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Abstract 20 

Narragansett Bay is a temperate estuary on the Atlantic coast of Rhode Island in North 21 

United States, which receives organic pollutants from urban and industrial activities in 22 

its watershed, though detailed knowledge on sources and fluxes is missing. Twenty-23 

four polyethylene passive samplers were deployed in the surface water of the watershed 24 

around Narragansett Bay during June-July of 2014, to examine the spatial variability 25 

and possible sources of priority pollutants, namely dissolved polycyclic aromatic 26 

hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). Dissolved 27 

∑22PAH concentrations ranged from 3.6 - 340 ng L-1, and from 2.9 - 220 pg L-1 for 28 

∑12PBDE. The spatial variability of the concentrations was correlated to land use 29 

pattern and population distribution, in particular with human activities within 2 km of 30 

sampling sites. River discharges derived from the concentrations of PAHs and PBDEs 31 

measured here were 10-20 times greater than their previously measured concentrations 32 

in the open waters of Narragansett Bay. These results imply that river waters are the 33 

main source of PAHs and PDBEs to the Bay and that major sink terms (e.g., 34 

sedimentation, degradation) affect their concentrations in the estuary. Predicted PAH 35 

and PBDE toxicity based on dissolved concentrations did not exceed 1 toxic unit, 36 

suggested that no toxicity occurred at the sampling sites. 37 

 38 

Capsule: This work represents the first survey of dissolved PAHs and PBDEs using 39 

passive samplers in an urbanized estuary’s watershed, helping to constrain pollutant 40 

flows from land-based sources. 41 
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 42 

Keywords: Polycyclic aromatic hydrocarbons (PAHs); Polybrominated diphenyl ethers 43 

(PBDEs); polyethylene passive samplers; urbanized watershed; land-use-based source. 44 

 45 

Introduction 46 

Estuaries are subjected to multiple anthropogenic or naturally occurring stress 47 

factors, and prone to be affected to different degrees by an array of pollutants including 48 

hydrophobic organic contaminants (HOCs). Polycyclic aromatic hydrocarbons (PAHs) 49 

and polybrominated diphenyl ethers (PBDEs) are two typical classes of HOCs which 50 

continue to be released into the environment mainly via natural (PAHs) and 51 

anthropogenic processes (PAHs and PDBEs) (Yunker et al., 2002; Hites, 2004; Lima et 52 

al., 2005; Takada, 2010; Parinos et al., 2013). In aquatic ecosystems, the dissolved 53 

PAHs and PBDEs are subjected to evaporation, adsorption to suspended particulates, 54 

uptake by aquatic organisms and bioaccumulation, bio-degradation and photo-55 

degradation (Rayne and Ikonomou, 2005; Tsapakis et al., 2006; Guigue et al., 2014). 56 

They can be further transferred into the aquatic environment by urban run-off, 57 

municipal sewage, industrial effluents, oil spillage or leakage, gas-water exchange, and 58 

atmospheric deposition (Lima et al., 2005; Song et al., 2006; Tsapakis et al., 2006; 59 

Parinos et al., 2013). Previous work has suggested that aquatic ecosystems with high 60 

PAH and PBDE concentrations might pose potential ecological risks, causing 61 

carcinogenic, mutagenic, and toxic effects on aquatic organisms (Hall et al., 2003; 62 

Oliveira et al., 2012; Ikenaka et al., 2013).  63 
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Narragansett Bay is a temperate estuary on the Atlantic coast of Rhode Island, 64 

USA. In previous work, the concentration of PAHs in Narragansett Bay and other 65 

coastal waters was shown to have strong correlations with urban runoff, river flows and 66 

wastewater treatment plant discharges (Lohmann et al., 2011). Due to its long industrial 67 

history, PAHs are present in the sediments of Narragansett Bay (Hoffman et al., 1984; 68 

Pruell et al., 1986; Latimer and Quinn, 1996; Lima et al., 2003; Hartmann et al., 2004; 69 

Lohmann et al., 2011). Concentrations and profiles of PAHs in the water column of 70 

