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RESEARCH ARTICLE 1 

Comparing the Efficiency of Nursery and Direct Transplanting Methods for Restoring 2 

Endangered Corals 3 

 4 

Graham E. Forrester, Maggie Chan, Dennis Conetta, Russell Dauksis, Katie Nickles and Alicia 5 

Siravo  6 

 7 

Abstract 8 

Restoration of plants, corals, and other sessile species often involves transplanting individuals to sites 9 

chosen for rehabilitation. Transplanted individuals are sometimes harvested directly from wild 10 

populations (direct transplanting), and sometimes propagated or cultured in a “nursery” before being 11 

transplanted (nursery outplanting). The ecological effectiveness and cost-efficiency of these methods 12 

have rarely been compared, so we performed an experiment to address this. Coral fragments, 13 

Acropora cervicornis (n = 780), were collected and assigned to one of three treatments: 1) directly 14 

transplanted to a restoration site and placed loose on the reef; 2) directly transplanted and manually 15 

attached to the reef; 3) moved to a nursery site near the restoration site for three months before being 16 

transplanted and manually attached to the reef. Treatment 1 was inefficient simply because these 17 

corals survived poorly. After 15 months, the survival and growth of corals assigned to treatments 2 18 

and 3 was similar. The nursery method (3) was more expensive and time-consuming than direct 19 

transplanting (2), so treatment 2 yielded twice as many surviving corals per hr of work invested and 20 

three times as many survivors per dollar of set-up costs as treatment 3. The net production of live 21 

coral tissue per hr or per dollar invested was also greatest for direct-attached transplants. Cost- and 22 



 

time-efficiency are important considerations for practitioners seeking to maximize the area of reef 23 

rehabilitated and, in this case study, were maximized by bypassing a nursery stage.  24 

Keywords: Acropora, cost-benefit, growth, staghorn coral, survival, tissue production  25 

 26 

Restoration Recap 27 

• We present a case study using the coral Acropora cervicornis that uses the money and time 28 

required to restore populations as a simple way to compare the efficiency of alternate restoration 29 

methods.  30 

• Transplanting fragments without affixing them to the reef was the simplest and cheapest method, 31 

but poor fragment survival made this method inefficient. 32 

• The growth and survival of directly transplanted fragments that were affixed to the reef was 33 

similar to that of fragments that spent three months in a nursery before transplanting. However, 34 

because the nursery took extra time and money to set up, it was less efficient than direct 35 

transplanting. 36 

• Because cost- and time-efficiency calculations may be specific to species, location, and 37 

procedural detail, further tests are needed to generalize about methodological efficiency. 38 

Practitioners are thus encouraged to weigh the costs and benefits of different protocols on a case-39 

by-case basis. 40 

 41 

Despite the fact that time and money for restoration is limited, there have been relatively few 42 

comparative analyses of the cost-effectiveness of restoration protocols (Benayas et al. 2009, Aronson 43 

et al. 2010, de Groot et al. 2013). Such analyses are of particular value for corals, which are the 44 

foundation species for the most biologically diverse marine ecosystem, yet have been in decline 45 



 

globally for the past 40 years (De'ath et al. 2012, Jackson et al. 2014). In response to coral declines, 46 

coral restoration has grown rapidly in popularity and is now practiced worldwide by many non-profit 47 

groups and government agencies, but a global analysis suggests that coral reefs are the most 48 

expensive ecosystem to restore per unit-area (de Groot et al. 2013, Bayraktarov et al. 2016). 49 

Restoration of sessile foundation species such as trees, seagrasses, mangroves, and corals 50 

often involves transplanting individuals to degraded sites (e.g., Putz et al. 2001, Rinkevich 2005, 51 

Lewis 2009, Paling et al. 2009). Transplanted individuals are usually small and may include seeds or 52 

propagules, juveniles, cuttings, and asexual fragments. We used asexual coral fragments derived from 53 

adults in wild populations, the most widely used approach for coral restoration projects (Rinkevich 54 

2005, Precht 2006, Edwards and Gomez 2007, Edwards 2010, Johnson et al. 2011, Young et al. 2012, 55 

