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ABSTRACT 

Chichester, Clinton Oscar. M.S., University of Rhode 
Island, 1976. Studies on the Regulation of Prolyl Hydroxyl­
ase. Major Professor: Dr. George C. Fuller 

The hydroxylation of proline is thought to be one of 

the critical cellular events necessary for the synthesis and 

secretion of structural collagen. Using antibody directed 

against prolyl hydroxylase it has been shown that there is 

an enzymatically inactive protein related to prolyl hydroxyl-

ase in mammalian tissue. This cross-reacting protein is 

always present in excess relative to active hydroxylase and 

it is not kriown whether it is a precursor or a degradation 

product 0£ prolyl hydroxylase. 

The turnover rates of prolyl hydroxylase and immuno-

lo.gically related protein, CRP, were examined using labeled 

leucine as precursor or by measuring the decay of elevated 

prolyl hydroxylase and CRP back to basal levels. Prolyl 

hydroxylase and CRP were purified from neonatal rabbit skin 

at various times following the administration of 
3
H-leucine. 

Prolyl hydroxylase was purified by affinity chromatography. 

CRP was purified by antibody precipitation from the dialyzed 

70% (NH4)2S04 supernatants and subsequent electrophoresis 

on 10% SDS polyacrylamide slab gels. CRP was shown to 

migrate similarly to the two prolyl hydroxylase monomers 

which had molecular weights of 65,000 and 60,000. A smaller 
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antigenic component (45,000) of CRP was also observed. How­

ever, only the higher molecular weight components were used 

in the turnover studies of CRP. The peak incorporation of 

label into prolyl hydroxylase was found to be 12 hours while 

for CRP this occurred within 2 hours. The loss of radioac­

tivity from these protein pools denotes an apparent T\> for 

prolyl hydroxylase of 73 hours and a T~ for CRP of 53 hours. 

From the specific activity of free skin leucine pools, the ef­

fect of reutilization could be corrected and a true T~ for 

prolyl hydroxylase of 45 hours was determined. 

Prolyl hydroxylase and CRP in the aorta and liver of 

adult male rabbits were elevated by daily epinephrine­

thyroxine treatment for 12 days. The decline of prolyl hy­

droxylase and CRP with termination of treatment in the aorta 

denotes T~ values of 42 hours for both. Calculated enzyme 

Kd values, by both methods, indicate that breakdown of enzyme 

does not account for tissue CRP. 
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INTRODUCTI ON 

Collagen is the major structural protein in mammalian 

tissue. · The composition of collagen is approximately one­

third glycine, one-third praline or hydroxyproline and one­

third non-aromatic amino acids. Synthesis occurs by a series 

of sequential steps starting with the formation of a polypep­

tide precursor. The lysine and praline residues are subse­

quently hydroxylated and triple helix formation occurs intra­

cellularly. Following secretion collagen molecules are 

further processed to form insoluble fibers. The synthesis of 

collagen is prolific in early development and declines to 

lower values in adult stages. However, in pathologic condi­

tions such as arteriosclerosis, cirrhotic liver disease and 

other conditions associated with buildup of connective tissue, 

there is an increase in the biosynthesis of collagen (Grant 

and Prockop, 1972). In order to effectively modify this patho­

logical process the control of collagen synthesis must be 

elucidated. 

Prolyl hydroxylase (EC i.14.11.2; praline, 2-oxoglutarate 

dioxygenase) converts specific prolyl residues in the peptide 

precursors of collagen to 4-hydroxyproline and is thought to 

be one of the critical cellular events necessary for th~ syn­

thesis and secretion of structural collagen (Cardinale and 

Udenfriend, 1974). Although the importance of prolyl hydroxyl­

ase as a controlling factor in collagen synthesis is unclear, 
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large increases in activity have been reported in a variety 

of tissues responding to injury induced damage which result in 

increased collagen synthesis (Grant and ~rockop, 1972) . This 

parallelism has resulted in the use of prolyl hydroxylase as 

a marker for the rate of collagen synthesis, and has helped 

generate interest in the cellular regulation of this hydroxyl-

ase. 

McGee et al. (1971), obtained evidence with antibody 

against prolyl hydroxylase that an enzymatically inactive 

antigen is present in L-929 fibroblasts which may be a pre-

cursor to the active enzyme. Examination of animal tissues 

using antibody directed against rat (Stassen et al., 1974), 

rabbit (Fuller et al., 19 76) or human prolyl hydroxy lase 

(Tuderman et al., 1975) has confirmed the presence of both 

forms of antigen (active enzyme and immunologically cross-

reacting protein, CRP) in mammalian tissues with CRP always 

in excess relative to active hydroxylase. However, the demon-

stration of a precursor product relationship between these 

two proteins has not been reported. 

This study examines the relationship between prolyl 

hydroxylase and CRP through the determination of the turnover 

rate of these two protein pools. Prolyl hydroxylase and CRP 

were purified from neonatal rabbit skin at various time 

periods following t!'Eadministration of 3H leucine. To con-

firm the half-lives observed in the neonates, prolyl hydroxyl-

ase and CRP were elevated in the vasculature of rabbits by 

daily exposure to thyroxine and epinephrine injections Wuller 



and Langner, 1970), and the rate of decay back to basal 

levels was measured. 
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LITERATURE SEARCH 

Collagen and Prolyl Hydroxylase 

Collagen is the major fibrous constituent of skin, 

tendon, liagment, cartilage, and bone. Its structure is 

quite unique, having three polypeptide chains linked in a 

helix formation. At present there are four genetically dis­

tinct types of collagen known in mammalian tissue and there 

are at least five structural genes involved with the synthe­

sis of five different component chains (Miller, 1974). 

Collagen synthesis occurs by a series of steps starting with 

the synthesis of polypeptide 'precursors rich in proline and 

glycine called procollagen chains (Martin, 1975). While 

still on the polyribosomal complex susceptible proline and 

lysine residues are hydroxylated and glycosylation of the 

~esulting hydroxylsyl residues occurs intracellularly. Triple 

helical aggregates of pro r;f... chains are secreted by the cells 

and subsequently a segment is cleaved from the non-helical 

. region on both the C and N terminal ends by the action of 

procollagen peptidases (Fessler et al., 1975; Goldberg, et 

al., 1975). Further extracellular processing occurs through 

the action of lysyl oxidase which oxidatively deaminates 

specific lysine and hydroxylysine residues leaving aldehyde 

moieties which form extra- and intramolecular cross-links 

through condensation reactions (Siegel et al., 1970). 
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It has been suggested that the hydroxylation of pro-

line is one of the rate limiting steps in collagen synthesis 

(Udenfriend, 1966). Hydroxyproline is important for the 

structural integrity of collagen. The name prolyl hydroxyl-

ase is a descriptive title since it hydroxylates peptidyl 

bound praline. The enzyme was the first described member of 

the~-ketoglutarate requiring mixed-function oxygenases. It 

has been established for some time that molecular oxygen is 

the source of oxygen for the hydroxyl group, (Prockop, et 

al., 1962; Fujimoto and Tamiya, 1962). Alpha keto-glutaiate 

is an essential co-factor which is stoichiometrically de-

carboxylated to succinic acid in relation to the amount of 

hydroxyproline formed (Rhoado and Udenfriend , 1968; Cardinale, 

et al., 1971). The "in vitro" r e action also requires a 

ferrous ion and ~scorbic acid reduction-oxidation system. 

Other reducing agents,such as the tetrahydropteridines or 

reductones (Hutton et al., 1967) can substitute. --

The cellular site at which hydroxylation of praline 

occurs wa s d ebated for some time. Miller and · Udenfriend (1971) 

· provided the first evidence that hydroxylation occurs on 

nascent chains by isolating ribosomes from guinea pig granu-
14 

loma minces which had been incubated with c praline. They 

showed that the ribosomes containe d pept i rl y l bound 1 4c praline 

and 14c hydroxyproline was released from the ribosomes by 

puromycin treatment. Lazarides and Lukens (1971), confirmed 

that the site of hydroxylation occurs on nascent chains by 
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labeling 3T6 f ibrobLasts with 3H praline and isolating poly-

sames and showed that they did contain radioactive hydroxy-

praline. They further showed that when hydroxylation was 

inhibited, underhydroxylated chains were still released. 

The location of prolyl hydroxylase in membrane was 

suggested by the observation that enzyme activity is in-

creased in homogenates by treatment with detergents (Guzman 

and Cutroneo, 1973; Harwood et al., 1974). Cutroneo (1974) 

reported the isolation of a microsomal fraction which con-

tained both the highest specific activity of cellular prolyl 

hydroxylase and substrate which could be hydroxylated. EM 

studies using conjugated antibodies to prolyl hydroxylase . 

have confirmed the microsomal localization of the enzyme 

(Al-Adnani et al. , 197 4; Olsen et al. , 197 3.) . Recently, 

Peterkofsky and Assad (1976) have shown that low concentra-

tions (0.05%) of detergents such as Triton X-100 or Brij-35 

can release prolyl hydroxylase from isolated microsomes~ 

In addition, prolyl hydroxylase, which could subsequently 

be released from the microsomes by Brij-35, was resistant 

to trypsin proteolysis at concentrations which removed 40% 

of the protein from the microsomes. These results suggest 

that prolyl hydroxylase is located within the cisternae, 

either bound to the inner membrane or freely soluble. 

