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Highlights 31 

• Indoor levels of flame retardants were significantly higher than outdoors.  32 

• PBDEs>NFRs and BDE-47, 99, HBB, BTBPE and DDC-CO were the most abundant 33 

analytes. 34 

• Significant log-linear Kdust-air-KOA relationships indicated an equilibrium state. 35 

• Low adverse health effects from inhalation/ingestion/dermal exposure pathways. 36 

 37 
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Abstract 60 

There is scant information on the presence of the polybrominated diphenyl ethers (PBDEs) and 61 

other alternative flame-retardants (NFRs) in Africa. Hence, to investigate their levels, sources, 62 

and human exposure scenarios, elevated fine dust (EFD) samples from apartments (n = 12), 63 

working places (n = 9) and cars (n = 12), floor dust (FD) samples (n = 5) and outdoor dust 64 

samples (n = 21) were collected from Alexandria, Egypt during 2014. Gaseous concentrations 65 

were estimated using low density polyethylene sheets (n = 33 and 21 for indoor and outdoor sites 66 

respectively). Indoor gaseous and dust PBDE (7.0 – 300 pg/m3; 4.0 – 770 ng/g), and NFR (0.40 – 67 

48 pg/m3; 0.50 – 8.5 ng/g) concentrations were significantly higher (p = 0.004 – 0.02) than 68 

outdoor concentrations (PBDEs: 3.0 – 41 pg/m3, 1.5 – 195 ng/g; NFRs: 0.20 – 13 pg/m3, 0.50 – 69 

4.0 ng/g). Median PBDE concentration in cars (210 ng/g) was higher in apartments and working 70 

places (129 and 131 ng/g respectively). PBDE concentrations in FD were 7.0 – 14-folds lower 71 

than EFD concentrations. Outdoor PBDE concentrations were significantly higher (p < 0.01) at 72 

residential – industrial places with older buildings. All samples were dominated by BDE-47 and 73 

99. HBB, BTBPE and DDC-CO were the most abundant NFRs in EFD samples. Profiles of 74 

PBDE and NFR in FD closely matched those of outdoor dust, indicating a possible carryover 75 

from the outdoor environment. Although factors such as number of electronics, construction year 76 

and floor type significantly correlated with the majority of PBDE congeners and some NFRs in 77 

apartments and working places, sources were not clearly identified for NFRs. Significant log-78 

linear relationships were obtained between theoretical and calculated dust-air partitioning 79 

coefficients for all samples indicating an equilibrium state between dust and vapor. Low 80 

possibility of occurrence of adverse health effects was concluded, with the inhalation pathway 81 

(for adults) and dust ingestion (for children) acting as the most important exposure routes.  82 
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1. Introduction 84 

Polybrominated diphenyl ethers (PBDEs) have been widely used worldwide since the 1970s (de 85 

Wit, 2002) to reduce fire risks. Although their production has phased out, they still exist in 86 

products and thus become released into the environment (Abbasi et al., 2015). Due to the phase 87 

out of PBDEs (Abbasi et al., 2015), alternative halogenated (NFRs) and organophosphate flame 88 

retardants (OPFRs) are now widely used in consumer products as substitutes (McDonough et al., 89 

2016). PBDEs and NHRs can accumulate in humans (Leonetti et al., 2016; Liu et al., 2015) and 90 

thus numerous adverse health effects could occur ( Costa and Giordano, 2007; Nakari and 91 

Huhtala, 2010).  92 

 93 

PBDEs and NFRs have been detected in the indoor air (Al-Omran and Harrad, 2016; Cao et al., 94 

2014; Fromme et al., 2014; Hassan and Shoeib, 2015; Kademoglou et al., 2017; Shoeib et al., 95 

2012) and outdoor air and dust worldwide (Kurt-Karakus et al., 2017; Mahmood et al., 2015; 96 

McDonough et al., 2016; Salamova et al., 2014). The indoor environment with expected higher 97 

concentrations and longer exposure periods received special attention (Wilford et al., 2004).  98 

The majority of the indoor studies concentrated on the floor dust (FD) (Ali et al., 2013; Cequier 99 

et al., 2014; Dodson et al., 2012; Fromme et al., 2014; Hassan and Shoeib, 2015; Kurt-Karakus 100 

et al., 2017; Shoeib et al., 2012). Few studies investigated (elevated) fine dust collected ~ 1 101 

meter above the ground (Al-Omran and Harrad, 2016; Newton et al., 2015; Thuresson et al., 102 

2012). In countries with high ambient particulate levels and dust content like Egypt, we 103 

hypothesized that floor dust will not properly represent the indoor environment due to the 104 

possible carryover of dust and dirt by the shoes from outdoors. However, although dust collected 105 
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from elevated surfaces would be a better representative of exposure for adults, children are more 106 

exposed to the floor dust. 107 

Low density polyethylene passive samplers (LDPE) have been widely used for monitoring 108 

hydrophobic organic compounds (HOCs) in the atmosphere (Bartkow et al., 2004; Kennedy et 109 

al., 2007; Khairy and Lohmann, 2014, 2013; McDonough et al., 2016). However, they have been 110 

rarely used to monitor indoor air pollution. HOCs accumulate in passive air samplers via 111 

diffusion and absorption into the sampler matrix, with a high enrichment in LDPE (Sacks and 112 