Chavanich et al. 2014). Protocols for transplanting fragments can be classified into those which: 1) 56 

transplant individuals harvested directly from wild populations (hereafter direct transplanting); or 2) 57 

culture wild fragments in a “nursery” for some time before transplanting (hereafter nursery-58 

outplanting).  59 

We compared the time- and cost-effectiveness of two direct transplanting approaches, referred 60 

to as “direct-loose” and “direct-attached” methods respectively. In the direct-loose approach, 61 

fragments are simply placed on the substratum at the restoration site (e.g., Bowden-Kerby 1997, 62 

Lindahl 1998, Bowden-Kerby 2001, Lindahl 2003). This approach mimics the fate of asexual 63 

fragments generated by storms or broken from parent colonies by human activity (e.g., Fong and 64 

Lirman 1995, Smith and Hughes 1999). Tissue growth occasionally re-attaches these fragments to the 65 

substratum, in which case they may form a new colony (e.g., Tunnicliffe 1981). Although past 66 

research shows the survival of direct-loose transplants can be poor (e.g., Bak and Criens 1981, 67 

Knowlton et al. 1981, Mercado-Molina et al. 2014), this method has been used in several restoration 68 

projects (e.g., Lindahl 1998, 2003) and its relative simplicity makes it a useful benchmark against 69 



 

which to evaluate more elaborate and expensive methods. More common, however, is the direct-70 

attached method wherein transplanted coral fragments are manually secured to the substratum. 71 

Securing fragments increases the probability that they will subsequently grow to self-attach to the 72 

reef (e.g., Guest et al. 2011) and so improves their long-term survival (e.g., Forrester 2011, Forrester 73 

et al. 2014), but the benefit of this improved survival has rarely been weighed against the increased 74 

time and money required (Edwards et al. 2010). 75 

We also compared direct transplants to nursery outplants. Nursery outplanting has been 76 

widely adopted, and typically involves the culturing fragments in sheltered inshore nursery sites away 77 

from reefs (Epstein et al. 2003, Rinkevich 2005). Nursery cultivation usually involves constructing 78 

structures to hold or suspend the coral fragments, plus regular cleaning and maintenance of the 79 

nursery apparatus, so almost certainly requires a greater investment of time and money per coral than 80 

direct transplanting. Nurseries have been advocated for multiple reasons (Rinkevich 2005, 2014), but 81 

we evaluated only their hypothesized benefits for fragment growth and survival. These benefits are 82 

predicted because fragments in nurseries can be positioned for exposure to favorable flow and 83 

lighting conditions, and isolated from the harmful effects of sediment, competitors, predators, and 84 

pathogens present on the reef (Epstein et al. 2003). Direct comparisons among these protocols are 85 

limited (for an exception see dela Cruz et al. 2015), so our objective was to quantify the cost- and 86 

time-efficiency of the two methods to test whether the expected higher survival of nursery outplants 87 

offsets the increased costs of cultivation.  88 

Methods 89 

Study Species  90 

We studied staghorn corals, Acropora cervicornis (Lamarck, 1816), formerly a major reef-building 91 

coral in Caribbean at intermediate depths (5-15 m). This species suffered a particularly acute decline 92 



 

region-wide since the 1980s (Jackson et al. 2014), which prompted its listing under the US 93 

endangered species act, the IUCN red list, and CITEs Appendix II (National Marine Fisheries Service 94 

2006). Fragmentation and reattachment is an important mechanism of asexual reproduction for this, 95 

and other branching coral species (Highsmith 1982). Fragments are generated naturally by storms, 96 

unintentionally when boats and people collide with reef, and deliberately when colonies are pruned 97 

for restoration (Johnson et al. 2011, Young et al. 2012). Fragments generated from each of these 98 

sources grow quickly and have been used for both direct transplanting and nursery outplanting 99 

(Johnson et al. 2011, Young et al. 2012). Acropora cervicornis is the species most commonly used 100 

species for reef restoration in the Caribbean (Young et al. 2012, Schopmeyer et al. 2017), and 101 

Acropora is the most widely used genus for restoration globally (Edwards and Gomez 2007, 102 

Rinkevich 2014).  103 

Source and Restoration Sites 104 

To increase generality of the outcome, we used two study sites, Harris Ghut (HG) and Muskmelon 105 

Bay (MB), both of which were near Guana Island, British Virgin Islands: (Figure S1). MB was 106 

roughly 420 m2 in area and HG was roughly 800 m2. Both sites are wave-protected fringing reefs, 107 

close to horizontal in profile, with relatively low rugosity (1.6-1.9 based on the chain method 108 