Prolyl Hydroxylase Substrates 

The hydroxylation of praline "in vivo" occurs pri-

marily on nascent procollagen c/.... chains. Thus, most 
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substrates are fairly large macromolecules but the enzyme will 

hydroxylate susceptible proline residues of small peptides. 

McGee, Rhoads, and Udenfriend (1971) studied the vasoactive 

peptide bradykinin and some of its substituted analogs as 

substrates for the enzyme. They showed that the minimum se-

quence required for prolyl hydroxylation was an X-Pro-Gly 

triplet. Adjacent amino acid residues to this triplet were 

shown to modify the rate at which hydroxylation occurred. 

Hutton et al. (1968) showed, using the synthetic peptide 

(Pro-Gly-Pro)n, that as the molecular weight of the substrate 

increased from 1,200 to 8,000 its effectiveness as a sub-

strate also increased. This was due to a <lecrease in Km 

while the Vmax value remained constant. 

There has been much work done on determining which sus-

ceptible praline residues get hydroxylated. Berg and Prockop 

(1973a) demonstrated, as others had deduced (Rhoads arid 

Udenfriend, 1968; Fujimoto and Prockop, 1968), that collagen 

chains can only be hydroxylated when they are in random-coil 

configuration and not when they are triple helical. Bornstein 

(1967) showed, using CNBr cleavage fragments of rat~l 

chains, that individual praline residues, which are suscep-

tible to hydroxylation, were reproducibly, incompletely 

hydroxylated. The degree of hydroxylation saems to be tissue 

specific and is dependent on adjacent amino acids. 

Purification of Prolyl Hydroxylase 

Prolyl hydroxylase is a uniquitous enzyme being found 

in all mammalian tissue so far analyzed. The enzyme has been 

purified to homogeneity from several different sources having 
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high levels of activity including chick embryos (B e rg and 

Prockop 1973b), newborn rat skin, (Rhou.ds u.nd Udc nf ricnd, 1970), 

and human fetal material (Kuutti et al., 1975). The molecular --

weight of prolyl hydroxylase, obtained from chick and human 

tissue is 240,000 (Kuutti et al., 1975). The molecular weight 

of the subunits are 61,000 and 64,000 (obtained by dissociation 

of the enzyme) suggesting that the enzyme is a tetramer (Kuutti 

et al., 1975). Amino acid analysis shows that the protein 

contains a large amount of aspartic and glutamic acid which 

accounts for its acidic nature. 

Several different methods have been used in the purif i-

cation of the enzyme. Initial purification methods involved 

(NH4)2S04 precipitation followed by ion:--exchange chromatography 

and gel filtration (Rhoads and Udenfriend, 1970). Subsequent-

ly the high affinity of prolyl hydroxylase for its native sub-

strate (Km ':::t 2nM Berg and Prockop 197 3a) was utilized to de-

velop an affinity column method for purif icat~on of the enzyme 

(Berg and Prockop, 1973b). This procedure involved affinity 

chromatography of prolyl hydroxylase on a column containing 

·Ascaris cuticle collagen linked to agarose and the elution of 

the enzyme from the column using a high concentration of a 

synthetic substrate, (Pro-Gly-Pro)n. Recently, a second 

affinity column procedure has been developed based on the 

high affinity of the enzyme for its competitive inhibitor, 

poly (L-proline) (Tuderman et al., 1975a). -- The affinity 

column in this case consists of poly (L-proline), molecular 

weight 30,000, linked to agarose and the enzyme is eluted 

with poly (L-proline) which has a mole cular weight of 5,700. 
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As a logical consequence of enzyme purification, anti-

bodies have been developed against rat (Roberts et al., 1973) 

rabbit (Fuller et al. , 197 6) , chick (Berg et al. , 197 2) , and 

human (Kuutti et al., 1975) prolyl hydroxylase. Using these 

antibodies, several assays have been developed to measure en-

zyme related antigen in tissues. McGee and Udenfriend (1972a) 

used an antibody to rat prolyl hydroxylase to identify the 

pr~sence of a protein immunologically related to prolyl hy-

droxylase (cross-reacting protein, CRP) in L-929 fibroblasts 

and reported the separation of CRP from enzyme. The main 

disadvantage of their enzyme immunoassay was that enzymati-

cally inactive cross-reacting proteins could only be measured 

in extracts which contained little or no enzyme aetivity. 

Stassen et al. (1974) modified the original enzyme immuno-

assay so that it could be used in the presence bf large quan-

tities of active prolyl hydroxylase. With the modified enzyme 

immunoassay, it was shown that tissues bf rat and mouse con-

tain large amounts of CRP relative to the amount of active 

prolyl. hydroxylase. McGee and Udenfriend (1972b) were able 

to isolate and separate these two protein species from early 

log phase cultures of L-929 fibroblast cells by ion-exchange 

and gel £iltration chromatography. It was found that CRP from 

the fibroblasts has a molecular weight between 85,000 and 

105,000 compared to prolyl hydroxylase which has a molecular 

weight between 260,000 and 300,000. The relationship of CRP 

and prolyl hydroxylase is still unclear. Recently, a radio-

immunoassay has been developed for human and chick prolyl 

hydroxylase (Tuderman et al., 1975b). 
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Regulation of Prolyl Hydroxylase 

Activation of collagen synthesis occurs as a resp6nse 

to injury or as a result of rapid growth. The mechariisms for 

the regulation of collagen synthesis, however, are unclear at 

the present time. The question of regulation becomes very im-

portant in fibrotic diseases where there is an overproduction 

of connective tissue elements. As a result, prolyl hydroxyl-

ase has been investigated as a possible controlling factor in 

collagen synthesis. It is well established that prolyl hy-

droxylase activity is increased in tissue when collagen syn-

thesis is stimulated. Siegel (1976) has studied the temporal 

relationship of the increases in the various enzymatic steps 

required for collagen biosynthesis in the carbon tetrachlor-

ide d.amaged liver. This data clearly indicates that increased 

prolyl hydroxylase activity is the first change observed and 

that this occurs even prior to an increase in collagen chain 

synthesis. In experimental models £or disease states such as 

epinephrine-thyroxine induced atherosclerosis (Langner and 

Fuller, 1973}, _where increases in prolyl hydroxylase occur 

. before there are detectable changes in collagen synthesis, 

CRP levels are also increased but to a smaller extent than 

prolyl hydroxylase (Fuller et al., 1976). 

It has been proposed that proline hydroxylation is a 

rate limiting step in collagen biosynthesis (Udenfriend, 1966). 

This is based on the fact that inhibition of prolyl hydroxylase 
I' 

by~'~ dipyridyl i~ chick tendon cells causes secretion of 

procollagen at a very reduced rate (Jiminez et al., 1973). 
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In a related study, Jiminez et al., ( 197 4) suggests that this 

is due to the failure of underhydroxylated collagen to form 

stable triple helices which may be required for secretion. 

Additional evidence for the necessity of prolyl hydroxylation 

would include the fact that none of the identified human in-

heritable connective tissue diseases involves the loss of 

prolyl hydroxylase activity while there are genetic diseases 

accredited to each of the other enzymes in the collagen bio-

synthetic pathway (McKusick, 1972). 

Cell culture has been a popular method for studying 

the regulation of prolyl hydroxylase. Studies with L-929 fi­

broblasts in culture show that the formation of peptidyl bound 

hydroxypropline increases toward the end of the logarithmic 

phase of growth which is accompanied by a sharp increase in 

prolyl hydroxylase activity (Green and Goldberg, 1963; Gribble 

et al., 1969). Enzyme activity in early log phase cells can be 

increased by concentrating the cells to a higher density 

(Comstock et al., 1970); or by the addition of sodium lactate 

(Comstock and Udenfriend, 1970), or sodium ascorbate (Stassen 

. et al., 1973) to the culture medium. Administration of pro-

tein synthesis inhibitors such as puromycin or cycloheximide 

do not inhibit these increases in prolyl hydroxylase activity 

and hydroxyproline formation (Peck et al., 1967; Comstock and 

Udenfriend, 1970). Further suggesting that protein synthesis 

is not required for an increase in prolyl hydroxylase activity, 

McGee et al. (1971) demonstrated taht during cell crowding or 

lactate treatment the amount of enzyme related antigen remains 
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c onst.ant whi :e enzvr:;e activi.tv increases several f old. On 

the basis of t his d a t a the authors postulated tha t th e CRP 

pre sent in cells mav be a s ubunit o r ecursor t o ac tive enzvme . 

