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Quantum size effect in conductivity of multilayer metal films

A. E. Meyerovich and I. V. Ponomarev
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

~Received 29 October 2002; revised manuscript received 29 January 2003; published 16 April 2003!

Conductivity of quantized multilayer metal films is analyzed with an emphasis on scattering by rough
interlayer interfaces. Three different types of quantum size effect~QSE! in conductivity are predicted. Two of
these QSE’s are similar to those in films with scattering by rough walls. The third type of QSE is unique and
is observed only for certain positions of the interface. The corresponding peaks in conductivity are very narrow
and high with a finite cutoff which is due only to some other scattering mechanism or the smearing of the
interface. There are two classes of these geometric resonances. Some of the resonance positions of the interface
are universal and do not depend on the strength of the interface potential while the others are sensitive to this
potential. This geometric QSE gradually disappears with an increase in the width of the interlayer potential
barrier.

DOI: 10.1103/PhysRevB.67.165411 PACS number~s!: 73.40.2c, 73.63.Hs, 72.10.Fk, 73.50.2h

I. INTRODUCTION

Boundary scattering is essential for a complete descrip-
tion of nanosystems such as quantum wells, ultrathin films or
wires, etc. Due to the large surface-to-volume ratio, bound-
aries are expected to play a much greater role in determining
the overall properties in a nanostructure than in a bulk ma-
terial. For example, recent scanning tunneling microscopy
~STM! data have shown that electron energy spectra can be
more strongly correlated to the buried interfacial lattices than
to the surface immediately beneath the STM tip.1 These ob-
servations clearly indicate that a small lateral variation along
the boundary can have a significant long-range effect in a
semiballistic electron system. Thus, a more realistic descrip-
tion of a nanoscale-quantized system must go beyond the
common perfect geometric boundary and include boundary
corrugations. Indeed, random surface roughness of a thin
metal film can dominate incoherent scattering and relaxation,
and can lead to an anomalous quantum size effect such as
large oscillatory dependence of the in-plane conductivity on
the film thickness.2

The same must be true not only for the quantum well
~film! walls but also for the interlayer interfaces in multilayer
films. It is well known that the roughness of the interlayer
interfaces plays an important role in, for example, giant
magnetoresistance~see the review in Ref. 3 and references
therein!. The purpose of this paper is to analyze the effect of
irregular corrugation of the interlayer interfaces on the lateral
conductivity of quantized multilayer films without magnetic
effects. We will see that the interface scattering can result in
unique features of the quantum size effect~QSE! which are
strikingly different from the QSE with scattering by bulk or
wall inhomogeneities. Orbital and spin magnetic effects of
the type studied in Ref. 4 will be studied separately.

In ultrathin films, the motion of electrons across the films
can be quantized. QSE in metal films is studied experimen-
tally by measuring conductivity5,6 and susceptibility7 of the
films or in spectroscopy8 and STM ~Ref. 1! measurements
~for earlier results, see references therein!. As a result of the
QSE, the three-dimensional~3D! electron spectrume(p)
splits into a set of minibandse j (q) whereq is the 2D mo-

mentum along the film (yz plane!. In the simplest case of a
single-layer film approximated by a rectangular quantum
well, the quantized values of thex component of momentum
are pxj

5p j /L ~here and below\51!. If in such quantized

metal films the Fermi energyEF is unaffected by the quan-
tization, the Fermi surface reduces to a set of 2D curves
eF j (q) that correspond to cross sections of the 3D Fermi
surface e(p)5EF by a set of planespxj

5p j /L, eF j (q)

5eF(pxj
,q).

This quantization of motion, which is determined by the
film thicknessL, leads to several types of QSE. First, any
change of the film thicknessL results in a change in the size
and number of the Fermi curveseF j (q). This thickness-
driven change in number of the Fermi curveseF j (q) @or,
what is the same, number of occupied minibandse j (q)]
leads to a singularity in the density of states. These singu-
larities are the most obvious manifestations of QSE.

These singularities in the density of states, by themselves,
do not lead to anystriking anomalies in the dependence of
the lateral conductivitys of the film on the thicknessL. The
conductivity is more sensitive to electron scattering than to
the density of states. However, the change in the number of
occupied minibandsS can be accompanied by a change in
the number of allowed scattering channels that correspond to
the scattering-driven electron transitions between minibands
e j (q). The effect of this steplike change in the number of
scattering channels on the conductivity is much stronger than
that of the singularities in the density of states.9 When all
scattering-driven interband transitions are allowed, the QSE
manifests itself as a pronounced sawlike dependence of the
conductivity on the film thickness. This type of QSE in quan-
tized films has been predicted both for scattering by impuri-
ties and surface inhomogeneities.10,11

When the main scattering mechanism is the scattering by
surface inhomogeneities, many of the interband transitions
can often be suppressed. This happens, for example, when
the average size of the surface inhomogeneities,R, is much
larger than the the thickness of the film and/or the particle
wavelength,lF . Then the usual QSE, which is described
above, disappears and is replaced by a different kind of the
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size effect.2 This anomalous QSE, which is somewhat remi-
niscent of the magnetic breakthrough, is completely decou-
pled from the singularities in the density of states and is
associated solely with opening of interband scattering chan-
nels for gliding electrons at certain values of the film thick-
ness,Li.A( i 11/2)RlF/2.

