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ABST!lACT 

The solubility of four sulfonamides in normal alcohols and 

in buffered aqueous system.s was determined at 25°, 30° and 37° 

Centigrade . The solubility pathway for a nonelectrolyte solute 

can b'~ described by a proc e ss ·which follows a two -step sequence: 

solid _ _ l __ ) liquid_~-~ solute 
solute solute in solution. 

T11is p::tdl\va y was assumed ope1·ative for the solute- solvcr:..t systems 

studie d, and ·v.·as Gsed as a basis for the i.1:.terpretalion of the 

( 
thcnnodynamic quantities associated with the dissolution process. 

· He a.ts of solution and their corresponding entropies w·ere evaluated 

by serniJog plots of mole fraction solute concentration Y-_~1· s~s 

recipro cal temperature {deg rees Kelvin) and these solubiliti;c s were 

found to increase with increasing temperah'..re. Quantitat i ve 

deterr.nination of the solute conc e ntrations 'Nas achieved l sing 

spe ctrophotomct.:.- ic analysis and these data were subjected to 

statistical eva luation. 

Partition coefficient data were de t ermined for a pa rticular 

sulfomun id e , sulfadiazine , in an atLen1pt to assess the v<.::.lue of 

the se. quci..ntitic s. AD p2-rLtti ·~Jning cl;:cta were detcr:n ine d in a 

ij 
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con stant temperature envi romnent , and the solute concentration 

of the equilibrated systems was measured using a spe ctrophotornetric 

as say . The partition coefficients 'Nere found to yield a practical 

method of deterrn.ining the ionization constants for poorly soluble 

weak e l ectrolytes . Thes e data were of lin1ited usefulness , 

however , vvith respect to theoretical considerations of soiute-

solvent interactions . 
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INTRODUCTION 

Whereas, strictly speaking, therrnodynamic s deals with 

the macroscopic properties of systems as such, it is not beyond 

the lin1its of extrapolation to cite solutions as 1nolecular systems 

and t hus bring the scrutiny of thern1odynamic interpretation to 

b ear upon their behavior. In the present investigation the 

solubility of four medicinal sulfonamides in normal alcohois 

and buffered aqueous systems was determined. As none l e ctrolyte 

solutes, these compounds were used as models in a thermodyna::nic 

study of the mechanism of molecular interactions , manifested as 

the solubility phenomenon. 

1 
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II 

SULFONAMIDES 

The literature concerning the chemistry and phar!llacology 

of the sulfonamides is abundant; noteworthy revie ws include those 

by Northey (l}, Seyde l (2) and Struller (3) . Bell and Roblin (4 ) 

have described a relationship between the chemical structure and 

the antibacterial activity of these compounds. But of major 

importance to the present study are suifonamide solubilities, of 

which several are cited in the literature (5-12). 11 The solubility 

is of interest with respect to toxicologic (crystalluria) and th e 

pharmaceutical {absorption} properties of sulfonamides" (2). 

Therefore, most of the work published d escribes aqueous, serum. 

and urine solubilities of tl;ie sulfonamides. For example, Bandelin 

and Mc.lesh (7) were concerned primarily with the solubilities of 

several sulfonamides in phosphate buffers and in synthetic urine at 

37°c. The literature revealed no attempt to use sulfonamide 

molecules as nonelectrolyte solutes and then to treat the data from 

a thermodynamic and theoretical point of view. Most of the aqueous 

solubility studies are concerned \Vith relatively cornplex system.s 

becaus e of other dissolved constitn cnts> 21.nd applicati.on of non-

electrolyte solubility theory to these cxistint, data ·.vonl d n ~ sever e ly 

limited. 

2 
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Since partition coefficients are a measure of the solubility 

of sU:lfonamides, these quantities are also of interest to this study. 

Partition coefficients, like solubilities, are important to the 

3 

toxicologic and pharinaceutical properties of sulfonamides (2, 3, 13 - 15) . 

Koizumi collected data (13) on a number of sulfonamides; however, 

his biphasic partitioning syste1ns of water and an immiscible 

o rganic liquid considere~ only four relatively nonpolar solvents. 

Examination of the literature does not give evidence that the 

partition coefficients of sulfonamides have been determined in 

b ipl1asic systems where the organic phase is va.ried, thereby 

allowing an opportunity to study the relationship betw een the 

polarity of the organic liquid and the magnitude of the pa.rtition 

coefficient. 
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III 

NONELECTROLYTE SOLUBILITY THEORY 

The simple interaction at a molecular level bet\vee n a molecule 

fixed in a l attice and a randomly moving rnolecule in lhe condensed 

state l eads t o the phenorn.enon of solubility. This phenomenon is one 

o f the most challenging and perhaps one of the l east understood of a ll 

physical-che1nical process es . Unfortunately, quantification of the 

n1a gnitudes d ealing with thi s process have not, as yet, been put f orth. 

In addition , a rational e xpl andti on of solubility depends largely upon 

the i ntuitive ability of the investigator to interpret and explain ob -

s erved results using the discipline s of thennodynamics and quantum 

chemistry. J. H. Hildebrand, whose work has contributed s i gnifi 

cantly to thi s area based his predictive and i nterpretive equations on 

thermodynamic quantities (1). At the same time, the quantum. app1· oa ch 

ha s a unique appeal because it establishes a basis for understanding 

solubility implications at the molecular l evel. 

The development of predictive equations in solubility research has 

b een harn.pered by a lack of mechanistic understanding . I ndeed , the 

adage that "like dissolves like" is not an oversimplification 0£ the cur -

rent knowl edge , especially with regard to predicting the magnitude of 

solubiljty for any given sy stem . Only rar e ly is it possible to predict 

solubilit~r expectations \Vi th any degree of success . Ho 1.-vevc r , 

4 
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problems will probably be alleviated as more is learned about the 

structural state of solid and liquid materials. Even no w , research 

continues (2) to explain the structural state of water, the most im

portant liquid known. 

5 

Scott and Fenby (3), commenting recently on solubility research, 

stated "Any complete understanding of m .ixtures must await the solu

tion of two problems: (a) the quantum mechanical problern of the 

intermolecula r potential energy-; and (b) the statistical m e chanical 

problem of the equation of state of a dense fluid. To date, only very 

approximate treatments (or intractable formalisms) exist, but they 

suffice to yield much qualitative under standing of Equid solulionso 

Indeed, at times it has seemed that theories of solutions can be rnuch 

more successful than one v:ould expect from the approximations a bout 

intermolecular potential energy functiuns and liquid properties or 

structure upon which they are based; conversely, it follow s th2.t the 

empirical success of solution theories cannot always be adduced as 

support for the liquid models from which they are derived. 11 From. 

this statement, it would see1n that the solubility investigator must 

either contribute toward the solution of the two problems mentioned 

or continue t o base solubility understanding on approximations. The 

latter path\vay is still more practical and is quite legitimate if the 

lirnitations of t he ;:,.pp:coxirrtations are recognized. Indeed, many 

phy sical-chemicaj processes are studied in this manner , because the 
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exact equations are either too difficult to handle or are unknown; 

moreover, as Scott and Fenby have observed, the inexact sol'.ltion 

can lead tc a qua litative understanding. 

The first step toward an explanation of solubility is a definition 

of the solution. process. According to Higuchi (4), 11 The solubility of 

a substance in a given solvent is usually defined as the concentration 

of the solute in solution which is in equilibrium w ith the solute 

phase. 11 This definition may be expressed as 

solute particles ( kl > solute par'ticles 
k2 

(solute phase) (solution phas e ) 

(1) 

where kl = k2 x concentration of solute in the saturated solution. 

The equilibrium constant, K , relating kl and k2 i!: 

K = kl/k2 (2}. 

From equation 1, it will be observed that solubility is a dynamic and 

reversible condition involving kl, the rate of solution, and k2, the 

rate at which the solute is transferred to its original state. The 

equilibrium constant is a quantitative indication of all prevailing 

molecular interplays and forces involved in the dissolution proc ess . 

If the reaction in equation 1 proceeds to the right, i.e. , for 

solubility to be favored, it is necc s sary that intern1olecular inte r- · 

actions exist between the solute and solvent. The nature and mag -

nitude of these interactions will ultimately determine the magnitude 

of K. Higuchi (5) confirms that solubility is an interaction process, 
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stating, "Although, for example, various theories and hypothe ses 

have been proposed in the area of solubility behavior of nonelectrolytes 

the most pharmaceutically useful approach appears to be that based on 

the concept that such solutions represent surn.mation of effects arising 

from interactions of _a large number of equilibrium systems. 11 

The interactions involved when a solute is dissolved are quite 

complex, because they include not only the solvent-solute interactions, 

but the attractive forces between the solvent-solvent and solute-solute 

molecules as well. Repulsive forces must al:so be considered, be

cause there would be molecular annihilation if the molecules were 

mutually attracted to the e x tent that interpenetration existed (6). 

Schueler (7) suggests that the repulsive forces act as an interna l 

barrier to the closeness of molecules, whereas cohesive forces pre

vent the dissipation of molecules from their present state. 

Molecular Forces - Ketelaar (8) has listed sever a l of the most impor

tant forces which act between molecules as: (a) dipole -dipole, orien

tation effect or Keesom force, (b) dipole-induced dipole, ind"t;.ction 

or Debye force, (c) induced dipole -induced dipole, dispersion effect 

or London force and {d) hydrogen bonding. 

