
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

1980 

ACETYLATION OF THE CHOLINE ANALOG HOMOCHOLINE BY ACETYLATION OF THE CHOLINE ANALOG HOMOCHOLINE BY 

MEMBRANE BOUND CHOLINE-0-ACETYLTRANSFERASE IN MEMBRANE BOUND CHOLINE-0-ACETYLTRANSFERASE IN 

MOUSE FOREBRAIN MOUSE FOREBRAIN 

Christina G. Benishin 
University of Rhode Island 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Benishin, Christina G., "ACETYLATION OF THE CHOLINE ANALOG HOMOCHOLINE BY MEMBRANE 
BOUND CHOLINE-0-ACETYLTRANSFERASE IN MOUSE FOREBRAIN" (1980). Open Access Master's 
Theses. Paper 179. 
https://digitalcommons.uri.edu/theses/179 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/179?utm_source=digitalcommons.uri.edu%2Ftheses%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


ACETYLATION OF THE CHOLINE ANALOG HOMOCHOLINE 

BY MEMBRANE BOUND CHOLINE-0-ACETYLTRANSFERASE 

IN MOUSE FOREBRAIN 

BY 

CHRISTINA G. BENISHIN 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

PHARMACOLOGY AND TOXICOLOGY 

UNIVERSITY OF RHODE ISLAND 

1980 



MASTER OF SCIENCE THESIS 

OF 

CHRISTINA G. BENISHIN 

Approved: 

Thesis Committee 

J j ( / 
M • p f ;/ (' ~ ;.· . /. / / aJor ro essor~-----· -'~' ·-~~'~-· ~L~t-~-v ~cv-~-.....'--~------~ 

/..; ' ( / '/ ,- -// . 
,, ;..' :"' : ' ( ~ - I . - : . I 

Dean of the Graduate School 

UNIVERSITY OF RHODE ISLAND 

1980 



Short Title: HOMOCHOLINE ACETYLATION IN FOREBRAIN 



ABSTRACT 

The choline analog homocholine is not acetylated ~vitro by 

choline-0-acetyltransferase (ChAT, EC 2.3. 1.6) which is solubilized 

by 100 mM sodium phosphate buffer washes of a crude vesicular frac

tion of mouse forebrain. However, both homocholine and choline are 

acetylated by a form of ChAT which is non-ionically associated with 

a subcellular fraction of mouse forebrain containing membrane asso

ciated organelles and occluded ACh (P4 ). Acetylation of homocholine 

by membrane associated ChAT is saturable. 4-(l-Naphthylvinyl) 

pyridine (NVP) inhibits the acetylation of both choline (60%) and 

homocholine (40%) by membrane associated ChAT but reduces the acety

lation of only choline by soluble ChAT (76%). Choline and homocho

line serve as competitive alternative substrates for the same mem

brane associated ChAT whereas homocholine only acts as a competitive 

inhibitor of choline acetylation by soluble ChAT. Acetylhomocholine 

competitively inhibits the acetylation of choline by both soluble 

and membrane associated ChAT more dramatically than does the natural 

end product ACh. 
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INTRODUCTION 

According to the classical model of a cholinergic nerve ending, 

acetylcholine (ACh) is synthesized by choline-0-acetyltransferase lo

cated in the cytoplasm of the nerve ending. ACh is then transferred 

into the synaptic vesicles where it is stored. Depolarization of 

the nerve ending stimulates the release of ACh from vesicles by a Ca++ 

dependent exocytotic process. 

Presently not all studies support the classical model. In par

ticular, the transfer of ACh from the cytoplasm to vesicles has not 

been demonstrated (Marchbanks and Israel, 1972; Suszkiw, 1976; Nelson 

et~., 1980). Also not all nerve ending ChAT is soluble. Some ap

pears to be non-ionically associated with a crude vesicular fraction. 

Rec~nt studies using the choline analog homocholine suggest that 

ACh released upon depolarization may not necessarily be synthesized 

by soluble ChAT. Homocholine is similar to choline in most all as

pects of cholinergic metabolism. However, homocholine differs from 

choline in one very important respect - it is not acetylated by sol

uble ChAT (see lit. review), although it is acetylated by slices of 

rat cerebral cortex (Boksa and Collier, 1980). Therefore the objec

tive of this study was to determine if an alternative form of ChAT, 

which is non-ionically associated with a crude vesicular fraction, 

can acetylate homocholine. 
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LITERATURE REVIEW 

Historical 

Acetylcholine (ACh) is a neurotransmitter at autonomic ganglia, the 

neuromuscular junction, at parasympathetic and some sympathetic neuro-

effector junctions, and a putative neurotransmitter in the central ner-

vous system. Katz and his associates (Fatt and Katz, 1951, 1952, 1953; 

del Castillo and Katz, 1954) presented evidence that neurotransmitter 

released spontaneously from nerve endings of the neuromuscular junction 

(ACh) in multi-molecular quanta generates post-synaptic miniature end

plate potentials (m.e.p.p.s.). Nerve stimulation increases the fre

qucy of m.e.p.p.s. Later, several investigators (e.g. Palade and 

Palay, 1954; deRobertis and Bennett, 1954, 1955) reported that elec-

tron microscopy revealed the presence of large numbers of spherical 

organelles ("synaptic vesicles 11
) contained within nerve endings. These 

synaptic vesicles were considered to be the morphological correlates 

of the multi-molecular quanta reported earlier. The demonstration of 

quantal release of neurotransmitter, and the observation of synaptic 

vesicles in nerve endings led to the formulation of the vesicle hypo

thesis (first described by del Castillo and Katz, 1957). According 

to this hypothesis, ACh which is stored in synaptic vesicles is re-

leased into the synaptic cleft upon nerve stimulation, or depolari-

zation, by a Ca++ dependent exocytotic process. Birks and Macintosh 
I 

(1961) demonstrated that the sympathetic gangkion contains several ~ 
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pools of ACh. One pool, known as "stationary" ACh (approximately 15% 

of the total ACh content of the ganglion) was thought to be contained 

within nerve axons and cell bodies, and remains unaltered upon nerve 

stimulation. The other pool (remaining 85% of total ACh), termed 

"depot" ACh, was thought to be present in nerve endings, and was at 

least partially releasable upon depolarization. These authors noted 

that this latter pool seemed to be made up of two subfractions, one 

of which is smaller than the other and more readily releasable upon 

depolarization. In 1962, Gray and Whittaker isolated nerve ending 

particles with synaptic vesicles contained within them (synaptosomes) 

from homogenates of guinea-pig brain. Hebb and Whittaker (1958) also 

presented evidence suggesting that the synaptosomes contained "bound" 

ACh, which corresponds to the depot ACh of Birks and Macintosh (1961). 