The main goal of this paper is to analyze QSE in
multilayer films with an emphasis on the scattering by the
interface between the layers. We will see that, in addition to
the above two types of QSE, the multilayer films can exhibit
a peculiar ‘‘geometric’’ QSE with very narrow high peaks in
the lateral conductivity. Some of the positions of these spikes
in conductivity are universal; these spikes appear when the
ratio of the thicknesses of the film layers is given by simple
fractions. The position of the rest of the spikes depends on
the strength of the interlayer interface.

In the next section, we briefly present the main equations
for the conductivity and introduce proper dimensionless vari-
ables. The results are presented in Sec. III. Section IV con-
tains the summary and a brief discussion of the results. The
Appendix contains auxiliary information on the energy spec-
trum of multilayer films of the type used in the calculations.

II. CONDUCTIVITY

A. Scattering by the interlayer interface

For simplicity, we consider an ultrathin film of thickness
L consisting of only two layers with the thickness ofL1 and
L2. The interface between the layers is rough with random
corrugation. The exact position of the interface,x5L1
1j(y,z), is described by the random functionj(y,z) with
zero averagêj&50. The random interface inhomogeneities
j(y,z) are best characterized by the correlation function
z(s),

z~s![z~ usu!5^j~s1!j~s11s!&[A21E j~s1!j~s11s!ds1 ,

~1!

where the vectors gives the 2D coordinates along the inter-
face andA is the averaging area. Here, it is assumed that the
correlation properties of the surface do not depend on direc-
tion. Two main characteristics of the surface correlation
functions z are the average amplitude~‘‘height’’ ! and the
correlation radius~‘‘size’’ ! of surface inhomogeneities,, and
R.

To emphasize the scattering by inhomogeneities of the
interlayer interface, we start from films with ideal outside
walls that do not contribute to electron scattering. The com-
bined effect of interface and wall inhomogeneities will be
considered elsewhere.

Mostly we are interested in the dependence of the lateral
conductivity on the film thickness and have in mind the fol-
lowing experimental situation. The first layer of the film is
grown on some~ideal! substrate. The surface is then rough-
ened by adding inhomogeneous adsorbate or by some other
means. The growth of the second layer starts from this rough
interface, and the conductivity is measured at different val-
ues ofL2 either in the process of growth or after the growth

is completed. An advantage of such setup with a buried in-
terface is that it allows one to measure the conductivity at
various values of the film thickness withexactly the same
random rough interface.

In this setup, the thickness of the first layer,L1, should be
considered as fixed, while the thickness of the second layer,
L2, is variable. Below we calculate the film conductivitys
as a function of the film thickness,L5L11L2 , s(L), as-
suming thatL15const. The measurements of conductivity
can be performed in stationary conditions at different values
of L2 or as a function of time, in the process of film growth
as in Ref. 12.

The second layer can be made of the same or different
material as the first. If the material is different, then the elec-
tron potential energy between the layers differs by someDU.
The structure of the energy spectrum becomes a complicated
function ofDU, making the behavior of conductivity highly
irregular.13

Below we consider both layers to be made of the same
material with the interface being the only disruption in the
potential relief. Then the simplest model of the interface is
the d-functional potential barrier

U5U0d„x2L12j~y,z!…. ~2!

This immediately introduces two new physical parameters
into the problem: the strength of the barrierU0 and its~av-
erage! position L1. In what follows, we study the depen-
dence of the conductivity on these parameters. When neces-
sary, instead of thed function we will study the corrugated
interface with finite widthD. In experiment, the barrier can
be a dislocation wall, twin boundary, or an oxide or dielectric
layer ~see, e.g., Ref. 14 and references therein!.

The presence of the interface~2! changes the spectrum.
When calculating the changes in the spectrum, one can ig-
nore small corrugationj(y,z). The changes in spectrum
caused by thed-type barrier~2! are discussed in the Appen-
dix. The random corrugation of the interface is responsible
for the electron scattering and gives rise to the collision op-
erator in the transport equation.

The scattering by the interface inhomogeneities leads to
the transitions between the statese i(q)→e j (q8). Several
ways of calculating the corrugation-driven transition prob-
abilities Wi j (q,q8) are described in Ref. 13. The simplest
methods are either the direct perturbation approach15 or the
mapping transformation method,16 both giving the same re-
sult in most of the parameter range.

The corrugation-driven contributiondU to the interface
potential, Eq.~2!, with small corrugationj is

dU52U0j~y,z!d8~x2L1!. ~3!

The matrix elementVi j (q,q8) of this perturbation between
the statese j (q),e j (q8) is
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Vi j 52U0E exp@ is•~qÀq8!#j~s!C i~x!d8~x2L1!

3C j~x!dxds

5U0j~qÀq8!@C i~L1!C j8~L1!1C i8~L1!C j~L1!#,

~4!

whereC i(x) are the quantized wave functions for electron
motion across the film. Note that the derivativesC8(x) for
films with a d-type barrier inside are discontinuous at the
position of the barrier,x5L1. Therefore,C i8(L1) in Eq. ~4!
should be understood asC i8(L1)5@C i8(L110)1C i8(L1

20)#/2.
The corrugation-driven transition probabilityWi j (q,q8) is

given by the square of this matrix element which should be
averaged over the random inhomogeneitiesj:

Wi j ~q,q8!5^uVi j ~q,q8!u2&j5U0
2z~ uqiÀqj8u!Gi j , ~5!

Gi j 5@C i~L1!C j8~L1!1C i8~L1!C j~L1!#2, ~6!

where z(uqiÀqj8u) is the Fourier image of the correlation
function of the interface inhomogeneities~1!. The coeffi-
cientsGik are calculated with the help of the wave functions
presented in the Appendix. The explicit form ofGik is given
in the next subsection.