The dipole-dipole or Keesom force occurs between molecules 

that have permanent dipoles. Int e raction exists when the molecules 

align them.selves such that the nega::ive pole of one is attracted to the 
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positive pole of the next. A negative interaction or repulsion occurs 

when the arrangement is such that like poles are oriented. Theoretical 

consideration of the Keesom force (9) suggests that the interaction will 

decrease with increasing intermolecular distance and with tempera

ture. The distance factor is to the sixth power and its reciprocal 

relationship with the Keesom interaction indicates that a small change 

in distance will drastically reduce the magnitude of the attrc:ctive 

force. This means that the intermolecular force will only be consider

a ble when the distance between molecules is relatively small. 

D ipole-induced dipole interactions arise because molecules with 

a pern1anent dipole have the ability to induce a dipole in a nearby non

polar molecule . An example of this type of interaction occurs whe n 

alcohol, which has a pcr~anent dipole, is mixed with benzene. The 

apparent importance of this interaction is that it offers an explanation . 

for the miscibility or solubility of molecules with unlike electrical 

p roperties . Although De bye forces are relatetl to distance in the same 

way as Keesom interactions , they are not theoretically related to 

temperature (9). 

Dispersion forc e s , of considerable importance for molecules 

that have no perrnanent dipole moment, are the weak electrostatic 

forces responsible for the liquid state of many nonpolar molecules . 

Conceptually, the dispersion force is recognized to be the result of 

molecules inducing a \.Veak electrostatic attraction not c,·mditioned by 
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the presence of a pennane nt dipole. The magnitude of this force, as 

mentioned above, is sufficient in inany cases to maintain the liquid 

state at room temperature. Like the other interactions, the attraction 

falls off w ith distance, but in this case it is not temperature related. 

The hydrogen bond or bridge has been given considerable 

attention recently (5) and may be thought of as a special case of a 

dipole -dipole interaction because of its electrostatic nature. As the 

name implies, the bond or attractive force exists between hydrogen 

and an electronegative atom such as oxygen. Perhaps the best ex

ample of hydrogen bonding is between water molecules, where the 

oxygen has a partial negative charge and hydrogen has a partial 

positive charge . These unlike charges provide for an electrostatic 

attraction and hence the hydrogen bond. 

Hydrogen bonding in systems of miscible liquids such as water 

and ethanol has been discussed by Bobtelsky (10), who suggests that 

the water -alcohol interaction results in a inolecular arranger.nent 

somewhat akin to a polymer. If one considers this type of arrange -

ment for certain liquids to be reasonable, then it follows that hydrogen 

bonded liquids are to some extent structured like materials in the solid 

state . Bailey (11) confirms the opinion that a considerable degree of 

order does exist in these liquids. He tempers the analogy between liquids 

and soHd s , howeve r, by pointing out that the order in the liqu~d structure 
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does not extend over any great distance, while an orde red arrange

ment usually prevails throughout each crystal of a solid crystalline 

substance. In other words, the ordering associated with hydrogen 

bonding is a short rather than a long range force. The structuring ·of 

water is significant because x-ray investigations have shown that the 

structur e of liquid water is much more like that of ice than of the 

vapor state. In fact, the liquid state exhibits to a considerable e x 

tent the tetrahedral structure found in ice (12), Any structuring whic!1 

does occur is said to be due to cybotactic groups (which promote hyd

rogen bonding), cornposed of microcrystalline aggregates consisting of 

many molecules within the bulk of otherwise randomly ordered 

molecules (11). 

The hydr cgen bond is of special signi ficance with respect to 

solubility. In systems of pharmaceutical interest, ~, benzoic acid 

in ethanol, where both the solute and solvent can fonn the hydrogen 

bridge , the magnitude of solubility is certainly expected to be enhanced. 

On the other hand, a solute which cannot form hydrogen bonds can be 

expected to be literally "squeezed oat" by a structured liquid soivcnt. 

It should not be implied that the interaction for any p a rticular 

molecula r systern can be attributed to a single force. Any or all of 

th e forc es discussed may be involved , and the magnitude of contribution 

is unique depending on the propeYties of t he molecules. The cohesive 

force s of one solvent, \vater,- for example, are the summation o f the 
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Keesom, Debye and London interactions. 

Although the interaction forc e s which pr evail in the solution 

process have been shown to be significant, they are, ho\veve :::-, only a 

part of an explanation of solubility. Higuchi (13) emphasizes tha t the 

magnitude of the solute-solvent interactions does not totally determine 

the solubility, but that solubility is rather a sununation of many and 

various factors involved in equation 1. Moreover, the Hildebrand 

treatment of nonelectrolyte solubility recognizes the intermolecular 

interactions as a primary step in the understanding of solubility (1); 

but the next step in the Hilde brand fabric of development is the 

selection of Raoult 1s Law as a standard sta te on which to bas e both 

qualitative and ouantitative formulas. 

Raoult' s Law - Raoult 1 s Law, with applications to solubility, provides 

a standard condition and p e rmits interpretation of pcrturbationti from 

a defined ideal state. The formulas expressing Rao ult 1 s L aw are ( 14) 

pa = pa 
0 xa and pb = pb 

0
xb (3) 

where pa and pb are the partial vapo r pressures of components a and b~ 

0 0 
pa and pb are the va:_Jor pressu:res of components a and b, and Xis 

the mole fraction concen tr ation of the component . If pa and pb are 

entirely additive, the total pressure, P, b ecornes 

P =pa+ pb or P = pa
0 xa + pb

0
Xb ( 4). 
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If the systerr1 ren1ains slrictly additjve, the attraction of rnolecules 

a and b for each other are the same as the a-a and b-b attractions of 

the pure species. Thus, equation 4 now becomes fundamental to a 

d efinition of IDEAL solution behavior. 

S y steins which do not adhere to Raoult' s Law are known as 

R EAL solutions , and two types of deviations are recognized. When 

the a-b attractions are greater than the a-a or b-b interaclionsQ the 

vapor pressure of the sol ution is l ess than tha.t predicted by Raoult ' s 

L aw, and a negative deviation occurs. When the a-b interaction is less 

than that predicted by Raoult 1 s Law, the vapor pressure is larger than 

expected, and a positive deviation is said to occur. 

T he Ideal Solubility Equation - The formula for the ideal solubility of 

a n onelectrol yte solute , X2 , is (15 ) 

l n X2 = (-Hf / R ) L (Tn1 - T ) / Tm T_j (5 ) 

where X2 is the mol e fraction solubility of the solute , Hf in cal ories / 

m.ole is the heat of fusion of the solute , Tm. is the absolute melting 

p o i nt of the solute and T is the absolute temperature of the syste1n , 

a nd R is 1. 987 calories / degree mole. Equation 5 suggests several 

i nteresting fac ts : a ) the solubility of the solute is independent of the 

solvenl, b) a low heat of fusion enhances solubility and c) a lo\' ... · n1elting 

point tem.peratu:-c incr eases solubility. The heat of fusion is a rcgulat-

ing qu~ntity in the equation; its effect on the equation leads to the 
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m.elting of the solid solute to a liquid form. By definition (16), the 

h eat of fusion is the heat taken up by one mole of a solid when it inelts 

without temperature change. Therefore, under c,onditions of ideal 

solubility, there is no particular distinction between the processes of 

melting and solution. Bailey ( 17) points out that the tenn 111nelting" 

might be applied only to a pure substance, whereas "solution" should 

refer to a multico1nponent system; but this distinction, despite its 

logic, is not usually recognized. More important is the fact that solu- · 

tion as a melting process is a much better foundation for solution theory 

than are older ideas which thought of the solvent simply as a 1nedium in 

which the solute could be sufficiently dispersed to approximate the state 

of a gas. 

Equation 5 is also in1portant from a thermodynamic point of view 

b ecause it implies: a) the molecules of an ideal solution exhibit com-

plete freedom of rnotion and randomness of distribution in solution) 

b) there is no change in heat content during the mixing process, and 

c) the volmne of the solute does not change during the mixing process. 

These implications also mean that Raoult's Law· is obeyed with respect 

t o the resultant interactions. 

Martin (18) has given quantitative interpretations 0£ the above in-

for mation. The free energy changea for an ideal solution i s 

F = F.T lnX2 (6) 

aAll thc rm.odynarnic functions discu ssed refer to d elta quanti~ics. 
The delta syrnhol bas been o.rnittecl for brevity. 



14 

The symbols have been previously defined. Following the argmnent 

above , the heat change is zero , so that 

F =-TS (7 ). 

The entropy of inixing, S, of the ideal solution now becomes 

S = - F / T = -.R l nX 2 (8) 

and the quantity -R lnX2 is known as the e n tropy of mixingo 

The h eat of fusion in equation 5 must b e constant when the for -

rnula is given in this fonn. This n1eans that the differenc e between 

the heat capacities~ Cp, of the liqu i d and solid solute are zer o, which 

is not true for most , if not a ll, none l ectrol yte solutes. In definitive 

t ern-is, Cp is the ainount of heat needed to r aise the temperature of a 

syste1n one d egree. T he correction for Cp, g iven by Hildebrand (15) 

is 

ln X2 :: (-Hf / R) L (Tm - T) / Tm T_j + (C p/R) x 

L (Tm - T)/T_j - (Cp/R) Lln (Trn /T)_/ (9) 

where Hf i s now the heat of fusion of the pure solute at its absol ute 

melting point. O rdinarily equation 5 is used for solubility calcul ations 

r ather than equation 9 b ecause , first, Cp for rnany solutes is not known 

and, s econd , the uncorrected fonn of the formulat perhaps because of 

a cance lling of errors , offers a very good approximation. 

