoter in response to DECI 

In order to determine whether binding to Sp I site-127 or 226 is responsible for the activation of 

the survivin reporter, deletion and substitution mutants were prepared and tested for the 

responsiveness to DEC I. Similarly, the DEC I stable line was transfected again with a reporter 

mutant and cultured in the presence or absence to modulate the expression of DEC I. As shown 

in Figure 2-8, deletion or mutagenic dismption of the Sp I site-226 decreased the 

responsiveness to DEC! by as much as 30%. An additional 40% decrease was detected wi th 

the mutant that had Sp I si te-127 also disrupted in addition to Sp I site-226 (pSurvivin-154M). 

TI1erefore, binding to these two Sp I sites is responsible for as much as 70% of the overall 

activation mediated by DECI (Figure 2-8). 
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-268~ pSurvivin268 

-234~ pSurvivin234 

-234~ pSurvivin234-M 

-209~ PSurvivin209 

-154~ pSurvivinl54 

-154~ pSurvivinl54-M 

Relative luciferase activities 
200 ... 

0Te1 (-) 

•Tel {+) 

600 

0 Spl-226; ® Spl-226-Mutant; C:::> Spl-127; <8:> Spl-127-Mutant 

Figure 2-8. Sp! sites 127 and 226 support DEC l -mcdiatcd ac tivation of survivin DEC! 

stable transfected cells were cultured in 24-well plates at -80% confluence and transfected 

again with a reporter mulant (100 ng) and the pRL-TK Re11illa (I ng). The re-transfecled cells 

were cultured with sernm free media in the presence or absence of tetracycline (I µg/ml) for 24 

h. The reporter enzyme activities were detem1ined as describe above. The values were 

nom1alized based on the reading on pRL-TK Re11illa luciferase 
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DISCUSSION 

Recent reports from this and other laboratories have linked deregulated expression of DEC I to 

oncogenic process (Li et al., 2002; 2003; lvanova et al., 2001). DEC! is abundantly expressed 

in the tumor but not in the adjacent nonnal tissues. Tumorigenic environment such as hypoxia 

markedly induces the expression of DEC I and the induction is abolished by von Hippel-Lindau 

tumor-suppressor protein (Ivanova et al., 2001). In stable transfected cells, forced expression 

of DEC I protects against apoptosis, and the overall antiapoptotic activity is well correlated 

with decreased activity of several major caspases. ln this study, we report a molecular 

mechanism for the decrease on the caspase activity. DEC I transcriptionally upregulates the 

expression ofsurvivin, an antiapoptotic protein that interferes with the processing and catalysis 

of caspases. DEC I and survivin exhibit a paralleled expression pattern in paired tumor-nonnal 

tissues. In co-transfection experiments, DEC I stimulates the survivin promoter, and this 

mechanism relies on the physical interactions with Sp! sites in the proximal promoter. These 

findings collectively establish that the survivin gene is a transcription target of DEC I. 

The DEC I-directed regulation likely represents an important mechanism that governs the 

transcription of the survivin gene. Several lines of evidence support this notion. First, both 

DEC! and survivin are abundantly expressed in the carcinomas but not the adjacent nonnal 

tissues (Figure 2-2B}, providing cellular localization that supports for the regulator and target 

relationship (DEC I and survivin). Second, DEC I and survivin share an overlapping 
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cycle-dependent expression. The expression of survivin is regulated in a cycle-dependent 

manner with a robust expression in the G2/M phase of the cell cycle (Li et al., 1998). 

Consistent with the cycle-related expression, cycle blockers hydroxyurea (S phase) and 

nocodazole (G2/M phase) markedly induce DECI (Li et al., 2002), suggesting that increased 

expression of DEC! is an initial event leading to the expression of survivin. Third, forced 

expression of DEC I alters the cycle-dependent expression of survivin. Cells synchronized by 

GI blocker mimosine express undetectable survivin (Li et al., 1998), however, transfection of 

DECl in mimosine-synchronized cells causes a modest activation of the survivin promoter. As 

a matter of fact, forced expression of DEC I activates the survivin promoter independently of 

the cycle phase (Figure 2-4 and 5) with an exception of nocodazole. 

The inability of transfected DEC I in nocodazole-synchronized cells causes additional 

activation suggests that DEC I and this cycle blocker act redundantly on the induction of 

survivin. However, there are several important differences on the cis-DNA elements required 

for nocodazole- and DEC-mediated activation. In this study, Sp! sites-127 and 226 in the 

proximal promoter of survivin are found to contribute as much as 70% to the activation of 

DEC I (Figure 2-8). In contrast, nocodazole-mediated activation requires a 40 hp-proximal 

sequence containing two cycle dependent elements (COE) and one cycle homology region 

(CHR) (Li and Altieri, 1999). Mutagenic disruption ofone or more of these elements abolishes 

the ability to respond to nocodazole. It remains to be determined whether the CDE/CHR region 
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affects DEC I-mediated activation, or the Spl sites-127 and 226 affect nocodazole-mediated 

activity. It should be emphasized that other Sp I sites (-151 and -171) in the survivin promoter 

have been shown to support constitutive activation of survivin in HeLa cells (Li and Altieri, 

1999). However, no D A binding to these sites is detected with 293T nuclear extracts (Figure 

2-78, oligonucleotides 145-174 and 175-204), suggesting tlrnt these sites represent cell 

type-specific regulation. 

Binding to Spl sites-127 and 226 may not be the only event in DECl-mediated activation on 

the survivin promoter. In DEC I stable transfectants, marked induction of survivin is observed 

only in cells cultured at relatively low serum concentrations (Figure 2-3A), suggesting that the 

presence of DEC! alone is not sufficient to effectively upregulate the expression of survivin. 

Similarly, less serum supports higher activation of the survivin promoter reporters (Figure 2-48 

and C). Even with serum free media, the activation of the survivin reporter is very minimal 

during the first I 0 h-incubation, and tl1e activation continues to increase with prolonged 

incubation (Figure 2-5A). In contrast, the pDEC2-luc reporter is repressed by 60% as early as 

4 h. The delayed onset on the activation of the survivin reporter suggests that DEC! initiates 

more than one event (e.g., binding to Sp! sites-127 and 226), and these events collectively 

detem1ine the onset and magnitude of the activation. 

Given the fact that the DEC I-mediated activation of the survivin reporter is largely achieved 
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through Sp! sites-127 and 226, it is conceivable that increased expression of Sp! is one of the 

events responsible for the delayed onset on the activation. It remains to be determined whether 

DEC! actually upregulates the expression of Sp!, however, EMSA experiments have detected 

marked increases on Sp I binding activity as a result of the induced expression of DEC! (Figure 

2-78). In contrary to this possibility, increased Sp l binding occurs only with Sp I sites-127 and 

226 but not with five others present in this region, although some of the other Sp l sites are 

found to bind to Spl and related proteins (Li and Altieri, 1999; Figure 2-78). Alternatively, 

Sp l interacts with other proteins and the resultant complexes collectively determine DNA 

binding selectivity. In support of this possibility, mSHARP, a DEC I-related transcription factor, 

has been shown to directly interact with Sp l (Azmi et al. , 2003). In this study, we have 

demonstrated that addition of an anti-DEC l antibody completely disrupt the shifted bands with 

Spl sites-127 and 227 (Figure 2-7C), suggesting that DEC! is part of the Sp I-DNA complex. 

The disrupted binding instead of being super-shifted by the anti-DEC l or even anti-Sp I 

antibody suggests that DECl-Spl complex presents a rigid steric confomiation with a high 

selectivity toward a cis-DNA element. Post-translational modifications of Sp l have been 

shown to alter Sp I-mediated DNA binding (Black et al., 2001; l 999; Rohl ff et al. , 1997; Su et 

al., 1999). However, it remains to be determined whether post-translational modifications of 

Sp! are involved in the interaction with DEC! or mSHARP. 

It is interesting to notice that interactions between Sp! and DEC! result in transcription 
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activation, whereas Sp 1-mSHARP complex represses the promoter of STRA 13, the mouse 

homologue of DEC I (Fujimoto et al., 2001). DEC! and mSHARPI are highly identical (97%) 

in the bHLH region, but rather diverse (-35%) in other regions, particularly in the C-tem1inal 

half(Fujimoto et al., 2001). The high degree of sequence identity in the bHLH region suggests 

that this motif mediates direct interactions with Sp I. However, it remains to be detennined 

whether the regions with relatively diverse sequences are responsible for the opposing 

activities on these two reporters. Apparently, the difference between the target genes (survivin 

versus STRA 13) is another possibility that is likely responsible for the observed opposing 

activities. Consistent with this notion, Spl , which is generally considered as a transcription 

activator, has been increasingly reported to exert transcription repression depending on the 

target genes, the types of cells and even the cycle phase (Black et al., 200 I). 

The DECI-mediated activation of the survivin has important pathological significance. 

Survivin has been shown to antagonize apoptosis and promote cell division (Li et al., 1999; 

2003). The expression of survivin is cell cycle-regulated with a marked increase in the G2/M 

phase (Li et al., 1998). The dual function (antiapoptosis-cell division), along with its 

cycle-dependent expression, provides an effective mechanism to ensure success of cell division. 