([Alvarez-Filip et al. 2009]) and low total coral cover (5-10%). Although A. cervicornis is now rare 109 

on both reefs (<0.2% cover), their depth (5-7 m) and leeward location (Goreau 1959, Bak 1977), plus 110 

local eyewitness accounts from the 1980s, suggest they are suitable habitat. We collected 780 111 

"fragments of opportunity" for the study (Johnson et al. 2011, Young et al. 2012). Fragments were 112 

sourced from two leeward reefs (2-7 m deep) that were 2-4 km from the restoration sites and support 113 

recovering A. cervicornis populations (Figure S1). Fragments were collected on snorkel, placed in 114 

bins of seawater on a boat, and then taken directly to the restoration sites. At the restoration site, 115 



 

fragments were placed temporarily on the reef for 1-6 days, after which they were assigned to one of 116 

the treatments to start the experiment (start dates ranged from 13-19 Aug 2013). Although variable, 117 

time between transport and the start of the experiment was equal among treatments so it did not affect 118 

the outcome.  119 

Experimental Design 120 

Fragments were randomly assigned to one of three treatments (Figure S2): 1) Direct-loose transplants 121 

(n = 138 at HG, n = 45 at MB); 2) Direct-attached transplants (n = 225 at HG, n = 81 at MB); and 3) 122 

Nursery-outplants (n = 183 at HG, n = 108 at MB). 123 

In August, we constructed three line nurseries at MB and four at HG (see Johnson et al. 2011, 124 

Griffin et al. 2012). Nurseries were placed in sandy protected areas, 7-10 m deep, 25-40 m inshore 125 

from each restoration reef (Figure S3). Each nursery consisted of a rigid outer PVC frame (2m x 2 m 126 

or 2m x 3m), from which we strung rows of monofilament line spaced 25-cm apart. The nursery-127 

outplant fragments were hung from the monofilament at 25-cm intervals using plastic-coated wire 128 

(Figure S4). Each nursery was anchored using concrete blocks and suspended vertically using 129 

subsurface buoys so that the corals were 5-7 m deep. Nurseries were not maintained after set-up, but 130 

there was no obvious subsequent overgrowth by fouling organisms.  131 

In August, we placed the direct-loose fragments on the reef, and the direct-attached fragments 132 

were secured to the reef using cable ties (see Garrison and Ward 2008) tied to masonry nail anchors 133 

(see Lirman et al. 2014). Twelve weeks later (24-27 October 2014), the nursery-outplants were 134 

removed from the nursery and secured to the reef using cable ties. We ensured that fragments from 135 

different treatments were interspersed at each site, and were at roughly equal densities (all fragments 136 

were  40 cm apart). When corals from all treatments were first moved to the reef, we photographed 137 

them, mapped their location and secured a numbered identification tag to the reef nearby (Figure S2) 138 



 

(Forrester 2011). We monitored the survival and growth of the coral fragments after 12 weeks (26-29 139 

October 2013), after 24 weeks (19-21 January 2014) and after 64 weeks (26-28 October 2014). 140 

Acropora cervicornis fragments can grow to form a tissue connection with the reef within 8 weeks of 141 

transplanting (e.g., Bowden-Kerby 2001), so corals from all treatments had time to self-attach to the 142 

reef and experience ecological conditions on the reef (Guest et al. 2011, Forrester et al. 2014). 143 

Because direct-loose fragments were not attached to the substratum, they could potentially be 144 

moved by currents. To track their survival, we thus searched the entire site and the area within 5 m of 145 

the perimeter in case fragments had been moved out of the site. Each time the fragments were 146 

monitored, we took several photographs of each fragment encountered and, using the maps and 147 

previous photographs, we attempted to identify each loose fragment based on its location and 148 

appearance. Relatively few fragments disappeared during the study (direct-loose: n = 10, direct-149 

attached: n = 3, nursery-outplants, n = 2). When calculating survival, corals that disappeared were 150 

assumed to have died. 151 

Measuring Fragment Survival 152 

We compared the survival of fragments between treatments and sites using the non-parametric 153 