Lohmann, 2011) thus offering lower detection limits compared to conventional samplers. 113 

Accordingly, LPDE can be used as a very useful tool in screening level risk assessment studies.  114 

 115 
Although PBDEs and NFRs were extensively investigated in the indoor dust and the ambient air 116 

worldwide, only few studies investigated their concentrations in the indoor dust (Abdallah and 117 

Covaci, 2014; Hassan and Shoeib, 2015) and ambient air (Arinaitwe et al., 2014; Pozo et al., 118 

2009) collected from Africa. Additionally, none of the studies investigated their levels in the 119 

elevated fine dust (EFD), outdoor dust and/or their gaseous levels in the indoor and outdoor 120 

environments.    121 

In the current study, we studied the levels of PBDEs and NFRs in the indoor and outdoor 122 

environments of Alexandria, Egypt. Vapor phase (using LDPE), in- and outdoor dust were 123 

collected to: i) determine concentrations, profiles and sources of PBDEs and NFRs in the indoor 124 

and outdoor air (gas phase + dust), ii) compare their concentrations among the different indoor 125 

microenvironments, and between floor dust and elevated fine dust, iii) assess the link between 126 

outdoor dust and indoor contamination, and iv) estimate the human intakes via inhalation and 127 

dust ingestion for adults and toddlers. To our knowledge, this is the first comprehensive study to 128 
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measure PBDEs and NFRs in the indoor and outdoor environments, and to utilize LDPE as an 129 

indoor passive sampler.  130 

 131 
2. Materials and methods 132 

Detailed descriptions of the study area, LDPE passive sampling, extraction, cleanup, 133 

instrumental analysis, and estimation of the vapor phase concentrations from LDPE are provided 134 

in Appendix A, and are briefly summarized below. 135 

 136 
2.1. Sampling 137 

Indoor and outdoor samples were collected from Alexandria, Egypt (Figure A1) during the late 138 

autumn – winter (minimum ventilation effect) of 2014 (November – December). EFD was 139 

collected 1 m above the floor from homes (n = 12) and working places (n = 9) using an 140 

Electrolux JetMaxx Bag Canister Vacuum cleaner (Model EL4042A). Dust was collected in 141 

cellulose thimbles fitted between the crevice tool and the vacuum tube. The thimble was secured 142 

with a stainless-steel ring. At each sampled homes, dust was collected from the living area 143 

including the living room, dining room and the bedrooms, where people spend most of their 144 

indoor times (greatest exposure likelihood), and many products exist that may be sources of the 145 

target flame retardants. Prior to sampling, participants were asked not to vacuum or ventilate 146 

their places for a week. The crevice tool was passed on all the available surfaces in the rooms. 147 

After each of the 6 dust collection events at each location, the thimble was carefully removed, 148 

wrapped in a pre-combusted aluminum foil, sealed in plastic zip bag, and stored at −4 °C. After 149 

the final sampling event, thimbles were stored at -20 °C until analysis.  Similarly, EFD from cars 150 

(n = 12) were obtained from all available surfaces except the floor (to prevent the effect of 151 

carryover from street dust). Participants were asked not to vacuum their vehicles at least two 152 
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weeks before sampling and until the end of the sampling event (45 days). 15 indoor samples 153 

(other than what was analyzed in the current study) were excluded from further consideration 154 

because volunteers failed to follow our pre-sampling guidelines (see Appendix A). 155 

 156 

FD was collected from selected homes (n = 5) using the same vacuum cleaner equipped with 157 

dust collection bag (Schreder and La Guardia, 2014). Information about the sampled indoor 158 

microenvironments is given in Table A1. 159 

 160 
For outdoor samples (n = 21), settled dust on elevated smooth surfaces were collected using 161 

small plastic brushes and a small aluminum shovel from the same locations as the indoor 162 

samples, and stored in small amber glass jars at -20 °C until analysis.  163 

 164 

For the outdoor vapor – phase samples, LDPE sheets were pre-cleaned, spiked with performance 165 

reference compounds (PRCs) according to Booij et al. (2002) and deployed in duplicates in the 166 

atmosphere  for 2 months at the same sites as the outdoor dust (n = 42) in two inverted bowls as 167 

a shelter for protection against sunlight and precipitation (see Appendix A for more details).  168 

 169 

Indoor LDPE sheets were deployed in duplicates for 2 months at each of the sampled rooms (n = 170 

2 – 3) of the living area starting two weeks before the dust sampling campaign. Samplers were 171 

hung in protected places away from direct exposure to the light and direct contact with 172 

participants. The total number of deployed LDPE were 46 (23 x duplicates) at apartments, 24 at 173 

the cars, and 38 at working places (total = 108 samples). For the extraction/analysis step, all the 174 

LDPE sheets deployed at the different rooms within an apartment or working place were 175 

combined and analyzed together (n = 12, 9 and 12 for apartments, working places and cars 176 

respectively x duplicates). 177 
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2.2. Extraction, cleanup and instrumental analysis 178 