. The work of Stassen et al. ( 973) orov ides addition~; evidence ., 

tha i: these two protein spec L =. s are f unctional ly r elated. Us-

i ng DEAE-Sephadex t o seoara te CRP f .._·o m ac t i ve enzyme they were 

--a ble -to show a lmost .:. uanti tut ive conversion o:C enzv me to the 

_, ma r inac ·._ ·_v e oro -c:e in b v t he t rea tment of i ntact. L-9 29 

::.:el :vith c :hioth r e i tol. /Jr. en th e cells were trea t ed wlth 

asc a te a ~ . cyclo 1e ximid - , enzy me a ctivity could b e p a r t ial ly 

r es t02·ed. I n addi t i on, when cells w _re incubated fo r 2 4 hours 

i n f e sh medi um, enzyme ac tivity r etur n e e. to normal. 

Kutt.an et a l . (1975. rec en t:_:- s howed t hat t he activation 

:r ,c a r r:.ed ou t in who le cells <!:mld b e e ffec ted in son i cates of 

:.:he s ame c e l l s. The r 0 quiretnents f or "in v itro" a ctivation · 

a re identical to t hos e nee ded f o r the hydroxy lation reaction 

i. e ., ol\ -ke t oglut arate, ascorbate, f errous i on and catalase. Dur­

i ng a c t ivatio n hydr oxypro l i ne is forme d ( Ku ttan, 19 7 6). This 

woul d s uggest that t here is a complex between activ e enzyme 

and ar. ~ underhydroxyla ted . f orm of collagen. 'fh us a cti va ti on 

occurs. when the enzyme is fre e d due to hyd r oxy la tidn of the 

endoge nous substrate. It appears t hat "ir1 v ivo" act ivation i n 

t is s re cultur e is th e same as the " i n vitro" activation s :L nce 

the s an1e maximum level of enzyme activatio n is effec ted by both 

me thods. I n a dditio n, o nce .maximum acti v · t.y is a chieved " in 

vit::::-0 11 activatible form of t he enzyme is differen c: f rom t he 
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small molecular weight component of CRP since the activatible 

enzyme, CRP and active enzyme can be separated into three 

peaks on DEAE-Sephadex (Kuttan et al., 1975). Thus CRP is a 

heterogeneous pool, ~ut in all probability a portion of the 

pool is precursor to · active enzyme. 

In experiments designed to elucidate the mechanisms of 

fibrosis, McGee. et al. (1973) have found a material fraction-

ated from the liver of mice with acute carbon tetrachloride 

liver injury which stimulates prolyl hydroxylase and collagen 

synthesis in L-929 fibrqblasts. Three collagen stimulating 

factors were found with an approximate molecular weight of 

5,000 which were not found in control livers. It is possible 

that these factors may control the synthesis of collagen ''in 

vivo". 

Protein Turnover 

It is now well established that all proteins are con-

tinually being turned over. Schimke (1974) has reviewed the 

subject and has described several common features of protein 

turnover. First, it appears that most intracellular proteins 

are degraded intracellularly. Secondly, there is hetero-

geneity between the rates of degradation of different proteins. 

In fact, the rate of degradation of a given prqtein within a 

cell can change with respect to the metabolic state of that 

cell. 

A multitude of methods has been used to measure pro-

tein half-lives but all are based either on time course of 
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chanqes in enzyme activity or on the use of isotopic tracers. 

Rates of synthesis and degradation can be obtained by observ-

ing the time course of change in enzyme activity (increased 

or decreased) after the institution or withdrawal of a stirnu-

lus (Segal and Kirn, 1963). Any change in enzyme content can 

be described by the following equation: 

dE 
at = Ks- KdE 

E is the concentration of enzyme, Ks is a zero-order rate con-

stant of synthesis and Kd is a first-order rate constant for 

degradation. At steady state: 

Ks = KdE 

/ 
If enzyme activity is stimulated to a higher level, (Eo), and 

the decay of activity back to basal conditions (Eo) is rnea-

sured, than at any time t: 

I 
ln (E)-(Eo) = ln (Eo)-(Eo) - Kdt 

Thus a plot of ln (E)-(Eo) versus t, as the activity returns 

to normal steady state levels, allows for the determination of 

Kd. Assumed in this method is that the observed rate of decay 

is characteristic of the rate constant of degradation in the 

basal state. 

Although saturation labeling is more precise, the most 

common method for measuring the. rate of degradation using 

isotopes is the single administration of a radioactive amino 

acid precursor due to the high cost of label. The loss of 
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specific activity in the protein is exponential, which allows 

for the calculation of Kd. The major limitation of this 

method is reutilization of labeled amino acid. The effect of 

label reutilization on the measurement of turnover, however, 

can be calculated (Poole, 1971). 
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EXPERIMENTAL 

Animals 

Three-week-pregnant, albino New Zealand rabbits ob-

tained from Gloucester Rabbitry (Gloucester, Rhode Island), 

were isolated in separate floor pens. Three~day-old rabbit 

pups were used for label inj e ct i on a nd we r e k e pt with th e ir 

mothers until sacrificed. Male albino New Zealand rabbits 

weighing 1.5 to 2 kilograms were also obtained from Gloucester 

Rabbitry one week prior to the start of the epinephrine-

thyroxine injections. All animals were maintained in rooms at 

an ambient temperature of 24-27°C, with alternating 12-hour 

light/dark cycles. All adult animals were offered a commer-

cial laboratory chow and water ad libitum. 

Materials 

All chemicals used in this investigation were analyti-

cal reagent grade. The following radioactive amino acids were 

purchased from New England Nuclear Corporation, Boston, Massa-

3 3 chusetts: L-(4- H)-proline (25-50 Ci/mM), and L-(4,5- H)-

leucine (35-50 Ci/mM). Antibody directed against rabbit prolyl 

hydroxylase was prepared in goats in Dr. S. Udenfriend's 

laboratory at Roche Institute of Molecular Biology, Nutley, 

New Jersey. Standard prolyl hydroxylase for amino acid ana-

lysis, electrophoresis, and irrununoassay was prepared by 

affinity chromatography (Berg and Prockop, 1973). The follow-

ing specialized reagents were obtained for affinity 
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chromatography: CNBr-activated Sepharose 4B (Pharmacia) , re-

duced carboxymethylated Ascaris collagen (Applied Science 

Laboratories) and (Pro-Gly-Pro) 0 MW 2300 (Miles-Yeda, Ltd). 

Purification of Labeled Prolyl Hydroxylase and CRP 

3 Three day old rabbit pups were injected with 4,5- H-

leucine i.p. (42.6 Ci/mM New England Nuclear) and returned to 

their mother until killed. Animals were killed at various time 

periods, the skins quickly removed and homogenized 1:5 in cold 

0.25 M sucrose containing 10- 5 M dithiothreitol (OTT) and 10- 5 

M EOTA. A 20,000 x g supernate was prepared and brought to 

30% saturation in (NH 4) 2so4 (via addition of saturated (NH 4 ) 2so4 

solution) . After removal of the pellet by centrifugation, the 

supernate was brought to 70% (NH 4 ) 2so 4 saturation and the pro­

tein precipitated was harvested by cent~ifugation at 45,000 x g 

for 2 hours. This pellet was dissolved in 0.05 M Tris-HCl 

(pH 7.4) containing 0.2 M glycine, 0.2 M NaCl, and 10- 5 M in 

EOTA and OTT and dialyzed against the same buff er to remove re-

maining (NH 4 ) 2so 4 . After centrifugation at 45,000 x g, this 

.enzym~ solution was placed on affinity columns consisting of 

reduced and carboxymethylated Ascaris collagen coupled to 

Sepharose 4B as previously described (Berg and Prockop, 1973). 

Each individual sample was applied to a separate 1.5 x 4 cm 

column, and enzyme was eluted with 1 ml of buffer containing 

10 mg/ml (Pro-Gly-Pro)n (MW 2300) . After concentration and 

washing by ultrafiltration (MINICON®-A-25) enzyme activity was 

measured. In addition, aliquots of each sample were taken to 
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measure 3H (determined in 10 ml Aquasol) , leucine content and 

total ehzyme related antigen. 

CRP was purified from the 70% . (NH 4 ) 2so4 supernate after 

dialysis against 0.05 M Tris-HCl (pH 7.4) buffer containing 

-5 -5 0.1 M NaCl, 10 M EDTA and 10 M DTT, and concentrated in an 

ultrafiltration cell (Amicon, PM-30 membrane). Each sample 

was adjusted in volume to a uniform concentration of CRP and 

the amount of antisera to give maximum precipitation of CRP 

was determined. Antisera and CRP solution were incubated at 

37°c for 30 minutes and then at 4°c for 24 hours. Immunopre-

cipitates were harvested and washed twice by centrifugation 

(5,000 x g for 15 minutes). They were then either collected 

on filters or dissociated and electrophoresed on polyacryl-

amide gels. 