Kaplan-Meier survival model (Lee 1992, Kleinbaum and Klein 2011). Because periodic monitoring 154 

yields a record of whether a coral is alive on each census date, estimates of survival time were thus 155 

either interval-censored (when a fragment died between two censuses) or right-censored (when the 156 

fragment was still alive at the end of the study) (Lee 1992). Separate survival curves were fit for each 157 

treatment × site combination, and the survival parameters were judged different if their 95% 158 

confidence intervals did not overlap.  159 



 

Measuring Fragment Growth and Tissue Production 160 

Acropora cervicornis colonies are composed of cylindrical branches whose diameter varies much less 161 

than their length, so we summed the length of all branches, excluding areas of dead tissue, as a simple 162 

estimate of colony size (hereafter TLD, see Figure 5 and Shinn (1966)). To assess colony growth, we 163 

compared the mean TLD of surviving colonies among treatments (a fixed effect) and sites (a random 164 

effect) at the start and end of the experiment using a two-factor analysis of variance (ANOVA). The 165 

ANOVA model included the two main effects and their interaction. Before conducting the analyses, 166 

we checked whether the data met the assumptions of ANOVA (TLD data at the end of the experiment 167 

were heteroscedastic and so were log10 transformed to meet the assumption of equal variances).  168 

To assess how much new live tissue was produced per coral, we also calculated net tissue 169 

production over the course of the study (TLDfinal/TLDinitial). To measure TLD divers took photographs 170 

of each coral from different angles to capture images of each branch, with a ruler in the frame to 171 

provide a scale. We later used image analysis software (ImageJ) to measure each branch (Abramoff et 172 

al. 2004). To check of the accuracy of the photographic method, divers also measured a subset of the 173 

corals (n = 102) in the field using a flexible tape measure (Figure S6). There was a close relationship 174 

between the direct field (x) and photographic (y) TLD measurements (linear regression: (n = 102, 175 

range of TLD = 2-173 cm, y = 5.51 + 0.78x, r2 = 0.91), suggesting that measurement error did not 176 

obscure differences between treatments (Figure 2) (Kiel et al. 2012).  177 

Quantifying the Outcome of the Restoration in Terms of Time and Cost Invested 178 

To evaluate the time and cost-efficiency of the three restoration methods, the time needed to establish 179 

each coral on the reef was quantified (hrs per coral; Table S1). We logged each step of the restoration 180 

process at the field site (Table S1), but excluded accessory tasks such as washing SCUBA gear and 181 



 

filling tanks. Time to complete tasks common to all methods, such as searching donor sites for 182 

fragments, was divided according to the number of corals involved per treatment.  183 

We also calculated the local purchase price of materials needed to establish each coral at the 184 

restoration site in US$ per fragment, which included materials for attaching corals to the reef and 185 

materials for the nursery frames (Table S2). We excluded some costs that were common to all 186 

methods (e.g., SCUBA and snorkel equipment for participants, and bins to hold fragments while 187 

being transported in the boat), and others that are context- and location-specific (e.g., air travel to the 188 

project site, food, and accommodation costs) (Edwards et al. 2010). We also excluded the time and 189 

cost invested in the scientific monitoring such as attaching tags, measuring, and photographing corals 190 

because this is not essential for practical restoration projects.  191 

We then calculated coral survival and tissue production as a function of the time invested and 192 

money spent on materials. To measure return on time invested, we calculated the number of surviving 193 

corals at the end of the study that were produced per hr of initial set-up time (survivors after 64 weeks 194 

per hr). We also calculated the net production of coral (TLDfinal/TLDinitial) per hr of initial set-up time. 195 

To measure return based on financial cost, we calculated the number of surviving corals at the end of 196 

the study that were produced per dollar of materials (survivors after 64 weeks per US$) and net coral 197 

production (TLDfinal/TLDinitial) per dollar of materials. 198 

Results 199 

Survival 200 

At both sites, survival of loose fragments was significantly lower than that of nursery and directly 201 

attached fragments by the end of the study (Figure 1 and Figure S7). Survival of corals from the latter 202 

two treatments was site-dependent (Figure S7). In Harris Ghut, nursery fragments survived 203 

significantly better than directly attached fragments while suspended on the nursery frames, but this 204 



 

initial advantage was subsequently overturned and, at the end of the experiment, survival did not 205 

differ between the two treatments (Figure S7). In Muskmelon Bay, however, the survival of nursery 206 

outplants was significantly lower than that of directly attached fragments throughout (Figure S7). 207 