Dust samples (indoor and outdoor) were sieved through a 3-inch, 100 mesh (150 µm) stainless 179 

steel sieve (Dodson et al., 2012), and ~ 0.5 g dry weight were sonicated with n-hexane/acetone 180 

(1:1, v:v) after spiking with surrogate standards (10 µL of a 2.0 ng/µL solution of 13C12 BDE-28, 181 

47, 99, 153 and 183 in nonane), purified and fractionated (fraction1 containing target analytes 182 

and fraction 2 containing organophosphate flame retardants, which is not discussed in the current 183 

manuscript) over silica gel and concentrated to a final volume of ~ 25 µL after the addition of the 184 

injection standards. LDPE samplers were spiked with surrogate standards and cold extracted 185 

twice with methylene chloride and n-hexane for 24 h each with no further cleanup. 186 

 187 

Extracts were analyzed for 12 PBDE congeners (BDE-2, 8, 15, 28, 30, 47, 49, 99, 100, 153, 154 188 

and 183) and 9 NFRs [tetrabromo-p-xylene (TBX), pentabromobenzene (PBB), 189 

pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 190 

hexachlorocyclo-pentadienyl-dibromocyclooctane (DBHCTD), 1,2-bis (2,4,6-tribromophenoxy) 191 

ethane (BTBPE), and anti- and syn-isomers of Dechlorane Plus (a-DDC-CO and s-DDC-CO)] on 192 

an Agilent 6890N gas chromatograph coupled to a Waters Quattro Micro mass spectrometer 193 

(GCMS/MS) in electron ionization mode (EI, 70 eV) using multiple reaction monitoring (MRM). 194 

      195 
2.3. Quality assurance 196 

 197 

Field blanks (Table A2), matrix spikes, and duplicate samples were included with each sample 198 

batch. Field blanks were composed of anhydrous sodium sulphate (3 g) contained in either a 199 

thimble, dust bag or a glass jar (based on the type of the sample). To prevent cross contamination 200 

between the sampling locations, cleaning of the vacuum cleaner was performed before and after 201 

ach sampling event (at each location) by using a detergent, warm water, methanol and air-drying.  202 
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Matrix spikes were prepared by spiking ground sea sand (1 g) contained in a thimble, dust bag or 203 

glass jar with 15 µL of a solution composed of all the target analytes at a concentration of 2.0 204 

ng/µL in nonane, and performing the same analytical steps as the samples. All the LDPE were 205 

deployed and analyzed in duplicates. For the dust samples, 30 % of the total number of samples 206 

were analyzed in duplicates. Instrumental calibrations were checked by injection of the 207 

continuing calibration solution. The GC/MSMS calibration was verified before, during, and after 208 

each analytical sequence. Three calibration standards were continuously injected every 10 dust 209 

samples and 15 LDPE samples and the calibration check was maintained within ±15% for all 210 

analytes of interest. When an analyte was not detected, the noise was quantitated for the limit of 211 

detection (LOD) calculations. LODs were determined in the different matrices as the upper limit 212 

of the 95% confidence interval for the field blanks (Table A3). We used ½ the LOD for 213 

concentrations that were below the detection limit. Recoveries of the surrogate standards 214 

generally ranged from 74 - 92% and 71 – 96 % for the outdoor and indoor LDPE respectively, 63 215 

– 86 % for the outdoor dust, 64 – 91 % for the indoor fine dust and 67 – 96 % for the floor dust. 216 

Matrix spikes recoveries (n = 5 for LDPEs and 6 for dust) ranged from 82 % (BDE 2) to 102 % 217 

(BDE 154) for the LDPE and from 76 % (BDE-2) to 103 % (BDE-100) for the dust (Table A4) 218 

with a relative standard deviation < 20%. Results of the replicate analysis of LDPE and the dust 219 

samples indicated that the reproducibility of the analysis ranged from 17.6 % – 25.3 %.  220 

 221 

2.4. Human health risk assessment 222 

To calculate the daily exposure doses from inhalation, ingestion and dermal exposure pathways, 223 

the following models were used according to the USPEA risk assessment guidelines (Means, 224 

1989):  225 
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Where, 229 

DDinh, DDing and DDder  are the daily dose associated with the inhalation, ingestion and dermal 230 

contact (all in ng/ kg/d) from the different micrenvironments, Cg = the vapor phase concentration 231 

of each individual flame retardant (ng/m3), ET = the exposure time (h/d), InhR = inhalation rate 232 

(m3/d), BW = body weight (kg), CEFD = the concentration of each flame retardant in the elevated 233 

fine dust (ng/g), IngR = ingestion rate (mg/d), ABS = dermal adsorption fraction 234 

(dimensionless), SA = skin surface area exposed (cm2), AFd = particle-to-skin adherence factor 235 

(g/cm2/event).. Note that DDing, DDing and DDder are the sum of inhalation, ingestion or dermal 236 

contact of vapor phase and elevated fine dust from homes, working places (for adults only), cars 237 

and schools.      238 

 239 

The ET was obtained from the answers of the participants in the questionnaire. The average 240 

working hours were set as 8.0 and 6.0 hours/day for males and females respectively. For 241 

housewives, no working hours were included. For all adults and children, ET in cars was set at 2 242 

hours/day. The remainder was the time spent at home. For toddlers, all the time was spent at 243 

home. DW was 70, 15 and 12 kg for adults, children and toddlers respectively (Means, 1989). 244 