In this study, forced expression of DEC! causes increased the activation of the survivin 

promoter independently of the cycle phase (with an exception of nocodazole, see discussed 

above). The DEC I-mediated alteration on the cycle dependent expression of survivin provides 
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a mechanism that minimizes cell death during oncogenic process regardless of a cycle phase 

(assumed that the deregulated expression of DECI in tumors occurs in a cycle-independent 

manner). Given the fact that DEC I has a broad tissue distribution (Shen et al., I 997), 

DEC I-mediated activation may have physiological significance in cell proliferation and 

differentiation as well. In support of this possibility, STRA I 3-deficient mice develop 

autoimmune disease featured by accumulation of spontaneously activated T and B cells (Sun et 

al., 2001). Although these mice are genera ll y normal, but the FasL surface expression is 

markedly suppressed. Dysfunctional Fas-FasL system results in decreased apoptosis of 

premature lymphocytes, leading to the development of autoimmune disease. The decreased 

expression of FasL in STRA I 3-deficient mice suggests that STRA 13, like its human 

homologue DEC! on the survivin, acts as a transcriptional activator. It remains to be 

determined whether Star! 3-mediated upregulation of FasL is achieved by STRA 13-Spl 

complex. Interestingly, Sp I-dependent activation is a major pathway to support the expression 

of FasL (Kavum1a et al., 2002). 

DEC I-mediated activation, compared witl1 repression, has several important differences. First, 

activation and repression differ on tl1e time of onset. Repression of pDEC2-luc is profound as 

early as 4 h after transcription, whereas activation of pSurvivin-268 is not evident after JO 

h-incubation, suggesting that activation requires one or more additional events (e.g., protein 

synthesis) (Figure 2-5A). Second, repression of pDEC2-luc is independent on serum 
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concentrations and cycle blockers, whereas activation of pSurvivin-268 is altered by these 

factors, suggesting that DEC! is essential but not sufficient to effectively activate this reporter. 

Third, Sp !-sites support the activation of pSurvivin-268, whereas the E-box in the proximal 

region supports the repression of pDEC2-luc (Li el al. , 2003), suggesting that direct DNA 

binding alone is sufficient to exert repression, whereas protein-protein interaction (e.g., 

DECI-Sp l) is required to support activation (although DNA binding is also involved as 

discussed below). And finally, the C-terminal 65 residues are required for maximum activation 

but not repression (Li el al., 2003). It is intriguing that intact DNA binding domain in DECI is 

essential to transcription activation, although interaction with Sp I is an identified mechanism. 

A conceivable explanation is that DNA binding mechanism and interactions with Sp I are both 

involved in the activation of survivin. The DNA binding mechanism directly represses or 

activates a target gene, which, in cooperation with the DEC I-Sp I complex , leads to the 

activation of the survivin promoter. The DNA binding-dependent transcription is likely 

responsible for the delayed onset on the activation. 

In summary, our work points to several important conclusions. First, DEC I antagonizes 

apoptosis accompanied by decreased activity of caspases, and in this study, we reports that 

DECI transcriptionally upregulates the expression of the survivin, providing a molecular 

explanation for its antiapoptotic activity. Second, the activation of the survivin is delayed and 

varies depending on serum concentration and cycle blockers, suggesting that DECl-mediated 
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activation requires more than one event and operates in cell type and cycle-related manner. 

Third, DEC I activates the survivin promoter, but represses the DEC2 promoter, providing dual 

transcription functionality mediated by DEC!. Given the fact that DECI has been implicated 

in oncogenic process (deregulated) and is generally considered to be transcriptionally 

repressive, the established activation of the survivin promoter provides a molecular explanation 

for its oncogenic involvement and represents the first example that DEC! and other members in 

this class can act as transcription activators depending on the genomic context of a target gene. 
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MANUSCRIPT lIJ 

DEC! NEGATNELY REGULATES THE EXPRESSION OF DEC2 

THROUGH BINDING TO THEE-BOX IN THE PROXIMAL PROMOTER1 

ABSTRACT 

Human DEC, mouse STRA and rat SHARP proteins constitute a new and structurally distinct 

class of the basic helix-loop-helix (bHLH) proteins. In each species, two members are 

identified with a sequence identity of>90% in the bHLH region and-40% in the total proteins, 

respectively. Recently, we have reported that DEC! is abundantly expressed in colon 

carcinomas but not in the adjacent normal tissues. The present study was undertaken to extend 

the expression study of DEC! and to determine whether DEC! and DEC2 had similar 

expression patterns among paired cancer-nonnal tissues from the colon, lung and kidney. 

Without exceptions, DEC! was markedly higher in the carcinomas, whereas the opposite was 

true with DEC2. In stable transfectants, tetracycline-induced expression of DEC! caused 

proportional decreases in the expression of DEC2. Co-transfection with DEC I repressed the 

activity of a DEC2 promoter reporter by as much as 90%. The repression was observed witl1 

wild type DEC! but not its DNA binding defective mutants. Studies with deletion and 

site-directed mutants located, in the proximal promoter, an E-box motif that supported the 

DEC I-mediated repression. Disruption of this E-box markedly abolished the ability of tl1e 

reporter to respond to DEC!. Our findings assign for DEC! the first target gene that is 

regulated through direct DNA binding. DEC/STRA/SHARP proteins are highly identical in 
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the DNA binding domain but much more diverse in other areas. DECl-mediated repression on 

the expression of DEC2 provides an important mechanism that these transcription factors 

regulate the cellular function not only by modulating the expression of their target genes but 

also the expression of members within the same class. 
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INTRODUCTION 

The basic helix-loop-helix (bHLH) proteins are intimately associated witl1 developmental 

events such as cell differentiation and lineage commitment (Littlewood and Evan, 1998; 

Bissonnette et al, 1994; Cromi ller et al 1998; Nikoloff et al, 1992; Hirose et al, 1996; Massari 

and Murre 2000). The HLH domain in tl1e bHLH motif is responsible for dimerization, 

whereas the basic region mediates DNA binding (Littlewood and Evan, 1998). Based on 

sequence alignment and domain analysis, human DEC, mouse STRA and rat SHARP 

constitute a new and structurally distinct class of bHLH proteins (Boudjelal et al, 1997; 

Fujimoto et al , 2001; Rossner et al, 1997; Shen et al, 1997). These proteins are distantly related 

to Drosophila Hairy and E(spl) as well as the mammalian homologues (e.g., HES) with U1e 

highest sequence identity (-40%) in the bHLH region (Littlewood and Evan, 1998; Dawson et 

al, 1995; Kokubo et al, 1999). Like Hairy/E(spl)/Hes, DEC/STRA/SHARPs contain an orange 

domain and a pro line residue in the DNA binding domain. However, the pro line is located 2 

residues more toward the N-terrninus (Littlewood and Evan, 1998; Fujimoto et al, 2001). 

Another major structural difference on the functional domains is that DEC/STRA/SHARPs, 

unlike Hairy/E(Spl)/Hes proteins, lack the C-terrninal WRPW tetrapeptide motif (Fisher et al, 

1996). Through this sequence, Hairy/E(spl)/Hes recruit corepressor Groucho to the transcrip-

lion regulatory complex (Fisher et al , 1996). Recruitment ofGroucho is responsible for a vast 

array of biological activities of Hairy/E(spl)/Hes proteins including cellular differentiation and 

lineage commitment (Giebel and Campos-ortega, 1997; Poortinga et al, 1998; Chen et al, 1999; 
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Hojo et al, 2000; Ohtsuka et al , 200 I). 

Two members of DEC/STRA/SHARP proteins are identified in each mammalian species 

studied wi th a sequence identity of >90% in the bHLH region and -40% in the total proteins, 

respectively (Fujimoto et al, 2001). They exhibit an overlapping tissue distribution and their 

expression is highly elevated in response to environmental stimuli (Boudjelal et al, 1997; 

Fujimoto el al, 2001; Rossner et al, 1997; Shen et al, 1997). In rats that undergo seizure 

induction by kainic acid, the levels of mRNA encoding SHARP I or 2 are sharply increased 

within I h in the brain (Rossner et al, 1997). In cultured human cells, both DEC I and DEC2 are 

markedly induced in response to hypoxia (Miyazaki et al, 2002). Co-transfection experiments 

with promoter reporters have identified functional hypoxia response elements in both DEC! 

and DEC2 genes. These elements show high affinity toward hypoxia inducible factor-I Cl and p, 

providing a molecular explanation on the co-regulatory phenomena of DEC I and DEC2 during 

hypoxia response (Miyazaki et al, 2002). Rapid induction of these proteins in response to 

environmental stimuli suggests that DEC/STRA/SHARPs are protective against detrimental 

conditions. 

In addition to a potential protective role against environmental stimuli, DEC/STRA/SHARPs 

have been implicated in cell differentiation (Boudjelal et al , 1997; Shen el al, 1997; Shen el al, 

2002), maturation of lymphocytes (Sun et al , 200 1) and regulation of molecular clock (Honma 
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et al, 2002). In a cell culture system, mouse STRAl3 promotes neuronal but represses 

mesodem1al and endodermal differentiation (Boudjelal et al, 1997). Consistent with the 

inductive effect on neuronal differentiation, rat SHARP proteins are abundantly expressed in a 

subset of mature neurons (Rossner et al , 1997). DEC I has recently been shown to promote 

chondrocytes differentiation at the early and tenninal stages (Shen et al , 2002). STRA 13 

deficient mice, although surviving to adulthood, develop antoimmune diseases accompanied 

by accumulation of spontaneously activated T and B cells (Sun et al, 2001). In addition, the 

mouse proteins are recently found to regulate the expression of biological clock regulator Per 

(Honma et al, 2002). In addition, we and other investigators have recently demonstrated that 

deregulated cell survival by DEC! may have oncogenic significance. In paired Sanlples, DEC! 

is abundantly expressed in colon carcinomas but not in the adjacent nonnal tissues (Li et al, 

2002). High levels of DEC! transcript are also detected in an array of cancer cell lines derived 

from a wide range of organs (lvanova et al , 200 I). Cells that lack the functional tumor 

suppressor VHL (von Hippel-Lindau) express higher levels of DEC! (Ivanova et al , 2001). 