Pooling sites to give a project-wide overview revealed no overall difference in the survival of direct-208 

attached fragments and nursery-outplants (Figure 1). 209 

Growth of Surviving Fragments 210 

At the start of the experiment, fragments did not differ in size among treatments or sites (ANOVA: p 211 

> 0.05 for main effects and interaction term; Figure 1 and Figure S8). At the end of the experiment, 212 

however, direct outplants at Muskmelon Bay had grown significantly larger than all other groups of 213 

fragments (ANOVA: treatment × site interaction; F2,300 = 4.18, p = 0.016; Fig. S9). Although the 214 

differences between restoration treatments were site-specific, pooling sites to give a study-wide 215 

overview revealed that direct-attached fragments generally reached larger sizes than nursery-outplants 216 

and direct-loose fragments (Figure 2).  217 

Return on Investment 218 

Even though directly transplanted loose fragments took little time to place on the bottom, the fact that 219 

they survived so poorly meant that there were few survivors and very little return on investment 220 

(Figures 3 and 4). For the remaining two treatments, survival was similar but nursery-outplants 221 

received a greater investment of time and money per coral than direct-attached fragments. 222 

Consequently, direct transplanting produced roughly twice as many surviving corals per hr invested, 223 

and three times as many survivors per dollar, as the nursery treatment (Figure 3). Because direct-224 

transplants grew slightly faster than nursery-outplants, the differential in return on investment was 225 

magnified further when expressed as net tissue production (Figure 4).  226 



 

Discussion 227 

The poor survival of loose transplants is consistent with most previous studies of loose fragments 228 

(e.g., Bowden-Kerby 1997, Lindahl 1998, Smith and Hughes 1999, Bowden-Kerby 2001, Forrester 229 

2011), suggesting that this method would only become efficient if fragments were extremely plentiful 230 

and securing fragments to the reef was very expensive and time-consuming. Because hurricane 231 

damage to branching corals can create enormous numbers of fragments, most of which die in the 232 

subsequent months (e.g., Knowlton et al. 1981), the immediate aftermath of a major storm might 233 

create a situation favoring this method. Other agents of extensive local damage, such as a major boat 234 

grounding, might also create conditions for this method to be cost- and time-efficient.     235 

Because nursery outplants and direct-attached transplants had similar survival, our results did 236 

not support the hypothesis that time in a nursery improves the subsequent survival of transplanted 237 

corals (Epstein et al. 2003). Broadly similar findings were reported in the only other direct 238 

comparison of these methods we know of (dela Cruz et al. 2015). While in nurseries, fragments of 239 

two non-branching Pacific corals survived better than equivalent direct transplants, but this advantage 240 

dissipated when corals from the nursery were then placed on the reef alongside direct outplants (dela 241 

Cruz et al. 2015).   242 

Although the overall survival of nursery outplants and direct-attached transplants was similar 243 

in our study, we did observe differences between the two treatments in apparent causes of death. A 244 

macroalgal bloom (Dictyota spp.) coincident with the start of the study appeared to smother many 245 

direct transplants but had no effect on fragments while they were in the nursery, which supports the 246 

hypothesis that being on the reef places direct-transplants at risk from negative species interactions 247 

(Forrester et al. 2012, Johnston and Miller 2014, Miller et al. 2014, Casey et al. 2015). Both groups of 248 

corals were vulnerable to human impacts, but from different activities. In Muskmelon Bay, some 249 



 

direct-transplants were apparently killed by boat anchoring, while some nursery corals died as a result 250 

of physical damage to the nursery frames (we believe the frames were damaged inadvertently by 251 

fishing nets). Future studies are needed to test whether other agents of coral mortality differentially 252 

impact nursery outplants and direct transplants. Both groups are vulnerable to storms, predators, 253 

climate-induced bleaching events, and disease epidemics (e.g., Garrison and Ward 2008, Shaish et al. 254 