In 1964, Whittaker et~· reported that hypo-osmotic rupture of synap

tosomes released approximately 50% of the bound ACh (S3 fraction, cy

toplasmic or labile-bound) while the other 50% remained associated 

with membrane fragments (P 3 fraction, vesicular or stable-bound). The 

stable-bound ACh was bimodally distributed in subcellular fractions 

of hypo-osmotically ruptured synaptosomes spun through a discontinu

ous sucrose gradient: one fraction (0) was enriched in synaptic 

vesicles and the other (H) contained large membrane fragments, then 

thought to be only nondisrupted synaptosomes. Several investigators 

using j.!:!_ vivo (Chakrin ~t ~., 1972) or~ vitro (Richter and March

banks, 197la,b; Molenaar et~., 1973) techniques, reported that after 

labelling the subcellular pools of ACh to different specific activi

ties using the precursor labelled choline, the specific activity of 

the ACh subsequently released was considerably higher than that con-
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tained in either the cytoplasmic or vesicle-bound stores. These re

sults indicate that newly synthesized ACh is preferentially released in 

response to nerve stimulation, and also suggest that a small subpool 

of vesicles may turn over its ACh content faster than the main vesicle 

population. Barker~! ..!l_. (1972) then demonstrated that a tail vein 

injection of labelled choline into the guinea pig led to labelling of 

ACh in the different subcellular fractions of ruptured synaptosomes of 

the cortex to different specific activities, also suggesting that dif

ferent pools of ACh turn over at different rates. Fraction H (contain

ing the large neuronal membrane fragments and some membrane associated 

vesicles) had the highest specific activity, and fraction D (contain

ing monooisperse synaptic vesicles) had the lowest specific activity 

of ACh. Soluble (cytoplasmic, or labile-bound) ACh had an intermedi

ate specific activity. 

In the early 1970s, most investigators agreed that most if not all 

of the enzyme which synthesizes ACh, choline-0-acetyltransferase (ChAT) 

is soluble within the nerve ending (see review on the subcellular lo

cation of ChAT). Therefore, based on the experimental evidence sum

marized thus far, and the evidence that most all ChAT is cytoplasmic, 

the classical model of the cholinergic nerve ending was developed. 

According to this model, all nerve ending ACh is synthesized by sol

uble ChAT. ACh is then transported into vesicles where it is stored, 

until depolarization stimulates the release of ACh by exocytosis. As 

mentioned earlier, not all studies support this model. Although at

tempted by several investigators, using vesicle fractions (Marchbanks 

and Israel, 1972; Nelson et a]_., 1980) or vesicle ghosts (Suszkiw, 
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1977) transfer of ACh from cytop1asm into vesicles above diffusional 

levels has never been demonstrated. 

Another alternative hypothesis presented, from studies using 

Torpedo electroplaque (see review by Israel, Dunant, and Manaranche, 

1979), was that ACh is synthesized by cytoplasmic ChAT, and may be 

released directly from the cytoplasm in response to depolarization. 

Ca++ regulates gates in the neuronal membrane through which ACh is 

thought to be released during depolarization. In this case the ves

icles serve only as storage sites for ACh. 

The development of freeze-fracture techniques has provided evi

dence that ACh is released from nerve ending vesicles by exocytosis. 

Heuser and Reese (1973) and Heuser et~- (1974) have observed clus

ters of "dimples" in the presynaptic membrane in a regular array 

around "active zones." Thin sections of similar tissues reveal the 

presence of numerous vesicles clustered near electron-dense regions 

in the neuronal membrane postulated to be the active-zones of re

lease. These investigators also found that nerve stimulation increases 

the number of dimples adjacent to the active zones. The dimples are 

thought to be vesicles in the process of merging with and collapsing 

into the neuronal membrane during exocytosis. 

Recently Katz and Mi1edi (1977) and Gorio et ~l· (1978) have pre

sented studies suggestng that ACh may be re1eased from nerve endings 

by more than one process, as follows: 1) Ca++ dependent depolarized 

release (generating electrophysiological end plate potentials); 2) 

Ca++ dependent spontaneous re1ease (generating m.e.p.p.s.); and 3) Ca++ 

independent spontaneous release (generating background "noise," thought 



to account for approximately 90% of spontaneous release, Katz and 

Miledi, 1977). Carroll and Aspry (1980) have also presented evidence 

that these different forms of ACh release may originate from differ

ent subcellular pools of ACh within nerve endings. The functional 

significance of these several forms of release remains to be eluci-

dated. 

Subcellular location of ChAT 

The subcellular location of ChAT was the subject of controversy 

for a number of years. Hebb and her coworkers (Hebb and Smallman, 

1956; Hebb and Whittaker, 1958) demonstrated that ChAT in brain homo-

genates is partially 11 soluble 11 and partially "particle bound." The 
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soluble ChAT is that which originates from the disrupted nerve axons 

and cell bodies, and the particle bound ChAT (which represents the ma

jority of ChAT in brain) is that which is present in synaptosomes. 

Hypo-osmotic rupture of synaptosomes releases their contents and dif-

ferent groups of investigators isolated ChAT in different subcellular 

fractions. Whittaker and his coworkers (Whittaker, Michaelson and 

Kirkland, 1964) recovered ChAT in a soluble cytoplasmic fraction of 

ruptured synaptosomes, which is removed from the occluded ACh stores 

(vesicle fractions). deRobertis et al. (1963) found that ChAT was 

associated with a subcellular fraction which did contain occluded ACh. 

Initially the difference was attributed simply to species variations 

(Tucek, 1966 a,b). However, the work of Fonnum (1967, 1968) appeared 

to resolve the situation. He found that the subcellular location 

from which ChAT was recovered depended on the pH and ionic strength 

of the suspending medium. Positively charged ChAT binds to the nega

tively charged membranes more readily at a low pH and low ionic 
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strength, and can be removed by washing the nerve ending fractions with 

a high ionic strength buffer. Also he found that rat and rabbit brain 

enzymes (which deRobertis studied) were much more resistant to these 

effects than guinea-pig (which Whittaker used) and pigeon enzymes. 

Fonnum concluded (1968) that at physiological pH and ionic strength 

"much if not all of the [ChAT] must be in a free form, 11 and this con

cept has been generally accepted until recently. 

Several investigators have also attempted to establish the sub

cellular location of ChAT using electron microscopic histochemical 

techniques. Kasa (1970, 1975), utilizing Pb capture of Coenzyme A, 

found the reaction product in the cytoplasm, and adsorbed to mito

chondria and vesicles, but not within vesicles. However, Fiegenson 

and Barrnett (1977) using different histochemical techniques (utiliz

ing Mn++ and ferrocyanide) found reaction product within the vesicles, 

and the appearance of the product was sensitive to inhibition by the 

ChAT inhibitor 4(1-Naphthyvinyl)pyridine (NVP). Therefore, based on 

cytochemical techniques, the subcellular location of ChAT was still 

somewhat controversial. 

ChAT from mammalian tissue can be separated into several molecu

lar forms on the basis of isoelectric point (e.g. White and Wu, 1973,c). 