It i s important to te s t equation 5 for a real solute in order to 

verify the solution process in terms of inelting of the solute 0 From 
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the data presented by Martin (19), the heat of fusion for. naphthalene is 

4500 calories per mole and the melting point temperature is 353° 

Kelvin. The calculated mole fraction at 20°Centigrade is 0. 27, a 

value correlating very well with the data of Scatchard (20), who found 

that the experimental mole fraction solubility at 20° Centigrade was 

O. 24 in benzene, O. 23 in toluene and 0. 21 in carbon tetrachloride. 

The naphthalene calculation gives creden~.e to the theo:ry ex-

pressed by equation 5; but there is, unfortunately, a limit to its 

usefulness . One of the most important contributions tel. the theory 

of nonelectrolyte solubility has been proposed by Hilde brand and 

Scott (21), who investigated the solubility of iodine in many solvent 

systems (22). They recognized the thermodynamic implications 

regarding systems that d"eviated £ro1n the ideal and developed a _special 

type of deviation which came to be known as a REGULAR solutior.. 

The Regular Solution Equation - Hildebrand and Scott developed regular 

solution theory by correcting equation 5 or 9 to account for the deviations 

from the calculated quantity X2 (15). Their first step was to redefine X2 

as X2i, i_~, X2ideal. Then, X2i was corrected for deviation from ideal 

solution behavior by introducing an activity coefficient of the solute , z, 
X2i = X2Z (10) 0 

In logarithrn ic form, equation 10 becorne s 

log X2i = log X2 + lo g Z. (lJ.). 

Equation 5 may now be rev.rritten as 

- log X2 = (Hf/R)L (Tm - T}/TmT_/ +lo~ Z ( 12). 
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Equation 12 now accounts for deviate b ehavior, but it is the 

quantity Z and the concept behind it that emerges as significant. It 

is logical to assuine that, when two species are mi..xed , deviations 

under certain boundary conditions are at least partially due to 

c hanges in heat content or entropy. As early as 1906, van Laar (23 ) 

derived theoretical equations that yielded qualitative agreement only . 

A much b e tter theory, and one still accepted, was develope d by 

Scatchard (24). Hildebrand and Scott (2 5) discuss Scatcha rd 1 s work 

as it is based on these assumptions: a) the rn.utual energy of two 

inolccul es depends o n ly upon the distance between them and their 

r elative orientation, and not at all on the nature of the o the r mole

cules b etween or around them or on temperature, b) th e distribution 

of the molecules in position and in orientation is random and c) the 

change in volume on mixing at constant pressure is zero . From 

these as snmptions, Scatchard deduced the energy of mix ing for a 

bicomponent syste1n to be 

E m= (XlVl + X2V2)(cll t c22 - 2cl2)0H~2 ( 13). 

With reference to equation 13, ell, c22 and cl2 arc energetic 

quantities related to the int e ractions inv olved for the p~re cor.nponents 

e ll and c22 and the resultant int e racted species cl2. Vis the molar 

volrnne of the pure solute as a supercooled liquid, defin ed as the 

mole cular we ight divided by its density. The volun1e fraction t enn, ~, 

for spe cies 1 is (Xl Vl)/(X lVl t X2V2 ); it is the same for species 2, 
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except (X2V2} is the munerator. According to the assumption made 

by Scatchard, that there i s no volume change at constant pressure, 

the value for V will remain unchanged after inixing. Scatchard also 

asswned that 

cl2 = (cllc22)l/Z ( 14). 

Under the condition of equation 14, the value for the c quantities 

simplifies to 

Al2 =I (cl1) 1 / 2 - (c2Z) 112]
2 

( 15) 

and equation 13 then becomes 

Em= (XlVl + XZV2)Al201~2 ( 16 ). 

The manipulations leading to equation 16 are far more than a 

mere mathern.atical sirr1plification procedure. The equality in 

equation 14 is known as the geometric mean asswnption and is em-

bodied as part of the regular solution theory. That is , the interactions 

which result to yi e ld cl2 must be related to the component parts of 

equation 14; otherwise$ the solution by definition is not regular. 

For a solid nonelectrolyte solute in a solvent, the quantities in 

equation 16 are related to the change in heat content on mixing , Hm, by 

Hm = V20~ / (c11)
1

/
2 

- · (c22) 1 / 2J 2 
( 17} 

or Hm=RTh1Z ( 18). 

Now, the value for Z in equation 12 assumes d e.[iriition and indeed is 

related to the heat content change when rnixjng occurs. 
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One of the most corn.rnon means of evaluating ell and c22 is by 

(26) 

c 112 = L (Hv RT)/V_j l/ 2 = S. P. ( 19) 

where Hv is the heat of vaporization at temperature T and S. P. is the 

solubility parameter.- In this formula, Hv is the energy necessary for 

one mole of a substance to change fro1n the liquid to vapor state, at 

its boiling point, and in terms of intermolecular interactions, a sub-

stance with 2. large affinity for itself will have a large Hv value. The 

molar volume, V, in the denon1.inator modifies the heat of vaporization 

with respect to molecular volume . The quantity RT appears in equation 

19 as an approximation of the energy nee es sary to displace the air 

against atrnospheric pressure during the vaporization process (27). 

The value for (Hv - RT) is actually an approximation of a quantity 

known as the cohesive energy; and the solubility parameter is the 

square root of the cohesive energy density (26). In regular solution 

theory, the solubility parameter is a measure of the internal pressure of 

the pure substance, either solute or solvent, and is useful in predicting 

the miscibility or solubility of the solute. From a thermodynamic point 

of view' the solution process will be enhanced as the difference between 

th e interna l pressures of the co1nponents approaches zero and the en

thalpy change is n e gligible. Schue ler (7) d evised a relative scale of 

internal pressures based on napthale ne as l.;00: hexane, representing 
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a nonpolar liquid, has a value of O. 56, and water on this scale is 

4. 55. These figures indicate that water has an inte rnal pressure 

eight times greater than that of hexane; further, water would not 

be expected to mix with hexane because of the powerful interactions 

existing in the polar liquid. This may be considered a theoretical 

justification for the "like dissolves like" concept. 

If the activity coefficient , Z, is introduced into equation 12, it 

may then be rewritten in its final and most common form 

- - 2 2 
-ln X2 = {Hf/R)j_ {Tm-T)/TmT_j + {V2~l /RT){S. P. 1-S. P. 2) {20), 

where S. P. 1 and S. P. 2 are arbitrarily taken as the solubility para-

meters of the solute and solvent, respectively. When S. P. 1 and S. P. 2 

are equal, the second term in equation 20 reduces to zero and IDEAL 

solution behavior is exhibited . However, if the difference between the 

solubility parameters is not zero, then under the assumption of 

Scatchard, REGULAR solution behavior is manifest and the deviation 

from Raoult' s Law is a positive one . It should be noticed from equation 

20 that the square of the difference between the solubility parameters is 

always positive; hence, the calculated solubility for a regular solution 

is less than that calculated for an. idea l one . 

Of r ecent interes t is the molar volwne , V2, which for a r egular 

solution must remain constant. Hence , this quantity b eco1nes an 5.m-

portant indicator of regular solufron theory. 
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Glew (28) and Shinoda (29) have studied the molar volmnes of iodine 

i n several solvents and shown that VZ rernains constant under the 

assumption of regular solution behavior. 

Another quantity known as the heat of solution is a lso helpful 

in interpreting nonelectrolyte solubility behavior. A discussion of 

thi s quantity is presented in the following section. 
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THE USE OF HEATS OF. SOLUTION 

AS AN AID IN CHARACTERIZING 

NON-ELECTROLYTE SOLUBILITY BEHAVIOR 

( 
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One of the fundamental relationships in non-electrolyte solubility 

b ehavior is that of the temperature effect on the magnitude of soJ.ubi lity . 

Quantification of this . effect is embodied in the heat of so lution equation, 

which takes into account the mole fraction solubility for a solute , tem 

p erature and the enthalpy and entropy associat e d with the process . 

An attempt is made to interpret the physical meaning of the enthalpy, 

.!:_~ , t he heat of solution, and its corresponding entropy, as solubility 

v aries w ith te1nperq..ture , and to relate these quantities to certain 

types of non-electroJyte. solubility behavior . 
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INTRODUCTION 

The solution process may be viewed as one which occurs in 

two steps (1 }: 

solid 
solute 

(1) 
Hf 
--} 

liquid 
solute 

(2} 
x 

) 
solute in 
solution. 