The transport equation is a set of equations for the elec-
tron distribution functionsni(q) in minibandse i and has the
standard Boltzmann-Waldmann-Snider form13

dni

dt
52p(

j
E Wi j @nj2ni #d~e iq2e j q8!

d2q8

~2p!2
. ~7!

The integration overdq8 is done using thed function
d(e iq2e j q8)5mi j* d(q82qi j )/qi j , whereqi j (q) is the solu-
tion of the equatione j (qi j )5e i(q) and the effective masses
mi j* 5qi j /(]e j /]q)uq5qi j

. As always in the transport theory,
the angular integration is eliminated by using the angular
harmonics. The current is given by the first harmonic of the
distributionni

(1)[n i the equation for which involves only the
zeroth and first harmonicsWi j

(0,1)(q,qi j ) of W(qÀqi j ) over

the angleqq̂j j 8 ,

dn i~q!/dt52(
j

n j~qi j !/t i j ,

1

t i j
5

m

2 (
k

@d i j Wik
(0)2d jkWi j

(1)#,

Wi j
(0,1)5U0

2z (0,1)~qi2qj !Gi j , ~8!

where, to simplify the equations, we assume that the effec-
tive massmi j* does not depend on its indices,m5mi j* .

The solution of Eqs.~8! provides the 2D conductivity of
the film:

s52
e2

3\2 (
i

n i~qi !qi . ~9!

B. Dimensionless variables

The problem involves several length scales: particle
Fermi wavelengthlF5p/pF ; the thickness of the layers,L1
and L2 (L11L25L); the correlation radius of the surface
inhomogeneities,R; and the interface thicknessD. Another
length parameter, the amplitude of inhomogeneities,, is per-
turbative and enters conductivity as a coefficient,

s5
2e2

\

R2

,2
f ~lF ,Li ,R,D !. ~10!

Note that we consider only the contribution from surface
roughness and disregard the bulk scattering. As a result, the
conductivity~10! diverges in the limit of vanishing inhomo-
geneities ,→0 or R→`. The proper account of bulk
scattering17 eliminates this divergence.

It is convenient to measure all length parameters in units
of the Fermi wavelengthlF5p/pF . Instead of the interface
strengthU0, we use interchangeably two equivalent dimen-
sionless parametersg andu0,

g5u0L/plF52mU0lFL/p\2 ~11!

(g is convenient for calculation of the spectrum whileu0 is a
proper energy parameter for characterization of the conduc-
tivity in our setup!. The position of the interface is charac-
terized by the parameterd,

d5L2 /L. ~12!

In computations,d changes from 0~no second layer! to 1
~the second layer much wider than the first!. It is worth re-
peating that we are looking at the experimental situation
when the thickness of the first layer is fixed and the conduc-
tivity is measured as a function of the thickness of the second
layer ~or the overall film thickness!.

The energy spectrume i(q) is described by dimensionless
energy unitszi ,

e i~q!5
1

2m S p2

L2
zi

21q2D , ~13!

where zi is given by the solution of the 1D Schro¨dinger
equation for a quantum well with ad-type barrier inside~see
the Appendix!:

sinpz1
g

z
sin~pzd!sin@pz~12d!#50. ~14!

Finally, the conductivitys(L) for the experimental setup,
which has been described above, will be displayed by the
dimensionless functionf L(L/lF),

s~L !5
2e2

\

R2

,2
f L , ~15!

for various values ofR/lF , D/lF , L1 /lF , and the strength
of the barrieru0.

All the figures below present this dimensionless function
f L . This function is plotted under the assumption that the
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experiment is performed at fixed thickness of the first layer.
For uniformity, the figures for weak interfaces are plotted for
u050.1 and, for strong interface barriers, foru0510. The
simplest energy spectrum corresponds to thin first layers,
lF<L1,2lF . Therefore, for transparency of results, the
majority of the data are presented forL1 /lF51.1 ~for com-
parison, some of the graphs give the conductivity for larger
L1).

The computational results below are presented for the
Gaussian correlation function of the interface inhomogene-
ities,

z~s!5,2 exp~2s2/2R2!. ~16!

The angular harmonics for this correlator, which enter the
transition probabilities in Eq.~8!, are equal to

z (0)~qi ,qj !54p,2R2@e2QQ8I 0~QQ8!#e2(Q2Q8)2/2,

z (1)~qi ,qj !54p,2R2@e2QQ8I 1~QQ8!#e2(Q2Q8)2/2,
~17!

whereQ5qiR, Q85qjR.
Analysis of QSE in Ref. 2 for ultrathin films with scatter-

ing by the film walls demonstrated that the results for all
types of correlators are qualitatively the same as for the
Gaussian one whenR!L. For large inhomogeneitiesR
@L, the results for all types of correlators with exponential
power spectra are similar to those for the Gaussian correlator
and are qualitatively different from the power-law correla-
tors. The results for the power-law correlators are less inter-
esting: such films always exhibit the standard sawlike QSE
irrespective of the value ofR because of the wider fluctua-
tions of the inhomogeneity sizes. Therefore, in this paper we
consider only the exponential correlators with a well-defined
size of inhomogeneities.