Forced expression of DEC I antagonizes serum deprivation-induced apoptosis and selectively 

inhibits the activation of procaspases (Li et al, 2002). These findings suggest that 

overexpression of DEC I provides cells with unusual survival mechanism, thus is oncogenic. 

The present study was undertaken to extend the expression study on DEC I and to determine 

whether DEC I and DEC2 displayed similar expression patterns among paired tumor-nom10I 
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tissues from the colon, lung and kidney. Without exceptions, DEC! was expressed markedly 

higher in the carcinomas, whereas DEC2 was expressed markedly higher in the adjacent 

normal tissues. Forced expression of DEC! sharply decreased the expression of DEC2 and 

markedly repressed the activity of a DEC2 promoter reporter. Co-transfection experiments 

with mutant reporters and EMSA located, in the proximal promoter, an E-box that supports 

DECl-mediated repression. These findings provide direct evidence that DEC! negatively 

regulates the expression ofDEC2, which is largely achieved through direct DNA binding to the 

E-box in the proximal promoter of DEC2. 
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MATERIALS AND METHODS 

Chemicals and supplies 

Tri-reagent, Flag-CMV vector and anti-Flag antibody were purchased from Sigma. The goat 

anti-rabbit-lgG conjugated with alkaline phosphatase or horseradish peroxidase and ECL 

substrate were from Pierce. DMEM media, LipofectAMINE and ThermoScript 1 RT-PCR kit 

were from lnvitrogen. Dual-Luciferase Reporter Assay System and DNA binding buffer were 

from Promega. Unless otherwise indicated, all other reagents were purchased from Fisher 

Scientific. 

Tissue collection and processing 

Samples were collected from patients who underwent surgical resection for histologically 

confinned adenocarcinoma. As paired controls, specimens from the adjacent, grossly normal 

tissues were harvested. The samples (12 pairs) were collected from the colon, kidney, and lung 

with four pairs from each organ. The age of the patients was between 23 and 68 with seven 

male and five female. The size of tumors was generally 2-5 cm in diameter, and the degree of 

differentiation of tumors was moderate or poor as determined by pathological examination. 

Samples were freshly processed for RNA isolation and protein extraction. Total RNA was 

isolated with a Tri-reagent as described previously (Zhang et al, 1999). For the preparation of 

protein extracts, tissues were homogenized in lysis buffer (20 mM Tris-HCI, pH 7.4, 1 % Triton 

X-100, I% sodium deoxycholate, 0.1 % SDS, 0.2 mM PMSF and I mM DTT). The 
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homogenates were centrifuged at 12,000 g for 30 min to remove any insoluble precipitates. 

The protocol of using human pathological tissues was reviewed by tl1e Institutional Review 

Board. 

Reverse transcription coupled polymerase chain reaction (RT-PCR) 

The expression of DEC I and DEC2 in human tissues and cultured cells was primarily 

determined by RT-PCR experiments with a ThermoScript I kit. Total RNA (2 µg) was 

subjected to the synthesis of the first strand cDNA with an oligo(dT) primer and a 

Them10Script reverse transcriptase. The reactions were incubated initially at 50°C for 30 min, 

and tl1en at 60°C for 60 min after additional reverse transcriptase was added. The cDNAs were 

tl1en subjected to PCR amplification with cycling parameters as follows: 95°C for 30s, 52°C for 

30s and 68°C for 30 or 40s for a total of 32 cycles. The primers for DEC! amplification were: 

5'-GTCTGTGAGTCACTCTTCAG-3' , 5'-GAGTCTAGTTCTGTTTGAAGG-3'; the primers 

for DEC2 amplification were: 5'-CGCCCATTCAGTCCGACTTGGAT-3', 5' -TGGTTGAT-

CAGCTGGACACAC-3'; and the primers for (l-actin amplification were: 5'-GTACCCTGG-

CATTGCCGACAGGATG-3', 5'-CGCAACTAAGTCATAGTCCGCCTA-3'. The PCR-

amplified products were analyzed by agarose gel electrophoresis. 

A cDNA encoding the full-length DEC! was isolated by a cDNA-trapping method (Li et al, 

2002; Hu and Yan, 1999). Several DEC! mutant constructs were prepared by PCR wi th the 
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full-length DEC I as the template. These mutants had a specific sequence deleted or one or 

more amino acids substituted. Some of the mutant constructs were prepared with the SPORT 

vector (the N-tem1inal truncated mutants), whereas others (the C-tenninal trnncated mutants) 

were prepared with the Flag-vector to facilitate immuno-detection. ln some cases, a Kozak 

sequence was introduced for effective translation initiation. The DEC2 promoter reporter was 

prepared with the pGL3-basic luciferase vector (Promega). Human genomic DNA was isolated 

from the placenta with a DNA extraction kit (Qiagen) according to the manufacturer 's 

instruction. A genomic fragment (-1,888to+11) was generated by PCR with 5' -AACAGATG-

AACTGAACGGACCG-3 ' and 5' -CCTCAGTGCAGTGTTGAAAGTG-3 ' . This PCR 

fragment was ligated to the pGL3 vector. Deletion mutants of this reporter were prepared by 

endonuclease digestion followed by ligation or PCR. 

Site-directed mutagenesis 

The DEC2 promoter reporter had two E-box motifs that likely interact with DEC! , and the 

studies with deletion mutants suggested that the E-box in the proximal region supports 

DECl-mediated repression. In order to definitively establish such a role, site-directed 

mutagenesis was perfonned to substitute two of the six nucleotides. The mutant construct was 

prepared with a QuickChange site-directed mutagenesis kit (Stratagene). Complementary 

oligonucleotides (5 '-GATGGTACGTTCCGAACGGGAGCTGGGTGCTGG-3 ') were 

synthesized to target this region. To perfonn the substitutions, the primers were annealed to a 
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DEC2 promoter reporter and subjected to a thennocycler for a total of 15 cycles. The resultant 

PCR-amplified constructs were then digested with Dpn I to remove the non-mutated parent 

construct. The mutated ?CR-amplified constructs were used to transfom1 XLl-Blue. The 

same approach was used to prepare three DEC! mutants that had single or double residues 

substi tuted in the DNA binding domain (P56A, R58P or both). The general sequence for the 

site-directed mutagenic oligonucleotides was 5'-GAGACCTACAAATTGGCGC-

ACCCGCTCATCGAGAAAAAGAG-3' with the nucleotides in bold substituted individually 

or simultaneously. All mutated constructs were subjected to sequencing analysis to confim1 the 

desired mutation being made without secondary mutations. 

Co-transfection experiment 

Cells (293T) were plated in 24-well plates in DMEM media supplemented with I 0% fetal calf 

serum at a density of 1.6 x 105 cells per well. Transfection was conducted by lipofection with 

LipofectAMJNE according to the manufacturer's instruction. Transfection mixtures contained 

DEC! or a mutant construct (100 ng), reporter plasmid (100 ng) and the pRL-TK Renilla 

plasmid(! ng). If DEC! stable line was used, DEC! or its mutant construct was omitted from 

the transfection mixture. The transfected cells were cultured for an additional 24 h, washed 

once with PBS and resuspended in passive lysis buffer (Promega). The lysed cells were 

subjected to 2 cycles of freezing/thawing. The reporter enzyme activities were assayed with a 

Dual-Luciferase Reporter Assay System. This system contained two substrates, which were 
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used to determine the activity of two luciferases sequentially. The firefly luciferase activity, 

which represented the reporter gene activity, was initiated by mixing an aliquot oflysates (20 µI) 

with Luciferase Assay Reagent II . Then the firefly luminescence was quenched and the Renilla 

luminescence was simultaneously activated by adding Stop & Glo Reagent to the sample wells. 

The firefly luminescence signal was normalized based on the Ren ii/a luminescence signal. In a 

case that the reading on the luciferase activity was too high, the lysates were diluted and 

luciferase activities were then detennined to minimize the interference on the reading of the 

Renilla luciferase act ivity. 

Electrophoretic mobility shift assay CEMSAl 

Cells (293T) were transfected with DEC I or a mutant and nuclear extracts were prepared with a 

nuclear extraction kit (Active Motif). In some cases, DEC! stable transfected cells were used 

but cultured in tl1e presence or absence of tetracycline to modulate the expression oftransfected 

DEC!. Nuclear proteins (10 ~1g) were incubated with radiolabeled double-stranded oligonu-

cleotides (5'-CGTTCCGCACGTGAGCTGGG-3') in a final volume of JO µI containing IX 

DNA binding buffer. For competition experiments, nuclear extracts were first incubated with 

excess cold probe (50 or 10 X) and then mixed with the radiolabeled probe. Oligonucleotides 

with a disrupted E-box were also used in the competition assays. For super-shift assays, the 

anti-DEC I or an anti-Flag antibody was added either before or after tl1e nuclear extracts were 

incubated with the radiolabeled probe. The protein-DNA complexes were resolved in 6% 
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PAGE and visualized by autoradiography. 