As the solid solute proceeds through step one to the liquid state, the 

enthalpy change is the heat of fusion, Hf . If the solution is "ideal, 11 

the enthalpy of the second step is zero. The :requirements for an 

ideal solution are: 1) Raoult's Law is obeyed; 2) there is no volume 

change at constant pressure; and 3) the magnitude of solubility is 

essentially independent of the solvent. When a solid solute passes to 

a liquid state and then into solution, its behavior is said to be "non-ideal" 

if the enthalpy of the second step is not zero and if the other requi re-

ments for an ideal solution are not met. Under conditions where both 

steps one and t w o are operative, the total enthalpy for the process is 

commonly expressed as the heat of solution~ Hs, whe re 

Hs = Hf + X ( 1). 

In this solubility pathway, X reflects the _enthalpy involved in the 

transfer of the solute from the liquid to the solution phase. As the X 

term approaches zero, the heat of solution and the heat of fusion 

approach equality. 

aThe heat of solution r efe rred to is also known as the differential 
heal of solution and is defined as the heat produced per ri10 le of 
the added solute if a sm.all amount of solute is add e d to a given 
solution such that its conc cnt rafion is not apprccia bly affected 
(re ference 7). 
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In quantitative notation: the heat of solution is related to the 

correspon<ling standard free energy change, F
0

, corr esponding en-

tropy change , S, and ternperature (Kelv in), T, by (2) 

F 0 = Hs - TS (2 ). 
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The logaritlun of the mole fraction solubility, Xz, may also be equated 

to the standard free energy change, where 

F 0 = -RTlnX2 (3 ) 

and R is 1. 987 calories / mole degree. Then, 

F o = -RTlnXz = .Hs - TS (4 ) 

and 

l n Xz = -.Hs / RT + S / R ( 5 ). 

Therefore, a plot of lnXz versus l/T shodd yield a straight line \.vith 

a s l ope of -.Hs/R and y-int_ercept of S/R. The slope of the line gives 

Hs / R directly under the assumption that Henry 1 s Law is obeyed when 

the concentration of the solute component of the solution is low . Be

c ause Hs and S are actually temperature dependent, they r emain constant 

only within constrained temperature limitations (3). Furthe r , the 

entropy is an extrapolated quantity and only relates to the process as 

i t o ccurs between Tl and T2. 

In addition to its practica l use of allowing the calculation of 

solubilities at different temperatures, equation 5 should assume 

theoretical i1npo1·tance regarding non-elect.i.·olyte behavior. 
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RESULTS AND DISCUSSION 

Hildebrand (4) has classified non-electrolyte solubility behavior. 

The various classifications together with the enthalpies and entropies 

of mixing are shown in Table I. 

TABLE I 

CLASSIFICATION OF SOLUTION BEHAVIORa 

Designation 

Athermal, ideal 

Regular 

One component 
associated 

Solvated 

Heat of Mixingb 
(Enthalpy) 

0 

+ 

+ 

aJ. Hildebrand, Chemical Reviews, 44, 37 (1949) 

EntroE_Y of Mixin~ 

-R ln x2 

-R ln X2 

> -R ln Xz 

< -R ln Xz 

bThese quantities are distinct from the heat, or enthalpy, of 
solution and its corresponding entropy. 
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An ideal solution is one in which the heat of mixing is zero, the 

entropy of mixing is ·-R ln X2, and Raoult' s Law is obeyed . Therefore, 

the solubility of the non-electrolyte solute is a function of its enthalpy 

of fusion, Hf, and its melting point temperature, Tm. The equation 

relating the mole fraction solubility to these quantities is (5) 

ln X 2i = -Hf/RT + Hf/RTm ( 6). 

Equations 5 and 6 are of the same form so that, if the system is ideal, 

a plot of ln Xzi versus 1 /T should yield a straight line with a slope of 

-Hf/R and a y-intercept of Hf/RTm. The y-intercept is equivalent to 

the entropy of fusion, Sf, because of the relationship 

Sf = Hf /Tm (7). 

for a reversible process. Hildebrand (5) has pointed out that Hf is 

constant only over b::.·oa.d temperature ranges , under the assumption 

that the difference between the mola l heat capacities of the liquid and 

solid solute are zero. Since this is unlikely, Hf at temperature T and 

Hf at tempe r ature Tm are not expected to be equal. However, the 

molal h eat capacity quantities are often not known and even if known, 

they may not be constant with temperature . Thus, equation 6 in its 

present form will be used for s ubsequent calcula tions. 
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A regular solution differs from an ideal one in that the heat of 

mixing is positive. This simply means that heat is absorbed when 

the components are mixed. The equation for this process as given 

by Martin (6) is 

-ln X2 =Hf/RT I (Tm - T)/Tm _/ + ln Z (8). 

The term Z is the activity coefficient of the solute and is related to 

X ,;i and X~ by 

Xzi = (Xz}{Z) ( 9). 

The heat o ~ mixing, Hm, is also related to the activity coefficient 

for a regular solution, where 

Hm =RT ln Z (10). 

Thus , equation 8 may be rewritten as 

-ln x2 =Hf/RT L (Tm - T)/Trn _/ + Hm/RT (ll) . 

or 

-ln X
2 

= (Hf/RT) - (Hf/RTm) + (Hm/RT) (12). 

Substitu tion of Hf/Tm from equation 7 yields 

ln XL= -(Hf + Hm)/RT + S f/R (13). 

which again has the same general form of equation 5. From 

equation 13, it will be noted that the enthalpy for a regulc..r solut ion 

is the sum of the heat of fusion and the heat of mi,xing. Therefore, 

th e heat o : solution is equal to the heat of fusion plus the heat of 

mixing and the e x cess enthalpy term, X, in equa tiio n l is the h e at of 

mixing. 
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Comparison of equations 6 and 13 reveals that the entropy for an ideal 

( solution and for a regular one are theoretically equal. Again, however, 

entropy is an extrapolated quantity and may differ from theoretical 

values because the actual solubilities are measured at temperatures 

substantially different from Tm. 

The heat of mixing term given in equation 13 is also equal to (6) 

2 2 
Hm = V2r/JI (S. P. l - S.P.2) ( 14}. 

where V2 is the molar volume of the supercooled' liquid solute, ~I is 

the volume fraction of the solvent and S. P, I and S. P. 2 are the solubility 

parameters of the solute and solvent, respectively. 

Equation 13 implies a linear relation between In Xz and l /T but 

ther e are three factors not readily· apparent that n1ay lead to deviations 

from linearity. First, the volume fraction term, r/J, changes with 

changing s·olubility. This should not lead to large discrepencies; however, 

because the volu...nie fraction is nearly unity for dilute solutions. Second, 

and more serious, equation 13 does not recognize changes of volume on 

mixing. To correct for this possibility, the partial molal volmne of the 

solute should be measured, For purposes of this paper, however, 

equation 13 will not be corrected for volume changes on mixing unde r the 

assumption that strict re gularity is maintained. Third, the solubility 

parameters are t emperature dependent quantitie s (6): 

S. P. = / (Hv - RT)/V _j- 1 / 2 ( 15). 

where Hv is the heat of vaporization, and V is the molar volume of the 

pure spe cies . If the solubilities are measured over a limit e d tempera.lure 
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range, this deviation should not be a serious one. 

The third and fourth classification s in Table I are in agreement 

with the general heat of solut ion equation (equation 5), but not with the 

ideal or regular solution expressions . That is, when a system is 

associated or solvated, the excess enthalpy is not directly related to 

the heat of mixing through the activity coefficient, a!ld the entropy is 

quite likely unequal to the entropy of fusion. Ho_,'.veve r, the gene ral 

form of equation 1 is applicable to relate the heat of solution to the 

heat of fusion and to the corresponding excess enthalpy. In the case 

of association, the heat of mixing remains positive as for regular 

solution; but the entropy of mixing is unequal to -R ln Xz and the 

y-intercept is not necessarily Sf/R. The same is true for solvated 

systems , except in this case the heat of mixing is negative. For 

association, the heat of solution is generally larger than that calculated 

by the regular solution equation. For solvation, the heat of solution is 

usually smaller than predicted. 

From the previous discussion, it can be seen that the heat of 

solution and the corresponding entropy may be valuable in d e termining 

whether the s o lution is i d.ca l, re gnlar, associated ox solvated . Higuchi (7) 

has pointed out tha!: the hea t of solution is a valuab l e quantity because its 

magnitud e may intuitively sugges t information pertaining to the solution 

proce&s, tha.t is, the interact ion between the solute an<l sc,lve nt. 
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Higuchi's general expression relating solution behavior and the heat 

of solution is (7) 

Hs = H 1 2 
' 

( 16) 

where H l, 1 is the molar heat of vaporization of the solvent, H 2 , 2 is 

the molar heat of vaporization of the solute and H 1 2 is an energy , 

term involving the magnitude of the interaction between the solute and 

solvent. Equati on 16 shows that a large negative number for Hs means 

that a relatively small interaction has occurred and that the solubility 

is limited. According to this scheme, it appears that Hs is generally 

negative for non-electrolyte solubility systems. Actually, the slope 

of the line, Hs /R, relating ln Xz and 1 /T is negative but the enthalpy 

quantity itself, by convention, is ·positive if the process is endothermic (8). 

( A value for Hs which approa ches zero suggests high solubilities, or in 

the case of two liquids sucfi as toluene and benzene, such a value sug-

gests that complete miscibility occurs with no heat produced or absorbed. 