Narragansett Bay were reported (Lohmann et al., 2011; Yonis, 2012), but so far no study 71 

has actually measured PAHs in the watershed and contributing rivers directly. Likewise, 72 

the freely dissolved PBDEs in Narragansett Bay probably originate from a combination 73 

of air-water exchange, freshwater runoff, rivers, and wastewater treatment plants (Sacks 74 

and Lohmann, 2012), and are still present in currently products, suggesting on-going 75 

releases to Narragansett Bay and the surrounding areas. This prompted us to investigate 76 

the relationship between the land-based activities and PAHs and PBDEs concentrations 77 

using passive samplers, and whether river inputs responsible for the contaminants in 78 

Narragansett Bay. 79 

Low density polyethylene (LDPE) passive samplers are cost-effective, technically 80 

simple tools with lower detection limits than traditional active sampling techniques 81 

(Mcdonough et al., 2014). Instead of pumping air or water through a filter, passive 82 

sampling relies on diffusion to accumulate analytes of interests and only accumulates 83 

molecules which are freely dissolved in the water or the atmosphere (Adams et al., 84 

2007). This avoids the analytical interference of, e.g., dissolved organic carbon (DOC) 85 
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which can affect active sampling results (Lohmann et al., 2011). Moreover, 86 

concentrations of freely dissolved PAHs and PBDEs are of interest because this fraction 87 

is available for direct diffusive exchange between water and other reservoirs such as air, 88 

biota, or sediment (Kane Driscoll et al., 2010; Mhadhbi et al., 2012; Bragin et al., 2017). 89 

Different passive samplers have been used in seawaters, harbors, rivers and urban 90 

waterways to determine freely dissolved concentrations of PAHs and PBDEs 91 

(Cornelissen et al., 2008a; Sower and Anderson, 2008; Lohmann et al., 2011; Lohmann 92 

et al., 2012; Sacks and Lohmann, 2012; Alvarez et al., 2014).  93 

The objectives of this study were to enhance our understanding of the distribution 94 

and behavior of PAHs and PBDEs across the Narragansett Bay watershed. We deployed 95 

LDPE samplers in the surface water at 24 sites across the watershed in June-July 2014 96 

with the aim of (1) establishing baseline concentrations and spatial trends of dissolved 97 

PAHs and PBDEs in the Narragansett Bay watershed, (2) diagnosing the main sources 98 

of dissolved PAHs and PBDEs to Narragansett Bay, (3) evaluating the importance of 99 

land-based sources of dissolved PAHs and PBDEs by investigating the relationship 100 

between land-use characteristics and concentrations, (4) elucidating the main factors 101 

controlling the fate of PAHs and PBDEs in the watershed, and (5) lastly predicting and 102 

assessing the PAH and PBDE toxicity. 103 

 104 

Materials and Methods 105 

Study area 106 

The Narragansett watershed area in Rhode Island was 2077.6 km2 including the 107 
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estuarine waters (43.6% total watershed). The land coverage pattern around the bay was 108 

dominated by forest (58%), urban or built-up land (28%), agriculture (5.4%), water 109 

(4%), wetland, barren land and rangeland (each < 2%, see TOC).  110 

 111 

Preparation and deployment of LDPE passive samplers  112 

Fifty-one micrometer thick LDPE samplers were cut and cleaned for yielding 113 

passive samplers. Deuterated PAHs (pyrene-d10 and benzo(a)pyrene-d12) and 114 

brominated biphenyls (2,5-Dibromobiphenyl, 2,2’,5,5’-Tetrabromobiphenyl, 115 

2,2’,4,5’,6-Pentabromobiphenyl, and octachloronaphthalene) were used as 116 

performance reference compounds (PRCs) to infer the equilibrium concentration of 117 

compounds in the passive samplers as in previous work (Booij et al., 2002; Mcdonough 118 

et al., 2014). Both passive samplers and field blanks were picked up by trained 119 

volunteers and deployed in surface waters throughout the Narragansett Bay watershed 120 

in June-July 2014, as a part of the University of Rhode Island Watershed Watch program 121 