Western analyses were conducted as described previously (Zhu et al, 2000). The anti-DEC I 

antibody against the C-tem1inal peptide was described elsewhere (Li et al , 2002). Protein 

concentration was determined with BCA assay (Pierce) with bovine serum albumin as the 

standard. Data are presented as mean ± SD of at least four separate experiments, except where 

results of blots are shown in which case a representative experiment is depicted in the figures . 
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RESULTS 

DECI and DEC2 are inversely expressed in paired carcinomas and adjacent nom1al tissues 

We have reported that DEC! is abundantly expressed in colon carcinoma but not in the adjacent 

normal tissues (Li et al, 2002). The initial focus of the present study was to extend the 

expression study on DEC! and to determine whether DEC! and DEC2 shared similar 

expression panems among paired cancer-normal tissues from the colon, kidney and lung. 

RT-PCR experiments with primers specific to DEC! and DEC2 were performed. As shown in 

Figure 3-1 , without exceptions, the levels of DEC I mRNA were markedly higher in the 

carcinomas, whereas the levels of DEC2 mRNA were markedly higher in the adjacent nomial 

tissues. Between paired samples, the levels of P-actin mRNA were comparable. The 

carcinoma-related increase in DEC I expression was also detected by Western blot (Top of each 

depicted figure) , suggesting that mRNA levels are indicative of the overall expression of these 

two genes. 

Forced expression of DEC I proportionally decreases tl1e expression of DEC2 

The inversed expression patterns between DEC! and DEC2 suggest that DEC! negatively 

regulates tl1e expression ofDEC2 or vice versa. In order to directly test this possibility, DEC! 

stable transfected lines were used to study the expression relationship between DEC I and 

DEC2. Two clonal stable lines were included: one expressing DEC! (wild type) and the other 

expressing DEC!-M, which lacked the DNA binding domain. The stable lines were prepared 
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Figure 3-1. Inversed expression patterns of DECI and DEC2 in the carcinoma and the 

adj acent normal tissues from the colon, kidney and lung 

Total RNA (5 µg) of carcinoma-nonnal paired samples from the colon, kidney and Jung was 

subjected to RT-PCR analyses with a ThermoScript I kit. For PCR amplification, a master tube 

containing all common reagents was prepared and equally distributed to individual PCR 

reaction tubes (DEC!, DEC2 and J}-actin). PCR amplification was conducted with cycling 

parameters as fo llows: 95°C for 30s, 52°C for 30s and 68°C for 30 or 40s for a total of32 cycles. 

The PCR-amplified products were analyzed by agarose gel electrophoresis and visualized by 

ethidium bromide staining. For Western blotting analysis, homogenates (I 0 µg) were subjected 

to SOS-PAGE. The immunoblot was incubated with the antibody against DEC!. The primary 

antibody was then located by horseradish peroxidase-conjugated goat anti-rabbit lgG and 

visualized with chemiluminescent substrate. 
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with 293T cells and the pcDNA6ffR-pcDNA4 expression system, therefore, the expression of 

DEC! and DECl-M was inducibly regulated by tetracycline as described previously (Li et al, 

2002). As expected, addition of tetracycline caused a concentration-dependent increase on the 

levels of DEC! as detennined by Western blots (Top, Figure 3-2A). Consistent with the 

inducible increase on the levels of DEC! protein, the levels of DEC! mRNA were 

proportionally increased (data not shown). In contrast to the increased expression of DEC I, the 

levels of DEC2 mRNA were proportionally decreased (Figure 3-2A). However, such inversed 

expression patterns were observed only in the cells expressing wi ld-type DEC! (Figure 3-2A) 

but not the cells expressing the DECl mutant, even though the levels of DEC!-M were 

markedly induced by tetracycline (Figure 3-28). 

The E-box in the proximal promoter of DEC2 is the sequence targeted by DEC 1 

The inability of DECl-M to down-regulate the expression of DEC2 suggests that 

DECl-mediated repression is achieved through a DNA-binding mechanism. In order to 

directly test this possibility, reporter experiments and EMSA were conducted. A DEC2 

promoter reporter (pLuc-1888) was constructed to contain tl1e basal promoter and other 

potential regulatory sequences of the DEC2 gene (- 1,888 to +1 1). This region was chosen 

because it contained two E-box motifs that commonly serve as target sequences for bHLH 

transcription factors (Littlewood and Evan, 1998). A series of 5' deletion mutants of this 

reporter were also prepared and designed to specify the location of DNA sequence that is 
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Figure 3-2. Repressed expression of DEC2 by DECI in stable transfected cells Stable 

transfected cells by DEC! (A) or DECl-M (B) were seeded in 6-well plale. After reaching 

-80% confluence, cells were treated with tetracycline at various concentrations (0-1 µg/ml) for 

24 h. Total RNA and homogenates were prepared and analyzed for the expression of DEC I by 

Western blots or DEC2 by RT-PCR as described in the legend for Figure 3-1. Similarly the 

expression of P-actin was determined and served as controls. 
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targeted by DEC! (Figure 3-3A, Left). Co-transfection experiments were conducted to test 

these reporters for their ability to support DEC I-mediated activity. The stable transfected line 

(wild-type DEC! only) was transfected again with a reporter construct and cultured in the 

presence or absence of tetracycline to modulate the expression of DEC 1. The pRL-TK Ren ilia 

plasmid was also included in the transfection mixture to normalize transfection efficiency. As 

described in Figure 3-3A (Right), addition of tetracycline decreased the activity of the 

pLuc-1888 reporter by as much as 90%. Similar repression was observed with the reporters 

that had the sequence deleted up to the nucleotide -535. In contrast, reporter pLuc-125, which 

had a further deletion from nucleotide -535 to-125, simultaneously lost the basal transcription 

activity and the abi lity to respond to DEC! , suggesting the importance of this region (-535 to 

-125) in both basal and regulatory transcription. 

We next examined whether responsiveness to DEC! could be separated from the basal 

transcription activity in the DEC2 promoter reporter. Given the fact that this region (-535 to 

-125) contains a single E-box that is likely targeted by DEC! , a reporter with this E-box 

disrupted was tested for the abil ity to confer basal transcription. Reporter pLuc-535 was 

subjected to site-directed mutagenesis to selectively disrupt the E-box (CACGTG to 

AACGGG). Similarly, co-transfection experiments were perfom1ed. As shown in Figure 3-3A 

(Bottom), disruption of this E-box (pLuc-535-M) caused little changes on the basal activity 

(cultured without tetracycline), suggesting that this E-box contributes little to basal 
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Figure 3-3. DEC l -mediated repression on the DEC2 promoter reporter and binding to 

the proximal E-box 

(Al DECJ-mediated repression 011 the DEC2 promoter reporter Deletion and site-directed 

mutants of the DEC2-promoter reporter (pLuc-1888) were prepared by endonuclease digestion 

followed by ligation or by PCR with a QuickChange site-directed mutagenesis kit. DEC! 

stable transfected cells were cultured in 24-well plates at -80% confluence and transfected 

again with a reporter construct (100 ng) and the pRL-TK Renilla (I ng). The re-transfected 

cells were cultured in the presence or absence of tetracycline(! µg/ml) for 24 h. The cells were 

collected, washed once with PBS and resuspended in passive lysis buffer. The reporter enzyme 

activities were assayed with a Dual-Luciferase Reporter Assay System. The firefly 

luminescence signal was nom1alized based on the Re11illa luminescence signal. (8) EMSA 

DEC I stable transfected cells were cultured in the presence or absence of tetracycline (tet, I 

µg/ml) for 24 hand nuclear extracts were prepared with a nuclear extraction kit (Active Motif). 

Nuclear proteins (10 µg) were incubated witl1 radiolabeled double-stranded oligonucleotides 

harboring the proximal E-box in a final volume of IO µI containing IX DNA binding buffer. 

For competi tion experiments, nuclear extracts were first incubated with excess cold probe (50 

X in lane I or I 0 X lane 3) and then mixed witl1 the radiolabeled probe. Oligonucleotides (M) 

with the E-box disrupted were also used in the competition assays (50 X in lane 2). For 

super-shift assays, the anti-DEC I antibody (D) was added eitlier before (lane 5) or after (lane 6) 

the nuclear extracts were incubated with the radiolabeled probe. As a control, the anti-DEC! 

antibody was replaced by an ant i-Flag antibody (F, lane 4). The protein-DNA complexes were 

resolved in 6% polyacrylamide gel electrophoresis and visualized by autoradiography. 
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transcription. In contrast, the reporter mutant (pLuc-535-M) exhibited only-35% repression in 

response to DECl (Figure 3-3A, lane 8), which contrasts strikingly to 90% repression observed 

with the corresponding non-mutagenic reporter (Figure 3-3A, lane 5). These findings suggest 

that the proximal E-box is largely responsible for DEC I-mediated repression. It should be 

emphasized that similar observation was made with a substitution mutant reporter prepared 

from the longest reporter pLuc-1888, and the expression levels of DEC! were comparable 

among all cells as determined by Westem blots (data not shown). 

We next examined whether this E-box interacted directly with DEC I. TI1e DEC I stable line 

was cultured in the presence or absence of tetracycline and nuclear extracts were prepared. 

Double-stranded oligonucleotides harboring this E-box were synthesized and radiolabeled. 

The labeled probe was incubated with the nuclear extracts and analyzed by EMSA. As shown 

in Figure 3-38, incubation with the extracts from the cells cultured in the presence of 

tetracycline yielded a shifted band (lane 8). This band was not detected when incubation was 

performed with the extracts from the cell cultured without tetracycline (lane 7). The shifted 

band was competed completely by 50 X (lane I) or partially by 10 X excess cold probe (lane 3). 