III. RESULTS

A. Standard quantum size effect

The standard quantum size effect in films manifests itself
by a sawlike dependence of the conductivitys on the film
thickness L.10,11 The positions of the singularities—the
sawteeth—correspond to the values of the thickness at which
a new energy minibande j becomes accessible. The ampli-
tude of the conductivity drop in such a singular point de-
pends, in the case of scattering by surface inhomogeneities,
on the effectiveness of the roughness-driven interband tran-
sitions. If the probability of such transitionsWiÞ j , is small
in comparison to the rate of the intraband scatteringWii , the
singularities in the curvess(L) are almost completely sup-
pressed and the standard QSE disappears.9

Analysis of the roughness-driven transition probabilities
for surface scattering in Ref. 2 for different classes of surface
roughness showed that, when the average size of inhomoge-
neities, R, is much smaller than the film thicknessL, the
values of the interband transition probabilitiesWiÞ j are com-
parable to that for the intraband scatteringWii and all scat-
tering channels are equally important. In this case, the curves
s(L) always exhibit the standard QSE. The same should be

true for scattering by the interlayer interfaces. This is illus-
trated in Figs. 1 and 2 which shows(L) for a weak and
strong interface potentialsu050.1 andu0510 respectively.
In Fig. 1 the thickness of the first layer isL152.1 andlF , in
Fig. 2, L151.1lF . In both figures, the size of inhomogene-
ities is R5lF . Both figures exhibit a well-pronounced saw-
like structure. The positions of the singularities for the weak
interface are almost equidistant, reflecting the fact the energy
structure is close to that for a square well without perturba-
tion inside. The strong interface affects the energy spectrum
and, therefore, the positions and the shapes of the sawteeth.
However, at very large film thicknessL@L1 the interface is
located very close to the well wall and the spectrum starts to
recover its unperturbed structure. This manifests itself in a
recovery of the equidistant distribution of the singularities in
Fig. 2 at largeL. Because of a peculiar dependence of the
transition probabilities on the interface strength~see the Ap-
pendix!, the conductivity grows much faster with increasing
film thickness in the case of the weak interface than for the
strong interface.

B. Quantum size effect for large-scale inhomogeneities

The standard QSE of the type described in the previous
subsection disappears in the single-layer film when the cor-
relation size of inhomogeneities,R, is larger than the film

FIG. 1. Dimensionless conductivity of quantized films, Eq.~15!,
as a function of the film thicknessL. The sawlike dependence is
typical for the standard quantum size effect. The correlation radius
of inhomogeneities,R/lF51; the thickness of the first layer,
L1 /lF52.1; the width of the interface,d5D/lF50.01; and the
strength of the barrier,u050.1.

FIG. 2. Standard QSE in conductivity of quantized films, Eq.
~15!, as a function of the film thicknessL for strong interface po-
tential, u0510. The correlation radius of inhomogeneities,R/lF

51; the thickness of the first layer,L1 /lF51.1; and the width of
the interface,d51024.
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thickness,R@L, and the correlation function in the momen-
tum space,z(q) ~the so-called power spectrum of inhomo-
geneities!, decays exponentially at large wave numbersq.
Instead, the single-layer films exhibit an anomalous QSE.2

The explanation involves the interband transitions. It
seems that at largeR the off-diagonalWiÞk are small and the
interband transitions are suppressed. However, at certain val-
ues of largeL, few of the elementsWiÞk , which are close to
the main diagonal, could become comparable toWii even for
large R. Then the transitionsi↔ i 11 could become notice-
able, leading to a drop in conductivity. A simple estimate of
the peak positions is the following. Scattering by surface
inhomogeneities changes the tangential momentum byDq
;p/R. This is sufficient for the interband transition when
Dq;qi2qi 11. When the number of occupied minibands is
large, the lateral Fermi momentum for the gliding electrons,
i.e., electrons from the miniband with a relatively small in-
dex i, qi;pF . For such electrons,qi

22qi 11
2 ;2pDq/lF

;2p2/RlF . On the other hand, the energy conservation law
dictates qi

22qi 11
2 5(2i 11)p2/L2. Accordingly, with in-

creasingL the transition channeli↔ i 11 opens atL2;( i
11/2)RlF . The opening of a new scattering channel in the
points

Li;A~ i 11/2!RlF ~18!

is always accompanied by a drop in conductivity. The first
such drop occurs for the electrons in the lowest miniband
e1(q) with i 51, i.e., for the grazing electrons. Note that
these particular electrons contribute the most to the conduc-
tivity. Since the electrons from the lowest miniband are re-
sponsible for the dominant contribution to the conductivity,
the conductivity drops almost by half in the pointL1

;A3RlF/2 whereW12 becomes comparable toW11 and the
effective cross section doubles.~In the quasiclassical film
without bulk scattering, the current, which is an integral over
momenta, diverges when the component of momentum per-
pendicular to the film goes to zero, i.e., for the grazing elec-
trons. Without the bulk scattering, the conductivity is finite
only because of the quantum cutoff atpx5p/L.!

The anticipation was that this type of QSE should mani-
fest itself also for the interface scattering in multilayer films
at R@L for exponentially decaying surface correlators. In-
deed, such a picture can be observed in Figs. 3 and 4 for
u050.1, 10, respectively~in both figures,L151.1lF , R
5200lF). The positions of the peaks in Fig. 3 for the weak
interface are close to Eq.~18!. In the case of the strong
interface, the shift of the energy levels from those for an
‘‘empty’’ square well is much more noticeable and the posi-
tions of the peaks in Fig. 4 deviate from those given by Eq.
~18!. At large values ofL, the positions of the peak with
strong interface become close to the points in which the
thickness of the second layer,L25L2L1, rather than the
overall thicknessL is given by Eq.~18!. The amplitude of the
anomalous QSE oscillations grows with the increasing
strength of the interface approaching that for the impen-
etrable wall.