Selected inhalation rates were 13.3 and 10.9 m3/day for adults and children (toddlers) 245 

respectively (Means, 1989). In the best-case scenario, ingestion rates were set at 0.02 and 0.05 246 

d/day for adults and children, whereas they were set at 0.05, 0.1 and 0.2 g/d for adults, children 247 
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and toddlers respectively(Means, 1989). For the dermal exposure pathway, SA used were 8,620 248 

and 4,970 cm2 for adults and children(Means, 1989), AFd (Means, 1989) was 0.000096 g/cm2 249 

and ABS was 0.03 (Cequier et al., 2014). Available reference dose values (RfD, mg/kg body 250 

weight/day) for BDE-47, 99, 153 and HBB were obtained from the Integrated Rias Assessment 251 

Information System (IRIS) of the USPEA ( https://www.epa.gov/iris, accessed in 10/01/2017). 252 

For BTBPE, RfD was obtained from Ali et al. (2012).  253 

2.5. Statistical analysis 254 

Analysis of variance (ANOVA) and the student t-test were performed with SigmaPlot 11. Before 255 

applying the statistical tests, all numbers were log transformed for normality. Bivariate 256 

correlation was performed with IBM SPSS (V 23, USA). 257 

 258 
3. Results and discussion 259 

3.1. Indoor concentrations  260 

3.1.1. PBDEs: ∑12 PBDE concentrations in the vapor phase ranged from 7.0 - 300 pg/m3, 36 –261 

220 pg/m3 and 13 – 303 pg/m3 at apartments, working places and cars respectively (Table 1).  In 262 

the EFD, concentrations ranged from 4.10 – 710, 80 – 540 and 3.0 – 770 ng/g respectively 263 

(Table 2). Concentrations of PBDEs (2.0 - 78 ng/g) in floor dust (Table A5) were lower than in 264 

EFD by a factor of 7.0 – 14 as was previously observed by Bjorklund et al. (2012) in Sweden. 265 

Working places (120 pg/m3 compared to 66 – 85 pg/m3 at the other microenvironments) and cars 266 

(210 ng/g compared to 129 – 131 ng/g for the other microenvironments) showed the highest 267 

median PBDE concentrations in the vapor phase and EFD samples respectively as was 268 

previously observed in the vapor phase samples of Sweden (Thuresson et al., 2012), and dust 269 

samples in Cairo, Egypt (Hassan and Shoeib, 2015), and in UK (Stuart et al., 2008). Vapor phase 270 

concentrations of BDE-2, 8 and 30 were significantly higher (One-Way Repeated Measures of 271 

https://www.epa.gov/iris
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ANOVA; p = 0.004 – 0.025) at apartments probably due to limited ventilation at apartments 272 

compared to working places and cars.  273 

Detected median vapor phase and EFD concentrations of ∑12PBDE and the individual congeners 274 

were generally within the same range or lower than concentrations previously reported 275 

worldwide at working places and apartments/houses (Figure 1a,b and Table A6). In contrast, 276 

PBDE concentrations in the EFD samples of the cars were much higher than concentrations 277 

previously observed in Asia and in Cairo, Egypt (Figure 1c).  PBDE concentrations in the FD 278 

samples were lower than  previously detected concentrations in Europe, Asia and USA (Figure 279 

1d) but close to what was previously detected in Cairo, Egypt (Hassan and Shoeib, 2015). 280 

However, it should be pointed out that the vapor phase sampling technique used in our study 281 

(LDPE passive samplers) is different from the active or passive sampling techniques (using 282 

PUFs) used in the other studies and this should be considered when comparing the results. 283 

Additionally, differences in the sampling periods, sampled cars (manufacturer, year and 284 

mileage), and conditions of the investigated apartments/houses are all significant factors and 285 

should be considered in this comparison. Accordingly, we tried to limit our comparisons (Figure 286 

1) to studies with very close sampling periods whenever possible.   287 

 288 
BDE-47 and BDE-99 were the dominant congeners in the vapor phase, EFD and FD samples 289 

(Figure 2) comprising on average 46 - 84% of the total concentrations. In the EFD samples, 290 

BDE-99 was the dominant congener compared to BDE-47 in the vapor phase and FD samples. 291 

The ratio of BDE-47 to BDE-99 for the vapor phase (1.0 – 1.7) and FD samples (1.3 – 1.9) were 292 

slightly higher than values observed for the penta-formulations (0.6 and 1.0,  La Guardia et al., 293 

2006), whereas values in the EFD samples were consistent with the penta-formulation (0.4 – 294 

0.9), which is probably attributed to the slightly higher volatility of BDE-47 (log vapor pressure 295 
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= -3.61 pa) compared to BDE-99 (log vapor pressure = -4.30 pa) (Yue and Li, 2013). Our 296 

findings indicate the possible wide usage of the penta formulation in the imported consumer 297 

goods to Alexandria. Additionally, differences in the ratio values between EFD and FD samples 298 

suggest a different PBDE sources. BDE-183 (octa- formulation) showed minor contributions (< 299 

