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Topological phase transitions in periodically modulated quantized metal films

Alexander E. Meyerovich1 and Dongmin Chen2
1Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

2The Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142
~Received 30 August 2002; published 5 December 2002!

Electronic topological phase transitions~ETT! are predicted for any quantized metal films with a periodi-
cally modulated boundary commensurate with the bulk lattice. While the thickness of the film at which ETT
occurs is determined almost exclusively by the period of the boundary modulation, the value of the band gaps
and the amplitude of the singularities are proportional to the amplitude of the corrugation. The gaps in the
energy spectrum lead to a strong anisotropy of conductivity. These novel quantum effects can be detected in
measurements of the density of states and conductivity as a function of the film thickness. Experiments that
could lead to these observations are proposed.

DOI: 10.1103/PhysRevB.66.235306 PACS number~s!: 71.30.1h, 73.61.At, 73.63.Hs

Boundary condition is an essential part of a complete de-
scription of a quantum system. Due to the large surface-to-
volume ratio, boundaries are expected to play a much greater
role in determining the overall properties in a nanostructure
than in a bulk material. For example, recent reports have
shown that scanning tunneling microscopy~STM!, a well-
known near-field technique, reveals images and electron en-
ergy spectra that are more strongly correlated to the buried
interfacial lattices under a thin lead~Pb! film supported on
silicon substrates than to the surface immediately beneath the
STM tip.1 These surprising observations clearly indicate that
a small lateral variation along the boundary can have a sig-
nificant long-range effect in a semiballistic electron system.
A more realistic description of a nanoscale quantized system,
therefore, must go beyond the commonly adopted ‘‘perfect
geometric’’ boundary conditions to include boundary corru-
gations. Indeed, theoretical investigations have shown that
random surface roughness of a thin metal film can dominate
incoherent scattering and relaxation, and can lead to anoma-
lous quantum size effect such as large oscillatory dependence
of the in-plane conductivity on the film thickness.2

In this paper, we show that when the inhomogeneities of
the boundary are regular as shown in Fig. 1~a!, electronic
topological phase transition~ETT; see Ref. 3 and references
therein! can occur in any quantized metal film. While the
positions of ETT’s are determined almost exclusively by the
period of the boundary corrugation, the value of the band
gaps and the amplitude of the singularities are proportional
to the amplitude of the corrugation. The gaps in the energy
spectrum lead to a strong anisotropy of conductivity. These
novel quantum effects can be observed in measurements of
the density of states or of the lateral conductivity of the film
as a function of the film thickness.

As it will be clear from our approach and discussion be-
low, the actual implications of our prediction are much
broader than ETT in metal films. Similar changes in~quasi-
!particle spectra should occur as a result of the periodic
modulation of surfaces of any films or ultrathin channels.

Recent technological advances have offered a number of
possible ways for engineering such ultrathin crystalline film
that has a corrugated boundary with a period of just few
times of the bulk lattice and a corrugation amplitude of a few
atom heights. It is by now well established that ultrathin

films grown on either a different metal substrate with large
band offset or a semiconductor substrate exhibit strong quan-
tization and sharp energy spectra~long lifetime!.4 There is
also a collection of experimental results, which shows that
adsorbates, such as oxygen, commonly induce periodic
atomic corrugations on the surface of noble and transition
metals in the form of one-dimensional~1D! gratings or a
two-dimensional~2D! array.5 As illustrated in Fig. 1~b!, com-
bining these two effects, one can engineer a specimen that
could satisfy the ETT requirements. A more interesting alter-
native is to fabricate thin film on a template which contains
the desired periodic corrugation as shown in Fig. 1~c!.

Recent works on thermal treatment of high-index surfaces
of silicon or germanium have yielded a variety of such
templates.6 One of the most striking results is an atomically
accurate Si grating with 5.73 nm period made on a Si~577!
surface.7 These structures are stable under a thin metal film
of material that is suitable for low-temperature molecular
epitaxy. The buried corrugated boundary makes it less am-
biguous when probing the electronic density or conductivity
on top of the flat surface using tools such as STM. With the
improvement of the feature size, lithographic technique
should enable us to engineer boundaries of arbitrary shape
and symmetry in the near future.8

Below we consider quantized metal films with periodi-
cally modulated surface with the period which is larger than
and commensurate with the period of the lattice. A possible
theoretical approach to such a film is to perform an explicit
coordinate transformation that maps a problem of particles in
a film with inhomogeneous walls onto an equivalent problem
with perfect flat walls and perturbed bulk Hamiltonian.9 In
the case of periodic modulation, this bulk perturbation is also
periodic with the same period.@An alternative to this quasi-
classical technique is the ultraquantum approach of Ref. 10,
which is based on the lattice Hamiltonian for a film with few
atomic layers.#

A mere appearance of a new wall-driven period leads to
qualitative changes. The most important one is the resizing
of a Brillouin zone to the wall period instead of the smaller
bulk period. The boundaries of this new, smaller Brillouin
zone can intersect the Fermi surface. This, in turn, should
require the reconstruction of the Fermi surface. This recon-
struction usually results in the change of the topology of the
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Fermi surface such as formation of new loops, formation or
disruption of the necks, etc. The reconstruction can be also
accompanied by the change in the hierarchy of the band
gaps, and can even lead to a metal-dielectric transition if the
new cell contains an even number of electrons.