It is not presently clear which form (or forms) is (are) functionally 

significant in neurotransmission. Krell and Goldberg (1975) reported 

that the ChAT inhibitor NVP, when injected into mouse or guinea-pig, 

inhibited soluble ChAT but there was no significant alteration in 

steady state brain ACh levels. ~ven at a neutral pH and high ionic 

strength, a certain amount (20-40%) of nerve ending ChAT remains in

soluble. Hebb (1972) has suggested that "Even if reduced to 10%, the 



enzyme remaining bound, if strategically located, could be responsible 

for the production of as much ACh as is present in the storage system, 

the 'depot' ACh of Birks and Macintosh 11 (1961). 

Recently Smith and Carroll (1980) havademonstrated that a crude 

vesicular fraction (P3) of mouse forebrain, prepared from hypo-osmo-

. tically ruptured synaptosomes, retains approximately 15% of synapto

somal ChAT activity, after washing the fraction twice with 100 mM so

dium phosphate buffer at a pH of 7.4. ChAT which is solubilized by the 

high ionic strength buffer washes appears to differ from the bound 

ChAT, in that it is more sensitive to inhibition by ACh and NVP, and 

is also more dependent on Na+. The fraction (P 3) which contains mem

brane bound ChAT also contains stable bound ACh (protected from hy

drolysis by AChE in the absence of a cholinesterase inhibitor). Also 

ACh synthesized by membrane bound ChAT is partially protected from 

hydrolysis when excess AChE is added to the incubation medium, where

as ACh synthesized by soluble ChAT is not. This membrane bound form 

of ChAT may be functionally significant in neurotransmission. 

Substrates for ChAT 

ChAT catalyzes the synthesis of ACh from choline and acetyl CoA. 

An exogenous supply of choline is required to maintain ACh synthesis 

over a period of time since choline is not synthesized in the brain. 

The concentration of choline present in the extracellular space is 

maintained by choline from the plasma, and also choline resulting from 

the hydrolysis of ACh by acetylcholineserase present in the synaptic 

cleft. Choline may also be partially supplied by the breakdown of 

membrane lipids. Uptake of choline into nerve terminals from the 
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synaptic cleft is thought to occur by one of two transport processes: 

low-affinity transport, with a Kt of 50-100 uM, and a high-affinity 

transport, with a Kt of 1-5 uM. The latter has been postulated to be 

specific for cholinergic nerve endings (Kuhar et~., 1973), and also 

to be coupled to ACh synthesis (e.g. Barker and Mittag, 1975) (see 

reviews by Kuhar and Murrin, 1978; and Jope, 1980). 

The origin of acetyl CoA for ACh synthesis in nerve endings is 

presently unknown. It is synthesized within mitochondria; but whether 

acetyl CoA for ACh synthesis is generated at another location in the 

nerve ending, remains to be elucidated. An external source of acetate 

groups is required to maintain ACh synthesis. Several investigators 

have found glucose and pyruvate to be good precursors, both~ vivo 

(e.g. Tucek and Cheng , 1974) and~ vitro (e.g. Lefresne ~! ~., 1973; 

Guyenet et ~J_., 1973). Balfour and Hebb (1952) found that acetone 

extract powders of brain tissue are able to synthesize ACh from chol~ 

ine and either citrate or acetate. Tucek (1967 a,b,c) has reported 

that citrate-ATP lyase (EC 4. 1.3.8) and acetyl CoA synthase (EC 6.2. 1. 1) 

(which synthesize acetyl CoA from citrate and acetate, respectively) 

are at least partially extramitochondrial enzymes. Alternatively, 

Sollenburg and Sorbo (1970), and Sterling · ~dO'Neill (1978) have sug

gested that citrate may simply mediate the transport of the acetyl 

moiety from mitochondria to the site of synthesis of ACh. Gibson and 

Shimada (1980) report that citrate may not be the only intermediate 

in acetyl CoA metaboli~m in brain tissue, but that acetate and carni

tine may also be involved. They also present evidence that acetyl CoA 

involved in ACh synthesis may be distinguished from acetyl CoA involved 

in lipid synthesis, by using (-) hydroxycitrate and n-butylmalonate, 
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both inhibitors of citrate metabolism. This agrees with a previous 

study by Tucek and Cheng (1974) which reports that when rats were in

jected with [l,s- 14c] citrate, the lipid stores in the brain became 

labelled, whereas ACh did not. However this last study only examined 

whole brain ACh, and did not distinguish between the different sub-

cellular pools of ACh. 

Another alternative, proposed by Tucek (1967, c) is that acetyl 

CoA may itself be .transported out of mitochondria during mitochondrial 

contractions. 

Kinetic mechanism of ChAT 

Several different mechanisms have been proposed by different 

groups of investigators on how ChAT catalyzes the synthesis of ACh. 

Kinetic studies have often led to different conclusions for several 

reasons. ChAT has not yet been isolated in pure form and often enzyme 

preparations may be contaminated with other proteins which interfere 

with the assay. Also ChAT decreases in specific activity the more it 

is purified (Hebb, 1972). Finally a variety of different species 

have been used in kinetic studies. In general, most investigators 

believe that ChAT functions by the Theorell-Chance mechanism (e.g. 

White and Wu, 1973, b; Morris et~..!_., 1971). According to this mech

anism of enzyme activity both the reactants (choline and acetyl CoA) 

bind and the products (ACh and CoA) dissociate from the enzyme in a 

particular order. However, Hersh and Peet (1977) have suggested that 

not all experimental evidence uniquely supports this type of mechanism. 

These authors employed dead-end inhibitors and alternate substates, 

and suggest that ChAT functions by a sequential random mechanism, in 

which the substrates bind and the products dissociate in random order. 
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They indicate that product inhibition studies (in which ACh competi

tively inhibits acetyl CoA but noncompetitively inhibits choline) can 

be also explained by the sequential random mechanism. Also, the deu

terium isotope effect observed by Currier and Mautner (1974) (inter

preted as general base catalysis) is not consistent with the Theorel l 

Chance mechanism. 

Several investigators have attempted to classify ChAT as a sulf

hydryl enzyme (i.e., the enzyme requires a free sulfhydryl group in 

its active site) utilizing various sulfhydryl agents (e.g. Reisburg, 

1957; Mannervik and Sorbo, 1970). In general most investigators now 

agree that ChAT contains "nonessential" sulfhydryl groups, and that 

inhibition of ChAT by sulfhydryl reagents may be caused by conforma

tional changes in the enzyme, and not by direct binding to the ac

tive site (e.g. White and Cavallito, 1970; see also review by Hebb, 

1972). 

Imidazole (or histidine) residues have -also been implicated by 

Currier and Mautner (1974) among others (e.g. White and Cavallito, 

1970), particularly in view of the previously mentioned general base 

catalysis observed by these authors. Imidazole groups have been 

shown to activate ChAT (White and Cavallito, 1970; Hebb et 2-}_., 1975; 

Davies, 1979) and may also synthesize ACh nonenzymatically (Burt and 

Silver, 1973; Aquilonius and Eckernas, 1976). 