However, the oligonucleotides (50 X) that harbored a mutated E-box (E-box-M) showed no 

competitive activity (lane 2). ~1 addition, the shifted band was super-shifted by the anti-DEC I 

but not the anti-Flag antibody. The super-shifted band appeared no matter if the antibody was 

added before or after the DEC I-DNA complexes were fanned (lanes 5 and 6), suggesting that 
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the antibody binding does not interfere with interactions between DEC I and its element (the 

antibody directed against the C-tenninal sequence of DEC I). 

DNA binding is required to effectively repress the DEC2 promoter reporter 

Disruption of the proximal E-box caused drastic but incomplete loss of responsiveness to 

DEC I (Figure 3-3A), suggesting that DNA binding is not the only mechanism involved in 

DEC I-mediated repression on the DEC2 reporter or additional DEC! binding site exists in this 

region. We next tested whether DEC! mutants, defective of DNA binding, had any repressive 

activity. These mutants had one or more residues in the DNA binding domain substituted or 

one or more structural domains deleted (Figure 3-4A). A total of three deletion mutants 

(DECI-M, DEC! 10,_. 12 and DECl 237•412) were prepared and all of them lacked the DNA 

binding domain. As shown in Figure 3-4A, additional sequences were also deleted in 

DECllOs-412 (the HLH motif) and DECJ 237_. 12 (the HLH motif and orange domain). The HLH 

motif and the orange domain are shown in other bHLH proteins to mediate dimerization and 

protein interactions, respectively (Littlewood and Evan, 1998). Similarly three substitution 

mutants were prepared including DEClrs6A, DECI.,,, and DEClrs6AIRS8P· The rationale for 

preparing the substitution mutants was that praline 56 was assumed to be critical in DNA 

binding based on studies with other bHLH proteins (Littlewood and Evan, 1998). However, 

tl1ere is a major difference regarding the location of this praline. In other bHLH proteins, the 

praline is located 2 residues more carboxylic terminal (corresponding to residue 58 in DEC!) 

134 



Figure 3-4. Essentiality of DNA binding for DECJ to repress DEC2 promoter 
activity 

(A) Co-tra11s(ectio11 exeeri111e111 Cells (293T) were cultured in 24-well plates and transiently 

transfected with DEC! or a DNA binding defective mutant (100 ng), DEC2 promoter reporter 

(pLuc-1888, 100 ng) and the pRL-TK Renilla ( I ng). After a 24 h-incubation, cells were 

collected and analyzed for luciferase activities. Similarly firefly luminescence siipial was 

nomialized based on the Renilla luminescence signal, and the ratios from the cells transfected 

with the vector were calculated as 100%. (BJ l1111111111ob/o//i11g analvsis The cell lysates (IO µg) 

from the cells used for reporter activity were analyzed for the expression of DEC! or its 

mutants by anti-DEC! antibody as described in the legend for Figure 3-1. (CJ EMSA Nuclear 

contracts were prepared from cells transiently transfected with DECl or a mutant and incubated 

with the radiolabeled proximal E-box probe. The DNA-protein complexes were resolved by 

PAGE. 
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(Boudjelal et al, 1997; Fujimoto et al, 2001 ). 'Tilerefore, the mutants represented substitution of 

proline 56 with an alanine (DEClrsM), arginine 58 with a praline (DECl Rssr), or both 

(DEC I PS6AIRSSP ). 

Co-transfection experiments were conducted to test these DEC! mutants for their ability to 

repress the DEC2 reporter (pLuc-1888). As shown in Figure 3-4A (Top), all deletion mutants 

(DECl-M, DEC! 105412 , and DECI 237412) exhibited little repressive activity toward this 

reporter. In contrast, all substitution mutants repressed the DEC2 reporter but the overall 

repressive activity varied markedly among them. The DECl rsoA mutant showed a similar 

potency as the wild-type DEC! (- 90% repression), whereas the other two mutants (DECI RssP 

and DECI .,.AIRssr) caused only - 65 and - 50% repression, respectively. The expression of 

DECl and its mutants was comparable with an exception ofDECl-M that was expressed to a 

higher extent (Figure 3-4B), excluding the possibility that lack of expression was a contributing 

factor to the observed less repression by some of the mutants (e.g. , DECI .,.A/Rssr) . In order to 

determine whether these mutants, particularly the mutants DECI RSaP and DEClrsoAJRss r. 

indeed lost DNA binding ability, nuclear extracts from the respective transfected cells were 

incubated with the radiolabeled E-box oligonucleotides and the corresponding DNA-protein 

complexes were analyzed by EMSA. As predicted, all deletion mutants (DEC 1-M, DEC! IOS-4l2• 

and DECI 237.412) showed no DNA binding activity (result shown on DECl-M only) (Figure 

3-4C). In contrast, DNA binding activity varied among the substitution mutants. DECl rsM 
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showed a similar binding ability as DEC! , whereas DECIRssP and DECIP56NR58P had no DNA 

binding activity, consistent with the fact that DEC I PS•A was the only substitution mutant that 

effectively repressed the promoter activity of DEC2 (Figure 3-4A). 

DNA binding is not sufficient to confer repressive activity 

The studies with DNA binding defective mutants clearly demonstrated the importance of DNA 

binding in repressing the DEC2 promoter. We next examined whether DNA binding was 

sufficient to exert repression. In order to directly test this possibility, DEC I mutants were 

prepared to keep the bHLH motif intact (DNA binding) but have sequences with various 

lengths deleted from the C-tem1inus (Figure 3-5A). These C-tem1inal truncated mutants were 

subcloned in the Flag-vector to faci litate immunodetection. Similarly, co-transfection 

experiments were perfom1ed with DEC! or a mutant along with the DEC2 reporter 

(pLuc-1888). As shown in Figure 3-5A, deletion of the C-tenninal 65 residues (Flag-DEC l 1_347) 

caused no changes on the repressive activity (Littlewood and Evan, et al, 1998). In contrast, 

deletions of additional C-terminal sequence caused a partial or a complete loss of repressive 

ability. As a matter of fact, Flag-DEC! 1. 150 no longer had any repressive activity. Western 

analyses were performed to confirm that the mutants were actually expressed slightly higher 

than the wild type DEC! (Figure 3-58). 

Next, we examined whether these mutants actually retained DNA binding activity. EMSA was 
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Figure 3-5. DNA binding is not sufficient for DEC! to repress DEC2 promoter activity 

(Al Co-transfection experiment Cells (293T) were cultured in 24-well plates and transiently 

transfected with DECI or a C-terminal truncated mutant (100 ng), DEC2 promoter reporter 

(pLuc-1888, 100 ng) and the pRL-TK Renilla (I ng). Detennination and calculation of the 

luci ferase activities were described in the legend for Figure 3-4. (81 !1111111111ob/ot1ing analysis 

The cell lysates ( IO µg) from tl1e cells used for reporter activity were analyzed for the 

expression of DECI or its mutants by an anti-Flag antibody as described in the legend for 

Figure 3-1. (CJ EMSA Nuclear contracts were prepared from cells transiently transfected with 

DECI or a mutant and incubated with radiolabeled oligonucleotides harboring the proximal 

E-box. Similarly competition experiments were performed with excess cold probe (E) or a 

mutant probe (M) as described in the legend in Figure 3-3B. For super-shift assays, an 

anti-Flag (F) or the anti-DEC I (D) was added to the incubation mixtures before being analyzed 

by PAGE. 
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performed with the nuclear extracts from the cells used for reporter assays. As shown in Figure 

3-SC, a shifted band was detected with all C-tem1inal truncated mutants. The relative 

electrophoretic mobility was generally associated with the size of a mutant. For example, 

Flag-DECJ 1•150 was the shortest among the mutants and the shifted band with this mutant 

exhibited the fastest mobility. More importantly, addition of an anti-Flag antibody into the 

binding reactions resulted in the appearance of a super-shifted band accompanied by the 

disappearance of the original shifted band, providing direct evidence that the observed 

protein-DNA interactions were highly specific. These findings also suggest that DNA binding, 

although essential, is not sufficient to confer repressive effect. 

The HLH motif is required for dominant interfering regulation 

The inability of Flag-DEC! 1. 150 to exert repression, although it bound effectively to DNA, 

points to two important possibilities: the deleted region from residue 150 to 347 has intrinsic 

repressive activity, or this region is responsible for recruiting protein(s) that causes repression. 

Apparently comprehensive experiments are required to definitively establish the involvement 

of each possibility. However, we examined the second possibility by testing mutants that 

contained part or the entire sequence of this region for the ability to function as a dominant 

interfering regulator. Co-transfection experiments were conducted witl1 DEC I in the presence 

and absence of a mutant. Among mutants DECl-M, DEC! 10, _. 1,, and DECl m _, 12 , only 

DECl-M effectively reversed DECl-mediated repression (Figure 3-6A), although they all 
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shared two important features: lacking the entire DNA binding domain and lacking repressive 

activity themselves (Figure 3-4A). Among the substitution mutants, DEC I RS BP and 

DEC I rs•AJRS BP but not DEC I"" ' partially but significantly reversed DEC I-mediated 

repression, consistent with the fact that DEClrssA was a potent repressor itself (as potent as 

wild type DECl), whereas DEClRssP and DEClrS6A/R5SP were much less repressive (Figure 

3-4A). It should be emphasized that the expression patterns in the cells co-transfected with 

DECl and a mutant were consistent with what was predicted: a band with more intensified 

staining was detected if a mutant co-migrated with DEC! (e.g., DEClrs•AJRSBP), otherwise, an 

addi tional band (e.g., DEC 1105412) was detected if a mutant and DEC I were electrophoretically 

distinct. 