10 %) (Figure 2) indicating probably a limited usage of the octa-BDE formulation, in-line with 300 

results reported for floor dust in Cairo (Hassan and Shoeib, 2015).  301 

 302 

3.1.2. NFRs: Concentrations of NFRs ranged from 0.40 to 47 pg/m3, 0.60 – 10 ng/g and 0.50 – 303 

2.0 ng/g in the vapor phase, EFD ad floor dust samples respectively (Tables 1, 2 and A5). HBB 304 

displayed the highest concentrations (Figure 3) in  the vapor phase samples, as was previously 305 

observed in Norwegian schools (Cequier et al., 2014). In all the microenvironments, PBEB, PBT 306 

and TBX were less abundant than HBB but showed significant contributions in the vapor phase 307 

(Figure 3a, c, f).  BTBPE, DBHCTD, a-DDC-CO and s-DDC-CO were below LOD in all the 308 

samples probably due to their low vapor pressure (vapor pressure = -5.5 to -10.1 Pa) 309 

(McDonough et al., 2016) and accordingly, their preferential occurrence in the particulate phase 310 

as was observed in the current study (Figure 3b, d, f, g). Higher contribution of s-DDC-CO in the 311 

EFD of cars and working places was observed in the current study probably due  to the usage of 312 

the technical DDC-CO as an additive in textile, automotive and in computers (Hassan and 313 

Shoeib, 2015).  314 

 315 

Detected concentrations of NFRs in air and dust of the microenvironments were much lower than 316 

concentrations previously recorded worldwide (Table A7). However, EFD median 317 

concentrations of HBB (0.25 ng/g), BTBPE (1.0 ng/g), s-DDC-CO (2.0 ng/g) and a-DDC-CO 318 
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(0.9 ng/g) in cars of Alexandria were comparable with those observed in Cairo, Egypt (0.23, 1.3, 319 

1.5 and 1.0 respectively) (Hassan and Shoeib, 2015).  Additionally, median concentrations of 320 

HBB and BTBPE were very close to values reported for the FD samples of Cairo, Egypt (Hassan 321 

and Shoeib, 2015), whereas, the median concentrations of s- and a-DDC-CO in Cairo were 3.0 322 

and 7.0 fold respectively higher than our reported values. Egypt does not manufacture flame 323 

retardants and any detected compounds are due to imported goods. Nevertheless, the lower 324 

observed concentrations in the current studies could be the reason of different materials 325 

imported, different manufacturing countries, ages and types of materials and electrical equipment 326 

used in the different studies, type, age, mileage and manufacturer of the vehicles and/or less strict 327 

fire safety standards in Egypt. 328 

 329 

3.2. Outdoor concentrations 330 

3.2.1. PBDEs: PBDE concentrations ranged from 3.0 - 41pg/m3 and 1.5 - 200 ng/g in the vapor 331 

phase and dust samples respectively (Table 3). BDE-2 was below the LOD in all the outdoor 332 

samples. Vapor phase and dust concentrations of ∑12PBDE, BDE-47, 49, 99, 100, 153 and 154 333 

were significantly higher (t-test, p < 0.05) in the residential – industrial regions. This is probably 334 

attributed to the older age of the industrial buildings, ventilation systems and/or the number of 335 

items containing PBDEs in the industrial buildings. In all samples (Figures A3, A4), BDE-47 336 

and BDE-99 dominated the profiles of vapor phase and dust samples in the outdoor environment 337 

as was previously observed for the indoor microenvironments (Figure 2). However, in the 338 

outdoor dust samples, BDE-47 showed higher concentrations that BDE-99 as was observed for 339 

the indoor floor dust samples (Figure 2g). Values of BDE-47/BDE-99 ratio (1.0 – 2.4) at all the 340 

locations were slightly higher than values of the penta-BDE formulations (La Guardia et al., 341 

2006), EFD samples (0.4 – 0.9), but consistent with the FD samples (1.3 – 1.9) and the outdoor 342 
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gaseous samples (1.0 – 1.9). The ratio values observed here were probably the result of the faster 343 

photodegradation of BDE-99 compared to BDE-47 (Dickhut et al., 2012). BDE- 28, 100 and 153 344 

showed also significant contributions in the outdoor dust samples (8.0 – 15 % of the total 345 

concentrations).    346 

 347 

Detected vapor phase concentrations in the current study were much lower than previously 348 

detected concentrations in USA (Batterman et al., 2009), China (Hong et al., 2016) and Turkey 349 

(Kurt-Karakus et al., 2017) (Table A6) but higher than values previously observed for air around 350 

the lower Great Lakes (0.10 – 14.5 pg/m3) (McDonough et al., 2016) and Ottawa, Canada 351 

(<LOD – 4.4 pg/m3) (Wilford et al., 2004).  352 

 353 

3.2.2. NFRs: NFRs concentrations ranged from <LOD - 13 pg/m3 and 0.40 – 4.0 ng/g in the 354 

outdoor vapor and dust samples respectively (Table 3), with no significant difference between 355 

the residential and residential-industrial areas as was previously observed for PBDEs. 356 