Ionic requirements of ChAT h-ave also been studied by several 

groups of investigators. Rossier ~! 2-}_. (1977) demonstrated that only 

Cl activates ChAT solubilized from rat brain. However, Hersh (1980) 

found that all monovalent anions activate ChAT to the same extent. 
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Guyenet et~- (1973) and Smith and Carroll (1980) have found that 

ChAT is dependent on Na+ for activity. · Additionally, Hersh and his 

coworkers (1978, a,b,c) demonstrated that enzyme activity and mecha-

nism · may be regulated by ionic strength, and that divalent cations 

h C ++ d ++ . h"b"t th sue as a an Mg in i i e enzyme. 

Studies using homocholine 

Recent results obtained with the choline analog homocholine (3-tri

methylamino propan-1-ol) support the possibility that the activity of 

soluble ChAT may not be essential to the formation of transmitter re-

leased during depolarization (Collier et~., 1977). The structure of 

homocholine is shown in Fig. 1. Homocholine is similar to choline in 

many aspects of cholinergic metabolism. It is transported into rat 

brain synaptosomes (Collier et ~_l., 1977) and el ectroplaques of 

Torpedo (van Schwarzenfeld ~!. ~., 1979; Luqmani et 2.l·, 1980) and is 

acetylated and released as acetylhomocholine (AHCh) from the superior 

cervical ganglion (Collier et 2.l·, 1977), guinea-pig cortex (von 

Schwarzenfeld, 1979), Torpedo electroplaques (Luqmani et~., 1980) 
++ and minces of mouse forebrain (Carroll and Aspry, 1980) by a Ca de-

pendent process during depolarization. A crude vesicular (P 3) frac

tion of mouse forebrain, depleted of its acetylcholine content inde

pendently of the cytoplasm (S3) by incubation of mouse forebrain 

minces in a lithium-high potassium Krebs medium, can also be refilled 

with either newly synthesized AHCh or new ly synthesized ACh formed 

from their respective precursors homocholine or choline. This refill-

ing does not occur by transfer of the acetylate rl product from the s3 
fraction since the ratio of newly synthesized to preformed transmitter 
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in the P3 fraction exceeds that of the s3 fraction (Carroll and Nelson, 

1978; Nelson et~., 1980). 

Homocholine, however, differs from choline in one very important 

respect. Homocholine is not acetylated by soluble ChAT (Burgen et~., 

1956; Dauterman and Mehrotra, 1963; Currier and Mautner, 1974; Barker 

and Mittag, 1975; Collier~.!~., 1977). Therefore the objective of 

this investigation was to determine if homocholine is acetylated by 

the membrane associated form of ChAT present in the nerve endings of 

mouse forebrain. 
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MATERIALS AND METHODS 

Choline and 3-heptanone (practical grade) were obtained from 

Eastman Company (Rochester, NY) and the 3-heptanone was redistilled 

(collected at 146-147°C). Eserine sulfate and carnitine were pur

chased from Sigma Chemical Company (St. Louis, MO) and 4-(1-naphthyl

vinyl) pyridine (NVP) and acetyl Coenzyme A from Calbiochem (La 

Jolla, CA). Sodium tetraphenylboron and toluene (spectanalyzed) 

were purchased from Fisher Scientific Company (Fairlawn, NJ). Aquasol 

II, Hyamine hydroxide, Liquifluor, [acetyl-l-14c] acetyl Coenzyme A 

(spec. act. 48.3 mCi/mmol), [ 14c] methyl iodide (spec. act. 31.0 

mCi/mmol) and [14c] acetylcholine (spec. act. 1.2 mCi/mmol) were pur

chased from New England Nuclear (Boston, MA). Homocholine, acetyl

homocholine, [ 14c] homocholine and [ 14c] acetylhomocholine, were syn

thesized as described by Nelson et ~J_. (1980). 

Enzyme preparations 

Male CD-1 albino mice were killed by cervical dislocation, the 

forebrains quickly removed and placed into ice-cold Normal Krebs (com

position in mM; NaCl, 117; KCl, 3.5; MgS04, 1.2; NaHC03, 28.0; KH 2Po4, 

1.2; CaC1 2, 2.5; Glucose, 11.0). They were blotted dry, weighed, 

minced, and incubated for 15 min in Normal Krebs at 38°C. Minces 

were then washed twice with ice-cold 0.32 M sucrose, and subcellular 

fractions prepared according to the method of Gray and Whittaker (1962), 

as modified by Collier et~· (1972) and Salehmoghaddam and Collier 

(1976). Minces were homogenized in 5.0 ml of 0.32 M sucrose at 840 
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rpm with 8 up and down strokes. This homogenate was spun at 1000 g 

for 10 min, and the supernatant spun at 17,000 g for 15 min, to yield 

a P2 (synaptosomal) pellet. Synaptosomes were hypo-osmotically rup

tured by homogenizing the P2 pellet in 2.0 ml of water at 400 rpm us

ing 8 up and down strokes. This homogenate was spun at 100,000 g for 

60 min to yield a crude vesicular fraction (P 3) and an s3 fraction 

believed to contain soluble cytoplasmic contents. The s3 fraction was 

discarded. The P3 fraction, which contains occluded ACh, was then 

washed twice with 1.0 ml of 100 mM sodium phosphate buffer (pH 7.4) 

in order to remove ionically bound ChAT (Fonnum, 1968). Approximate

ly 703 of the ChAT activity recovered from the hypo-osmotically rup-

tured P2 fraction was present in the 100 mM sodium phosphate buffer 

wash of the P3 fraction whereas 15% remained in the washed P3 (Smith 

and Carroll, 1980). The washed P3 fraction was then homogenized in 

1.0 ml of water and layered on top of a discontinuous sucrose gradi

ent containing 2 ml each of 0.4 M and 0.6 M sucrose and spun at 

192,000 g for 30 min. The pellet was homogenized in 500 ul of water 

and stored at -20°C until determinat i on of ChAT activity. The 0.4 M 

sucrnse layer was pelleted at 100,000 g for 60 min. This fraction 

was suspended in 200 ul of water for enzyme assay. The 0.6 M frac-

tion was also pelleted at 100,000 g for 60 min and suspended in 500 ul 

of water for enzyme assay. P4, 0.4 Mand 0.6 M fractions were never 

kept for more than 7 days, and the solubilized enzyme never more than 

2 days, since it was noted that enzyme activity declined after these 

times even though stored at -20°C. In one set of experiments, the P4 
fraction was washed with 1.0 ml of 100 mM sodium phosphate buffer, 
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centrifuged at 100,000 g for 60 min and the ChAT activity determined 

in the wash fraction as well as the washed P4 fraction. 