Mortimer (9) has recognized and discussed the fact that the heat of solu-

tion indicates the relative magnitude of interaction for a non-electrolyte 

and its adherence or deviation from the ideal solubility equation, 

Belleau (10) has pointed out that the free energy change for a 

particula r process is depe ndent on both the corresponding enthalpy and 

entropy . . Further, the entropy term changes in sign and magnitude to 

compe ns a te for changes in enthalpy. T he heat of solution for non-

. . 
electrolyte solubility is a lmost always positive, indicatin g an endothe r-

mic proc ess; and the entropy rnay be positive o r n egative . This• lead s 
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t o two possibilities : 

a) enthalpy +, entropy + 

b) enthalpy +, entropy -

In the first case, the enthalpy term_ predominates at l ower tempera 

tur es and the mole fraction solubility will be less than one. The 

s e cond case allows for increasing solubility with increasing tempera

ture , but the standard free energy will always re1nain a positive 

value (11) . 

The entropy t enn associated with the heat of solution is related 

to the extent of disorganization in the system and becomes more negative 

as or ganization, r e lative to the initial state , beco1nes manifest. As 

suggested previ ous ly, the entropy for a regular solution is approxirnately 

Sf. For solvated systems where solute-so lvent i nteractions are relatively 

large, the entropy i s usually a smaller positive number , indicating a 

d e crease in the nwnber of independent mole cules . Associated solutions , 

however, w ould b e expec ted to show a reverse trend for the entropy 

term . 

In order to relate the genera l heat of solution equation (equation 5) 

to all the classifications in T able I, a hypothetica l solute \Vith a heat of 

fusion of 4600 calories / mol e and a melting point of 373° Kelvin was 

us ed to plot the curves shown in Figure l, The heats of solut i on and 

y-interc epts for the hypothetical solute are presented in T ab l e II. As 

predicted from_ equation 13 , a regular solution shows a!l increased heat 

of solution and decrca sed solubility as corn pared with the ideal systen1. 
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It should be noted, however, that the y-intercepts for the ideal and 

regular solution are equal, while the intercept value for an associated 

system is a larger positive value . A solvated system, in keeping 

with increased molecular organization, exhibits a smaller positive 

intercept, i.e., a smaller entropy. The associated and solva.ted 

systems shown in figure 1 we re derived arbitrarily, but the values 

for the heats of solution and corresponding y-i:r;itercepts wer-e chosen 

so as to r eflect the general properties of the respective classifications. 



( 

N 
::.<: 

( 0 
....; 

0.0 
0 
H 

0 

-1.0 

-2.0 

associated 

-------~---w-..---44---~-,-,.:--------~t ---
2. 8 3.0 3 .2 3.4 

l /T (absolute) x 10 3 

Figure 1- A Plot of Log 10Xz· Versus l/T (absolute ) for a 
Hypothetical Solute vJith a Heat of Fusion of 
4600 cal. / mole and a Melting Point o( 37 3° . 
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TABLE II 

SOLUTION DATA FOR A HYPOTHETICAL SOLUTE 
WITH A 

HEAT OF FUSION OF 4600 CAL. /MOLE 
ANDA 

MELTING POINT OF 373° KELVIN 

Heat of Solution y-intercept 
Designation (cal. /mole) (S/2. 303R) 

A thermal, ideal 4600 2.68 

Regular 5750 2.68 

One component 6500 2.85 
associated 

Solvated 3500 2.25 

34 
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Actual solubility data are more difficult to interpret than those 

r indicated by the curves generated for the hypothetical solute. To 

test equation 5 against the classifications in Table I, the data given 

by Mortimer (9) for benzoic acid in various solvents -were subjected 

to analysis. Mortimer's data are reproduced in Table III. The ideal 

solubilities shown are based on the heat of fusion of 4302 calories /mole 

and a melting point of 396° Kelvin for benzoic acid as given by 

Chertkoff and Martin (12 ). The data in Table III were subjected to a 

least squares analysis for a plot of log
10

Xz (2. 303 log 10x2 = ln Xz) 

versus l /T. Table IV shows the resulting information, a iong with the 

correlation coefficients, R, for the derived line s. The R values are 

included because they indicate the degree of linearity for the system 

( under study. 

From the data in Table IV, it appears that ben: oic acid in acetic 

acid behaves as a nearly regular solution. The y-intercept for this 

system is almost equal to that for the ideal solution, indicating that 

the larger heat of solution value is likely due to the additive term in 

equation 13. If this is true, the following equality· should obtain: 

Hm = RT ln (Xz · /X z) = Hs - Hf . 1 
(17) 

At 20° C. , RT ln (Xzi /Xz) is equal to approximately 3 73 calories /mole 

and (Hs - Hf) is 473 calories/mole . The lack of complete equa lity is 

due to the difference betwe en the y -intercepts for the ideal solution 

and b enzoic acid-acetic acid solution. 
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TABLE Ill 

a SOLUBILITY OF BENZOIC ACID IN VARIOUS SOLVENTS 

(SOLUBILITIES GIVEN IN TERMS 
OF 

MOLE FRACTION OF THE SOLUTE) 

Temperature 
(Centigrade) 

20" 

40 

60 

aF. Mortimer, 

ideal 

.148 

• 237 

• 358 

!!_. Am. Chem. 

Solvents 

acetone benzene 

.205 • 061 

.269 • 126 

• 362 • 237 

Soc., 45, 633 (1923). 
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acetic 
acid 

• 078 

• 118 

.210 
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TABLE IV 

CALCULATED DATA FOR BENZOIC ACID 
IN 

SEVERAL SOLVENTS 

Solvent Heat of Solution 
(cal. /mole ) 

Ideal 4300 

Acetone 2748 

Benzene 6578 

Acetic Acid 4773 

y-intercept 
(S/2. 303R) 

2.36 

1. 36 

3.69 

2.43 

aR value 

-1.0000 

- • 9977 

-1. 0000 

- • 9907 

a A value for R of unity indicates perfect linearity between the 
independent and dependent variables. 
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This difference, O. 07, can be added to equation 17 modifying the heat 

of mixing in this case to 

Hm = RT f In (Xzi/Xz) + 0, 07 _f = 466 calories /mole ( 18 ). 

This modification brings the heat of mixing value into agreement with the 

(Hs - Hf) value of 473 calories per mole. Further, this calculation 

shows that deviations from regularity are extremely sensitive to small 

differenc es; in fact, the equa_tion may be more s e nsitive than the experi

mental procedures. Feldman arid Gibaldi (13) have pointed out that dif

ferences _between enthalpy terms are also very sensitive to slight changes 

in In (Xzi/X2 ). The sensitivity of the thermodynamic quantities in question 

does not, however, inv alidate their usefulness in approximating the 

characteristics of _solution behavior. 

For benzoic acid dis solved in benzene, the larger heat of solution 

value, as well as a larger y-intercept, suggest association of one com

ponent. This is very likely the case: Glasstone (14), in his discussion 

of colligative properties, has pointed out that benzoic acid forms double 

molecule s in benzene. The data in Table IV for benzoic acid in acetone 

indicates a solvated system. Salvation occurs with increased interactions 

between solute and solvent . Reference to equation 5 shows that lower 

heats of solution favor increas ed solubility, which is the case for benzoic 

acid in acetone, Mortimer (9) also include d this s olute- solvent system 

and noted that it shows the pr ope rti e s of so!·;atio:c. Important als o for 

this system is the much smaller y-intercept, suggesting increased order

liness in the solution phase . 
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Although the data in Table IV for benzoic acid systems correlate 

very well with solution behavior based .on interpretations of theoretical 

equations, such may not always be the case. It is noteworthy that 

Hildebrand (4), in his discussion of the various classifications in 

Table I, states, "This represents a classification of the main essential 

factors rather than of the solutions themselves~ because scarcely any 

actual solution can be said to behave solely in any of the several ways 

designated by such terms as ideal or regular. 11 Even though Hildebrand 1 s 

classification system may not be entirely adequate, his approach to 

solubility interpretation remains a valid one. Lindstrom ( 15) has 

emphasized that 11it would be of immeasurable aid if explanations of 

observed solubility were possible in terms of purely basic theoretical 

( 
concepts. 11 

In summary 1 the heats of solution and their attendant y-intercept 

values are most useful in interpreting non-electrolyte behavior even 

in the presence of certain complicating factors. Moreover, ·they are 

thermodynamic quantities which aid in characterizing the type{s) of 

solution behavior occurring in a particular system. 
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Limita.tions of ReguJar Solution Theory - When the solubility of a 

s olute in several solvents or solve nt blends is determ .ined and Lhe 

mole fraction solubility j s plotted versus the solubility parameter 

o f the solve nt, a peak in the curve is often ob served (30 , 31 ). The 
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peak is usually interpreted to mean that the diffe rences between the 

solubility para1neters of the solute and solvent are zero at this maxi

mum and idea l solubiliLy behavior is ex tant . This graphic peak also 

offers a ineans of evaluating the solubility para1ne ter of the solute , 

p rovided the soJubility parameter of the solvent is known. However , 

both of these int e rpretations may be unwarranted , even if the solubilit y 

c alculated by equatior.. 20 correlates well with expe rimentai res ults. 

For ex ample, benzoic acid i n several solvents has been studied (30 } 

and the re s ults inte rpreted on the basis of regular solution theory. 