The most significant modulation-driven changes in the en-
ergy spectra occur, as always, near the cell boundaries and
other degeneracy~Bragg! points near which the changes are
linear in the perturbation and are much larger than the qua-
dratic corrections elsewhere. In metal films, this is crucial
when the Fermi surface is close to the edges of the Brillouin

zone. The significance of the changes depends on compari-
son of the surface-driven perturbation to the scattering-
driven broadening of the spectra and the Fermi surface. Be-
low we analyze the interplay between the quantum size
effect ~QSE! and the electronic topological phase transition
~ETT; see Ref. 3 and references therein!.

Qualitatively, the predicted effects are transparent. QSE in
ultrathin films corresponds to the quantization of motion in
the direction perpendicular to the film,px5p j /L ~here and
below,\51). The Fermi surface of such a film is a set of 2D
curvese(p j /L,qj )5eF , which are produced by cutting the
bulk Fermi surfacee(pF)5eF by the planespx5p j /L (qj is
the Fermi momentum in they-z plane for eachj ). This type
of the Fermi surface is presented schematically in Fig. 2
when the film parameters allow only four values ofpx5
6p/L, 62p/L; and the Fermi surface consists of four
curves.

The sizes of the curvesqj and their number strongly de-
pend on the film thicknessL. With increasingL, the dissect-
ing planespx5p j /L converge towards the planepx50,
making the Fermi curves in Fig. 2 to expand. Also, at certain
values ofL, new Fermi curves are nucleated in the center of
the zone, leading to the changes in the topology of the Fermi
surface and creating singularities in the density of states,
conductivity, ultraviolet spectra, etc. These singularities are
the well-known standard features of the QSE. Periodic
modulation of the film surface results in a quite different
series of the topological transformations.

Periodic modulation leads to the drastic decrease in the
size of the Brillouin zone~dashed lines in Figs. 2 and 3!.
This does not affect much the smaller Fermi curves that fit
inside the ‘‘new’’ Brillouin zone. However, since the new
zone boundaries intersect the bigger Fermi curves, the topol-
ogy of these Fermi curves undergoes dramatic changes. The
corresponding reconstruction of the Fermi curves from Fig. 2
is presented schematically in Fig. 3. This ETT occurs at the

FIG. 1. ~a! Schematic of an ultrathin film with a periodically
corrugated boundary on one side; two ways to make such films are
shown in~b! and~c!. In ~b!, an utlrathin film of metalA is grown on
the metal B, the latter having a large band offset from the former.
Adsorbate on the surface of metalA induces periodic corrugation.
In ~c!, a periodically corrugated surface of a high-index silicon is
used as a template for growing metalA on top. The corrugated
boundary is buried and protected under the metal film.

FIG. 2. Schematic drawing of the Fermi surface for quantized
film when the Fermi energy and the film thickness allow only four
quantized statesj 561,62. Solid borders—bulk Brillouin zone
(2pa8,pa8); dashed lines—surface-driven Brillouin zone
(2pa,pa).

FIG. 3. Schematic drawing of the reconstructed Fermi surface
obtained from Fig. 2 after the periodic modulation of the film sur-
face. Solid borders—bulk ‘‘old’’ Brillouin zone (2pa8,pa8);
dashed lines—new surface-driven Brillouin zone (2pa,pa). The
inner Fermi curve does not change while the outer one undergoes an
obvious topological transition. The separation between parts of the
curve on the zone boundary is determined by the energy gapsdE.
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value of the film thicknessL1, at which the Fermi curve first
touches the Brillouin-zone boundary. With a further increase
in L, the inner~previously unaffected!, Fermi curves expand
and, at a certain valueL2, the second one touches the new
zone boundary and undergoes the ETT, then the next curve,
etc. In contrast to the usual ETT in metals, which can be
observed only if the Fermi surface isaccidentallyvery close
to the zone boundary,3 the above series of ETT’s is inevi-
table, as a function of thickness, inanyquantized metal film
with periodically modulated surfaces. This ETT is best ob-
served as a function ofL in STM or conductivity experi-
ments in films with a modulated buried interface.