Enzyme assays 

ChAT activity in the various fraction was determined in duplicate 

or triplicate by the method of McCamen and Hunt (1965) as modified by 

Fonnum (1969). Aliquots of 2 ul of the tissue fractions or the pooled 

sodium phosphate buffer washes of the P3 fraction were incubated for 

varying time periods (activity was linear for at least 30 min for all 

substrate concentrations used) at 39°C, a temperature which activates 

brain ChAT activity (Hebb, 1975), with 20 ul of a buffer substrate 

consisting of the following components: NaCl (234 mM), Bovine Plasma 

Albumin (0.0375%), MgC1 2 (17mM), sodium phosphate buffer, pH 7.4 

(84 mM), Eserine (150 uM), [ 14c] acetyl Coenzyme A (343 uM, spec. act. 

2 mCi/mmol) and one or several of the following substrates in the 

concentrations indicated: choline, homocholine, carnitine, or no 

added substrate. Acetyl CoA: Carnitine-0-acetyltransferase (carnitine 

acetyltransferase, EC 2.3. 1.7) activity was determined by replacing 

choline with carnitine in the McCamen and Hunt assay. In some experi-

ments the following compounds were tested as inhibitors of ChAT: ACh, 

AHCh, and NVP. Stock solutions were prepared fresh in water (pH 4.0 

for ACh and AHCh) and l ul aliquots were added to tissue samples just 

prior to addition of the buffer substrates. One ul of water (pH 4.0) 

did not affect soluble or membrane bound ChAT activity. NVP solu-

tions were always prepared in amber bottles and the assay conducted 

in a darkened room, since NVP is light sensitive. 

Following incubation, samples were chilled and the acetylated 

products were extracted with 150 ul of sodium tetraphenylboron/ 
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3-heptanone (TPB/3-hept., 75 mg/ml). One ml of Hyamine hydroxide was 
14 added to 100 ul of the TPB/3-hept. extract and [ CJ acetylated pro-

ducts were counted in 15 ml of toluene containing Liquifluor. Acetyla

tion was calculated from the specific activity of the buffer substrate, 

which was counted in the presence of TPB/3-hept. (75 mg/ml) (extrac

tion of acetylated products into 75 mg/ml TPB/3-hept. was essentially 

complete). Net acetylation was corrected for acetylation of endogen-

ous substrates. Because of variability in the tissue preparation, all 

experiments were conducted on forebrains from at least 6 experimental 

animals except where indicated. 

Chromatography 

Tissue aliquots were incubated as;previously described except that 

acetylated products were extracted with 5 mg/ml TPB/3-hept. 100 ul 

of the organic phase was mixed with 50 ul lN HCl and aliquots of the 

HCl pooled and dried. Two ul of water was added to the dried extract 

and the sample was streaked on a strip of Whatman #3 paper . Acety~ -

lated products were separated by descending paper chromatography in a 

solvent system of n-butanol: ethanol:lN acetic acid: water (8:2:1:3) 

and identified by comparison with [ 14c] ACh and [ 14c] AHCh standards 

run simultaneously. Labelled products were dissolved from 1 cm strips 

in l ml of water and counted in Aquasol II. 

Electron microscopy 

Pellets obtained from the subcellular fractionation were fixed 

in 1% formaldehyde in 50mM cacodylate buffer, and post-fixed in 1% 

Oso4 in Millonig's phosphate buffer. They were then dehydrated in 

ethanol and embedded in Spurr's resin according to standard procedures 
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(Spurr, 1969). Ultra-thin sections were stained with lead citrate and 

uranyl acetate, and examined under an RCA EMU-3F electron microscope . 
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RESULTS 

Recovery of P3 ChAT activity following sucrose density gradient cen

trifugation. 

Aliquots of the subcellular fractions of mouse forebrain were as

sayed for ChAT activity using 10 mM choline. ChAT which is nonionical

ly bound to the P3 fraction, i.e., ChAT which remains associated with 

that fraction after two washes with 100 mM sodium phosphate buffer 

(pH 7.4), formed 429.7_2: 71.4 nmol/g wet wt/hr of acetylated product 

(n=4). Approximately 81% of the ChAT activity associated with the 

washed P3 fraction was recovered from the 3 fractions of the sucrose 

density gradient: the 0.4 M sucrose fraction formed 9.0_:2.5 runol/g 

wet wt/hr (n=24) and electron microscopy revealed that this fraction 

is enriched with spherical organelles resembling vesicles; the 0.6 M 

sucrose fraction formed 48.5_:14.9 nmol/g wet wt/hr (n=6); and the P4 

fraction formed 289_2:61 nmol/g wet wt/hr (n=18). Electron micrographs 

of this fraction revealed that it contains large membrane fragments, 

which have spherical organelles associated with some fragments, simi

lar to those shown in a recent report (von Schwarzenfeld, 1978). In 

the experiment in which the P4 fraction was homogenized in 1.0 ml of 

100 mM sodium phosphate buffer (pH 7.4), centrifuged, and its ChAT 

activity compared with an unwashed P4 fraction, the ChAT activity was 

identical (353.4_:37.4 vs. 362.4_2:14.9 nmol/g wet wt/hr, n=3). ChAT 

activity in the 100 mM sodium phosphate buffer wash of the P4 fraction 

was not detectable. The P4 fraction, which also contains occluded 



ACh (Carroll and Benishin, 1~79) most closely reflects the metabolic 

activity of the P3, a conclusion supported by a recent publication in 

which Torpedo electroplaques were studied (Luqmani ~! ~., 1980). 

Therefore, this fraction was selected for the subsequent kinetic ana-

lyses. 

Kinetics of homocholine acetylation by the P4 fraction. 

The kinetic parameters for P4 ChAT activity as a function of added 

homocholine were determined using substrate concentrations ranging 

-5 -2 from 10 to 10 M. Each point represents the average velocity, cor-

rected for acetylation of endogenous substrates, for 15 forebrains. 

Results in Figure 2 indicate that the apparent Km value for homocholine 

acetylation is 49 uM, and the apparent Vmax for homocholine acetylation 

is 70 nmol/g wet wt/hr. Boiling tissue prior to incubation with homo

choline (10 mM, n=6) reduced the formation of acetylated products to 

the level of tissue-free blanks. 

Ability of NVP to inhibit choline and homocholine acetylation by the 

P4 fraction. 

Several reports have suggested that carnitine acetyltransferase, 

which is present in cholinergic preparations, may acetylate choliner

gic neurotransmitter precursors (White and Wu, 1973a; Tucek et~., 

1978). To determine if choline and/or homocholine are primarily 

acetylated by P4 ChAT rather than carnitine acetyltransferase, ali

quots of the P4 fraction were incubated either in the presence or ab

sence of NVP, which inhibits ChAT but not carnitine acetyltransfer

ase (White and Wu, 1973a). Results shown in Fig. 3 indicate that NVP 
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(4.6 uM) significantly reduces acetylation of choline (60%) and homo

choline (40%), but stimulates acetylation of carnitine (18%) by the 

P4 fraction. 