Concentrations of all the investigated NFRs were much lower than the indoor 357 

microenvironments (Table 2), and were also lower than PBDE concentrations (Table 3). Profiles 358 

of NFRs in the outdoor environment (Figures A5, A6) were similar to the profiles of NFRs in the 359 

vapor phase (dominance of HBB, PBB, PBEB and PBT) and dust samples (dominance of 360 

BTBPE, s-DDC-Co and a-DDC-CO) of the indoor microenvironments. 361 

 362 

Detected concentrations of PBB, HBB, PBT and PBEB in the current study were much lower 363 

than concentrations previously observed in China (Table A7) (Hong et al., 2016; Lin et al., 364 

2013), Stockholm, Sweden (for PBT: <LOD in the current study compared to 0.17 pg/m3) 365 

(Newton et al., 2015), Istanbul, Turkey (for HBB and BTBPE; Table A7) and Great Lakes (for 366 
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BTBPE, DBHCTD, s-DDC-CO and a-DDC-CO) (McDonough et al., 2016). In contrast, the 367 

median concentration of HBB in the current study (0.10 pg/m3) was higher than that in Sweden 368 

(<LOD), and the range of PBB, HBB and PBEB in the current study was also higher that 369 

concentrations observed at the lower Great Lakes.  Again, much lower concentrations of NFRs 370 

demonstrate that these compounds have not (yet) replaced PBDEs as flame retardants in 371 

Alexandria. 372 

 373 

 374 
3.3. Indoor vs Outdoor Organohalogenated Flame Retardants 375 

The lack of correlations between detected vapor concentrations and their subcooled vapor 376 

pressures (PL, Pa) imply that emissions of PBDEs and NFRs were dominated by various source 377 

strengths, reactivity but not their volatility. All the gaseous and EFD concentrations of 378 

∑12PBDEs and ∑NFRs in the indoor samples (excluding cars) were significantly higher (t-test, t 379 

= 2.95 – 7.13, p < 0.006) than the outdoor samples (Figure A7). This, in addition to the observed 380 

indoor - outdoor pattern variabilities and the between-samples variability in the indoor 381 

microenvironments suggests that detected indoor concentrations are mainly from indoor 382 

emissions with minimum contribution from the outdoor environment.  383 

In the current study, several findings were observed when we compare indoor and outdoor dust. 384 

First, different patterns of PBDE congeners (Figure A7c) were observed in the elevated fine 385 

versus floor dust samples (dominance of BDE-47 in FD compared to BDE-99 in the EFD), 386 

whereas for the NFRs (Figure A7d) similar patterns were observed in the EFD, FD and outdoor 387 

dust samples. Second, greater similarities in concentrations and profiles (Figure A7c, d) of 388 

PBDEs and NFRs were observed between floor and outdoor dust (dominance of BDE-47, 389 

BTBPE, HBB and s-DDC-CO and similar BDE-47/99 ratios). This finding is unusual 390 
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considering the higher expected concentrations in the indoor samples, which is already observed 391 

for the gaseous and the elevated fine dust.  Additionally, FD concentrations of HBB, BTBPE, 392 

DBHCTD and BDE-28 to 183 were more strongly correlated with the outdoor samples (r = 0.74 393 

– 0.99, p < 0.05) than with elevated fine dust samples (r = -0.08 – 0.90), which were not 394 

significant (p > 0.05) in most cases. The exception were a-and s-DDC-CO, which displayed 395 

stronger correlation to elevated fine dust samples (r =0.80, 0.87 compared to r = 0.67 and 0.68 396 

for outdoor samples), although they were statistically insignificant (p > 0.05). Third, elevated 397 

fine dust samples displayed much higher concentrations than floor and outdoor dust and slightly 398 

different profiles. Since all samples were sieved, we argue that different sources are responsible 399 

for the detected levels of PBDEs and NFRs in the EFD and FD. Floor dust is possibly 400 

contaminated by outdoor dust and dirt carried indoors by shoes, whereas this process is of 401 

minimum effect for the elevated fine dust (based on our requested pre-sampling and during-402 

sampling ventilation conditions from volunteers).  403 

 404 
3.4. Sources and relations between organohalogenated flame retardants in the samples 405 

3.4.1. Indoor  406 

To study the relations between detected flame retardants, a bivariate analysis was performed 407 

(correlations). Factors such as year of construction, number of foamed furniture, number of 408 

electronics, type of ventilation used and the number of vacuuming per week were included 409 

(Table A1). For cars, the make, year, type of seats and the ventilation system were included. All 410 

this information was obtained from the questionnaires given to the volunteers. For the indoor air 411 

(Table A8) and EFD (Table A9) samples, significant correlation between the tri- through hepta-412 

brominated congeners (BDE- 28 to BDE- 183) was observed indicating possible common 413 

sources, the banned penta- and octa- formulations. Although a significant correlation was 414 
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observed between all tri- through hepta- brominated congeners, we excluded the possibility of 415 

occurrence of debromination and conversion of the higher brominated congener (BDE-183) to 416 

lower brominated ones as this finding occurred both in the indoor and outdoor environments (see 417 

below). No significant correlations were observed between PBDE congeners in the gaseous and 418 