Of course, for the inhomogeneities of the intermediate
size, the picture exhibits the features of both standard and

anomalous QSE’s. As has already been mentioned, our nu-
merical examples address the experiment in which the size of
the inhomogeneities,R, is fixed while the thickness of the
film, L, is changing. In general, at the valuesL,R one
should see the smooth anomalous QSE oscillations with
large period, while atL.R one should, on the same curve,
see the reappearance of the standard QSE with sharper oscil-
lations with period equal to 1. Roughly, the transitions be-
tween the regimes occurs when the distance between the
peaks of the anomalous QSE, Eq.~18!, decreases to the value
(Li 112Li)/lF;1. In principle, the reappearance of the
standard QSE should be seen in Figs. 3 and 4 when the
computations are extended to sufficiently largeL. However,
the amplitude of the standard QSE oscillations on these
curves is very small and the reappearance of the oscillations
is barely noticeable on the scale of the curve. It is much more
illustrative to demonstrate the effect at intermediate values of
R when both anomalous and standard QSE oscillations have
comparable amplitude. This is shown in Fig. 5 forR/lF
53 and weak interfaceu050.1. On the left side of the graph
one can clearly see smooth ‘‘new’’ oscillations with a rela-
tively large period, while on the right side the oscillations
recover the sharp sawlike structure with period equal to 1.

C. Geometric „fractional… quantum size effect

To exhibit the QSE oscillations of the previous subsec-
tion, Figs. 3 and 4 were plotted not for the exactd-type
interfaces~2! and ~3! but for a somewhat smeared~less
sharp! interface

FIG. 3. Anomalous QSE in conductivity of quantized films, Eq.
~15!, as a function of the film thicknessL. The correlation radius of
inhomogeneities is large,R/lF5200; the thickness of the first
layer, L1 /lF52.1; the width of the interface,d50.1; and the
strength of the interface barrier,u050.1.

FIG. 4. Same as in Fig. 3, but for a much stronger interface
barrier,u0510.
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dU52U0j~y,z!@d8~x2L1!1Dd9~x2L1!#. ~19!

The interface widthD can have two origins. If its origin is
corrugation related, then the interface width is given by the
next term of expansion of the interface barrier inj and is
characterized by the same parameters, andR, D2;^j2&. In
this case, depending on the correlation function,D;, or
D;,2/R. On the other hand,D can originate from some
‘‘internal’’ smearing of the interface and can exist even with-
out surface inhomogeneities. In this case,D is a new inde-
pendent small parameter. Note that here we are interested in
the ‘‘smearing’’ of the interface and not in its ‘‘fixed’’ width
so that the average of the square of the matrix elements of
dU over the interface starts fromD2. In Figs. 3 and 4, the
interface thickness was chosen asd5D/lF50.1.

If the interface is thinner, the character of the curves
changes dramatically. For example, Fig. 6 presents the con-
ductivity s(L) exactly for the same values of all parameters
as in Fig. 3 except for the interface thickness which is now
d5D/lF50.0001. The difference between the two curves is
astonishing.

The conductivity in Fig. 6 exhibits two types of spikes.
The explanation for first type of spikes is the following. The
scattering-driven transition probabilitiesWi j , Eq. ~5!, con-
tain the factor with the correlation functionz(qi2qj8) and

the geometric coefficientsGi j , Eq. ~6!. For exponentially
decaying correlators with largeR@L, the off-diagonal val-
ues of the correlation functionz(qi2qj8) with iÞ j are expo-
nentially small in comparison with the diagonal ones,z(qi

2qi8). Then it is sufficient to analyze only the diagonal ele-
ments of the matrixGi j , Eq. ~6!:

Gii 54C i
2~L1!C i8

2~L1!. ~20!

If, accidentally, thed-type interface is positioned in the
points in which eitherC i(L1)50 or C i8(L1)50, then the
coefficientGii and, therefore, the transition probabilityWii
become zero. This, in turn makes the conductivity of elec-
trons in the minibande i and, therefore, the overall conduc-
tivity almost infinite. The cutoff is determined by one of
three factors:~1! exponentially small interband transitions,
~2! scattering by other defects such as impurities, inhomoge-
neities of external walls, etc., and~3! smearing of the inter-
face,~19!, which leads to the averaging ofGii , Eq. ~6! and
~20!, over a finite interval, making it nonzero. In this paper,
for obvious reasons, we are interested in the third option.
Note that in the case of scattering by external film walls
instead of the interlayer interface, the coefficientsGi j ; i 2 j 2

are never equal to zero and this type of QSE does not exist.
The first type of spikes corresponds toC i(L1)50. The

‘‘resonance’’ positions of thed-type interface are universal
and do not depend on the potential strength. This is true for
all rational pointsd5L2 /L. Of course, the conductivity of
the film becomes infinite for this position of the interface
only if the corresponding minibande i is occupied. This
means that the integern in the denominator of the corre-
sponding fractiond5m/n should not exceed the number of
the occupied minibands,n<S5Int@L/lF#. Indeed, for
points d5L2 /L5m/n there is a number of wave functions
C i(x) of the empty well that have nodes in the pointsx
5L1. Since the unperturbed homogeneous potential barrier
has ad-functional formU0d(x2L1), these wave functions
C i(x) remain the eigenfunctions of the wellwith the unper-
turbed barrierU0d(x2L1) inside and retain their nodes in
the pointsx5L1. Then the corresponding diagonal coeffi-
cients Gii are zero, making the diagonal roughness-driven
transition probabilitiesWii for particles from the minibande i
equal to zero as well. Since the off-diagonal transition prob-
abilities are exponentially small inR/L@1, the condition
Wii 50 makes the conductivity for particles from the mini-
band e i , and, therefore, the overall conductivity exponen-
tially large in R/L@1.