Su ch interpret:l.tions may not be justified unless the i nvestigator 

c an remai n within the boundary conditions stated by Scatchard. In 

other words , the geometric mean assumption must not be violated , 

a nd t he vohune change must be zero at constant pressur e . Therefore , 

if solubility mechanisms are to be interpreted corre c tly , it i s iinpe r a. 

t ive that the jnvestigator measure not only the magnitudes of solubility , 

but also other thcrmodynan1i c quantities such as molar volun1e and heats 

of solut ion in order to promote a b ette r mechanistic (th e oretica l ) unde r-

standing . 

A major li:initation of the Hildebrand theory at pre sent is that no 

aclivity c oefficient has bee n developed which satisfies c onditions where 
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the geometric mean assumption is not followed. Pharmaceutical or 

biological systems where hydrogen bonding may occur are in most 

cases specifically outside the regular solution realm. Hilde brand 

and Scott (32) warn their readers that "Since the justification for the 

geometric mean law and solubility theory rests upon the London 

theory of dispersion forces, the use of solubility parameters for 

polar substances is somewhat questionable. 11 Their admonitions 

are certainly true, but Raoult 1 s Law and the ideal solubility equation 

remain as a foundation for all nonelectrolyte solubility theory. The 

regular solution theory, even if not universally applicable to all sys-

tems that are nonideal, remains as a stepping-off point for further 

development. 

Paruta recognized the implications of the Hildebrand approach 

but chose a different development for solubility interpretations. His 

published results of the solubility of many solutes of pharmaceutical 

interest make use of the dielectric constant as an interpretive 

quantity (33-35}. 
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Dielectric Constant and Solubility - Th-= equation for the dielectric 

constant, D. C., is given by Smyth in its general form (3 6 } as 

P = Pl + P2 (21) 

where Pis the total molar polarization, Pl is the induced polariza

tion and P2 is the orientation polarizat~on. P is also related to the 

dielectric constant by 

p = L (D. c. - l)/(D. c. + 2)_/ (V) . (22) 
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and V is the molar volume, as before. The induced polarization is a 

measure of the temporary electric moment which can be induced in 

each molecule. Pl is related to the induced polarizability, a, by 

Pl = (4/3)(3. 1416)(a)(N) 

Another commonly used definition of Pl is 

Pl=/ (n2 - -l)/(n2 + 2) f(V) 

(2 3 ). 

(24) 

where n is the refractive index taken at extrernely long wave lengths . 

The value of P2 is dependent on the permanent dipole of the molei:ule 

and on temperature, thus:· 

P2 = (4/3)(3. 14 16)(N )(u2 /3kT) (25) 

where Nin equations 23 and 25 is Avogadro's nun1ber, In equation 25, 

u is the dipole moment, k is the Boltzman constant and Tis absolute 

temperature . 
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For molecules having no permanent dipole, P2 is zero and P 

is essentially temperature independent. The effect of P2 1 even for 

molecules with a permanent dipole is diminished with increasing 

temperature. Frorn these equations, it is apparent that the induced 

and permanent dipoles are important molecular quantities because 

they quantify what is known as the POLARITY of the molecule. The 

molecule is said to be nonpolar when P2 is zero, and semipolar or 

polar when Pis the sum1nation of. both Pl and P2. The values for 

the dielectric constant increase with increasing polarity as shown 

by Table I (37). 
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TABLE I 

DIELECTRIC CONSTANTS OF SOME LIQUIDS 
AT 20° CENTIGR.ADE a 

Dielectric 
Liquid Constant 

'Nater 80.4 

Methyl Alcohol 33.7 

Ethyl Alcohol 25.7 

Acetone 21. 4 

Amyl Alcohol 15. 8 

Chloroform 4.8 

Toluene 2.4 

Benzene 2.3 

Dioxane 2.3 

a 
Taken fr01n A. N. Martin, Physical Pharmacy, Lea and 
Febiger, Philadelphia, 1960, p. 116. 
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The solubility parameters of the liquids in Table J also reflect 

the polarity spectrum; and an apparently linear relationship between 

the solubility parameters and dielectric constants has been established 

(38) ., as expressed by the equation 

S. P. = 0.22(D. C.) + 7. 5 (26) 

where O. 22 is the slope and 7. 5 the y intercept. The equation was cal

culated from a plot of the solubility parameters . of twenty-five pure 

solvents versus their corresponding dielectric constants; it is most 

applicable for semipolar and polar liquids. Paruta (38) notes, 

"Fortuitously, these are the soivents of pharmaceutical importance." 

Aside fron1 the practical application o:f calculating solubility 

parameters from dielectric constants or vice versa, the equation may 

have som.e theoretical irriportance. The y intercept of 7. 5 is a typical 

solubility parameter for many nonpolar liquids which have no pennanent 

dipole and are maintained in the liquid state by dispersion forces only. 

Dielectric constants for nonpolar solvents are small, approximately 

2. 0, and make very little contribution to the calculated solubility para

meter. As the polarity scale is ascended, the dielectric cons t ant 

becomes very significant and may be thought 0£ a.s an adjusting polarity 

parameter contributing to the overall cohesive energy density. In other 

words, 0. 22(D. C.) is the relative co.ntributi<:m of the electrostatic 

forces, (Kees om , Debye and hydrogen bonding ) and 7. 5 is the relative 
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contribution of the dispersion forces . 

A difficulty concerning equation 21 is that the calculated total 

molar polarization, P, for very polar liquids does not correlate well 

with the experimental values. This problem was investigated by 

Onsager (39) who offered an equation to modify P2. However, his 

equation, because of approxirnations, was not entirely satisfactory; 

and theoretical investigation by Kirkwood (40) led to an equation which 

is much more acceptable. Kirkw~od derived a parameter, g, which 

also :r:nodifies P2. The quantity g takes into account the hindered 

molecular orientation produced by neighboring 1nolecule s v;here 

association through hydrogen bonding occurs. This factor is greater 

than one for hydrogen bonded liquids and reduces to unity for nonpolar 

liquids. The Kirkwood equation in terms of P is (41) 

p = L((D. c. - 1)(2D. c. + l)/(9D. c. >J (V) (2 7). 

When the dielectric constant is much greater than one, as is the case 

for water, the limiting form of equation 27 becomes 

P = (0.22)(D.C.)(V) (28). 

It is interesting that the value O. 22 is the same as that for the slope 

of the Paruta equation. At present, O. 22 remains merely as an ap 

parent link between the dielectric constant and the solubility parameter ; 

no absolute the oretical justification can b e attached. The importance of 

estab_lishing a theoretical tie becom.e s apparmt_, however, when one 
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considers that the activity coefficient for regular solutions could 

possibly be modified to correct for polarity effects in the solution 

process. 
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Paruta applied the dielectric constant concept to solubility by 

plotting the solubility of the solute, usually in mg. /ml. units, versus 

the dielectric constant of the solvent. Peak(s) generally occur when 

the data are plotted in this manner, and the diel~.ctric constant which 

corresponds to the observed peak have been termed the dielectric re-

quitement or DR (38). In another paper (42), Lordi stated, "At 

constant temperature, this requirement should be independent of the 

actual nature of the solvents in the blend and dependent only upon the 

nature of the drug." Paruta has since modified this statement because 

the DR does in fact appear to be dependent on the solvent as wen as 

the drug solute (34). The peaks which appear are also dependent upon 

the concentration units chosen to express the solubility of the solute (43). 

In other words, a peak may be shifted if mole fraction rather than 

mg. /ml. is chosen to express solubility. 

The DR concept, even if limited to certain systems, is interest

ing because it relates the polarity- of the solute molecule to the polarity 

of the solvent, demonstrating in itself an indication of the type of inter -

actions present. For example, if the DR for a particular solute occurs 

at about 25, it is reasonable to expect that the s .olute-solvent inter

action is at least in part due to hydrogen bonding since the solvent-
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solvent interactions in this dielectric area are generally of this 

same type. 

The DR concept is of further interest because for certain sys

tems, more than one peak appears (33), despite regular solution 

theory which predicts only one peak. The exact importance of a 

rnuHipeak system is not clear, but the implication is that the mag

nitude and type of interaction involved are modified or changed d e 

pending on the dielectric constant of the solvent system. 

At present, it appears that the usefulness of the dielectric 

requirement has leveled off, and furthe:r development of this con

cept a \va its the theoretical link between the dielectric constant and 

the solubility parameter. 
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Summary - Implied in the previous discussion of solubility theory 

is the fact that certain properties of matter, such as a) the heat of 

fusion, b) the heat of vaporization, c) molar volume, d) melting 

point, e) index of refraction and f) dielectric constant, influence the 

solution process and· yield strong evidence of solution mechanism s. 

Quantitative limitations which exist are not as serious as they would 

seem to be, for as Hildebrand has noted (44) 11The theory is quali

tative ly very serviceable. 11 Inde ed , if he is to develop solubility 

theory further, the invcsti.gator must interest hirnself w ith theoreti

cal und'-'rstanding rather than with quantitative prediction. 
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IV 

THEORETICAL CONSIDERATION OF PARTITION COE FFICIENTS 

Nernst's law, as given by Davies and Hallam (1), indicates 

that a solute added to a system of two iinmiscible phases, 1 and 2, 

will partition itself at equilibrium in a constant :::-atio corre spending 

to the respective concentrations, _Cl and C2, in the two phases: 

Cl/C2 = constant (1). 