(http://www.uri.edu/ce/wq/ww/ index.htm). The detail methodology, map of 122 

monitoring sites, and other related monitoring summary were provided in the 123 

supporting information (Figure S1 & Table S1).  124 

 125 

Analysis 126 

LDPE samplers were wiped clean with Kimwipes and extracted once in hexane 127 

for 24 h after addition of 20 ng of labeled PAHs (acenaphthalene-d10, phenanthrene-128 

d10, chrysene-d12 and perylene-d12) and PBDEs (13C12-BDE28, 13C12-BDE47, 13C12-129 
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BDE99, 13C12-BDE153 and 13C12-BDE183) surrogates. Extracted LDPE samplers were 130 

air dried and weighed. Extracts were concentrated to 100 μL, and spiked with 50 ng of 131 

p-terphenyl-d14 (injection standard) directly before instrumental analysis.  132 

PAHs were analyzed using an Agilent 6890 GC System coupled with an Agilent 133 

5973 Network Mass Selective Detector and quantified using Agilent Technologies 134 

MSD Productivity ChemStation D.03.00552 software as presented elsewhere 135 

(Lohmann et al., 2012). PBDEs were analyzed on a Waters Quattro micro GS 136 

Micromass MS-MS and quantified using Waters QuanLynx V4.1 software as detailed 137 

elsewhere (Sacks and Lohmann, 2012). Further details are given in the Supporting 138 

Information. Samples were analyzed for 22 PAHs and 12 PBDEs (Table S2 and S3).  139 

 140 

Quality assurance/Quality control 141 

Method blanks were prepared with each batch of samples to monitor for laboratory 142 

contamination. Samples were blank-corrected by subtracting the average of the method 143 

and field blank concentrations. Target analytes were quantified by internal calibration 144 

relative to surrogates. Average surrogate recoveries for PAHs and PBDEs ranged from 145 

68%-86% and 39%-62%, respectively (Tables S2 to S4). Method detection limits 146 

(MDLs) were calculated as 3 times the standard deviation of the average field blank 147 

concentration. Concentrations < MDL were reported as half of the MDL, as 148 

recommended previously (Antweiler and Taylor, 2008). Compounds that were 149 

measured above the MDL in less than 20% of samples were omitted from the discussion.  150 

 151 
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Calculations/Data analysis 152 

 Determination of sampling rate and ambient concentration 153 

The fraction of equilibrium (f) achieved for each compound was determined by 154 

fitting the equilibrium of the PRCs and their temperature-corrected log KPE values to a 155 

model curve derived as, 156 

𝑓 = 1 − 𝑒
−

𝑅𝑠𝑡
𝐾𝑃𝐸𝑤𝑀𝑃𝐸 157 

Where Rs (L/day) is the sampling rate defined as the amount of water that comes 158 

into contact with the sampler per day; t is deployment time (days); MPE is the PE weight 159 

(kg); and KPEw is the LDPE-water partitioning coefficient (L/kg). The values of Rs can 160 

be estimated using nonlinear least squares methods, by considering f as a continuous 161 

function of KPEw, with Rs as an adjustable parameter using Excel Solver to obtain the 162 

best fit (Smedes and Booij, 2010). The average aqueous sampling rate of PAHs and 163 

PBDEs was 21 ± 14 L/day and 16 ± 7 L/day, respectively. 164 

Freely dissolved concentrations, CW (ng/L) of compounds were calculated from 165 

the equation, 166 

𝐶𝑤 =  
𝐶𝑃𝐸

𝐾𝑃𝐸𝑤(1−𝑒
−

𝑅𝑠𝑡
𝐾𝑃𝐸𝑤𝑀𝑃𝐸)

 167 

Where CPE is the PE-normalized concentrations (ng/L). For more details, see the 168 

Supporting Information and Tables S1. 169 

 170 

 Land-use regression and PAHs source analysis 171 

Land-use regressions models are GIS-based spatial models that relate locations 172 

specific data on pollutant concentrations to location-specific source and environment 173 
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data using regression (Briggs et al., 1997). The following land-use classes were 174 

considered: residential areas, commercial and industrial areas, facilities and institutes, 175 

and recreational areas occupied by human activities (Figure S2). Other variables 176 

included population density (Pop/km2), buildings, roads, sewer areas, and impervious 177 

surface areas. All geospatial data were retrieved from the RIGIS web site 178 

(http://www.edc.uri.edu/rigis). The analyses were conducted using ArcGIS version 10.2 179 

software using coverage and grid data formats whenever possible. Statistical analyses 180 

were performed using IBM SPSS Statistics 22. Linear regression was chosen as an 181 

appropriate model based on the correlation between dissolved concentrations and major 182 

descriptor variables. For more details, also for assessing PAHs sources, see the 183 