The structure of the corresponding resonance spikes be-
comes more and more complicated with an increase inL1
when the structure of the minibands and their occupancy
become more convoluted. The simplest structure is observed
whenL1 is betweenlF and 2lF as in Fig. 6. In this case, the
observed rational spikes correspond to the rational numbers
of the formd5(n21)/n and are equidistant with the sepa-
ration L1 /lF . The first spike corresponds to the film with
d5L2 /L51/2, the second tod52/3, the third tod53/4, the
fourth to d54/5, and so on. The odd peaks, with the excep-
tion of the first one, look wider and consist of bigger and
smaller subpeaks. The smaller subpeaks correspond to the

FIG. 5. QSE in conductivity of quantized films, Eq.~15!, as a
function of the film thicknessL for the intermediate values of the
size of inhomogeneities,R/lF53. The thickness of the first layer,
L1 /lF51.1; the width of the interface,d50.1; and the interface
barrier,u050.1. At smallL, the curve exhibits the smooth oscilla-
tions of the anomalous QSE with a large period, while QSE for
largeL recovers the standard sawlike shape with period equal to 1.

FIG. 6. Geometric QSE in conductivity of multilayer films. The
same parameters as in Fig. 3, except for a much sharper interface,
d51024. The fractions near the spikes give the values of the reso-
nance positions of the interfaced5L2 /L.
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geometrical resonance withd5(n21)/n which is described
above. The bigger and wider subpeaks have a somewhat dif-
ferent nature and are not universal with respect to the barrier
strength. These subpeaks will be described later. Note that
the peakd53/4 is so close to the first peak from the other
series that these two peaks are hardly distinguishable.

When L1 becomes bigger, the first few geometric reso-
nances can be observed at much narrower second layers, well
before the pointd5L2 /L51/2, while the density of the
resonances becomes higher. For example, Fig. 7 presents
the conductivity as a function of thickness for the film with
the same parameters as in Fig. 6 except for the thickness of
the first layer which is nowL154lF . Though the overall
distribution of the peaks is now much more complicated, the
majority can still be understood as the ones generated by the
eigenfunctions of the empty quantum well with the nodes in
the positions of the barrier. The complexity of the peak struc-
ture is explained by the fact that at a wider first layerL1
more minibands are occupied, thus allowing a wider selec-
tion of the rational numbers that determine the peak positions
d5L2 /L5m/n.

The geometric resonances can coexist with the anomalous
QSE of the previous section if the interface is relatively
strong as in Fig. 8 for the same configuration as in Fig. 6 but
with much higher value ofu0 , u0510. For weak interfaces,
the geometric resonances suppress the QSE of the previous
subsection which gets restored only for bigger values of the

interface thicknessd. This graduate disappearance of the
geometric resonances can be seen when comparing Fig. 6 for
u050.1, d51024 with Fig. 9 (d51022) and Fig. 10 (d
51021). Figure 10 presents conductivity for the same con-
figuration as Fig. 3 but in logarithmic scale. In this scale, one
can see both the wide QSE oscillations of the previous
subsection and the only surviving geometric resonance at
d51/2.

Above we explained only the narrower, universal geomet-
ric resonances atd5m/n in Figs. 6–9. The second, nonuni-
versal type of spikes has a similar explanation: zeros ofGii .
According to the Appendix,

Gii 54C i
2~L1!C i8

2~L1!

5
4p2

L4
Ai

4 sin2~pzid!@g sin~pzid!12zi cos~pzid!#2,

~21!

wherezi(g,d) is given by the solution of the 1D Schro¨dinger
equation~14! for a quantum well with ad-type barrier inside.
The explicit form of the coefficientsAi is not important. The
factor sin2(pzid) in Eq. ~21! corresponds toC i

2(L1); its zeros
are responsible for the geometric resonances with rational
d5(n21)/n. There are no other zeros of sin2(pzid).

However, Eq.~21! also contains the factor in the square
brackets which corresponds toC i8(L1). The simultaneous
solution of Eq. ~14! for the spectrum, g sin(pzd)
12zcos(pzd)50, and equationC i8(L1)50 yields the fol-
lowing equation for the resonance positions of the interface:

FIG. 7. Geometric QSE in conductivity of multilayer films. The
same parameters as in Fig. 6, except for a wider first layer,L1/lF

54.0. The fractions near the spikes give the values of the resonance
positions of the interfaced5L2 /L.

FIG. 8. Geometric and anomalous QSE in conductivity of
multilayer films for strong interface potential,u0510. The rest of
the parameters are the same parameters as in Fig. 6. For easier
comparison with Figs. 4 and 6, the inset gives the same data in
logarithmic scale.

FIG. 9. Illustration of the effect of smearing of the interface. The
same curve as in Fig. 6, but for a wider interface,d50.01.

FIG. 10. Illustration of the effect of smearing of the interface.
The same curve as in Figs. 6 and 9, but for an even wider interface,
d50.1. Data as in Fig. 3, but in logarithmic scale.
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sin@pzi~122d!#50, ~22!

which is equivalent to

zi~g,d!~122d!5k, ~23!

with integerk. First, there is a universal solutiond51/2 at
k50. In this case, when the interface is exactly in the middle
of the film, bothC i(L1) and C i8(L1) are zero~the former
with an even index, the latter with an odd index!. This ex-
plains why the geometric resonance withd51/2 is the most
stable one with respect to the smearing of the interface.