The antibody directed against rabbit prolyl hydroxylase 

required for these experiments was obtained from an immunized 

goat using conditions similar to those previously reported for 

. the antiserum directed against rat skin .prolyl hydroxylase 

(Roberts, et al., 1973). The antigen used was rabbit skin 

·prolyl hydroxylase purified by affinity chromatography. Be..;.. 

fore injection into goats the enzyme was separated from the 

(Pro-Gly-Pro)n used to elute the enzyme by electrophoresis in 

7.5% polyacrylamide at 4°c (Davis, 1966). The tetramer form 

of the enzyme, which constituted the major band on each qel 

in these preparations, was identified by its catalytic activity 

and could be measured in undenatured form as a fluorescent 
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b a nd i n ultraviole t light oy s ta ini ng wi t h a n i lino na phthalene 

s ul f onate {Hartman and Uden fr i end, 19 69} . The fl uore scent 

b ands corresponding t o the e n zyme we re cu t f rom 10 d i sc gels, 

pooled and homogenized in - ml of 0 . 0 5 M Tri s - HCl buffer {pH 
_i:::. 

~'1 DTT e.~· d 1 0 - M EDTA . The homogen i z ed 

g e L e ;::-'e ' 'S:!IT- •. s if i c •.. ,;: _· th a r,,: e qua l vJ l ume o f com pl _ te Freund' s 

, a dj uv a n t and i njec t c c at mul t i p le si t e s sub c utaneously. The 

g oat ~eceived a pprox imately l mg o f the e lec t r ophore tica l ly 

:>:y;.1. ~. 1roteL " Blood · was drawn befor ~: l n j ect i~ n t o . pro-

1trc : sera . Three m n th s l &te r the go~t wa s given an-

mg -____: enzyme {afte:r t~ e an t. i:body t i t e rs c a me back to 

X ·.:: .. ,: ~ ::;:1,C }c-..;:.--. .: ter '.\ t: s give:;, a mo n t h l ate r a n d t he 

anti ",;_ ~ a ta.kl1r·L 2 W E. ;,1. :;i .!'ilate r; The s pecif ic i t y of t h e antisera 

was c .. ~:: onstra. ted by irmn unodi f f us i o n 

agai~st crud e and p ur iried preparations of t he enz yme . 

Polvacrylamid.e Electrophoresis 

Initial experiments analyzing irmnunop recipitates were 

done on 7.5% acrylamide disc gels (Davis, 1 966). This system 

was also used to determine the purity of e nzyme preparations . 

. Immunoprecipitates from the concentrated, dialyzed 70% 

(NH
4

} 2so
4 

supernatants and from the resuspended, dialyzed 70% 

(NH 4 ) 2so 4 pellets were harvested and washed by centrifugation. 

The samples were then resuspended in 100 ul of 8 M urea, 1% 

mercaptoethanol and incubated at 50°C for 2 hours. Enzyme sub-

units were obtained by denaturing standard enzyme in the same 

manner. Electrophoresis was carried out at 4 ma. per tube for 

2 hours. The gels were stained with Coomassie Brilliant Blue 

in 12.5% trichloracetic acid (TCA) an~ destained in 12.5% TCA. 
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To quantitate the radioactivity present, the gels were sliced 

and the tritium content determined (in 10 ml Aquasol) follow-

ing digestion in 0.1 ml H202. 

The final system for studying the incorporation and 

decay of label in CRP was the 10% SDS-polyacrylamide slab sys-

' 
tern (70 cm x 10 cm x 2.5 mm) described by Laemmli and Faure 

(1973). Washed immunoprecipitates were brought up in 25 ul 

of .6 M urea, 2% mercaptoethanol, 2% SDS and 10% glycerol, 

0 heated at 50 C for 2 hours, and 20 ul of the dissociated 

samples were loaded into separate wells of the slab gel appara-

tus (Pharmacia) . Standard enzyme was also denatured in a 

similar manner as well as RNA-polymerase, carboxymethylated 

bovine serum albumin, ovalbumin and chymotrypsinogen A for 

molecular weight dermination. Electrophoresis was carried out 

at 60 V until the samples entered into the 6% stacking gel 

and then 120 V (constant voltage) for 2 hours. Slabs were 

stained and fixed with 0.05% Coomassie Brilliant Blue (w/v) 

in 10% aqueous acetic acid. The gels were scanned at 590 nm 

on a Gilford 250 spectrophotometer with a grid slit plate of 

· 2.36 x 0.05 mm and a s.iit width of 0.2 mm. After scanning the 

gels were fractionated and the tritium content determined. 

Determination of Free Leucine Specific Radioactivity in 

Homogenates 

From each of the 20,000 x g supernatants 0.4 ml aliquot 

was taken and the protein precipitated with 50 ul of 50% TCA. 
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After 30 minutes on ice the samples were centrifuged and the 

supernates harvested. Each sample was placed on a Dowex 50W-

8X column (5 ml bed volume) and was washed with 15 ml dis­

tilled water. The columns were eluted with 2 ml of lON NH 40H 

and 2 ml fractions were collected. The radioactive fractions 

were pooled, lyophilized and then resuspended in 100 ul of 

0.15N lithium citrate buffer (pH 2.2). Tritium content was 

determined in 10 ml Aquasol and leucine · content determined by 

amino acid analysis on a Durrurn D-500 analyzer (Lee, 1974). 

Amino Acid Analysis of Purified Enzyme Samples 

The leucine content of labeled enzyme samples as well 

as standard prolyl hydroxylase pools were determined by amino 

acid analysis after hydrolysis. The standard enzyme pools 

were purified in large batches according to the previously 

described affinity method (Berg and Prockop, 1973), using a 

1.5 x 30 cm column. After the enzyme was eluted from the 

column, with 10 ml of (Pro-Gly-Pro)n (10 mg/ml), it was con­

centrated 10-fold in an ultrafiltration chamber with a ' membrane 

_having a 30,000 MW cut-off. For amino acid analysis and 

electrophoresis enzyme was separated from (Pro-Gly-Pro)n using 

a Sephadex G-200 or G-150 column (0.9 x 30 cm). Enzyme pools 

were dialyzed exhaustively against distilled water before hy­

drolysis. 

The dialyzed standard pools and the labeled enzyme 

sample were hydrolyzed at ll0°c in 6N HCl, 0.5% phenol for 20 

hours in tubes sealed under a 25 millitore vacuum. The 
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samples were then evaporated to dryness, brought up in lithium 

citrate buffer and analysis was carried out on the Durrum 

D-500 analyzer (Lee, 1974). 

Epinephrine-Thyroxine Induced Arteriosclerosis 

Prolyl hydroxylase and CRP were elevated in the vascu­

lature of male New Zealand rabbits by daily injections of 

epinephrine and thyroxine for 12 days (Fuller and Langner, 

1970). Epinephrine (0.025 mg/kg for the first 5 days; 0.050 

mg/kg thereafter) was injected via the marginal ear vein with 

an infusion pump (Harvard Apparatus Company Inc., Model .940, 

Dover, Massachusetts). Thyroxine (0.050 mg/kg), freshly pre-

pared, was injected intraperitoneally~ Animals were killed 

by cervical dislocat1on 1, 3, 5, and 8 days after the last 

injection. The aorta and liver were quickly removed and 

chilled. Freshly dissected samples of thoracic aorta and 

liver tissues were homogenized in a Polytron system at 4°C 

in a buffer consisting of 0.25 M sucrose, 10- 5 M EDTA, 10- 5 

M DTT and 0.1% Triton X-100 (aorta 1:10 w/v and liver 1:20 

w/v). Aliquots of the 15,000 x g supernates were taken for 

prolyl hydroxylase, CRP, and protein assays. 

Prolyl Hydroxylase Activity 

Prolyl hydroxylase activity 1was measured by the methods 

based on the stoichiometric formation of tritiated H2o and 

hydroxyproline when a substrate consisting of a polypeptide 

rich in 4- 3H proline is incubate d with enzyme and cofactors, 
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as described by Hutton et al. (1966). The complete hydroxy-

lating system (1 ml total volume) contained approximately 

600,000 cpm of labeled substrate (0.1 ml), 0.5 mM ascorbic 

acid, 0.1 mM~-ketoglutarate, 0.1 mM ferrous ammonium sulfate, 

Tris-HCl buffer 0.05 M (pH 7.5), 2% bovine serum albumin and 

catalase (0.02 ml), which are experimentally determined opti-

mum conditions. Incubations were ended after 30 minutes by 

the addition of 0.1 ml of 50% trichloroacetic acid and the 

tritiated water formed was collected by vacuum distillation. 

The distillate (0.8 ml) was added to 10 ml of Aquasol (New 

England Nuclear) and the radioactivity determined. 

Preparation of Substrate for Prolyl Hydroxylase Assay 

The tritium labeled substrate was prepared using the 

method of Hutton et al. (1966). Five hundred 7 to 8 day chick 

embryos were removed, decapitated and the bodies placed in ice­

cold Krebs-Ringer buffera (Stone and Meister, 1962). The in-

tact embryos were washed twice with ice-cold Krebs and a mince 

was made in the presence of a small amount of ice-col~ Krebs. 