The following simplified description assumes that the ini-
tial Fermi surface is ellipsoidal, as in Pb, with two effective
masses,eF5px

2/2m'1q2/2mi . As a result of the size quan-
tization in the ultrathin film,px5p j /L, the Fermi surface
becomes a set of circles,

qj
2~L !52mieF2

mi

m'
S p j

L D 2

. ~1!

Experiments are performed either at constanteF or at con-
stant 2D density of electrons,n2. The link betweeneF and
n2 is

n25
S

2p F2mieF2
mi

6m'
S p

L D 2

@~S/2!11#~S11!G , ~2!

where S(L)52Int@(L/p)A2mieF# is the number of the
Fermi curves.

For simplicity, we assume that the film of the average
thicknessL has one flat wall,x5L/2, and one buried corru-
gated wall,x52L/21F(y,z), whereF(y,z) is a periodic
function with one harmonic in each direction:

F~y,z!52F0Fcos
2py

a
1cos

2pz

a G . ~3!

The derivation below can be easily extended to the situation
where both walls are corrugated with multiple harmonics and
a nonorthogonal basis. The new Brillouin zone is a square,
2p/a<qy ,qz<p/a. ETT occurs when the Fermi circlesqj
touch the new zone boundaries,qj5p/a, i.e., when the film
thicknessL5L j ,

L j5p j S mi

m'
D 1/2F2mieF2

p2

a2 G21/2

. ~4!

There are also auxiliary, less pronounced singularities atqj
5np/a,

L jn5p j S mi

m'
D 1/2F2mieF2n2

p2

a2 G21/2

. ~5!

Thesepositionsof the ETT do not depend on the amplitude
of the surface corrugationF0 and, for good metals, are not
affected much by the lattice potential. The amplitudeF0
determines the band gapsdE, reconstruction of the Fermi
surface, and the magnitude of the experimental signs of ETT.

Our approach to corrugated films is based on the coordi-
nate transformation

X5
L@x2F~y,z!/2#

L2F~y,z!
, ~6!

Y5y,Z5z. This transformation makes the walls flat,X5

6L/2, but changes the particle momenta,p̂→P̂, and as a
result, adds a periodic perturbationV̂ to the bulk Hamil-
tonianĤ5 p̂x

2/2m'1( p̂y
21 p̂z

2)/2mi ,

V̂5
F

m'L
P̂x

21
1

2mi
3 (

i 5y,z
FF i8S X

L
2

1

2D P̂xP̂i1 P̂iF i8

3S X

L
2

1

2D P̂xG . ~7!

@Though there is another periodic perturbation that arises
from the application of the transformation~6! to the bulk
lattice potential, in good metals the contribution from Eq.~7!
is usually stronger.# The corrections to the spectrum away
from the Bragg points are quadratic in the matrix elements of
V̂,

Ejmn5Ejmn
(0) 1 (

j 8,m8,n8

uVj 8m8n8
jmn u2~12d j 8

j dm8
m dn8

n
!

Ejmn
(0) ~q!2Ej 8m8n8

(0)
~q!

, ~8!

Ejmn
(0) ~q!5

1

2m'
S p j

L D 2

1
1

2mi
F S qy2

2pm

a D 2

1S qz2
2pn

a D 2G .
Near the Bragg points,Ejmn

(0) (q)5Ej 8m8n8
(0) (q), the perturba-

tion creates gaps linear inV̂ in the spectrum:

dE~q!52uVjmn
j 8m8n8~q!u. ~9!

Simple calculation yields

Vj 8m8n8
jmn

5
F0d j 8

j

m'L S p j

L D 2

@dn8
n

~dm811
m

1dm821
m

!1~m↔n!#

1
F0~21! j 1 j 8

miL
S 2p

a D 2F j j 8~12d j 8
j

!

j 22 j 82
2

1

4
d j 8

j G
3@dn8

n
~m1m8!~dm821

m
2dm811

m
!1~m↔n!#.

It is clear that there are two very different regimes,L@a and
L!a.

The gaps in spectrum can be classified by comparingj and
j 8 in the degeneracy points. Degeneracy points withj 5 j 8,
n5n8, andm5m861 correspond toqy5p(2m71)/a. The
corrugation-driven energy gaps in these directions are

dE5
2F0

m'L S p j

L D 2U16
m'

8mi
S 2L

ja D 2

~2m61!U. ~10!

Expressions forj 5 j 8, m5m8, and n5n861 are similar.
For the directions for whichj Þ j 8, n5n8, andm5m861,
the gaps are

dE5
2F

miL
S 2p

a D 2 j j 8

u j 22 j 82u
3@dnn8~m1m8!