Supporting Information. 184 

 185 

Toxicity assessment 186 

A toxic unit (TU) is defined as the ratio of the concentration in a medium to the 187 

effect concentration in that medium (USEPA, 2003). The TUs for EPA-34 individual 188 

PAHs, Cpw, EPA-34 (TUs), were considered one of the most accurate measures for 189 

evaluating the toxicity of pyrogenic PAH-impacted sites (Arp et al., 2011). The 190 

toxic/nontoxic threshold value for the protection of sensitive benthic organisms is 1.0 191 

TU (USEPA, 2003). In this study, we chose pyrene, fluoranthene, benz(a)anthracene, 192 

and chrysene, to estimate the Cpw, EPA-34 (TUs) and to predict the potential toxicity of 193 

each sampling site by using the models in Arp et al. (2011), since these compounds were 194 

the most commonly quantified compound in surface water (96-100% of samples, see in 195 
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Table S2) and also exhibited good correlations with the other PAHs.  196 

For PBDEs, the risk assessment for water organisms was performed on the basis 197 

of the risk quotients (RQs) for non target organisms (Santos et al., 2007; Sánchez-Avila 198 

et al., 2012). RQs were calculated as a quotient of the measured environmental 199 

concentration (MEC) and the predicted no effect concentration (PNEC), and were 200 

characterized using the maximum probable risks for ecological effect guideline 201 

established by Marcus et al. (2010) as: no significant risk (RQ<1.0), a small potential 202 

for adverse effects (1.0≤RQ<10), significant potential for adverse effects (10≤203 

RQ<100), and adverse effects should be expected (RQ≥100). The risk assessment was 204 

performed considering three trophic levels of fish, Daphnia and algae, following the 205 

recommendation of the Technical Guidance Document on Risk Assessment (European 206 

Commission, 2003). For more details, see the Supporting Information. 207 

 208 

Results and Discussion 209 

Dissolved PAHs & PBDEs in surface water 210 

 Concentrations and spatial trends 211 

The concentrations of dissolved ∑22PAH in the surface water ranged from 3.6 to 212 

340 ng L-1 with the mean value of 44 ng L-1 (Figure 1, Table S5). The dominant PAHs 213 

were phenanthrene (5-53%), pyrene (5-43%) and fluoranthene (<MDL-38%). 214 

Phenanthrene contributed more to the dissolved ∑22PAH in the lower watershed, while 215 

pyrene and fluoranthene were the main contributors in the upper areas. Retene 216 

accounted for 2.9-19.4% of the total freely dissolved concentrations. 217 
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PAH concentrations were greater in the upper, more urban/industrialized 218 

watershed, and in coastal areas. The greatest dissolved ∑22PAH concentration was 219 

recorded at Knowles Brook (BB_KB), followed by Woonasquatucket River near 220 

Donigian Park (WR_DP) (184 ng L-1), and Mill Brook near Greenwich Bay (GB4) (75 221 

ng L-1). Sites around Bristol Harbor also had relatively high concentrations (BH8-10 ng 222 

L-1, BH1-57 ng L-1, BH12-18 ng L-1). These sites were, by and large, also surrounded 223 

by largest population densities. 224 

Freely dissolved concentrations of ∑12PBDE in the surface water were more than 225 

three orders of magnitude lower than PAHs across the Narragansett Bay watershed. 226 

PBDE concentrations ranged from 2.9 to 220 pg L-1 with a mean value of 25 pg L-1 227 

(Figure 2, Table S6). Dissolved PBDEs were dominated by BDE-47 (29-66%), BDE-228 

99 (16-40%) and BDE-100 (2-14%). PBDE concentrations were also greater in the 229 

upper watershed and coastal areas. Dissolved ∑12PBDE concentrations were greatest in 230 

rivers (Woonasquatucket River, at 224 pg L-1, followed by the Pawtuxet River, at 150 231 

pg L-1). 232 

The presence of PAHs in the surface water, away from major urban/industrialized 233 

sources, most likely stemmed from atmospheric deposition, and represented 234 

background contamination of PAHs across the northeastern United States. These were 235 

typically characterized by low concentrations of PAHs, typically below 10 ng L-1, as 236 

can be seen for all samplers deployed in the southern half of the state. All northern sites, 237 

with the exception of an upstream river sample displayed much greater PAH 238 

concentrations, ranging from 10 to greater than 300 ng L-1.  239 
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For PBDEs, although the gradient from north to south was not as strong as for 240 