After the tissue was washed in buffer and drained, 5 to 6 gr!1ID 

aliquots were placed in 50 ml beakers followed immediately by 

sufficient Krebs buffer to bring volume to 20 ml. After adding 
3 I . 

0.5-l~O mci 4- H-proline and 20 ul of 1 M a,~ -dipyridyl, the 

a 
NaCl, 1.285 g; KCl, 0.224 g; Mgso 4 , 0.144; CaCl2, 0.144 g; 

KH2P04, 0.0544 g; NaHC03, 2.10 g; D-glucose, 1.80 g and 
distilled water to 1 liter. 
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mixture was incubated at 37°C for 2 hours in a metabolic sha­

ker under o2-co 2 (5%-95%). At the end of 2 hours, the ali­

quots were centrifuged at 90,000 x g for 90 minutes and the 

supernates discarded. The newly formed collagen was extracted 

from the pellet by 0.5 M acetic acid (2 ml/gm tissue), with 

stirring, overnight. The supernatant containing the newly 

formed prolyl hydroxylase substrate was then centrifuged at 

90,000 x g for 90 minutes and dialyz e d against 10 volumes of 

0.01 M Tris buffer (pH 7.4) with at least 4 changes. After 

dialysis, with the pH above 7.0, the substrate was autoclaved 

for 15 minutes and redialyzed against 3 changes of 10 volumes 

o f Tris buffer. The redialyzed substrate was calibrated with 

s tand a rd rabbit enzy~e ar~ frozen in 10 ml aliquots. 

Enzyme-Immunoassay for CRP 

The enzyme immunoassay is based on the fact that prolyl 

hydroxylase is inhibited by its antibody and that enzymati­

cally inactive but immunologically reactive protein (CRP) can 

compete with enzyme for ant ibody binding sites. Thus when 

c ross-reacting protein is preincubated with a standard amount 

of an t iserum, the expected i nh ibition of prolyl hydroxylase 

activ _t y is reduced. The extent to which the enzyme is dis­

placed from the antibody is related to the amo unt of antigen 

added to the antiserum. Hea t in activated enzyme is used as 

standard. Th i s rela tionship is used to expr e ss total prolyl 

hydroxy lase r elated a ntigen and CRP as enzyme equivalents. 
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Protein Determi~ation 

Protein was measured by the method of Lowry et al. 

(1951). The homogenizing buffer was used as a blank and 

treated as the other sample s. Bovine serum albumin was used 

as a standard. The inte nsity of the blue color that d e velops 

was read at 750 nm on a Gilford 250 spectrophotometer. 

Statistical Methods 

a.) Mean: X = ; ~i 

where n = sample size 

x. = sum of values for each sample 
l 

b.) Standard deviation: s2 = _ l_ ((X - X) 2 
n ~ 1 

c.) Student's "t" Test: T = x
1 

- x
2 

o-'\f1 1 
\J - + 

Nl N2 

d.) Linear Regress ~0n: y .:::: b + b1 x 
0 

where b 
( x - X) (Y - Y) 

(X - X) 

B + Y - b X 0 1 
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e.) The influence of reutilization of leucine on the apparent 

turnover of prolyl hydroxylase was calculated by the 

method of Poole (1971). Stepwise integration of the dif-

ferential equation was obtained using a nonlinear regres-

sion program developed by Metzler et al . . (1974). 



27 

RESULTS 

This investigation examined the turnover relationship 

of prolyl hydroxylase to an enzymatically inactive immuno-

logically cross-reacting protein (CRP) found in all tissue. 

Prolyl hydroxylase and CRP were purifi e d from the skin of 3 

to 8 day rabbits. It was found that the prolyl hydroxylase 

activity of neonatal skin did not change significantly over 

this time period. Hydroxylase activity was determined to be 

+ 81.l- 7.3 cpm/ug protein (~ S.E., N=l3) in the 20,000 x g 

homogenate supernates. CRP, as assayed in the same enzyme 

+ units, was 320.4- 2.19 cpm/ug protein whil e total antigen 

+ was 412.2- 20.9 cpm/ug protein. Thus, in this study, as in 

earlier reports (Stassen et al., 1974; Tuderman et al., 1975), 

CRP levels were much higher than prolyl hydroxylase levels. 

The recovery of total antigen and prolyl hydroxylase 

activity during purification of enzyme and CRP are shown in 

Table I. After 30% (NH 4 ) 2so4 precipitation, some antigenic 

material was lost while total enzyme activity increased. The 

loss of antigenic material could be explained by the salting 

out of enzyme substrate complexes which recently have been 

identified in tissue extracts (Ruttan et al., 1975) while the --

increase in enzyme activity may be the result of the removal 

of a competing endogenous substrate and/or removal of endog-

enous inhibitor. The 70% (NH 4 ) 2so 4 precipitation step com­

pletely removed prolyl hydroxylas e activity from th e sup e r-



TABLE 1 

PERCENT RECOVERY OF PROLYL HYDROXYLASE AND TOTAL 

ANTIGEN DURING PURIFICATION 

Tissue Homogenate 

Supernate Discard Pellet 

Dialyzed Concentrated 
Supernate * 

·~ 
Resuspended 

Dialyzed Pellet * 

Prolyl Hydroxylase (0%) 
Total Antigen (23%) 

Prolyl Hydroxylase (44%) 

*These fractions were processed as described in the text. 

28 
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natant so that during antibody precipitation a CRP fraction 

that was devoid of active enzyme was obtained. The pellet 

from the 70% precipitation did contain some CRP, however, 

this does not bind to the affinity column and thus would not 

contaminate the final enzyme preparations. 

Enzyme was purified from the resuspended, dialyzed 

70% pellets by affinity chromatography. The purity of the 

enzyme preparations was examined by disc electrophoresis on 

polyacrylamide gels (Davis, 1966). In each of the enzyme 

preparations, only a single band was seen which contained 

the enzyme activity. After incubation with urea and mercap­

toethanol, two smaller molecular weight bands were obtained 

which correspond to the two monomeric subunits . of prolyl hy­

droxylase (Berg and Prockop, 1973). Immunoassay of enzyme 

preparations before and after dissociation into subunits 

showed no change in immuno reactivity. For amino acid ana-

lysis, the affinity purified enzyme preparations were freed 

from contaminating (Pro-Gly-Pro)n by Sephadex chromatography. 

The amino acid composition of rabbit prolyl hydroxylase is 

·very similar to that of human prolyl hydroxylase. Both con­

tain a high proportion of qCidic amino acids (Table II) . 

In preliminary experiments which attempted to determine 

the relative incorporation o:)': 3H-leucine into prolyl hydroxyl-

ase and CRP, immunoprecipitates were made from both the 70% 

supernatant and pellet fractions. A neonatal rabbit pup was 

injected with 2mCi of 3H-leucine and killed after 2 hours. The skin 



Amino Acid 

Aspartic acid 
Threonine 
Serine 
Glutamic acid 
Pro line 
Glycine 
Alanine 
Valine 
Methionine 
Isoleucine 
Leucine 
Tyrosine 
Phenylalanine 
Lysine 
Histidine 
Arginine 

TABLE II 

AMINO ACID COMPOSITION OF PROLYL 

HYDROXYLASE FROM RABBIT SKIN 

Rabbit enzyme
1 

(residues/1000) 

109 + 2 -so + l 
64 + 12 

-
144 + 2 

S4 + 6 
84 + 8 
87 + 1 
S4 + 2 
10 + l -
37 + 2 
92 + 4 
31 + 1 
so + 2 -
73 + 7 
22 + l -
40 + 2 

2 
Human enzyme 
(residues/1000) 

122 + 2 
Sl + 2 
45 + l 

142 + 6 
so + 0 
72 + 1 
89 + 3 
S8 + l 

4S + 0 
98 + 0 
22 + 2 
S2 + l 
93 + 4 
19 + ]_ 

42 + 1 

Values were not corrected for losses during hydrolysis. 

1Expressed as mean + S.E. for the analysis of three separate enzyme 
· pools. 

2From Kuutti, Tuderman and Kivirikko, 197S. 
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was removed, fractionated, and antibody was added to the di-

alyzed 70% supernatant (10 mls) and to the resuspended~ di-

alyzed 70% pellet (10 mls). The resulting immunoprecipitates 

were harvested, . dissociated with urea and mercaptoethanol, 

and electrophoresed on 7.5% polyacrylamide disc gels. In both 

preparations 2 bands were seen of equal intensity that corre-

sponded to the 2 subunits of prolyl hydroxylase. The gels 

were then sliced and the radioactivity determined. As can be 

seen in Figure I, the monomers derived from the 70% supernat-

ant appear to be of much higher specific radioactivity than 

those from the 70% pellet. Similar experiments using short 

labeling periods ( < 2 hours) substantiated these results. 