Jnability of NVP to reduce acetylation of homocholine by solubilized 

ChAT. 

Results presented in Table 1 indicate that NVP (4.6 uM) signifi

cantly reduces choline acetylation by ChAT solubilized from the P3 
fraction 76%. This fraction acetylates carnitine and homocholine very 

poorly, and NVP does not alter acetylation of either substrate. 

Does homocholine serve as a competitive alternative substrate to cho-

line for acetylation by P4 ChAT? 

Results obtained in this study with the ChAT inhibitor NVP sug

gest that both choline and homocholine are acetylated by ChAT in the 

P4 fraction. To determine if both substrates are acetylated by the 

same or different forms of ChAT in the P4 fraction, the kinetic para

meters of choline acetylation were determined in the absence or pre

sence of several fixed homocholine concentrations (0.5, 1.0, 5.0, or 

10.0 mM) using 3 forebrains, according to the procedure of Ch.a (1968). 

In this method, two potential substrates are simultaneously incubated 

with the enzyme and the concentration of one substrate, A, is varied 

while the other, B, is held constant, and the combined velocity of 

products formed is determined. In the present experiments, the com-

bined velocity equals the total amount of acetylated products formed, 

i.e., [14c] ACh and [ 14c] AHCh. Both of these products behave 

identically in the assay used and are extracted equally by TPB/3-hept. 
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When both substrates are metabolized by the same enzyme and substrate 

A is better than B (i.e., the Vmax for A exceeds t he V'max for B), then 

a plot of l/v (combined velocity) vs. l/[A] will be hyperb·0lic. When 

a series of kinetic plots are generated using different fixed levels 

of substrate B or in the absence of B, and Vmax exceeds V'max' then the 

curves generated will intersect at a common point. A theoretical com

mon point of intersection can be predicted from the following relation

ship: S= V'max· Km/(Vmax-V'max) where S represents the concentration 

of substrate A at the co1TITion point of intersection,and Km represents 

the apparent Michaelis constant obtained for substrate A. 

When the Vmax equals V'max the curves will merge at the Y axis 

and not be straight lines. If substrate B is not metabolized by the 

same enzyme as A but competes with A for binding to the same enzyme, 

then a series of straight lines is generated which yield similar Vmaxs. 

If two enzymes. are involved in the metabolism of the two substrates, 

the curves obtained will not intersect at one point. 

Figure 4 depicts the pooled results obtained for two different 

experiments where 1/v (combined velocity) vs. l/S (corrected for en

dogenous choline concentration) for each fixed homocholine concentra

tion (0,0.5, 1.0, 5.0, or 10.0 mM) is plotted. Values were normal

ized by multiplying l/v by Vmax for choline and 1/S (corrected) by the 

Km for choline for each of the two experiments. The correlation coef

ficients obtained for the least squares regression lines of the data 

points (dotted lines) decrease as the concentration of homocholine is 

increased. Polynomial regression analysis shows that a second degree 

polynomial fits the data points obtained better than a straight l i ne 

when homocholine is present. 



The combined plot (Figure 5) shows that the curves do in fact in

tersect at one common point as predicted when one enzyme metabolizes 

both substrates. When this experiment was repeated a third time with 

another forebrain, kinetic plots yielded a similar pattern. 

Table 2 summarizes the kinetic parameters obtained for choline and 

homocholine for all three alternative substrate binding experiments. 

The Vmax for choline acetylation (295 _:: 86 nmol/g wet wt/hr) exceeds 

the V'max for homocholine acetylation (79 _:: 23 nmol/g wet wt/hr) by 

approximately 3.7 fold. The theoretical point of intersection (47 uM 

choline) is similar to the actual point of intersection obtained for 

the three experiments (52 _:: 5 choline). The mean Vmax value for homo

choline acetylation by P4 ChAT obtained using the Cha procedure 

(79 _:: 23 nmol/g wet wt/hr, n=3) closely corresponds to the value ob

tained for homocholine acetylation by the method of Lineweaver and 

Burk (1934) (70 nmol/g wet wt/hr, n=l5). 

Does homocholine serve as a competitive alternative substrate to cho

line for acetylation by soluble ChAT? 

Aliquots of the sodium phosphate buffer wash of the P3 fraction 

were incubated with varying concentrations of choline in the absence 

or presence of fixed homocholine concentrations (2.0, 10.0, 20.0 mM) 

as described in the previous section for P4 ChAT. Again values were 

normalized. The plot of Vmax/v vs. Km/S for the sodium phosphate 

buffer was different (Figure 6) from that obtained for the P4 fraction. 

For example, the correlation coefficients obtained for the least 

squares regression lines do not change with increasing homocholine con

centration and polynomial regression analysis indicates that the 
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points are best fit by straight lines rather than second degree poly

nomials. Regression coefficients increase with increasing homocholine 

concentration and the Vmaxs for choline acetylation do not change with 

increasing homocholine concentration suggestingthat homocholine compe

titively inhibits the binding of choline to soluble ChAT but is not 

being acetylated. 

Ability of ACh and AHCh to inhibit acetylation of choline by solubil

ized and P4 ChAT 

ACh competitively inhibits choline acetylation by ChAT (Kaita and 

Goldberg, 1969; White and Wu, 1973 b,c; Smith and Carroll, 1980). To 

determine if AHCh also inhibits acetylation of choline by soluble and/or 

P4 ChAT, aliquots of the sodium phosphate buffer wash or P4 fraction 

were incubated in the presence or absence of varying concentrations of 

AHCh and compared with similar concentrations of ACh. To insure that 

the added inhibitor did not interfere with the extraction of labelled 

acetylated product into the TPB/3-hept., ACh or AHCh was added to 

some samples following incubation with the buffer substrate. Their re

spective effects on the amounts of acetylated products extracted into 

TPB/3-hept. were determined to be negligible at the inhibitor concen

tration used. 

ACh, as expected, inhibits acetylation of choline by ChAT in the 

sodium phosphate buffer wash and the P4 (Figure 7). AHCh also inhibits 

both soluble and P4 ChAT activity in a dose · dependent manner, and is 

a more potent inhibitor of both enzyme forms than is ACh. Dixon plots 

of ACh inhibition of P4 ChAT and AHCh inhibition of P4 and soluble 

ChAT indicate that inhibition is competitive in all 3 cases, as 
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illustrated in Figures 8, 9, and 10. Plots of l/v of AHCh or ACH con

centrati on for the different concentrations of choline (1.1 and 4.3 mM) 

intersect in tht fourth quadrant, which is consistent with competitive 

inhibition, and yield Kis of 63mM, lOmM, and 200mM, respectively. 