3~dm,m8212dm,m811!1~m↔n!#. ~11!
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The gapsdE in the electron spectrum are important when
they occur near the Fermi surface,Ejmn

(0) 5Ej 8m8n8
(0) ;eF , and

determine the split between the Fermi curves. Not surpris-
ingly, such special values of the film thicknessL include the
set of values ofL at which one can observe the ETT.

The ETT is described by the distance from the transition,
l j5(L j2L)/L j . The formation of a new Fermi loop is the
second-order phase transition while the formation or disrup-
tion of a neck causes the logarithmic singularities, lnulju.

3

The singularities are smeared to the extent ofdl j
;m'(L j /p j )2/t, wheret is the relaxation time. Since the
film thicknessL in reality is a discrete variable, the depen-
dence of observables on the distance from the transition,l j ,
can be measured if the separation of the transition pointsL j ,
Eq. ~4!, is larger than the lattice constanta8. For this, the
ratio mi /m' should be small and, preferably, close to the
ratio of the bulk and surface periodsa8/a. Otherwise, one
will observe just a set of different reconstructions of the
Fermi surface for films with different numbers of atomic
layers.

The above reconstruction of the Fermi surface and the
new gaps on the Fermi surface are meaningful only ifdE is
larger than the scattering-driven line broadening,dE@1/t,
i.e., if the electron mean free path is larger thana8eF /dE. If
the bulk relaxation is caused by the bulk impurities with
1/t;nia83eF , thendE@1/t if

F0

miL
S 2p

a D 2

,
F0

m'L S p j

a D 2

@ni
1/3AeF /mi, ~12!

whereni is the impurity density. If the relaxation is caused
by the scattering by the surface inhomogeneities2 with 1/t
.8p4l 2(R2/La83)eF , thendE@1/t if

F0

miL
S 2p

a D 2

,
F0

m'L S p j

a D 2

@8p4eF

l 2R2pF
3

L
, ~13!

wherel andR are the average amplitude and correlation ra-
dius ~size! of the random surface inhomogeneities. The
electron-phonon and electron-electron processes in the ultra-
thin films are usually less relevant.

As described above, it is technologically possible to pre-
pare films with, e.g.,F0 /L;0.1, a/a8;5, andL/a8;30.
For such films, depending on the quantum numbers and
mi /m' , the new energy gaps at the Fermi surface are quite
large,dE/eF;1024–1021.

The ETT and the gap formation can be observed in the
density of states, thermodynamics, and transport experi-
ments. In thin films, the grazing electrons with low quantum

numbersj provide a disproportionately large contribution to
the conductivity. Thus, near the pointL5L1, the conductiv-
ity s(l1) exhibits the largest ETT singularity and becomes
highly anisotropic because of the band gaps in certain direc-
tions. The signs of ETT for higherj in s(L) are much less
pronounced. In contrast to this, the transitions at allL j make
comparable singular contributions to the density of states or
thermodynamic functions.

Experimentally, the singularities in the density of states,
and band gaps should be detectable with either a conven-
tional high-resolution photoelectron spectroscopy or scan-
ning tunneling spectroscopy. For the transport property, how-
ever, it entails more special capability, such as multiprobe
STM,11 or specially patented atomically clean
nanoelectrodes.12

In summary, we predict the existence of a series of ETT in
anyquantized metal film with periodically modulated surface
and the appearance of new band gaps near the edges of the
new, modulation-driven, nested Brillouin zone. The ETT’s at
L5L j @Eq. ~4!# lead to the singularities in dependence of the
density of states, thermodynamic functions, transport coeffi-
cients, etc., on the thickness of the film. The valuesL j , at
which the ETT’s are observed, are determined almost exclu-
sively by the period of the corrugation and do not depend@if
one disregards small shifts ofL j , dL j5m'(L j /p j )2dE] on
the amplitude of the surface corrugation. In contrast to this,
the energy gapsdE and the amplitude of the singularities are
proportional to the amplitude of the corrugation. The energy
gaps along certain directions determine the extent of the
splits between parts of the Fermi surface at the edge of the
Brillouin zone and lead to a strong anisotropy of conductiv-
ity near ETT points. These findings could open new ways of
tailoring the properties of ultrathin films by means of bound-
ary engineering.

The issue of the controlled reconstruction of the energy
spectra in ultrathin films by the periodic modulation of the
surface is actually much broader than the issue of ETT. It
opens up a new way for tailoring a material’s electronic
properties simply by controlling its boundary. The periodic
modulation of the surface always causes the reconstruction
of electron, phonon, and magnon spectra in quantized films
and the formation of new energy gaps at the intersections
with the boundaries of the new Brillouin zone. These posi-
tions are controlled by the period of the modulation and the
film thickness. The above calculation method for the width
of the gaps can be easily modified for other broadband sys-
tems.

One of the authors~A.M.! acknowledges support by the
NSF Grant No. DMR-0077266.
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