We also tested all C-tem1inal truncated mutants for the abi li ty to function as dominant 

interfering_regulators. Generally, these mutants either partially or completely antagonized 

DEC I-mediated repression depending on the relat ive potency to act as a repressor by its own 

(Figure 3-68). Mutants with less intrinsic repressive activity exhibited a higher potency to 

reverse the repression by DEC!. For exan1ple, Flag-DEC l 1. ,,0 itself had no repressive activity 

(Figure 3-4A) but completely reversed DECI-mediated repression (Figure 3-6B). Among all 

mutants that were less repressive than wild type DEC!, only DECl 105412 and DECI 237412 failed 

to reverse tl1e repression by DECl (Figure 3-6), and they were the only mutants that did not 

contain the HLH domain (Figure 3-4A and 3-SA), suggesting that the dominant interfering 
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Figure 3-6. Dominant interfering regulation on DECl-mediated repression 

(Al Effects of DNA binding defective mutants on the repressive activity by DEC 1 Cells (293T) 

were cultured in 24-well plates and transiently transfected with DEC 1 (50 ng) in the presence 

or absence of a DNA binding defective mutant (100 ng). Vector construct was used to equalize 

the amount of plasmid in each transfection. Similarly, the pRL-TK Ren ilia plasmid (I ng) was 

included in the transfection mixture to normalize transfection efficiency. Cell lysates (I 0 µg) 

from the cells used for reporter activity were analyzed for the expression of DEC I and its 

mutants by the anti-DEC! antibody (specific to tl1e C-tenninus of DEC!). (BJ Effects o[/he 

C-terminal truncated mutants on the repressive activity bv DEC/ The co-transfection and 

immunodetection were performed as described in the legend for Figure 3-6A. However, both 

anti-DEC! and anti-Flag antibodies were simultaneously used for tl1e inununodetection 

because the C-tem1inal tnmcated constructs were prepared with the Flag-CMV vector .. 
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regulatory activity is achieved tluough the HLH domain. The HLH domain is known to 

mediate dimerization (1), mutants with an intact HLH domain likely form dimers with wild 

type DEC I, but the resultant dimers have no DNA binding activity or are transcriptionally 

inactive. In support of the first possibility, we perfom1ed EMSA and found that DECIRssP and 

DEClrsoNRSSP (DNA binding defective mutants) markedly abolished the DNA binding ability 

of DEC I when cells were co-transfected together with DEC! and DECIRssP or DECl ps6NRssr 

(data not shown). 
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DISCUSSION 

The bHLH proteins are intimately associated with developmental events such as cell 

differentiation and lineage commitment (Littlewood and Evan, 1998). Based on sequence 

alignment and functional domain analyses, human DEC proteins, along with mouse STRA and 

rat SHARP, constitute a new class of bHLH transcription factors (Boudjelal et al, 1997; 

Fujimoto et al, 2001 ; Rossner et al, 1997; Shen et al, 1997). These proteins are shown to play 

important roles in cell differentiation, regulation of molecular clock, immune response and 

xenobiotic response (Boudjelal et al, 1997; Shen et al, 1997; Miyazaki et al , 2002; Shen et al , 

2002 Sun et al, 2001; Honma et al, 2002 Zawel et al , 2002). Recently we have reported that 

DEC I is abundantly expressed in colon carcinomas, antagonizes serum deprivation-induced 

apoptosis and selectively inhibits the activation of procaspases (Li et al, 2002). In this report, 

we describe inversed expression patterns between DEC 1 and DEC2 among paired 

tumor-nom10l samples from the colon, lung and kidney. Experimentally forced induction of 

DEC I causes proportional decreases in the expression of DEC2. Given the fact that 

DEC/STRNSHARP proteins are highly identical (>90%) in the DNA binding region, whereas 

much diverse in other areas (<40%), our findings described in this report provide an important 

mechanism by which the cellular function of target genes likely shared by these proteins can be 

coordinately affected by members within the same class. 

DNA binding is likely the primary mechanism responsible for DECl-mediated repression on 
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the expression of DEC2, although members of DEC/STRA/SHARP protein family have been 

shown to use non-DNA binding mechanism(s) (Sun and Taneja, 2000; Garriga-Canul et al, 

2001; Yun et al, 2002). Several lines of evidence presented in this study support this notion. 

First, studies with deletion and site-directed reporter mutants identify the proximal E-box that 

supports the repression by DEC! , this E-box exhibits a high affinity toward DEC! and 

disruption of this E-box markedly reduces its responsiveness to DEC! (Figure 3-3), suggesting 

that DNA binding is involved in the DECl-mediated repression. Second, DEC! deletion 

mutants (DECl-M, DEC! 10, 41 ,, and DEC1 237_. 12) , which Jack the entire DNA binding domain, 

show neither DNA binding ability nor repressive activity (Figure 3-4A), providing direct 

evidence that DNA binding is required for DEC! to repress the DEC2 promoter. Finally, 

among the substitution mutants, DEC1 Pl8A binds to the E-box as much as wild type DEC ! and 

is equally active in repression, whereas DEC1 Rl8P and DEC1 Pl6NRl8P show no DNA binding 

ability and are much less repressive (Figure 3-4A), further supporting the notion that 

DEC I-mediated repression is largely achieved through DNA binding. The precise mechanism 

remains to be determined on whether DEClRssP and DEClrs•NRSS P, altl10ugh Jacking DNA 

binding ability, cause some repression. It is likely that these two mutants retain some DNA 

binding ability within the cells, but the conditions employed for EMSA fail to support such 

interactions. Alternatively, they exert repression through non-DNA binding mechanisms (Sun 

and Taneja, 2000; Garriga-Canul et al, 2001; Yun et al , 2002). 
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( 
DNA binding, although required to exert effective repression, is not sufficient to repress the 

DEC2 promoter. Mutant Flag-DECI 1• 150, for example, binds effectively to DNA but shows no 

repressive activity (Figure 3-5A). As a matter of fact, mutants, with a deletion in the region 

from residue 150 to 347, all bind to DNA as effectively as wild type DEC!, but are markedly 

less repressive (Figure 3-5A). In this region, several helical structures and particularly an 

orange domain are located (Boudjelal et al , 1997; Fujimoto et al, 2001). These structures are 

assumed to mediate protein-protein interactions based on studies with other bH LH proteins 

(Littlewood and Evan, 1998; Boudjelal et al , 1997; Fujimoto et al , 2001). It is likely that this 

region recruits proteins that cause repression. However, the necessity of protein recruitment to 

repress DEC2 is unlikely, because mutants such as DEC! 105.,12 contain the entire sequence of 

this region but show no dominant interfering activity against wild type DEC! (Figure 3-6A), 

suggesting that this region has intrinsic repressive activity. Alternatively, proteins assumed to 

be recrnited are abundantly expressed in the cells employed in this study. Although we have 

not provided sufficient data to support protein recrnitment in repressing DEC2, it can not be 

excluded that such events are involved in the regulation of other genes by DEC I, particularly 

given the fact mouse STRA13, a highly identical protein to DEC!, has been shown to interact 

directly with TFIIB through this region (Sun and Taneja, 2000). 

DEC/STRNSHARPs differ significantly from other bHLH proteins in tem1s of binding to 

DNA. Most bHLH proteins bind to E-box (CANNTG) or N-box (CANNAG). Binding 
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preference is specified by the sequence in the basic region. Generally, proline-containing basic 

regions have higher affinity toward the N-box (Littlewood and Evan, 1998; Akazawa et al, 

1992), whereas the basic regions without a proline preferentially recognize the E-box. 

DEC/STRNSHARPs contain a proline, however, this proline (residue 56 based on DEC! ) is 

located 2 residues more amino terminal (Fujimoto et al, 2001). Instead, DEC/STRNSHARPs 

have an arginine (residue 58) that substitutes the conserved proline an1ong N-box binding 

bHLH proteins. Although initial studies suggest that STRA 13 has no binding activity toward 

classic E- or N-box (Boudjelal et al, 1997), PCR-based site selection experiments have recently 

identified a class B type E-box (CACGTG) that is effectively bound by DEC I and STRA 13 

(Zawel et al, 2002; St-Pierre et al , 2002). In this study, we have demonstrated that the 

contribution of Pro,6 to DNA binding is insignificant because mutant DECl mA is equally 

effective as wild type DEC! in DNA binding (Figure 3-4C). In contrast, introduction of a 

proline by substituting Arg,. completely eliminates DNA binding activity (Figure 3-4C), 

suggesting that residue in this location is indeed imponant for E-box binding. It would be 

interesting to test whether DECIRssr and DECl.,6AIRssP show an increase in binding to an 

N-box sequence. In addition, the DEC2 reponer contains two identical E-box sequences 

(proximal and distal , Figure 3-3A), however, only the proximal E-box is required for 

responding to the repression by DEC!. The precise mechanism for such a difference remains to 

be determined. It is likely that the genomic context rather than an E-box alone determines 

intracellular DNA binding. In suppon of this possibility, STRA 13 has been shown to 
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preferably bind to an E-box flanked with certain nucleotides. 

DEC! and DEC2 share the DNA binding domain with an exception of a single residue 

(aspartate versus glutamate, the farthest N-tem1inal residue of this domain) (Fujimoto et al, 

2001), therefore, DEC2 likely acts as an auto-regulator. This possibility is further supported by 

their highly identical sequences flanking the DNA binding domain. Immediately the 

C-terminal to the DNA binding domain is the helix-loop-helix domain that is identical between 

DEC I and DEC2, and the N-terminal to this domain is an acidic residue-rich stretch in both 

proteins (Fujimoto et al , 2001). The DNA binding domain and its highly identical flanking 

sequences suggest that DEC! and DEC2 have overlapping target genes, particularly those that 

are regulated through direct DNA binding. ln support of this notion, mouse proteins (STRAl3 

and DEC2) have been recently shown to repress Clock/Bmall-induced activation of the Per 

promoter (Honma et al , 2002), a gene that is involved in the regulation of molecular clock. 