DISCUSSION 

In agreement with the results of others (Burgen et i.!_., 1956; 

Dauterman and Mehrotra, 1963; Currier and Mautner, 1974; Collier et i.!_., 

1977), the choline analog homocholine does not appear to be acetylated 

by soluble ChAT. The ChAT inhibitor NVP (Krell and Goldberg, 1975) 

does not reduce its acetylation at a concentration which reduces cho-

line acetylation by approxi~ately 75%. It does,however, compete with 

choline for binding to soluble ChAT since its presence alters the 

kinetic plots obtained for choline acetylation in a mamersuggestive 

of competitive binding (Cha, 1968). 

Homocholine, like choline, is acetvlated by a form of ChAT which 

is nonionically associated with a fraction of mouse forebrain nerve 

endings that contains both occluded ACh and subcellular organelles 

associated with neuronal membranes (P 4). Acetylation of homocholine 

by this fraction is saturable and inhibited by the ChAT inhibitor NVP. 

Homocholine alters the kinetic plots obtained for P4 ChAT as a func

tion of choline in a manner which suggests that both it and choline 

are acetylated by the same ChAT in the P4 fraction. Choline is a su

perior substrate to homocholine for acetylation by ChAT in the P4 
since the Vmax value obtained for choline by the method of Lineweaver 

and Burk (1934) (295 ! 86 nmol/g wet wt/hr, n=3) exceeds the V'max 

values obtained for homocholine using either the method of Lineweaver 

and Burk (70 nmol/g wet wt/hr, n=l5) or that of Cha (79 + 23 nmol/g 

wet wt/hr, n=3) by almost 4-fold. 
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Several results obtained in the present study and a previous one 

(Smith and Carroll, 1980) indicate that membrane associated ChAT does 

not represent soluble ChAT which has become artificially associated 

with membranes during tissue preparation or soluble ChAT contained in 

nondisrupted synaptosomes. When the P4 fraction is washed with 100 

mM sodium phosphate buffer following sucrose density gradient centri

fugation rather than suspended in distilled water, the ChAT activity 

determined in the washed and unwashed P4 fractions is identical. This 

result indicates that suspension of the P3 fraction in distilled water 

prior to sucrose density gradient centrifugation does not cause sol

uble ChAT to bind ionically to membranes recovered in the P4 fraction. 

Addition of excess acetylcholinesterase during the initial brain homo

genization hydrolyzes at least 90% of the ACh formed by s3 without 

hydrolyzing any ACh formed by the P3 fraction washed twice with 100 mM 

sodium phosphate buffer (pH 7.4) indicating that tissue homogenization 

does not form subcellular organelles which trap cytoplasmic ChAT. NVP 

inhibits the acetylation of homocholine by membrane bound but not sol

uble ChAT, whereas it reduces the acetylation of choline by soluble 

ChAT to a greater extent than it reduces the acetylation of choline by 

membrane bound ChAT. If homocholine were acetylated by soluble ChAT 

contained in nondisrupted synaptosomes associated with the P4 fraction, 

then NVP should inhibit the acetylation of homocholine by soluble 

ChAT to a greater extent than it reduces acetylation of homocholine 

by the P4 fraction and it clearly does not. Homocholine competitively 

inhibits the binding of choline to soluble ChAT but is not itself 

acetylated by this form of the enzyme. Conversely, it competitively 
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inhibits the binding of choline to membrane bound ChAT and is acety-

lated. 

Results presented here appear to differ from those of Boksa and 

Collier (1980) who concluded that homocholine is probably a substrate 

for ChAT based on~ situ evidence, but were unable to demonstrate ap

preciable acetylation of homocholine ~vitro relative to choline. 

Their investigation, in contrast to this experimental protocol, en-

couraged the association of soluble nerve ending ChAT to membranes by 

suspending ruptured synaptosomes in a low osmotic strength medium. 

Then they compared the ability of membrane associated ChAT to acetyl-

ate choline and homocholine and were unable to detect appreciable 

acetylation of homocholine relative to choline. The ability to detect 

acetylation of homocholine by membrane bound ChAT may be due to the 

fact that nerve ending ChAT was separated into soluble (acetylates 

choline but not homocholine, and represents at least 70% of nerve end

; ng ChAT) and membrane bound ChAT ( acetyl ates cha H ne better than homo

chol ine and only represents 15% of nerve ending ChAT). 

Both AHCh and ACh compete with choline for binding to ChAT, as 

illustrated by the Dixon plots. The product AHCh is more potent than 

ACh in inhibiting ChAT solubilized from the P3 fraction and ChAT nom-

ionically associated with the P4 fraction. As Cha et al. (1975) have 

suggested, the larger chain analog may become "wedged" in the cata-

lytic site and act as a more potent inhibitor than the natural end 

product. 
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TABLE l. ABILITY OF NVP TO INHIBIT ACETY~ ATION OF CHOLINE, HOMOCHOLINE AND CARNITINE 

BY ChAT SOLUBILIZED FROM A CRUDE VESICULAR FRACTIONa 

CONTROL 

NVP (4.6 uM) 

CHOLINE 

908 + 114 ( 12 ) 

217 + 46 (12)b 

HOMOCHOLINE CARN I TINE 

78 + 22 (12) 136 + 16 (6) 

65 + 24 (12) 123 + 8 ( 6) 

~;·:C-~ 

aAliquots of subcellular fractions were incubated with either 10 mM choline or 10 mM homocholine, 
or 1.2 mM carnitine for 30 min at 39°C, and amounts of acetylated products determined following 
correction for acetylation of endogenous substrates. Results are expressed as nmol of acetylated 
product formed/g wet wt/hr. 

bResults significantly different from control at P< 0.05 (t -test, unpaired). 

N 
~ 



TABLE 2. KINETIC VALUES FOR THE COMPETITIVE ALTERNATIVE SUBSTRATES OF P4 ChAT, CHOLINE AND HOMOCHOLINEa 

Km (choline) 

(uM) 

EXPT. l 123 

EXPT. 2 144 

EXPT. 3 172 

Mean + S.E.M. 146 + 14 - -
THEORETICAL 

vmax (choline) 

(nmol/g wet wt/hr) 

465 

187 

233 

295 + 86 -

V'max (homocholine) 

(nmol/g wet wt/hr) 

125 

50 

61 

79 + 23 

s 

(uM) 

45 

52 

61 

52 + 5 

47 

aNormalized values from Expt. 1 and Expt. 2 are illustrated in Fig. 3 and 4. In all three experiments, 
the K and Vmax for choline were determined from line A (0 Homocholine). V'max for homocholine was 
calcu~ated from the Y-coordinate of the point of intersection (Vmaxlv = V'max• Cha, 1968). S, the cho
line concentration at which homocholine appears to have no effect, was determined from the X-coordinate 
of the point of intersection (K /S). The theoretical value for S was determined from a plot of the theo-
retical equation m 

Vmax (S) Vmax (S') 
---+----

Km K' m v = ~~~~~~~~~~-

l+ill+~ 
K K1 

m m 
where Km· and V were the means from these three experiments (146 uM and 295 nmol/g wet wt/hr, re-
spectively), aW8xK'm and V'max obtained from Fig. 1 (49 uM and 70 umol/g wet wt/hr, respectively). 

w 
0 
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+ 

{CH3) N-CH2-CH2-CHz-OH 

Figure 1. The structure of choline and the analog homocholine. 
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Figure 2. Lineweaver-Burk plot of homocholne acetylation of P4 ChAT. 