2010a, b, Forrester et al. 2014), and more direct comparisons are needed to quantify their relative 255 

importance and quantitative effects.  256 

We also found that the costs of restoration differed among the three methods tested. A cross-257 

ecosystem comparison revealed that coral reefs are typically the most expensive habitat to restore per 258 

unit area (de Groot et al. 2013, Bayraktarov et al. 2016), which raises the concern that high costs will 259 

limit all coral restoration projects to rehabilitating tiny areas relative to the vast swaths of degraded 260 

reef (Mumby and Steneck 2008). For that reason, all three methods we selected for comparison were 261 

relatively simple and inexpensive because we assumed low-cost protocols may be more readily 262 

adopted by non-specialists and scaled-up to restore large areas of reef. Although material costs are 263 

rarely quantified, other materials that have been used to stabilize transplanted corals and construct 264 

nurseries appear to vary widely in cost (Bayraktarov et al. 2016). For example, the cable ties and nails 265 

we used to affix corals to the reef are similar to string and wire in having a relatively low cost per-266 

coral, whereas other frequently used alternatives such as epoxy and hydrostatic cement are more 267 

expensive. Likewise, the pvc and fishing line we used to construct nursery frames is likely cheaper 268 

than some other options, such as epoxy-coated rebar.  269 

Perhaps the most important decision we made to reduce costs was to keep corals in the 270 

nursery for a short time and perform no maintenance. An abridged nursery phase has been tested 271 

occasionally (dela Cruz et al. 2015), but the most studies have kept corals in the nursery far longer, 272 

regularly cleaned the nursery apparatus, removed encroaching predators, excised diseased tissue, and 273 



 

even provided supplemental feeding (Rinkevich 2005, Precht 2006, Edwards and Gomez 2007, 274 

Edwards 2010, Johnson et al. 2011, Young et al. 2012, e.g., Chavanich et al. 2014, Toh et al. 2014). 275 

Additional explicit comparisons between methods are thus needed to test if our preference for 276 

simplicity was justified, or whether the greater expense and labor requirements of these more 277 

elaborate and extended nursery methods are outweighed by substantial improvements in coral 278 

survival and tissue production. 279 

Our analysis represents a simple and partial assessment of the costs and benefits of 280 

restoration. We compared costs based on the direct investments of time and money necessary to set-281 

up and maintain a project because these costs are important for practitioners and non-profit groups to 282 

consider when allocating their limited resources (de Groot et al. 2013). The assessment of project 283 

costs could be expanded to include other costs, such as damage to the donor site (though we suggest 284 

this cost was negligible in our study) and the opportunity cost from benefits forgone in the absence of 285 

restoration (Spurgeon 2001, de Groot et al. 2013). There is also scope for improvement in our 286 

analysis of the benefits of restoration. Like most previous analyses, the benefit of our restoration was 287 

measured based only on the demography of the transplanted coral species (Rinkevich 2005, Precht 288 

2006, Edwards 2010, Johnson et al. 2011, Young et al. 2012, Schopmeyer et al. 2017). While 289 

comparing unit benefits per coral after a semi-arbitrary endpoint is a reasonable starting point 290 

(Edwards et al. 2010), and can be expanded in innovative ways (Rinkevich 2015), we urgently need 291 

longer-term assessments of benefits based on how the entire ecological community responds to the 292 

restoration (e.g., Cabaitan et al. 2008, Yap 2009, Merolla et al. 2013, dela Cruz et al. 2014). This 293 

would allow use of well-established frameworks for the valuation of ecosystem services (Kumar 294 

2010, ten Brink 2011), and so provide a more comprehensive measure of the monetary value of 295 

restored reefs (de Groot et al. 2012, de Groot et al. 2013).  296 

 297 
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 476 

Figures 477 

Figure. 1.  Survival of coral fragments (±95% CI) in each of the experimental treatments:  direct-478 

attached transplants, nursery outplants, and direct-loose transplants.  479 

Figure. 2.  Mean TLD (±95% CI) of surviving coral fragments over time in each of the experimental 480 

treatments:  directly attached transplants, nursery outplants, and direct-loose transplants.  481 

Figure. 3.  Return on investment, based on coral survival, for each experimental treatment.  Absolute 482 

survival at the end of the experiment is shown as a benchmark for comparison (top plot).  Return on 483 

investment is plotted as the number of survivors per hr invested (middle plot) and the number of 484 

survivors per dollar invested (lower plot).  485 

Figure. 4.  Return on investment, based on the net production of coral tissue (TLDfinal/TLDinitial), for 486 

each experimental treatment.  Raw means for net production at the end of the experiment are shown 487 

as a benchmark for comparison (top plot).  Return on investment is plotted as net production per hr 488 

invested (middle plot) and net production per dollar invested (lower plot).  489 
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