PAHs, a similar separation of sites could be seen. The lowest concentrations of PBDEs 241 

occurred in the southern samples, which ranged from 3-19 pg L-1, while the northern 242 

samples displayed PBDEs from 4.4 up to 224 pg L-1.   243 

 244 

 Comparison to other studies 245 

PAH concentrations derived here were about 3-9 times higher than those obtained 246 

by passive sampling in the Great Lakes (USA/Canada) (Ruge, 2013; McDonough et al., 247 

2014), and about 5 times higher than those reported in the seawater of Narragansett Bay 248 

(Table S7) (Yonis, 2012). Clearly, surface waters continued to act as sources of PAHs 249 

to the Narragansett Bay estuary and the ocean. PAH concentrations were comparable 250 

to those of southern Chesapeake Bay in the USA, the River Seine and its estuary in 251 

France, and on the Dalian coast in China (Gustafson and Dickhut, 1997; Fernandes et 252 

al., 1997; Liu et al., 2013).  253 

The concentrations of PBDEs in the present study were more than 20 times higher 254 

than those also measured with PE samplers in the seawater of Narragansett Bay, off 255 

Dutch Island, and those in the North American Great Lakes (Table S7) (Booij et al., 256 

2002; Sacks and Lohmann, 2012; Ruge, 2013). Also for PDBEs, surface waters 257 

continue to act as sources to the estuary and the ocean. The dissolved PBDEs in our 258 

study area were similar to those of San Francisco Bay, USA (Latimer and Quinn, 1996) 259 

and the NW Mediterranean Sea off Spain (Sánchez-Avila et al., 2012). However, our 260 

freely dissolved PBDE values were much lower than those found in the New York/New 261 
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Jersey Harbor, Raritan Bay, USA (Zarnadze and Rodenburg, 2008), and Gwangyang 262 

Bay, Korea (Kim et al., 2012) (Table S7), though different sampling approaches were 263 

used. Active sampling methods used in the compared studies would overestimate and 264 

report much higher “dissolved” concentrations of PBDEs than what we found using 265 

LDPE samplers in Narragansett Bay (Oros et al., 2005; Sacks and Lohmann, 2012). 266 

 267 

Sources of dissolved PAHs 268 

We used established source diagnostics, including diagnostic ratios, PAH profile, 269 

principal component analysis to identify where the PAHs originated from. In brief, 270 

dissolved PAHs were primarily from pyrogenic sources including fossil fuel 271 

combustion combustion at most sites. Some coastal sites were affected by petrogenic 272 

sources, and some remote sites by wood combustion. Principal component analysis of 273 

dissolved PAHs (Figure S4a) and gaseous PAHs from a previous study (Figure S4b) 274 

demonstrated the importance of atmospheric deposition for PAHs. The results of PAH 275 

profiles further indicated the deposition and transportation of gasoline vehicle 276 

particulate emissions and tire particles as indicators of potential anthropogenic sources 277 

(Figure S6 & S7). For more details, see the Supporting Information. 278 

 279 

Sources of dissolved PBDEs 280 

Tetra- and penta-BDEs were most commonly detected at the Narragansett Bay 281 

watershed sites, likely stemming from the penta-BDE commercial mixture. The 282 

contributions of the lower brominated BDEs to the Narragansett Bay watershed 283 
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suggested that residences and municipal sewage treatment plant effluents may be 284 

significant sources of PBDEs (Hale et al., 2006; Song et al., 2006).  285 

In contrast to PAHs, the results for PDBEs showed that neighboring sites were 286 

similar to each other and clustered together (Figure S5). This implies that environmental 287 

sources of PBDEs are regional in nature rather than location-specific, and related to the 288 

usage of flame retardants in anthropogenic activities, and the proximity to sources. 289 