EFD samples and the number of electronics and the number of foamed furniture. However, some 419 

within variability was observed at working places. Concentration of PBDE congeners at the car 420 

upholstery shop (∑12 PBDE = 220 pg/m3) was significantly higher (One-Way Repeated 421 

Measures of ANOVA; p < 0.001) than those recorded for the four sampled school offices (∑12 422 

PBDE = 36 - 120 pg/m3). 423 

In the elevated fine dust samples (Table A9), all the PBDE congeners were negatively correlated 424 

with the construction year (r = 0.43 – 0.62, p < 0.05), probably due to the increased dependence 425 

on NFRs and OPFRs in recent years. Nevertheless, the majority of the investigated NFRs 426 

showed no significant correlations with the construction year. Most of the PBDE congeners 427 

showed significant correlations with the floor type (Table A9), where concentrations increased 428 

when floors were covered with carpets, probably relating to the use of PBDEs in carpet paddings 429 

(Stapleton et al., 2008). 430 

 431 

For NFRs, only PBEB, s- and a-DDC-CO in the EFD samples showed significant correlations (r 432 

= 0.47 – 0.68, p < 0.05) with the number of electronics, probably due to their wide usage in 433 

electronics (Sverko et al., 2011).  Although BTBPE was used as a replacement for the octa-BDE 434 

formulation by the end of 2004 (Kurt-Karakus et al., 2017), no correlation were observed with 435 

BDE-183 in the current study. Additionally, median concentrations of BTBPE in EFD of the 436 

indoor microenvironments (0.80 – 3.0 ng/g) and the outdoor dust (0.20 – 0.26 ng/g) were much 437 

lower than median concentrations of BDE-183 (2.2 – 25 ng/g and 0.50 – 2.50 ng/g respectively), 438 
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which may be related to the limited usage of the octa-PBDE formulation in the imported goods 439 

in Egypt.  440 

The detected concentrations of NFRs in the current study are more affected by the within-site 441 

variabilities and thus sources were not clearly identified for this class of flame-retardants. A 442 

similar finding was observed in Norway (Cequier et al., 2014). 443 

 444 
As for cars, manufacturer was the key factor for the gaseous organohalogenated flame retardants 445 

(Table A14), where vapor phase concentrations of BDE-28 through BDE-154 in the Korean cars 446 

were significantly higher (One-Way Repeated Measures of ANOVA; p < 0.004) than the 447 

German and Japanese cars sampled here (Table 1). Higher concentrations of the same congeners 448 

were also observed in the EFD samples collected from the Korean cars compared to the German 449 

and Japanese cars but was statistically insignificant (Table 2).  Like the apartments and working 450 

places, several significant positive correlations were observed for the different NFRs (Tables 451 

A10, A11) indicating common sources. Additionally, the significant correlations between the 452 

individual penta- BDE congeners were also observed for the air and dust in cars. HBB in air and 453 

dust showed significant positive correlation with the model year (r = 0.677 – 0.74, p < 0.05), 454 

whereas DBHCTD and a-DDC-CO in the dust samples were significantly higher (r = 0.58 – 455 

0.85, p < 0.05) in the Korean cars.  456 

 457 

3.4.2. Outdoor  458 

No correlations were found with temperature, wind speed or wind direction (data not shown). 459 

Generally, some significant between-analyte correlations were observed for NFRs and for the 460 

individual penta-BDE congeners and BDE-183. As we mentioned earlier, industrial activities 461 

were only a major source of PBDEs (significantly higher concentrations at the residential – 462 
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industrial areas than the residential areas) in the outdoor environment, whereas this pattern was 463 

not observed for NFRs. 464 

 465 
3.4. Partitioning of the Organohalogenated Flame Retardants in Air and Dust 466 

To investigate the relationship between the detected concentrations in the dust and air samples, 467 

dust-air partitioning coefficients (Kdust-air; m3/g) were calculated [concentrations in the dust 468 

(ng/g)/air concentrations (ng/m3)]. For equilibrium conditions, Kdust-air is expected to be directly 469 

proportional to the octanol-air partition coefficient (KOA) (Cequier et al., 2014; Liagkouridis et 470 

al., 2017; Weschler and Nazaroff, 2010). In contrast, if the gaseous fraction was freshly released, 471 

or if the flame retardants in the air and dust were emitted from different sources, this relationship 472 

would be insignificant. Calculated log Kdust-air values were compared with a theoretical Kdust-air 473 

calculated based on KOA, fraction of organic carbon (fOC) and density of dust (ρdust, g/m3) as 474 

follows:  475 

Kdust-air = (fOC . KOA)/ ρdust      (4). 476 

 fOC and ρdust were selected as 0.2 and 17 x 105 g/m3 (Liagkouridis et al., 2017). Thus, the less 477 

volatile flame retardants (higher KOA) will partition preferentially into the dust, thus resulting in 478 

higher Kdust-air. 479 

In the current study, significant log-linear relationships between the calculated and theoretical 480 