The rest of the resonances withkÞ0 are not universal.
These resonances explain the earlier unaccounted for spikes
in Figs. 6–8. Since the spectrumzi(g,d) is a complicated
function of the interface strength and its position, the solu-
tion of Eq. ~23! for kÞ0 is rather complicated. We will give
the analytic equation for the simplest case oflF<L1,2lF
when Eq.~23! is equivalent to

L

lF
5

2zn

zn2n11

L1

lF
~24!

~the only allowed values ofk are k52n11). For weak
interfacesg/zn!1 this equation can be rewritten as

1

12d
52nF12

n21

n
DnG , Dn'

g

pzn
sin2~pnd!.

~25!

Analysis of Eq.~25! shows that several of the first of such
resonance positions of the interface are indeed close to the
odd rational universal resonances as in Fig. 6,

d.
2l 21

2l
,

and separate from the universal resonances with increasing
integer l. The very first resonance atd51/2 is, as is ex-
plained above, exactly the same as the first universal reso-
nance. The reason why these nonuniversal resonances are
wider and stronger than the universal ones described above is
still unclear.

IV. CONCLUSIONS

In summary, we analyzed the QSE in the conductivity of
multilayer films when the main scattering mechanism is the
scattering of electrons by random inhomogeneities of the in-
terlayer interface. Three different types of QSE are predicted.

The first one is a standard QSE with a typical sawlike
dependence of the conductivitys on the film thicknessL,
s(L). This effect dominates when the correlation radius
~size! of the interface inhomogeneitiesR is much smaller
than the film thickness,R!L. This effect should be observed
for all types of correlation functions of the interface rough-
ness. This effect is easily explained by the singularities in the
electron density of states related to the quantization of mo-
tion across the film.

The second type of QSE is explained not by the
quantization-driven singularities in the density of states, but

by the anomalies in the cross section for scattering by inter-
face inhomogeneities. This scattering-driven QSE replaces
the standard sawlike QSE when the correlation radius~size!
of the interface inhomogeneities is large,R@L. This type of
QSE manifests itself as smooth large-scale oscillations on the
dependences(L) and should be observed only when the
Fourier image of the interface correlation function~the so-
called power spectrum of inhomogeneities! decays exponen-
tially at large momenta. The main difference of this QSE
from a similar effect in scattering by the film walls2 is that
the observation of this effect in multilayer film requires cer-
tain smearing of the interface.

The third type of QSE is new and is most unusual. This
effect manifests itself as a set of very narrow and high spikes
in s(L) and replaces the scattering-induced QSE described
above when the interface is narrow. The finite cutoff in the
spikes can be ensured either by some other scattering mecha-
nism or by the smearing of the interface.

The spikes are observed only for certain resonance posi-
tions of the interface. The number of spikes is determined by
the relation between the thickness of the layers and the Fermi
wavelength. The resonance positions of the interface are de-
scribed. These positions can be split into two general classes.
Some of these positions are universal and do not depend on
the amplitude of the interface potential barrier and corre-
spond to the situations when the ratio of the layer widths is
given by simple rational fractions. The integer in the denomi-
nator of such fractions does not exceed the number of occu-
pied minibands. The remaining resonance positions of the
interface are nonuniversal and depend on the strength of the
interface potential. In the case of a weak interface, some of
these nonuniversal positions are close to the universal ones,
giving the impression of a split in the conductivity spikes.

A too small width of the resonance spikes can impede the
experimental observation of the geometric resonances. The
width of the resonance spikes increases and their height de-
creases with increasing smearing of the interface and the
resonance spikes gradually disappear. Note that this disap-
pearance of the resonance spikes is related not to the widen-
ing, but to the random smearing of the interface—the wid-
ening of the interface, by itself, results just in a shift of the
spike positions. The width of the universal resonances is
equal, by the order of magnitude, to the width of the smeared
interface D, Eq. ~19!, or, in dimensionless variables,d
5D/lF . The width of nonuniversal resonances is somewhat
larger and is less sensitive toD; the reason is still unclear.
Note that the smearing widthD can be much smaller than the
physical thickness of the interface, which in metals is often
larger than or of the order of the Fermi wavelengthlF . In
contrast to this, the smearing parameterd5D/lF can be
very small. The most stable spike with respect to smearing
corresponds to the layers of equal width. The wide range of
possible values ofD, which are determined either by the
roughness withD of the order of, or ,2/R or by the ‘‘in-
ternal’’ smearing of the interface, makes the observation of
the geometric resonances possible.

The spikes in the conductivity occur when the scattering
probabilities for electrons in one of the quantized minibands
become exactly zero. Since scattering probabilities for scat-
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tering by different interfaces add up, the spikes in conductiv-
ity of multilayer films with many layers can be observed
only if the scattering probabilities for electrons from one
miniband become zero simultaneously for scattering by all
the interfaces. This can happen only if all the interfaces are
located in the universal resonance positions corresponding to
the rational fractions from the same series. Otherwise, the
scattering by inhomogeneities of the ‘‘non-resonant inter-
face’’ will curtail the contributions from the resonant ones.
This imposes a restriction on the number of layers for an
observation of this type of QSE for a film of fixed overall
thickness.