A more extensive study was undertaken to determine 

whether the differences in incorporation of label into these 

two proteins could be explained by differences in turnover. 

The turnover rates of both CRP and prolyl hydroxylase were mea-

sured by . the decay of radioactivity from these protein species. 

Prolyl hydroxylase and CRP were purified from neonatal rabbit 

skin at various time periods following the injection of 

·5 mCi/60g of 3H~leucine. Figure II shows the amount of 3H-leu-

cine in prolyl hydroxylase as a function of time after a 

single administration. Prolyl hydroxylase was purified by 

affinity chromatography from the 70% (NH 4 ) 2so
4 

pellet and the 

specific activity of 3H-leucine in the purified enzyme is ex- -

pressed as CPM incorporated per unit of hydroxylase related . 

ahtigen. From the figure it would appear that maximum label 
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incorporation occurs approximately 12 hours following injec-

tion. 

The decay of labeled leucine from skin prolyl hydroxyl-

ase is shown i.n Figure III. -Animals were again injected with 

SmCi/60g of 3H-leticine and killed at the times indicated. The 

skins were removed and fractionat e d, and prolyl hydroxylase 

was purified by affinity chromatography. Leucine specific ac-

tivity is expressed as CPM incorporated per nanomole of leu-

cine in the purified enzyme samples. Because of the low · 

amount of protein in these hydroxylase samples, it was not 

possible to obtain a direct deter~inatiori of leucine concentra-

tion for every sample. Instead, a correlation was obtained 

between prolyl hydroxylase activity of purified enzyme samples 

and leucine content. Many of the purified enzyme samples from 

this experiment plus a few additional samples were hydrolyzed 

(N=l4) and their leucine concentration determined by amino 

acid analysis. A highly significant correlation coefficient 

was obtained (r=0.996) between hydroxylase activity and leucine 

-5 concentration: y=0.742xl0 x + 0.06168 where y = nananoles of 

· leucine and x = CPM of prolyl hydroxylase activity. Applying 

this equation to the hydr6xylase activities of the purified en-

zyme samples enabled us to express the specific radioactivity 

in these samples in terms of leucine concentration. 

To determine the rate of turnover, the decay of radio-

activity in a given protein is assumed to b~ first order and 

can be ~xpressed by · ~~(t) = -kP(t) where P(t) is the specific 
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radioactivity in the protein and k is its rate of destruction. 

Assuming this equation to be accurate, the points in Figure 

III were regressed by computer from 12 to i32 hours and the 

solid line, repr~senting a T~ of 73 hours, was plotted. This 

was significant at the P<.OOS l~vel. Poole (1971), however, 

has suggested that in these types of labeling experiments 

there is a significant amount of reutilization of precursor 

and that the appropriate differential equation is ~~(t) = k 

{F(t)-P(tl._7 where P(t) represents the specific radioactivity 

of precursor in the protein and F(t) represents the specific 

radioactivity for the pool of the precursor. 

In order to correct for reutilization, free leucine ac-

tivity was measured in the same experiment. Figure IV shows 

the decay of radioactivity in free skin leucine after injec-

tion. Similar to other. studies utilizing radioactive . amino 

acids, there is a rapid decay phase during the first few hours 

after injection. Regression by computer of the points repre-

senting the slow decay phase resulted in the equation 

F(t)=269.92e- 0 · 01946 t which fits the data reasonably w~ll 

( 0 9 61) f . 1- . t . th t. dB ( t) .. r= . . To correct or reuti iza ion e equa ion d(t) = 

k{F(t)-P(tl._7 was integrated stepwise with F(t)=269.92e-O.Ol 946 t 

utilizing a non-linear regression program. The best fit with 

the data in Figure IV was obtained with a k=0.01539 hr- 1 . As 

shown by the dotted line on Figure III this fits the data very 

well and corresponds to a true T~ of 45 hours. 

Immunoprecipitation was used to dete rmine the turnover 

of CRP. Figure V shows an antibody precipitation curve where 
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Figure IV. Specific radioactivity of free skin leucine as a function of 
time following the administration of 3H-leucine (SmCi/60g). Aliquots 
(0.4ml) were taken from the 20,000 x g rabbit skin homogenate supernatants 
and the protein precipitated with. 50% TCA. The samples were centrifuged 
and the supernatants harvested. Each sample was placed on a Dowex 50W-8X 
column and subsequently eluted with lON NH40H. The radioactive fractions 
were pooled, lyophilized and resuspended in lithium citrate buffer. 
Tritium content was measured and leucine content was determined by amino 
acid analysis. 
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increasing amounts of goat antiserum were added to a constant 

amount of CRP solution. Neonatal rabbits labeled with 5mCi 

of 3H-leucin~ were killed after 2 hours and the 7Q% superna­

tants prepared from their skin. The supernatants we re then 

pooled, dialyzed, and concentrated to a uniform concentration 

of CRP (5 x 10 5 CMP of enzyme related antigen/ml). Equal 

aliquots were taken (5.0 mls) and antibody was added. The 

resulting precipitates were collected and washed by centrifu­

gation, dissolved in lN NaOH and collected on filters (Whatman 

GF/A) in the presence of 10% trichloroacetic acid containing 

10-JM leucine. The filters were then washed, digested with 

Protosol® (New England Nuclear) in scintillation vials and 

the 3H content determined. 

Figure VI shows the decay of radioactivity in CRP af­

ter the injection of 3H-leucine. Immunoprecipitates were 

prepared from the 70% supernatant fractions. Each sample was 

. adjusted to a uniform concentration of CRP (5xl0 5CMP of en­

zyme related antigen/ml) arid l ml of antibody was added to 

2.5 ml of CRP solution to give maximum precipitation. ' The 

.imrnunoprecipitates were harvested, washed, and collected on 

filters and the radioactivity determined. From the regres­

sion line, a T~ of 47 hours was obtained for CRP. This is 

substantially shorter than that found for prolyl hydroxylase 

without correcting for reutilization. There was no detect­

able delay in the amount of time neede d to r e ach maximum 

labeling (peak occurred within 2. hours) . 
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Figure VII. SDS.-p.crylamide electrophoresis of immunopre­
cipitated CRP and purified prolyl hydroxylase. 
A. Electrophoretic pattern of denatured affinity 
enzyme after s .taining. B. Electrophoretic pattern 
of a dissociated immunoprecipitate of CRP after 
staining. C. Antigenicity of the proteins eluted 
from a duplicate immunoprecipitate. D. Radioactivity 
contained in the same immunoprecipitate as in B. 
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The imrnunoprecipitates of CRP were dissociated and 

analyzed on 10% SDS slab gels and typical results are seen 

in Figure VIIB. A comparison with the electrophoretic pat­

tern of purified enzyme (Figure VIIA) shows that the radio­

activity present in the dissociated precipitate migrates 

similarly to the two prolyl hydroxylase monomers. Upon elu­

tion of the proteins present in the dissociated precipitate 

from the fractionated .gel, it was demonstrated that these 

radioactive protein species were antigenically similar to 

prolyl hydroxylase (Figure VIIC) in the immunoassay, using 

active enzyme as standard. Thus, it was concluded that the 

dissociated precipitate of CRP from the 70% (NH 4 ) 2so4 super­

natant contained protein that corresponded to the prolyl 

hydroxy l .ase monomers. In addition, a third radioactive 

(Figure VIID) , antigenic peak (Figure VIIC) was noted that 

was of smaller molecular weight. The position of this band 

was partially obscured by one of the antibody subunits when 

the gels were scanned for optical density (Figure VIIB). 

In other gels not shown, this band was more distinct. ' This 

-protein did not correspond to any of the subunits of prolyl 

hydroxylase but it was antigenic in the enzyme immunoassay. 

The amount of radioactivity present in this peak was much 

less than the two major peaks. 

The SOS gels were calibrated using known molecular 

weight standards. The relative migration of the three anti­

genic protein species plus the standards are plotted in 
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Figure VIII against the logarithm of their molecular weights. 

The two major subunits of CRP and prolyl hydroxylase mi-

grated with a mobility corresponding to molecular weights of 

65,000 and 60,000. These values are close to what has been 

reported previously for the monomers of human and chick 

prolyl hydroxylases (Berg and Prockop, 1973; Tuderman et al., 

1975). The third antigenic component of CRP was shown to 

have a molecular weight of 45,000. 

Radioactivity from the dissociated i:mmunoprecipitate 

which migrated with molecular weight hydroxylase was used to 

determine the turnover of CRP. The concentrated dialyzed 

70% (NH 4) 2so4 supernatants were derived from the same skins 

from which prolyl hydroxylase was purified (see Figure III) . 