Kdust-air (R
2= 0.71 – 0.82 for EFD and FD, and 0.73 – 0.81 for the outdoor samples, p < 0.001) 481 

were observed for elevated fine and floor dust (Figure 4a) and the outdoor samples (Figure 4b). 482 

Additionally, slopes of the regression relationships (b = 0.53 – 0.65) were significantly different 483 

from zero (p < 0.001) indicating equilibrium distribution of the flame retardants between dust 484 

and vapor. Surprisingly, this relationship explained 75 % of the total variability for the elevated 485 

fine and floor dust samples, and the slopes were identical (b = 0.60) and insignificantly different 486 
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from one (p < 0.001). Assuming that floor dust was contaminated by outdoor dust, a stronger 487 

relationship for EFD samples is expected. However, this was not observed probably due to the 488 

similarity between the profiles of PBDEs and NFRs in the vapor phase samples of the indoor and 489 

outdoor environments (Figure 2a, b), the similarities between profiles of NFRs in the EFD and 490 

FD samples and/or the possible ongoing emission of flame retardants in the indoor 491 

microenvironment, which affected the strength of the relationship. 492 

 493 

3.5. Human Exposure Assessment  494 

Daily intake of the flame retardants from dust ingestion (based on EFD samples), air inhalation 495 

(vapor phase concentrations) and dermal absorption was estimated in the current study for adult 496 

males and females (working and housewives), children (age more than 6 years) and toddlers. 497 

Calculated daily intakes are given in Table A12. Values generally ranged from 6.8 x 10-6 – 0.17, 498 

2.0 x 10-5 – 0.60, 7.0 x 10-8 – 0.03 and 1.0 x 10-5 – 0.04 ng/kg body weight/day for the ingestion 499 

pathway (best case and worst-case scenarios respectively), inhalation and dermal exposure 500 

pathways. Calculated daily dose for the three exposure routes were generally higher for PBDEs 501 

than NFRs (Figure 5). Toddlers showed the highest ingestion (2.9 x 10-3 – 1.0 x 10-2), inhalation 502 

(1.4 x 10-3 – 5.5 x 10-3) and dermal (2.1 x 10-4 – 1.3 x 10-3) daily dose values compared to the 503 

other groups. Ingestion of NFRs was the most important exposure route (higher calculated daily 504 

dose values; Table A12) for toddlers, children, adult males and housewives (Figure 5a, 6), and 505 

for all the groups with respect to PBDEs. In contrast, inhalation (especially of HBB and TBX) 506 

was more important for adult working females. For most of the NFRs, comparable daily dose 507 

values (from all exposure routes) were observed for adult males and working females, which 508 

were higher than values calculated for housewives (Figure 5a, c, e). This observed pattern is 509 

probably attributed to the higher observed concentrations of most of the NFRs at the working 510 
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places. In contrast, the pattern was not observed for PBDEs (Figure 5b, d, f). Generally, 511 

inhalation pathway was more important for the more volatile flame retardants (TBX, PBB, HBB, 512 

PBT, PBEB, BDE-2, 8 and 15), whereas the ingestion pathway was the most important exposure 513 

route for BTBPE, DBHCTD, s-DDC-CO, BDE-28, 47, 99, 100 and 153 (Figure 5). Nevertheless, 514 

calculated values for BDE-47, 99, 153 and HBB were at least three orders of magnitude lower 515 

than their corresponding oral reference doses (RfD) (Table A12).  516 

 517 

Conclusions 518 

To our knowledge, this is the first study reporting levels of PBDEs and NFRs in the air and dust 519 

samples from the indoor and outdoor environments in Alexandria, Egypt. Results show that 520 

PDBEs are present everywhere at elevated concentrations relative to NFRs targeted here. The 521 

exposure assessment study indicated that inhalation of volatile flame retardants is a more 522 

important exposure route for adults than dust ingestion. Accordingly, gaseous concentrations of 523 

flame retardants should be included in future studies. For that purpose, LDPE could be used as 524 

an effective indoor sampling technique in human exposure studies. Inclusion of the outdoor 525 

samples indicated that: (i) indoor flame retardants are mainly emitted from the existing indoor 526 

sources (higher concentrations in the indoor samples) and (ii) elevated fine dust samples are less 527 

influenced by contamination from outdoor dust compared to the floor dust samples. Thus, 528 

outdoor samples should be considered in future studies especially at locations lacking emission 529 

inventory database. Concentrations of flame retardants in the elevated fine dust were higher than 530 

those for the floor dust samples, which could result in underestimated exposures when relying on 531 

floor dust. Nevertheless, estimated daily doses from all exposure routes for some of the target 532 

analytes were much lower than available reference doses. However, the small number of floor 533 
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dust samples analyzed in the current study is limiting conclusions. Our results could represent an 534 

important baseline database for developing response actions to limit the exposure to the 535 

organohalogenated flame retardants in the atmospheric environment of Alexandria, Egypt   536 

 537 

Supplementary data  538 

Details on the sampling, chemical and statistical analysis, estimation of gaseous concentrations 539 

and human exposure assessment are given in Appendix A.  540 
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