Therefore, it is likely that DEC/STRNSHARP proteins are functionally redundant on some 

target genes, and such a redundant mechanism provides a possible explanation that STRA 13 

knockout mice develop to adulthood and show no discernible phenotypic differences compared 

with their wild-type littermates (Sun et al, 2001). It should be emphasized, however, that DECI 

and DEC2 may not necessarily exert the same biological activity on all target genes and in all 

cell types, particularly given the fact that they have a minimal sequence identity (<40%) in tl1e 

C-lem1inal half and exhibit several major structural differences (Fujimoto el al, 2001). Botl1 
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DEC I and DEC2 have an orange domain (two helical structures spanned by - 50 residues), 

however, the overall sequence identity in this domain is only moderate (- 50%). In addition, an 

alanine/glycine rich region is present in DEC2 but absent in DEC!. Previous studies with 

STRA 13 as well as the findings described in this study have demonstrated that the region 

harboring the orange domain is required to exert effective repression by both proteins (Figure 

3-5A,). Amino acid repeats, on the other hand, are implicated in protein folding, 

protein-protein interactions and degradation (Katti et al, 2000). 

DEC I-mediated repression is likely responsible for the differences on cell and tissue 

distributions between DEC! and DEC2. Although Northern analyses have shown that DEC! 

and DEC2 have an overlapping tissue distribution (Fujimoto et al, 2001; Shen et al, 1997), it 

remains to be detennined whether they are actually expressed in the same cell type and to a 

similar extent (Fujimoto et al, 2001; Shen et al , 1997). Some organs with high levels of DEC! 

(e.g., liver) express lower levels ofDEC2 (Shen et al, 1997). Very recently, DEC! and DEC2 

are found to regulate the manunalian molecular clock, but they exhibit distinct and 

area-dependent expression patterns in the brain (Sun et al, 200 I). In this report, we have 

demonstrated that these two proteins exhibit inversed expression patterns among the paired 

tumor-normal tissues, forced expression of DEC! causes proportional decreases in the 

expression ofDEC2 (Figure 3-1and2), providing direct evidence that increased expression of 

DEC I is at least in part responsible for decreased expression of DEC2 in a given cell context. 
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DEC I-mediated repression, although profound, may not always dictate the expression of 

DEC2. For example, DEC! and DEC2 are both up-regulated in response to hypoxia induction 

(Miyazaki et al , 2002). Acute hypoxia is considered severe cytotoxic stimulus, rapid induction 

of both genes maximizes cellular survival mechanism based on our recent report that DECl is 

antiapoptotic (Li et al, 2002), although it remains to be detennined whether DEC2 is actually 

antiapoptotic as well. 

In sununary, we have demonstrated that DEC! is a negative regulator on the expression of 

DEC2. These two proteins exhibit inversed expression patterns among paired samples from the 

colon, kidney and lung. An inducible expression system demonstrates that increased 

expression of DECJ proportionally decreases the expression of DEC2. The DEC I-mediated 

repression is primarily achieved by binding to tl1e E-box in the proximal promoter of DEC2. 

Site-directed mutagenesis studies show that arginine-58 in the DNA binding domain is critical 

for DEC! to interact with this E-box. Given the fact that DEC/STRA/SHARP proteins are 

being emerged as very important regulators in a vast array of cellular events including cell 

differentiation, maturation of lymphocytes, oncogenesis, molecular clock and xenobiotic 

response, our findings described in this study provide an important mechanism that these 

proteins regulate the cellular function not only by modulating the expression of their target 

genes but also the expression of the members within the same class. 
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CONCLUSIONS 

The purpose of this dissertation is to elucidate the oncogenic roles of DEC! and detem1ine the 

molecular actions of DEC! on transcription regulation. Unique structure of DEC! indicates 

that it has distinct biological functions and unique mechanism on transcription reg11lation. 

Tumor-related expression pattern of DEC! suggests that DEC! is involved in oncogenesis. 

Thus, the significance of the studies reported in this dissertation will contribute to our basic 

understandings ofbHLH proteins as a fami ly of transcription factors involved in oncogenesis. 

Expression of DEC ! is related to tumor and cell cycle progression. 

In an effort to identify genes that are differentially expressed between colon carcinomas and the 

adjacent normal tissues, we perfom1ed cDNA subtractive assay, a technique that identifies 

genes highly expressed in one tissue over another. A cDNA wi th 98% sequence identity to 

DEC! was identified. The amino acid sequence encoded by this cDNA was exactly the same as 

DEC I. The initial goal of the studies described in manuscript I was to detennine if the 

expression of DEC! is related to tumors. I hypothesized that DEC! is up-regulated in tumor 

tissues. The rationale for this hypothesis was based on the following observations: I) DEC! is 

cloned from human colon carcinoma tissues, which indicates that DEC! might be highly 

expressed in tumor tissues; 2) cells that lack the functional tumor suppressor VH L express 

higher levels of DEC!; 3) hypoxia induces DECI via HIF, a transcription activator which is 

highly expressed in tumor. 
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To examine the relationship between the expression of DEC! and tumor, human paired samples 

from carcinoma tissues ru1d adjacent normal tissues were collected from colon, lung and kidney. 

Both mRNA levels and protein levels of DEC! were markedly higher in all these carcinoma 

san1ples, but very low levels of DEC I were detected in the paired normal samples. This result 

confirmed our hypothesis that DEC! is highly expressed in tumor tissue. 

Since DEC! is abundantly expressed in tumors but not in the adjacent nomial tissues, its 

expression is probably related to nutrient requirement and cell confluence. ~1 DLD cells, a 

colon carcinoma derived human cell line, post-confluent cells express much higher DEC I than 

less confluent cells. post-confluent cells usually undergo growth arrest and fail to continue 

cycle progression. Therefore, DEC! expression is probably linked to cell cycle states. To test 

this possibility, DLD cells were treated with different cell cycle blockers to arrest cells at GO, 

GI, Sand G2 phases. Protein level of DEC! demonstrated that S blocker hydroxyurea and G2 

blocker nocodazole markedly induced DEC!. The induction was observed as early as 6 hours 

after treatment. Cell cycle synchronization nom1ally needs 24 hours. This rapid induction of 

DEC! suggests Urnt the induction of DEC! occurs prior to cell arrest rather than as a result of 

this effect. Therefore, DEC! may slow down cell cycle progression and has 

proliferation-inhibitory effects. 

In order to test the possibility that DEC I inhibits cell proliferation, stable transfectants were 
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prepared. Sense, mutant and anti-sense DEC I constructs were stably transfected into T-Rex 

293 cells, in which the inserted genes can be inducibly regulated by tetracycline. As expected, 

proliferation studies revealed that sense cells with tetracycline showed much lower growth 

rates than the same cells cultured without tetracycline. The mutant cells, which encode a 

mutant DEC l lacking the DNA binding domain, had no effects on proliferation. The 

requirement for DNA binding domain implied that DEC! inhibits cell proliferation through 

regulating other protein expressions. It is interesting to note that DEC! has proliferation 

inhibiting activity. Cancer cells always have high proliferation rate. However, in some 

conditions such as in short of blood supply, high proliferation is not good for cell survival. Cells 

with lower growth rate may have higher survival ability and are resistant to death. Thus, DEC l 

might help cells against apoptosis, an event occurs when cells are in short of nutrients. 

DEC! antagonizes serum deprivation-induced apoptosis. 

Tumor related expression of DEC I and its anti-proliferation activity suggests it may protect 

cells against apoptosis. Therefore, another goal of the studies described in manuscript l was to 

test the hypothesis that DEC! has antiapopototic activity, an effect that favors tumor survival. 

The rationale for this hypothesis included: l) DEC! is highly expressed in over-confluent cells 

which usually undergo apoptosis due to nutrient depletion; 2) DEC! is rapidly induced by 

detrimental stimuli like hypoxia and treatment with cytotoxic chemicals like hydroxyurea and 

nocodawle, indicating that DEC 1 has cytoprotective functions and prevents cells from death; 3) 
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DEC! is up-regulated by H!F-la, an transcription factor that has been show to have 

anti-apoptotic effects. 

To test this hypothesis, the DEC! stable transfectants were cultured in serum free media in the 

presence or absence of tetracycline to imitate nutrients depletion conditions and to induce 

apoptosis. After 48 hours, cells cultured without tetracycline showed typical apoptotic changes 

while cells cultured with tetracycline displayed normal appearances. This anti-apoptotic effect 

was also confim1ed by DNA fragmentation, a hallmark of cell apoptosis. Like anti-proliferation 

effects, this antiapoptotic effect also required DNA binding domain because DEC I mutant cell 

lines failed to prevent serum deprivation induced apoptosis. 

Caspases are a family of cysteine proteases that play central roles in regulating apoptotic 

process. Pro-apoptotic signals, like FasL, TNF and DNA damages activate initiator caspase 8. 