Each sample was adjusted to a uniform concentration of CRP 

(5xl0 5 CPM of enzyme related antigen/ml) and 2 mls of anti-

body was added to 5 mls of CRP solution to give maximum pre-

cipitation of CRP-antibody complex. This precipitate was 

harvested and washed twice by centrifugation. The samples 

were then dissociated and electrophoresed on the 10% SDS 

gels. For turnover analysis, the radioactivity in the 

higher molecular weight bands of CRP were pooled (see Figure 

VIID) and background counts were subtracted. Figure IX 
. 3 

shows the presence of H-leucine into CRP as a function of 

time following a single · administration as determined on the 

SDS gels. The T~ for the major subunits of CRP was found 

to be 53 hours without correction for reutilization. Al-
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Figure IX. Loss of 3H-leucine from CRP as a function of time following a single 
administration (5mCi/60g). Immunoprecipitates of CRP were prepared 
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were then sliced and the radioactivity determined. Counts in the 
two major band of CRP were pooled and background substracted. (Best 
fit line from computer regression program.) 
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though this is slightly longer than that determined with the 

use of filters, it is still significantly shorter than that 

found for prolyl hydroxylase without correction for reutili­

zation. Again, no detectable delay in incorporation of 3H-

leucine in CRP was seen in this and other experiments utiliz-

ing radioactive inununoprecipitate s analyz ed on SOS polyacryl-

amide gels. 

The validities of the T~ s o b t aine d by measuring the 

loss of label from neonatal rabbit skins wer e tested in an 

experiment where prolyl hydroxylase and CRP were elevated in 

vasculature and liver of adult rabbits. From the decay back 

to basal levels, T~s could be calculated ~or both prolyl hy-

droxylase and CRP. Adult male rabbits were subjected to an 

arteriogenic protocol of daily thy r ox ine - e pine phrine inj ec-

tions for 12 days. Both CRP and h ydroxylase were increased 

in the aorta and liver as seen in Tabl e III. Prolyl hydroxyl-

ase in the aorta was increased approximately four-fold while 

in the liver it was increased 2.5 fold. These values com-

pared . favorably to those reported by Fuller and Langner ( 1970) 

-and Fuller et al. (1976), using the same e xpe rime ntal model. 

In the aorta CRP l e v e ls were much high e r than tho se of hy-

droxylase and epine phrine-thyroxine tr eatme nt significantly 

increased CRP l evels in the aorta. 

The fall of prolyl hydroxy lase activity in the aorta 

and liver after the removal of hormonal treatment is shown in 

Figure X. Enzyme levels return to normal in a little over 

one week in the aorta and in a little less time in the liver. 



TABLE III 

PROLYL HYDROXYLASE (PH) AND CROSS-REACTINGJPROTEIN (CRP) 
VALUES (CPM/ug PROTEIN) IN ARTERIOSCLEROTIC RABBIT TISSUE 

AORTA 

PH 

CONTROL 6.0 + 0.9 

ARTERIOSCLEROTIC 23.7 + 0.9 

CRP 

310 + 55 

7 53 + 116 

LIVER 

PH 

3.8 + 0.4 

9.4 + 2.1 

Values represent mean± S.E. of at least 4 animals. 

1Injection of thyroxine (0.050 mg/kg for 12 days, i.p.) and 
epinephrine (0.025 mg/kg for the first 5 days, and 0.050 
mg/kg thereafter, i.v.). 
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Figure X:. Fall of prolyl hydroxylase activity i11 the aorta and llver 
af t er removal of treatment. Prolyl hydroxylase was elevated 
by daily administration of thyrcixine (0.05 mg / kg, i.p.) and 
epinephrine (0.025 mg / kg, i.v. for 5 days followed by 0.05 

mg/kg i.v. for 7 days). (Et - Eo) is plotted logarithm ically 
vs. time. (Best fit lines from computer regression program.) 
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The logarithm return of elevated enzyme activity to normal 

levels (Et-Eo), is plotted against time. From the regre~sion 

lines, which were highly significant, the T~ of prolyl hy­

droxylase in the liver was found to be 38 hours and in the 

aorta, 42 hours. These values are very close to what was ob­

ta1ned in the labeling experiment after correction for re­

utilization. 

The fall of elevated CRP in the aorta after cessation 

of treatment is shown in Figure XI. Similar to hydroxylase 

activities, CRP levels return to normal in a little over a 

week. From the regression of ln (Ct-Co) versus time after 

treatment, where Ct = CRP leve l at time t and Co = CRP level 

under basal conditions, a Kd of 0.0125 hr-l was obtained and 

a T~ of 55 hours calculated. This is very close to the T~ 

obtained for prolyl hydroxylase in the aorta, and is in con­

trast to what was found in the labeling experiment where CRP 

in the 70% supernatant had a shorter T~ than did active 

hydroxy lase. 
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Figure XI. Fall of CRP in the aorta after removal of treat­
ment. CRP was elevated by daily administration 
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plotted vs. time. (Best fit from computer re­
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DISCUSSION 

In this investigation, 3H-leucine labeled prolyl hy­

droxylase was purified from neonatal rabbit skin by affinity 

chromatography and was found homogenous by polyacrylamide 

gel electrophoresis. Upon urea and mercaptoethanol dissoci-

ation and subsequent SDS-electrophoresis, two subunits were 

obtained which migrated with mobilities corresponding to molec­

ular weights of 65,000 and 60,000. These values are in agree­

ment with the previously reported values for the monomers of 

human and chick prolyl hydroxylases (Kuutti et al., 1975; 

Berg and Prockop, 1973) . Amino acid analysis bf purified rab­

bit hydroxylase also demonstrated a close homology to chick 

and human hydroxylase (Kuutti et al., 1975; Tuderman et al., 

1975a). 

The CRP levels in the neonatal rabbit skin were found 

to be four times that of active enzyme. Stassen et al. (1974) 

showed that this same ratio of CRP to active enzyme was pres­

ent in neonatal mouse skin. In newborn rat skin the ratio 

· was approximately 20 to 1. In the immunoassay used in this 

investigation, no change in total immunoreactive protein was 

observed with enzyme before or after dissociation by mercapto­

ethanol. The high levels of CRP present in tissue as comp~red 

to active enzyme is not the result of increased immunogenicity 

. upon breakdown of the tetrameric form of the enzyme. 

Durinq the purification of prolvl hvdroxvlase a laroe 

Proportion of the total CRP pool was found in the 70% (NH 4 ) 2so4 
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supernatant while all active enzyme was precipitated. It 

should be noted that some CRP is also found in the 70% pellet 

(Stassen et al., 1974). Upon immunoprecipitation, dissocia---

tion and subsequent electrophoresis, CRP was shown to migrate 

similarly to the two prolyl hydroxylase monomers. In addi-

tion, a third labeled antigenic component of CRP was found 

that had a molecular weight of approximately 45,000. Mouse 

skin CRP has been shown to have a molecular weight of 80,000 -

100,000 as determined by gel chromatography (Stassen et al., 

1974) . Thus native CRP may be of slightly higher molecular 

weight than either of the two prolyl hydroxylase monomers 

found after dissociation of enzyme. The 45,000 molecular 

weight component of CRP found in this investigation may be 

attached to either one of the two hydroxylase monomers to 

form a 110,000 molecular weight CRP molecule. It cannot be 

,excluded, however, that this 45,000 molecular weight protein 

may be a breakdown product of the native form of CRP or of 

the tetrameric enzyme which has a reported molecular weight 

of 240,000 (Tuderman et al., 1975a). --

A list of the Kds and T~s obtained in this investiga-

tion is shown in Table IV. A T~ of 45 hours after correction 

for leucine reutilization was obtained for rabbit skin prolyl 

hydroxylase as determined from the rate of decay of incorpo­

rated 3H-leucine. The T~ obtained for CRP could not be cor-

rected for the reutilization of leucine because an insuff i-

cient amount of CRP was available from the gels for amino acid 

analysis. Reutilization error is highest at early time points, 



TABLE IV 

SU~ARY OF RABBIT PROLYL HYDROXYLASE (PH) AND 
CRP TURNOVER DATA 

Tissue Level 

53 

Ks 1 

1'1-2 (hr) Kd(hr-l) (CPM/ug) (CPM/ug-hr) 

Adult liver PH 2 38.45 0.0180 

Adult aorta PH 2 
42.40 0.0163 

Adult aorta CRP 2 
53.37 0.0125 

Neonatal skin PH3 
7 3. 23 0.00946 (uncorrected) 

Neonatal skin PH3 

(corrected) 45.03 0.0154 

Neonatal skin CRP 3 

(uncorrected, 52.98 0. 0131 
determined on 
gels) 

Neonatal skin CRP 3 

(uncorrected, 47.47 0.0146 
determined on 
filters) 

1Ks = Kd x Tissue level 

2oetermined by the fall of elevated levels 

3netermined by the loss of 3H-leucine 

3.8 0.0684 

6.0 0.0978 

310 3.875 

81 0. 766 

81 1. 247 

320 4.192 

320 4.672 
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therefore the apparent CRP turnover in this experiment is 

greatly overestimated. Inferences about the relationship be­

tween prolyl hydroxylase and . CRP utilizing apparent T~'s or 

Kd's remain valid since both decay curves are subject to re­

utilization frdm the same amino acid pools. Multiplying the 

apparent Kd's of CRP and prolyl hydroxylase by the levels of 

each in the neonatal rabbit skin we can estimate the propor­

tion of prolyl hydroxylase and CRP being broken down per unit 

time. These calculations indicate that the levels of CRP 

found cannot be accounted for only by the breakdown of enzyme. 