 290 

Land-Use Regression Analysis 291 

Recently, land-use regression methods have been developed and applied in 292 

exploring the relations between ambient PAHs and anthropogenic factors (Noth et al., 293 

2011; Melymuk et al., 2013; Machado et al., 2014; Huang et al., 2017; Yao et al., 2017; 294 

Zhang et al., 2017). Most researches focus on the PAHs in atmosphere and sediments 295 

while only few focus on the dissolved PAHs. 296 

The results for the ∑PAH and each individual compound are given in Table 1, 297 

which was able to explain 39-80% of PAH variability. Roads and commercial and 298 

industrial areas within 2 km radius explained 73% of the variability in ΣPAH 299 

concentrations (Table 1, FigureS8-S10). Road vehicle emissions are credited as a major 300 

source of dissolved MMW PAHs in the watershed areas (Figure S8), which were 301 

consistent with the results of PAH profiles from gasoline vehicle particulate emissions 302 

and tire particles in roads. Population density and sewer areas within 2 km radius were 303 

the other variables accounting for ~40% of the variability in LMW PAH concentrations 304 

(Acy, Ace, and Flr) (Table 1). For PBDEs, we did not conduct any further regression 305 
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analysis since there was weak correlation between the compound and land-use variables 306 

(Table S8, Figure S11). 307 

In recent work, Yang et al (2018), showed that traffic congestion index and the 308 

number of industrial sources within 25-km buffer were the significant predictors of 309 

PAH concentrations in urban lake sediments. Similarly, we find that: 1) transportation 310 

and industry continue to be dominant sources of PAHs to the environment; 2) 311 

monitoring sites should be situated in the relevant buffer zone where PAHs in the 312 

environment are most related to human activities. 313 

 314 

PAHs & PBDEs toxicity predictions and assessments 315 

Maybe not surprisingly, no risk for potential effects to aquatic organisms 316 

associated to PBDE was observed, considering short-term exposure of acute toxicity. 317 

ΣRQ were all well below 1, ranging from 1.4 e-4 to 5.9 e-3, 4.0 e-5 to 3.3e-4, and 4.3 e-4 318 

to 3.4 e-2 for fish, algae, and Daphnia magna, respectively (Table S10). Even so, the 319 

continuous intake of PBDEs by water organisms can be accumulated in the food chain. 320 

Therefore, more studies are needed concerning bioaccumulation and biomagnification 321 

of PBDEs in biota for a better risk evaluation of these chemicals in the water 322 

environment. 323 

For PAHs, none of our sites exceeded a TU of one, suggesting that no toxicity 324 

occurred at all the sampling sites (Figure 3). We recognize that our samples represented 325 

surface water, which is generally expected to be less contaminated than pore water. A 326 

few of the highest contaminated sites (Woonasquatucket River, Buckeye Brook and 327 
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Greenwich Bay), however, displayed TU values between 0.3-0.7, indicating cause for 328 

concern. A consistent trend appeared for Cpw, EPA-34 (TU) values predicted by different 329 

PAHs, which might indicate the potential feasibility of the models using the freely 330 

dissolved concentrations from surface water in Narragansett watershed area (Figure 3). 331 

This trend further implied the similar pattern or content of PAHs could be found 332 

between sediment pore water and surface water due to the river transportation, thus 333 

aqueous distribution of PAHs at surface water layer might be sufficient to reflect the 334 

overall contamination level for the bulk overlying water column in the watershed 335 

(Cornelissen et al., 2008b; Lai et al., 2015). Although, more research should be 336 

conducted to prove the above assumption. 337 

 338 

Riverine runoff as a vector for transporting PAHs and PDBEs to Narragansett Bay 339 

This study enable us to perform a first estimation of the potential importance of riverine 340 

discharges to pollutant concentrations in the Narragansett Bay estuary itself (Figure 341 

S12). At steady-state, river water inflow concentrations would be diluted by ca 12 times 342 

in the estuary (ratio of freshwater flow times flushing time divided by the total volume) 343 

(Pilson, 1985). The Pawtuxet and Woonasquatucket Rivers were measured near their 344 

discharge into the Bay; sum PAHs ranged from 70-180 ng L-1, while sum PBDEs were 345 