We analyzed the multilayer films under the condition that
the disruption in the electron spectrum be caused only by the
interface potential while electron potential deep into the lay-
ers is the same for all layers. One can imagine a different
physical situation when the electron potential in different
layers differ from each other as in Ref. 13. In this situation
the resonance spikes in conductivity should be observed
when the position of the interface coincides with one of the
nodes in the wave function. It is clear that this occurs at least
for certain values of the interlayer potential differenceDU.

The calculations in the paper are aimed primarily at the
experimental setup when the lateral conductivity is measured
as a function of the film thickness at fixed thickness of the
first layer ~fixed position of the buried interface!. The main
obstacle for the experimental observation of the predicted
effect is a rather small width of the conductivity spikes and
their sensitivity to the position of the interface. On the other
hand, this sensitivity of the QSE to the position of the inter-
face may open the door for using this effect for precision
control of the interface positions in multilayer films. This
may be very useful for better quality ultrathin films without
short-range surface inhomogeneities.18 Recent experiments
with controlled ultrathin metal films with buried rough
interfaces1 indicate that the existing experimental setups are
sufficient for the observation of the predicted quantum size
effect.

Usually, the QSE in the conductivity of semiconductor
films is less pronounced than for metal films. This is ex-
plained by the smoother distribution of electrons in nonde-
generate semiconductors. In the absence of a sharp drop in
the distribution at the Fermi energy, singular features in the
conductivity, which is an integral over the particle distribu-
tion, tend to be smeared out. However, the universal geomet-
ric spikes in conductivity, which are described above, are
explained by the zeros in quantized electron wave functions
on the interface and have nothing to do with the electron
distribution. Then these spikes in conductivity can be the
only striking common feature for the QSE in multilayer
metal and semiconductor films. The only obstacle for the
observation of such spikes in semiconductors could be a rela-
tively large screening radius which may lead to an effective
smearing of the interface.
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APPENDIX: ENERGY SPECTRUM
AND MATRIX ELEMENTS

The one-dimensional Schro¨dinger equation for a square
well with a d-functional barrier inside has the form

c~x!91k2c~x!5u0d~x2a!c~x!, ~A1!

where

k252mE/\2, u052mU0 /\2. ~A2!

The wave functions can be written as

c1[c~x<L1!5A2

L
A sinkx,

c2[c~x>L1!5A2

L
B sink~x2L !. ~A3!

In the dimensionless notation of Sec. II 2, the equation on
the spectrum acquires the form

sin~pz!1
g

z
sin~pdz!sin@p~12d!z#50,

d5L2 /L<1, kL5pz, g5u0L/p. ~A4!

The normalized coefficients in the wave function~A3! are
equal to

An5
1

Ad1~12d!tn
21tn sin~znp!/znp

,

Bn5Antn , ~A5!

where

tn52
sinpdzn

sin@p~12d!zn#
. ~A6!

The explicit expression for the spectrum~A4! can be
given in the limiting cases of weak and strong potential bar-
riers. If the barrier is weak,g/z!1, the spectrum is

zn5n1Dn , Dn'
g

pn
sin2~pnd!. ~A7!

In the opposite case of strong interfaceg→`, the spec-
trum decouples into two independent series of levels for each
layer:

zn1
5n1 /d, zn2

5n2 /~12d!. ~A8!

For large, but finiteg, the corrections to the spectrum~A8!
can be easily obtained by expansion inzn /gd or zn /g(1
2d):

zn1
'

n1

d S 12
1

gD , zn2
'

n2

12d S 12
1

gD . ~A9!
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An important restriction for Eq.~A9! is that the energy levels
in each of the layers, Eq.~A8!, should not be very close to
each other. In the case of near degeneracy, the two close
levels, as usual, repel each other with a resulting gap equal to

Dzn.
zn

pgd~12d!
. ~A10!

The above equations should be modified if the interface is
very close to one of the external walls of the well, i.e., if
eitherd!1 or 12d!1.

Note that if thed-type barrier is located exactly in the
node of one the wave functions of the empty well, this wave
function remains the eigenfunction of the well with a barrier
inside irrespective of the strength of the barrier. This means
that the energy levels that correspond to such wave functions
are not shifted by the presence of the barrier.

The matrix elements of the roughness-related perturbation
~6! can be calculated with the help of the above functions
~A3! and ~A5!:

Gnm5@Cm~L1!Cn8~L1!1Cm8 ~L1!Cn~L1!#2

5S 2p

L2
AmAnD 2

gnm
2 ,

gnm5g sin~pzmd!sin~pznd!1zm cos~pzmd!sin~pznd!

1zn cos~pznd!sin~pzmd!. ~A11!

The most important are the diagonal matrix elements

gnn5sin~pznd!@g sin~pznd!12zn cos~pznd!#

5
zn sin~pznd!sin@pzn~122d!#

sin@pzn~12d!#
. ~A12!

Note that the zeros of the denominator in Eq.~A12! are
canceled out by the zeros ofAn

2 , Eq. ~A11!. When the inter-
face has a finite widthd, the matrix elements acquire the
following addition:

gnm
2(tot)5gnm

2 1d2~Dgnm!2,

where

Dgnm52znzm cos~pznd!cos~pzmd!

2~zn
21zm

2 !sin~pznd!sin~pzmd!1ggnm .

The total matrix elementGnm
(tot) is never zero. This means that

the term withd2, which originates from the smearing of the
interface, provides a natural cutoff for the conductivity.

In degenerate metal films, of all the energy minibandsen ,
only the minibands withn<Int@L/lF# are occupied.
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