Cytochrome C released from mitochondria is coupled to the activation of caspase 9, another 

key initiator caspase. Activation of both caspase 8 and 9 results in the activation of downstream 

effector caspases 3 and 7, which in tum cleaves cytoskeletal and nuclear proteins and induces 

apoptosis. To test whether DEC! has any effects on these caspases activation, cell lysates from 

serum deprived stable transfectants were prepared and assayed for the activities of caspase 3/7, 

8 and 9. The activities of caspase 3/7 and 9, but not 8, were markedly decreased by DEC!. The 

expression levels of these procaspases have no changes, which implied that DEC I inhibits tl1e 
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activation process ofprocaspases rather than represses the expression level ofprocaspases. 

DEC! upregualtes the antiapoptotic protein, survivin. 

The goal of the studies reported in manuscript II was to extend the apoptotic study ofDEC l and 

detennine the signaling pathways leading to apoptotic inhibition. Several classes of proteins, 

notably the inhibitor of apoptosis protein (!AP) family, have been shown to inhibit procaspase 

activation and the catalytic activity of several caspases. To test whether DECl has any effects 

on lAP protein regulations, we examined the expression levels of several IAP proteins 

including c!AP-1, clAP-2, XIAP and survivin in DEC! stable transfectants treated with semm 

deprivation. Among these IAP proteins, only survivin was markedly increased in 

tetracycline-treated cells, suggesting that DEC! selectively increases the expression of !AP 

proteins. The induction ofsurvivin by DEC! was consistent to the following observations: 1) 

Both survivin and DEC! are upregulated in tumors; 2) The expressions ofsurvivin and DEC! 

are cell cycle dependent and upregualted by cell cycle blocker nocodazole; 3) Survivin has 

been shown to inhibit the activation ofprocaspase 3 and 9, but not 8, consistent to the activities 

of DEC!. Moreover, paralleled expression pattem between DEC! and survivin in paired 

tumor-nonnal tissues also supported the notion that DEC I regulates the expression of survivin. 

It should be noted that the upregulation of survivin by DEC I only occured in semm deprived 

cells and was time-dependent. Time course studies showed that survivin expression declined 
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after 24 hours of serum deprivation, but little changes were observed before 24 hours 

incubation. However, the expression of DECI prevented the decrease of survivin expression 

and kept survivin to a relative high level, thus protected cells from death. 

Two mechanisms, namely increased survivin stability and/or exprssion, are likely responsible 

for such a relatively higher steady level of survivin. Same increase patterns were observed in 

both survivin mR.NA and protein levels, suggesting that DEC! mediated induction ofsurvivin 

is achieved through transcription activation. To test this possibility, transfection studies were 

conducted with survivin promoter reporters pSurvivin-6270 and pSurivivin-268. Both these 

two reporters showed 5 fold induction of survivin by DEC I in serum deprived stable 

transfectants. Similar induction fold on reporter pSurvivin-6270 and pSurvivin-268 indicated 

that the responsible sequences for DEC ! are located downstream of site -268 in survivin 

promoter. 

Multiple Spl binding sites are responsible for the survivin induction by DECI 

Sequences analysis reveals that a clustered Spl /CDE region (cycle dependent element) is 

located in the proximal region of survivin promoter and has been shown to mediate basal 

transcription. However, no E-box is identified in this region. In order to identify DNA 

sequences that act as potential binding sites for DEC I, ten oligonucleotides were synthesized to 

span the entire promoter region of reporter pSurvivin-268. EMSA studies with these 
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oligonucleotides identified Spl-127 and Spl-226 as two Sp! binding sites whose DNA-protein 

bindings were dramatically increased in the presence of DEC!. Deletion and substitution 

mutation assays on pSurvivin-268 reporters showed that Sp! sites-127 and 226 additively 

activated the survivin promoter reporter in response to DEC!. Super-shift studies using 

anti-Sp I and anti-DEC ! antibodies found that both DEC! and Sp! bond to the Sp! sites- 127 

and 226. The DEC! mutant lacking the DNA-binding domain failed to induce survivin, 

suggesting the DNA binding requirement of this activity. The delayed induction on survivin 

implied that the induction was through regulating otl1er transcription factors. However, the 

direct binding of DEC I to Sp I-protein complex indicated that DEC! was directly involved in 

this transcription activation. Therefore, DEC! up-regulates survivin probably through more 

than one mechanism. It remains to be detemuned whether the interaction between Sp I-binding 

site and DEC I requires basic domain and whether DEC I binds to Sp I-binding site directly or 

through other proteins. 

DECI negatively regulates the expression of DEC2 

Soon after DECl /STRA13/SHARP2 was reported, Fujimoto et al (2001) identifies human, 

mouse and rat DEC2, a novel member of the DEC subfannly. DEC2 has high (97%) similarity 

with DECI in the bHLH region but has a quite different c-terminal part. These two proteins 

show different tissue distributions. To determine if DEC2 has similar expression patterns in 

tumors like DECI, mRNA levels ofDEC2 were tested in paired tumor-normal tissues from the 
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colon, Jung and kidney. In contrast to DECI which was highly expressed in tumors, DEC2 was 

expressed markedly higher in the adjacent normal tissues and had reverse expression patterns 

with DECI in all the samples tested. Searching of the DEC2 promoter sequence identified two 

classical E-box sequence CACGTG at position-1684 and-169. Zawel et al (2000) reports that 

DECJ bind to E-box and mediates transcription repression. But Boudjelal et al (1997) shows 

that DEC I failes to bind either E-box or N-box. To solve this controversy, the goal of the 

studies described in manuscript II was to detem1ine whether DEC! binds directly to E-box 

sequence in the promoter region of DEC2 and represses its transcription. 

In DEC! stable cell lines, forced expression of DEC! proportionally decreased the expression 

of DEC2. This result strongly supported our hypothesis that DEC I repressed the expression of 

DEC2. However, tl1e repression on DEC2 was only observed in DEC I sense Jines, but not in 

DEC! mutant lines, cells that express a mutant DEC! lacking the DNA binding domain. The 

requirement of DNA binding domain suggestes that the repression on DEC2 is through a DNA 

binding mechanism. To test this possibility, a DEC2 promoter reporter (pLuc-1888) was 

constructed to contain the promoter region (-1888 to +11) of DEC2 gene. Co-transfection and 

Juciferase assays showed that DEC! repressed the transcription of pLuc-1888 reporter by as 

much as 90%. A 5' deletion mutant reporter pLuc-535 gave the same result as pLuc-1888, 

which indicated that the repression was achieved through E-box - 169 rather than E-box - 1684. 

Disruption of E-box - 169 by site-directed mutagenesis in pLuc-535 abrogated the repression 
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by 60%. EMSA studies gave direct evidence that DEC! bond to the E-box -169 and the 

specificity of this binding was confinned by super-shift experiment. Taken together, these 

results suggests that DEC! represses the transcription of DEC2 and the repression is primary 

achieved through direct DNA binding to the E-box in the proximal promoter of DEC2. 

To further expand our studies on molecular mechanisms of DEC I-mediated transcription 

repression, many DEC! mutants were included in the reporter assay. Substitution mutation of 

arginine 58 to proline totally abrogated the E-box binding ability of DEC! and reduced the 

transcription repression by 60%, which pointed out the importance of this residue in DNA 

binding. C-tem1inal deletion mutants of DEC! showed various transcription repression and 

indicated that deleted region from residue 150 to 347 were important for the repressive activity 

of DEC!. The 150-347 region either has intrinsic repressive activity, or is responsible for 

recruiting transcription co-repressors. The exact mechanisms still need to be clarified. 

In conclusion, the studies reported in this dissertation demonstrate that DEC I is highly 

expressed in tumor and inhibits cell proliferation. Expression of DEC I protects cells against 

serum deprivation induced apoptosis through upregulation of anti-apoptotic protein survivin. 

The upregulation of survivin is regulated by two Sp I binding sites in the proximal promoter of 

survivin. Both DEC I and Sp I are involved in the binding of these Sp I sites. In contrast to 

transcription activation, DEC! negatively reguates the expression ofDEC2 through binding to 
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the E-box in the proximal promoter. These findings establish the oncogenic roles of DEC I and 

e lucidate the signaling pathway that leads to antiapoptotic activity. The studies on transcription 

regulations provide molecular mechanisms that DEC! regulates the transcription as an 

activator as well as a repressor depending on the genomic context of a target gene. 
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APPENDICES 

ABBREVIATION 

ARNT: Ah receptor nuclear translocation protein 

bHLH: basic helix-loop-helix 

CHAPS: 3-[C3-cholamidopropyl)dimethylammonio ]-1-propanesulfonic acid 

DEC: differentially expressed in chondrocytes 

DMEM: Dulbecco's modified Eagle's medium 

DIT: dithiothreitol 

E-box: Ephrussi box 

EMC: extramacrochaetae protein 

EMSA: Electrophoretic mobility shift assay 

E(spl): enhancer of split protein 

HAT: histone acetyltransferase 

HES: hairy and enhancer of split-related mammalian proteins 

HLH: helix-loop-helix 

!AP: inhibitor of apoptosis protein 

MAD: Max-associated dimer protein 

Mash: mammalian Achaete-Scute homologue protein 

MAX: Myc-associated x protein 

MyoD: myogenic detem1ination factor 
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PCR: polymerase chain reaction 

PBS: phosphate-buffered saline 

PMSF: phenylmethysulfonyl nuoride 

RT-PCR: reverse transcription-polymerase chain reaction 

SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SHARP: split and hairy related protein 

STRA: stimulated with retinoic acid 

TAL: T cell acute leukemia protein 

TBP: TATA-binding protein 

TFll: transcription factor II 

TGF-Jl: transforming growth factor Jl 

VHL: Von H ippel-Lindau 
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