150-220 ng L-1. Previously measured PAH concentrations, unaffected by major storms, 346 

ranged from 0.5-2 ng L-1 for open water stations (Lohmann et al., 2011). Dissolved 347 

PAH concentrations in the estuary are lower, by almost an order of magnitude, to what 348 

can be expected based on the dilution of riverine discharges (6-15 ng L-1). For sum 349 
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PBDEs, previously measured concentrations ranged from 6.5 pg L-1 in the northern part 350 

of the Bay to below detection limit in the southern part (Sacks and Lohmann, 2012). 351 

Overall, the open water concentrations for Narragansett Bay are again ~ 10-times lower 352 

than expected from the dilution of riverine inflows (12-20 pg L-1). Common processes 353 

that could reduce dissolved concentrations of both PAHs and PDBEs in the estuary 354 

include sorption to solids, sedimentation, and degradation. 355 

 356 

Implications 357 

This work represents the first survey of dissolved PAHs and PBDEs using passive 358 

samplers, deployed by a long-running volunteer network around the Narragansett Bay 359 

watershed. Results suggest that this sampling approach is viable and could be extended 360 

to get a better grasp on pollutant flows from the terrestrial sources into the Narragansett 361 

Bay estuary. In particular, it could be extended to cover temporal trends of 362 

concentrations in the watershed, and target all major point sources into the estuary 363 

repeatedly. Surprisingly, several sites appear close to toxic effects based on the presence 364 

of key PAHs. The results presented here suggest that rivers are the main conduits of 365 

PAHs and PDBEs into the estuary, and imply that neither air-water exchange nor 366 

particle-bound deposition of pollutants affects dissolved concentrations to a significant 367 

degree. Instead, the evidence indicates that major sinks exists for both PAHs and 368 

PBDEs upon their discharge into the estuary, probably including uptake by sediment 369 

and degradation. These results should be tested in future work. 370 

 371 
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 628 

Figure 1. Dissolved ∑22PAH and individual PAHs in the Narragansett Bay 629 

watershed. 630 
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Figure 2. Dissolved ∑12PBDE and individual PBDE in the Narragansett Bay 632 

watershed 633 
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Figure 3. Estimating the total EPA-34 freely dissolved pore water concentration, 647 

Cpw, EPA-34, expressed as toxic units (TUs) from the freely dissolved concentrations 648 

from surface water in Narragansett watershed. 649 
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Table 1. Multiple Linear Regression Results for PAHs 651 

Compound 
Variable  Adjusted 

R2 

Standard 

Error ln(A+1) ln(B+1) ln(C+1) ln(D+1) 

ln(∑PAH+1) 0.573 0.353 / / 0.73 0.67 

ln(Acy+1) / / 0.646 / 0.39 0.55 

ln(Ace+1) / / / 0.661 0.41 0.70 

ln(Flr+1) / / / 0.651 0.40 0.54 

ln(Phn+1) 0.688 / / / 0.45 0.72 

ln(Ant+1) / 0.674 / / 0.43 0.52 

ln(1-MPhn+1) 0.458 0.434 / / 0.60 0.36 

ln(Flra+1) 0.848 / / / 0.71 0.70 

ln(Pyr+1) 0.587 0.373 / / 0.80 0.53 

ln(Ret+1) N/A N/A N/A N/A N/A N/A 

ln(BaA+1) 0.823 / / / 0.66 0.24 

ln(Chry+1) 0.846 / / / 0.70 0.46 

ln(BbF+1) 0.536 0.385 / / 0.72 0.26 

ln(BkF+1) 0.504 0.408 / / 0.70 0.18 

ln(BeP+1) 0.523 0.405 / / 0.73 0.25 

ln(BaP+1) / 0.850 / / 0.71 0.16 

ln(Per+1) N/A N/A N/A N/A N/A N/A 

ln(InP+1) 0.412 0.533 / / 0.76 0.85 

ln(DibA+1) / 0.775 / / 0.55 0.03 

ln(BghiP+1) 0.371 0.577 / / 0.77 0.08 

A = Roads within 2 km; 652 

B = Commercial and industrial areas within 2 km; 653 

C = Population density within 2 km; 654 

D = Sewer area within 2 km; 655 

The p values for these multiple regression equations were less or equal to 0.001. 656 
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