2 ul aliquots of the P4 fraction were incubated at 39° for 

15 min in the presence of varying concentrations of homo

chol ine ranging from 1 x 10-5 M to 1 x 10-2 M. Each point 

represents the average velocity for 15 forebrains (each 

forebrain assayed in duplicate), after correction for acet

ylation of endogenous substrates. The apparent Km and Vmax 

~alues for homocholine acetylation are 49 uM and 70 nmol/g 

wet wt/hr, respectively, as calculated from the least 

squares regression line (Y = 0.00072 x + 0.0147; r = .997). 
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Figure 3. Ability of the ChAT inhibitor NVP to inhibit the acetylation 

of choline and homocholine but not carnitine by the P4 frac

tion. 2 ul aliquots of the P4 fraction were incubated at 

39° for 30 min in the presence of the substrates indicated 

and the effect of NVP (4.6 uM) determined on the formation 

of acetylated products. Amounts of acetylated products 

formed were corrected for acetylation of endogenous sub

strates. ( ) = number of experimental animals. An asterisk 

indicates that NVP treatment differs from contra 1 at P < 0. 05 

(t-test, unpaired). 



100 

~ 7 a.. 
>--
al ..J 

0 za: 
0 I--z ss so 

>-~ I- 0 
UJ-
(..) 
<( 

25 

{IS) (IS) 
IOmM 

CHOLINE 

* 

35 

D CONTROL 

~ 4.6f1M NVP 

* 

(6) (6) (30) (24) 
l.2mM IOmM 

CARNITlNE HOMOCHOUNE 



36 

Figure 4. Ability of homocholine to serve as an alternative substrate 

to choline for acetylation by P4 ChAT . 2 ul aliquots of 

the P4 fraction were incubated at 39° for 15 min with added 

choline concentrations ranging from 20 to 1000 uM and either 

no added homocholine or with one fixed homocholine concen

tration (0.5, 1.0, 5.0, or 10.0 mM). Results from two sep

arate experiments (two forebrains) are included in each plot. 

corresponds to Expt 1 and corresponds to Expt 2; 

see Table 2. Choline concentrations were corrected for 

endogenous choline. Values were normalized by multiplying 

l/v by Vmax for choline and l/S (corrected) by Km for cho

line for each experiment. Least squares regression lines 

(---) for each homocholine concentration are included along 

with the correlation coefficients (r). Curved lines(~) 

through the data points of different kinetic plots were 

drawn independently. In all cases where homocholine was 

present, polynomial regression analysis indicated that a 

second degree polynomial fit the data point better than a 

straight line. 
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Figure 5. Combined kinetic determinations of P4 ChAT activity as a 

function of added choline in the absence and presence of 

fixed homocholine. Superimposing the individual curves 

shown in Fig. 4 results in the curves intersecting at one 

common point, a result interpreted by Cha (1968) to indi

cate that both substrates are metabolized by the same en

zyme. The Y coordinate of the point of intersection is 

3.7, which indicates that the Vmax for P4 ChAT as a function 

of choline exceeds the V'max for P4 ChAT as a function of 

homocholine by 3.7 fold. The X coordinate (2.75) repre

sents the concentration of choline (48.5 uM) at which homo

choline, irrespective of its concentration, has no effect 

on the velocity of the total acetylated products being 

formed (Km= 133.5 uM choline/2.75 = S (48.5 uM choline). 
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Figure 6. Ability of homocholine to competitively inhibit choline 

acetylation by soluble ChAT but not serve as a substrate. 

2 ul aliquots of the sodium phosphate buffer wash of the 

P3 fraction were incubated for 15 min at 39° with vary

ing concentrations of added choline ranging from 50 to 

1200 uM, and in the absence or presence of fixed levels 

of homocholine (2.0, 10.0, 20.0 mM). The least squares 

regression lines and correlation coefficients are as 

follows: 

A (0 homocholine) Y = 1.0007 x + 0.995 

B (2 mM homocholine) Y = 1.350 x + 0.814 

C (10 mM homocholine) Y = 1.470 x + 0.916 

D (20 mM homocholine) Y = 2.024 x + 0.754 

r = 0.94 

r = 0.99 

r = 0.98 

r = 0.99 

Polynomial regression analysis indicated that in all 

cases a straight line fit the data better than a second 

degree polynomial. 
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Figure 7. Ability of ACh and AHCh to inhibit acetylation of choline 

by soluble and P4 ChAT. 2 ul aliquots of sodium phosphate 

buffer wash or the P4 fraction were incubated for 15 min 

at 39° with 1. 1 mM choline and varying concentrations of 

either ACh or AHCh. An asterisk indicates that ACh or 

AHCh treatment differs from control at P< 0.05. 
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Figure 8. Dixon plot of acetylhomocholine inhibition of choline 

acetylation by P4 ChAT. 2 ul aliquots of the P4 frac

tion were incubated for 15 min at 39° in the presence 

of choline (1. 1 or 4.3 mM) and varying concentrations 

of acetylhomocholine. l/v (choline acetylation) is 

plotted as a function of acetylhomocholine concentra

tion. Acetylhomocholine did not interfere with the 

extraction of [ 14c] ACh into TPB/3-hept. at the con-

centrations used here. Intersection in the fourth 

quadrant indicates competitive inhibition; Ki= 63 mM. 
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Figure 9. Dixon plot of acetylhomocholine inhibition of choline 

acetylation by soluble ChAT. 2 ul aliquots of the 

sodium phosphate buffer wash were incubated for 15 min 

at 39° in the presence of choline (1. 1 or 4.3 mM) and 

varying concentrations of acetylhomocholine, l/v 

(choline acetylation) is plotted as a function of 

acetylhomocholine concentration. Acetylhomocholine 

did not interfere with the extraction of [ 14C] ACh into 

TPB/3-hept. at the concentrations used here. Inter

section in the fourth quadrant indicates competitive 

inhibition; Ki = 10 mM. 
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Figure 10. Dixon plot of acetylcholine inhibition of choline acety

lation by P4 ChAT. 2 ul aliquots of the P
4 

fraction 

were incubated for 15 min at 39° in the presence of cho-

line (1. l or 4.3 mM} and varying concentrations of 

acetylcholine. l/v (choline acetylation} is plotted as 

a function of acetylcholine concentration. Acetylcho-

1 ine dicl not interfere with extraction of [ 14c] ACh into 

TPB/3-hept. at the concentrations used here. Intersec-

tion in the fourth quadrant indicates competitive inhi

bition; Ki= 200 mM. 
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