Equation I show s that the dissolved solute will distribute itself 

under conditions of constant temperature so that the concentration , 

C, in phase 1 and 2 is constant at equilibrium and is independent 

of the original concentration of the solute. 

Usually, the two phases used in partition systems are wate r 

and an immiscible, oily liquid. Therefore, the partition coefficient 

is very simply a quantitative indication of the lipophilic nature of 

the solute. The actual magnitude of the partition coefficient is 

governed by the intermolecular interactions of the solute w ith the 

partitioning liquids. 

Several authors have used partition coefficients to determine 

ioni zation constants of weak electrolytes a.ncl bacteriostatic properties 

of chemical species (2, 3). Since sulfonamides rn.ay be classified 

as weak electrolytes having two ionizable groups , the partition 
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coefficient may be used to determine the pKa values of sulfadiazine. 

The partition coefficient has also proved useful as an aid in 

determining transport mechanisms of drug molecules through lipid 

barriers (4-6). 

Glasstone (7) has noted that Cl a"nd C2 of equation 1 should 

more accurately be the activities of the solute. He further said 

that, in order to meet this depe ndency, the or:i:ginal concenfration 

must be kept very small. Another condition is that the solute 

must exist as a monomer in the oil phase and as an unionized 

species in the aqueous phase. 

Equation 1 may be rewritter.. in another form as 

Co/Cw= Co/U = T. P. C., (2) 

where Co and Cw are the concentrations of the solute in the oil 

and water phases respectively at equilibrium. T. P. C., the true 

partition coefficient, signifies that all the boundary conditions 

including concentration, polymerization and ionization have been 

met. It will be observed from e quation 2 that the concentration in 

the water phas e in this case is the concentration of the unionized 

form of the solute, U. The concent ration units of Co and Cw, as 

recommended by Glas stone, should be in t erms of mole fractions, 

but at low conc ent:r.ations they may be moles/liter (7). Units 
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which are proportional to moles /liter, such as spectrophotometric 

absorbances, are also acc eptable (3). 

When the solute is partially ionized in the aqueous phase but 

acts as a monomer in the oil phase, the concentration in the water 

phase may be expressed as 

Cw= U +I (3) 

where U and I are the concentrations of the unionized and ionized 

species respe ctively. These conditions give rise to the apparent 

partition coefficient, A. P. C., which may be defined by 

Co/Cw= Co/(U +I)= A.P.C. (4). 

The concentrations of U and I for a weak acid are related to the 

ionization constant, Ka, (8) by 

(5) 

where H+ is the hydrogen-ion concentration, permitting the 

derivation of a relationship between the distribution coefficient 

and the ionization constant (3) and the solution for I: 

Substitution of this equality into eq.uation 4 gives 

+ -
A. P. C. = (Co)/ L (U) + ((Ka)(U))/(H )_/ 

which may be rearranged to 

( 6). 

(7) 

( 8}. 
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The concentration of the solute in the oil phase, Co, may be cleared 

from equation 8 by substituting T. P. C. from equation 2 which gives 

- - + - + A. P. C. - L ( T. P. C . )( H )_j I (Ka + H ) 

Finally, equation 9 may be inverted and simplified to 

(l/A. P. C.) =(Ka)/ L(T. P. C. )(H+) / + (l/T. P. C.) 

-I
Equation 10 predicts that a plot of (1 /A. P. C.) versus ( 1 /H · ) 

should yield a straight line with a slope of Ka/T. P. C. and a 

y-intercept of l/T. P. C.. The log form of equation 10 is 

pH = pKal + log L ( T. P. C. I A. P. C. ) - 1 _j 

Thus, when the ratio of the T. P. C • . and A. P. C. is two, the pH is 

equal to the pKa. It will be noted that equation 10 is of the same 

general form as that of the Henderson-Hasselbalch formula (1) • 

(9). 

(10). 

( 11). 

Garrett and Woods (3) have given a slightly differ.:rnt form to 

equation 10: 

(Ka+ H+)/(Cw) = L (T. P. C. + l)/C /(H+) + (Ka/C) ( 12 ). 

The quantity C in this equation is the original concentration of the 

solute in the aqueous phase and assumes equal volumes of both 

phases: 

C = Co + Cw (13). 

Equations 10 and 12 are equally useful, but equation 10 has the 

added advantage that a pr evious knowledge o f the ionizatjon 

constant is not necessary in order to calculate the T. P. C .• 



54 

( A formula analogou s to equation 10 may also be derived for 

the relationship of the ioniza tion constant and the partition 

coefficient of a weak bCJ..s e , given the condition that the solute acts as 

a monomer in the oil phase. Equations 2 -4 remain the sarne, but 

the ionization of a weak base , Kb, is (iO) 

- - -
Kb = j_ (OH )(I)_j / (U) or I = L (Kb)(U)_j /(OH ) ( 14). 

The apparent partition coefficie.nt then is 

A. P. C. = (Co)//_ U + ((Kb)(U))/(OH-)_/ ( 15) 

which may be rewritten as 

Co/U = T.P.C. = A.P.C. + j_-(A.P.C.)(Kb)]f(oH-) (16). 

Clearing terms in equation 16 gives 

Kb/OH- = L (T. P. c. }-(A. P. c. )_j I (A. P. c.) (17) 

where OH- in equations 14-17 is the hydrox yl-ion concentration: 

The hydroxyl and hydrogen-ion concentrations are related to the 

dissociation constant of water , K w , by 

- + - I + Kw = (OH )(H } or OH = Kw H ( 18). 

Thus, equation 17 may be solved using this relationship to yield 

+ - -
Kb= (Kw )/(H )j_ (T. P. C. )-(A. P. C. )_j /(A. P. C.) (19). 

The dissociation cons tant of v;ra.ter is also related to the Ka and Kb 

by 

Kw = (Ka)(Kh) (2 0) 

and equatlon 2 0 becorne s 

(H+) = (Ka)j_( T . P,C.) -(A . P .C. )_j/{A.P.C. ) (2 1 ). 
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/ In linear form, equation 21 may be expressed as 

+ - -
(l/A.P.C.) = (H )/L(T.P.C.)(Ka.)_j + (l/T.P.C.) (22 }. 

The logarithmic form of equation 22 is 

pH ·= pKa2 - logL (T. P. C. /A. P. C.) - l_j (23). 

If the chemical species exhibits the characteristics of both a 

weak acid and a weak base, it is said to be amphoteric. The 

relationship between the negative _logarithm of their respective 

ionization constants is 

pHi = (pKa 1 + pKa2) /2 (24) 

where pHi is the isoelectric pH. 

The term isoelectric @ is con1monly used in amino acid 

( chemistry in conjunction with the word zwitterion, Considerable 

confusion results from common usage of the terms zwitterion and 

amphoteric. Albert (11) noted that a substance may be amphoteric 

but not necessarily zwitterionic, using as an example, the ionization 

characteristics of m-aminophenol, an ordinary amphoteric substance, 

and glycine, which is zwitterionic. Meta-aminophenol has two pKa 

values (11), 4 .2 and 9. 9; and the .calculated pHi is approximately 

7. 0, at which hydrogen-ion conc entra tion neither group is ioniz ed. 

Glycine also has two pKa·values, but differs from m-aminophenol 

in that the majority of molecules of both groups are ionized at the 

isoelectric pH; that is, glycine rnay be thought of as a dipolar species 
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( at pHi. Substances such as sulfonamides exist in the unionized 

form at pHi with respect to both the basic and acidic functions 

and are not generally thought to be zwitterionic (12). 

The equations thus far developed are valid under the 

assumptions that: (a) the solute species is a monomer in the oil 

phase; (b) concentrations of the solute approx imate activities; 

(c) the temperature of the system remains constant; (d) the oil 

and water phases are immiscible; and (e) the oil and water phases 

are of equal volume. Garrett (3) discusses the modifications 

necessary for unequal phase volumes, while Davi es and Hallam 

(1) have derived the equations for polymers in the oil phase • 

. ( Krebs and Speakman have given formulas sim ilar to equations 

11 and 23 for the relationship between the ionization constant, 

aqueous solubility, and pH of the solvent (13). For a weak acid the 

equation is 

- 0 
pH= pKa + log l_ (S/S ) - l_/ (25) 

and for a base 

pH = (pKw-pKb) - log j_-(S/S0
) - l_/ (26) 

where S is the molar concentration of the unionized and ionized spe cies 

and s 0 is the molar concentration of the unionized form. Both S and 

s 0 are the saturation solubilities at a given temperature and pH. 

These equations are mis l eading because they seem to in1ply a 
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direct relationship between aquaous solubility and the partition 

coefficient. This is actually not the case because it is the ratios 

of the solubilities or partition coefficients that are related to the 

pH and pK values. In other words, knowledge of the T. P. C. and 
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A. P. C. does not give access to the molar concentrations of Sand s0
• 

Glas stone has given an equation which does directly relate 

solubilities and partition coefficients under certain conditions (7). 