Thus, these data would support the hypothesis that a propor­

tion of the CRP in cells is precursor to active enzyme. This 

is also supported by the rapid appearance of label in CRP as 

compared to prolyl hydroxylase. 

The Kd's obtained from the fall of elevated prolyl 

hydroxylase activity in adult rabbit aorta and liver are simi­

lar to the corrected values obtained in the labeling experiment 

using neonatal rabbit skin (see Table IV). The turnover rates 

determined for prolyl hydroxylase in these experiments were 

_l. 7-1. 9 days which are similar to those determined for the 

proteins of the endoplasmic reticulum as a whole (Arias et al., 

1969). Thus, prolyl hydroxylase appears to turn over at the 

same rate at which the membrane is being replaced. However, 

the Kd for CRP in the adult rabbit aorta was found to be simi­

lar to that of prolyl hydroxylase. Again, in this tissue, the 

total amount of CRP determine d cannot b e accounted for by the 
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breakdown of active enzyme. The fact that the T~s for both 

CRP and prolyl hydroxylase were the same is significant. The 

discrepancy in CRP T!2 observed betwee n the two biological 

systems may be related to the fact that in the arterioscler-

otic animals we measured total CRP in the homogenates, not 

just the 70% supernatant CRP, as in the labeling experiment. 

The possibility exists that a portion of the CRP pool is de.-

gradation production of prolyl hydroxylase. Stassen et al. 

(1974) were able to s e parate both CRP a nd prolyl hydroxylase 

from neonatal skin by gel filtration and ion-exchange chroma-

tography, but the CRP peaks obtained all had shoulders. In 

the present study, several molecular weight species were 

identified in the CRP pool. Only the higher molecular weight 

subunits are found in active enzyme. Thus, the CRP pool as 

obtained by immunoprecipitation in thi.s study contains un-

identified heterogeneity. 

It is possible that the difference between CRP and 

prolyl hydroxylase in the time required for maximum label in-

corporation, is a reflection of the difference in the turnover 

· rates of these two proteins. Poole (1971) has shown that pro-

teins with long T~s require a longer period of time to reach 

maximum label incorporation than proteins which turn over at 

a more rapid rate. A rapid initial d e crease of the incorpor-

ated radioactivity from liver microsome s has been reporte d 

(Arias, 1969). Negishi and Omura (1972) demonstrated that this 

biphasic decay is a property of the microsomal membrane pro-

teins themselves. They have suggested that the rapid loss of 
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a considerable proportion of newly synthesized proteins from 

the microsomes, after their association with membrane, re­

flects the mechanism by which proteins are inserted in the 

membrane. Individual proteins of the microsomal membrane such 

as NADPH-cytochrome-c-reductase (Negishi and Omura, 1972) and 

cytochrome P-450 (Levin and Kuntzman, 1969) have also been 

shown to have this biphasic decay curve after administration 

of radioactive precursors. 

Prolyl hydroxylase is a microsomal bound enzyme (Harwoood 

et al., 1975). Subcellular fractionation studies, utilizing 

chick embryo liver, have demonstrated that prolyl hydroxylase 

is concentrated in the microsomal fraction together with vari­

ous microsomal marker enzymes, such as NADP-cytochrome-c­

reductase and glucose-6-phosphatase (Helfre, et al., 1976). 

The observation that prolyl hydroxylase, being a microsomal 

protein, does not exhibit a fast initial decline in specific 

radioactivity during the first few hours after label administra­

tion, and no evidence of biphasic decay, may have functional 

· importance. The rapid turnover of CRP present in the •70% 

. (NH 4) 2so4 supernatant may, however, be analogous to the fast 

decay phase of other microsomal proteins. This observation, 

when considered with the lack of delay in incorporation of 

label into CRP, may thus be relevant to the mechanism by which 

newly synthesized CRP or prolyl hydroxylase tetramers are 

incorporated into or onto the microsomal membrane as functional 

enzyme units. If CRP exists in cells as a cytoplasmic protein 
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its turnover, compared to enzyme, could be predicted to be 

more rapid if membrane or ribosomal protein are degraded 

primarily as free cytoplasmic protein, as suggested by Dice 

and Schimke (1972). 

Epinephrine-thyroxine treatment raised prolyl hy-

droxylase activity in both the aorta and the liver. Increased 

prolyl hydroxylase activity can be seen after five days of 

this treatment, with a redoubling after each subsequent 5 

days of treatment, which is prior to the appearance of fi-

brous plaques (Fuller and Langner, 1970). CRP was also sig-

nificantly elevated in the aorta. This finding corresponds 

to results previously reported (Fuller et al., 1976), and 

suppor~s the hypothesis that increases in prolyl hydroxylase 

activity "in vivo" are the result of new synthesis, with 

facilitiation of the conversion of CRP into prolyl hydroxylase 

as the active enzyme is inserted onto the microsomal membrane. 

Comparison of enzyme decay curves with those for increased 

activity "in vivo" also suggest that active enzyme levels may 

' 
be elevated by inhibition of prolyl hydroxylase degradation. 

·Large increases in prolyl hydroxylcse activity have been re-

ported in a variety of tissues responding to injury-induced 

damage (Hussain et al., 1976; Langner and Fuller, 1970; 

Mussini et al., 1967). These increases in enzyme activity 

occur over a period of days and are compatible with the slow 

turnover of prolyl hydroxylase. This stabilization of prolyl 

hydroxylase within the microsomes, leading to elevated enzyme 
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levels, could not be the same as ascorbate activiation ob­

served in tissue culture, which is maximal within hours after 

administration (Stassen et al., 1973) and appears to be the 

result of the dissociation of enzyme-substrate complexes 

(Kuttan et al., 1975). 
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CONCLUSIONS 

1) Rabbit skin prolyl hydroxylase was purified to homogeneity 

by affinity chromatography as judged by polyacrylamide 

electrophoresis. Molecular weight determination and amino 

acid analysis showed close homology to other vertebrate 

prolyl hydroxylases. 

2) The turnover rates of prolyl hydroxylase and CRP were mea­

sured and the values obtained for active enzym~ were very 

similar in all tissues examined. The T~ for prolyl hy­

droxylase was found to be 38 hours in the adult rabbit 

liver and 42 hours in the adult rabbit aorta. Using neo­

natal skin, a corrected half-life of 45 hours was deter­

mined for the enzyme. In comparison, the apparent CRP T~ 

was significantly shorter than the apparent T ~ of prolyl 

hydroxylase in the neonatal ~kin. No difference was seen 

between CRP and prolyl hydroxylase turnover in the adult 

rabbit aorta. 

3) The rates of synthesis of CRP in the adult aorta and neo­

natal skin were very close. In the aorta, CRP synthesis 

was 40 tim~s that of active enzyme synthesis. Using uncor­

rected data, the rate of synthesis of CRP in neonatal skin 

was approximately 6 times that of prolyl hydroxylase. thus, 

the total amount of CRP in tissue cannot be accounted 



60 

for by breakdown of the e nzyme. The data suppor ts t he 

i dea that a proportion of the CRP pool is precur sor t o 

active enzyme. 

4) I ·1 neonatal skin , maximum label incorpo at ion .into CRP was 

c~ Jserved and occurred 11 a much shorte r period of time 

e:.::impared to pre ~ yl hyd :::- oxylas e. Al though this d ifference 

~ .:t 
' '• 

can be explained by the difference in turnover ra tes of 

. e s e twc proteins, the early incorporation of l abel into 

? suppc~ ts the hypothes is tha t part of the CRR pool is 

I . 
pr ecursor to enzyme. Fur ther, r.h is e ar l y incorporation 

o .:: label into C:RP may reflect ·.:he mecl:anism by wh ich CRP 

or active enzymE is atL 1r:hed to t he micros omal membrane . 

i, 5) ii. jury-induced arteriosclerosis ~ by e pL:12phrinE:-thyro xine 

t r eatment signif i cantly r aised both prolyl hydroxylase 

and CRP levels in the a o rta. Increas es in enzyme activity 

occur over a period of days and are compat ible with the 

slow turnover of prolyl h ydroxy lase. . I ncreases i n enzyme 

activity "in vivo" could be the result cf increased synthe-

sis or inhibition of degradation and de not appear to be 

the result of cofactor activation. 

6) In all tissues examined, CRP levels were much higher than 

those of prolyl hydroxylase. These high levels of CRP 

Present in tissue are not the result of increased immune-

genicity upon breakdown of the enzyme. 
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