When an excess of solute is added to a biphasic system of two 

immiscible solvents, the solute will distribute itself at equilibrium 

as a constant, K, by the dist r ibution law, 

cl/c2 = K (2 7} 

where c is the saturation concentration in the respective phases. If 

the saturation solubilities are determined in each phase separately, 

the constant is given by 

sl/s2 = K (2 8). 

The constant, K, in each case should be equal if the saturation 

$Olubilities, s, in equation 28 are small. This does not mean, 

however, that K determine d by equation 27 or 28 is equal to the 

T. P. C. or A. P. C., since the latter quantities are valid only under 

the condition that concentrations approximate activities. Using 

solubility terminology, this means that the T. P. C. and A. P. C. 

approach id eal solution behavio r while K, except in unusual cases, 
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represents nonideal solution behavior in either one or both phases. 

Hansch (14) , who developed equations relating the partition 

coefficients and aqueous solubilities of organic liquids, cited 

limitations on his formulas in that they ignore nonideal solution 

behavior. Thus, equations 27 and 28 are the only quantitative 

statements yielding this relationship. 
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Materials 

v 

EXPERIMENT AL 

Equipment - Items of equipment used for the study included: 

6406 - H. Thomas Hoover Melting Point Apparatusl 

2 
Leeds and Northrup pH Meter, Model 7401 

Sargent Chemical Oscillometer, Moel el v 3 

Cary Model 16 Spectrophotometer4 

Tecam Tempunit5 

Mettler Balance, Type H6T6 

Abbe - 3L R efrdctometc r 7 

Swinny Hypodermic Adapter, Cat. No. XX 30 012 008 

1 A.H. Thomas Company, Philadelphia, Pa. 

2 Leeds and Northrup, Philadelphia, Pa. 

3
E. H._ Sargent and Cmnpany, Chicago, Illinois 

4cary Instruments, Monrovia, California 

5Fisher Scientific Company, Boston, Mass . 

6A. H. Thomas Company, Philadelphia, Pa. 

7Bausch and Lomb Optical Cornp::iny, Roches!:er, N . Y. 

8Millipore Filter Corpor a tion, Bedford, Mass. 
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Materials (continued) 

Chemicals - The chemicals used for the study were as follows: 

Sulf adia zine , Lot W 02 2 3 5 1 

Sulfisoxazole, Lot 378067
2 

Sulfadimethoxine , Lot 203027 3 

Sulfisomidine, Lot E24984 

Methyl Alcohol Anhydrous, Spectrophotometric Grade 

Solvent, Lot VMN5 
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Absolute Ethyl Alcohol, U.S. P. -N. F., Reagent Quality6 

1-Propanol, "Baker Analyzed" Reagent, Lot 35592 7 

Normal Butyl Alcohol, Analytical Reagent, Lot TDY8 

!supplied Through the Courtesy of Eli Lilly and Company 

2supplied Through the Courtesy of Hoffmann-LaRoche, Inc. 

3supplied Through the Courtesy of Hoffmann-LaRoche, Inc. 

4supplied Through the Courtesy of Ciba Pharmaceutica l Co. 

5Mallinckrodt Chernical Works 

6u. S. Industr ial Chemicals Company 

7 J. T. Baker Chemical Company 

8Mallinckrodt Cherr~ic a ] Wor~s 
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Materials (continued} 

Chemicals (continued} 

Normal Amyl Alcohol, Certified, Lot 77 62 91
1 

1-0ctanol, ORtm, Lot22 2 

Decyl Alcohol, Lot 17 3 

Certified Acetone, 99 Mol % Pure, Lot 792702 4 

Certified Benzene, 99 Mol % Pure (Thiophene Free) , 

Lot 7938695 
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Sodium Phosphate Dibasic Heptahydrat e , Analytical R e a gent, 

Lot WTKL6 

Sodium Acetate, Baker Analyzed Reagent , Lot 32649 7 

Potassium Chloride, U.S. P., Lot 86788 

Sodium Hydrox ict e , Lot W 183J9 

lFisher Scientific Com pa ny 

2Mallinckrodt Chemical Works 

3 
Matheson, Coleman and Bell 

4Fisher Scientific Company 

5Fisher Scientific Company 

6Mallinckroclt Chemical Wor ks 

7 J. T. Baker Chemical Compan~r 

8
J. T. Baker Chemical Company 

9 Allied Chemicc:.l 
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Materials (continued) 

Chemicals (continued) 

Glacial Acetic Acid, A. C. S. Reagent, Lot Yl67 1 

Hydrochloric Acid, C. P. Reagent, Lot E 1082622 

1 Alli e d Chemical 

2 Allied Chemica l 
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· Purity of Alcohols Used for Solubility and/ or Part:tion Coefficient 

( Studies - In order to verify the purity of the alcohols, refractive 

index, density and dielectric constant measuren1ents were made. 

Refractive Index - All measurements were made with the Abbe-3L 

Refractometer at 25°C. The accuracy of the instrument was checked 

using 99 mol % free benzene for which an experimental value of 1. 4983 

was recorded. The literature value listed is 1. 4979 (1 ). Refractive 

index values for the various alcohols tested are presented in Table I. 

Density - The density of the alcohols was determined using the plummet 

method. A plummet was weighed in air, weighed again while subn1erged 

in distilled water, and weighed a third time while submerged in the test 

( liquid. In order to relate the density of the test liquid to the experimen-

tal values, the formula given in the literature (2) is 

- 2 1 
dair L(w /w )d - l_/ (1) 

where w2 is weight of the plummet in air minus its weight in the test 

liquid, w 1 is weight of the plummet in air minus its weight in water , 

d is density of wate r at temperature t 1 and dair is the density of air 

at temperature t. The density of air is included in the formula to 

correct for the buoyancy effect of air on the plummet. The plurnn1ct 

was suspended from the weighing mechanis1n of a Mettler H6T balance 

and weighed in air. Distille d wate r and the test alcohols were placed 

in vials, supported by a sta nd directly below the suspe nded plumm.e t. 
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Alcohol 

Methanol 

Ethanol. 

Propanol 

Butanol. 

Pentanol 

Octanol. 

Decanol 

TABLE I 

REFRACTIVE INDEX VALUES 
FOR 

VARIOUS ALCOHOLS AT 25° CENTIGRADE 

Experimental Literature 
Value Value 

1. 3288 1. 3266a(25°) 

1.3640 1. 35 94a(25 °) 

1.3840 1. 3835a(25°) 

1. 4025 1. 3992a(25°) 

1.4098 1. 4080a{25°) 

1. 4320 1. 4275a(25°) 

1. 4410 1. 4366b (20°) 

a A. Weissberger and E. Proskauer, Organic Solvents, 2nd. ed., 
lnterscience Publishers, Inc., New York, 1955. 

bHandbooI<: of Chemi~try and Physics_, 48th ed., The Chemical 
Rubber Co., Cleveland, 1967. 
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The plurrunet was weighed in each test liquid, suspended such that it 

did not touch the sides of the vial, and was submerged to an equal 

depth in each liquid. Prior to each weight determination, the liquids 

were placed in a temperature bath and brought to 25°C. The experi-

mental and literature density values are shown in Table II. 

Dielectric Constant - The dielectric constant was chosen as a purity 

index for the alcohols because ·it ~s sensitive to water contamination, 

an especially important consideration with methanol, ethanol, and 

propanol, which are very hydroscopic. Further, it is manifest that 

any water pre sent as a contaminant would strongly influe nce the 

solution properties of the alcohol. 

All measurements were made using a Model V Sargent Chemical 

Oscillometer . The instrument was warmed for at least twenty-four 

hours prior to use. The sample holder, a glass cell with a ground 

glass top, was washed, rinsed with distilled water , dried in an oven, 

and stored in a dessicator for t w enty-four hours prior to use. When 

readings were taken, the glass cell and c ell holder were maintained 

0 0 thermostatically at a t empe rature of 30 + • 1 C. in a container free 

from air currents. 

\ 



( 

Alcohol 

Methanol 

Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE II 

DENSITY VALUES 
FOR 

VARIOUS ALCOHOLS AT 25° CENTIGRADE 

Experime_ntal 
Value 

0.7862 

0.7850 

0.7996 

0.8053 

0.8102 

o. 8219 

0.8264 

Literature 
Value 

0. 7 8 6 8a (2 5 °) 

0.785la (25°) 

O. 7995a (25°) 

O. 802 la (30°) 

O. 8076a (30°) 

O. 822 la (25°) 

o. 82 87b (20°) 

a A. Weissberger an~ E. Proskauer, Organic Solvents, 2nd ed., 
Inter science Publishers, Inc., New York, 1955, 

b 
Handbook~ Chemistry and Physics_, 48th ed., The Che!-i1icai 
Rubber Co., Cleveland, 1967. 
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The clean dry cell w as placed in the cell holder, and after a sufficient 

length of time for the cell to reach thermal equilibriurrl, a zero ad

justment of the instrument w as made . After the test liquid w as placed 

in the cell, the cell and liquid w ere allow ed to reach the requir.::d tem

perature before a reading was taken. ·Since lack of thermal equilibrium 

could be detected by needle drift from the instrument readout, readings 

were taken only after a nondrift condition w as e-stablishe d. ·To increase 

the reproducibility of the readings, the cell was filled to the same level 

for each measurement and placed in the cell holder in the same 

position. 

The oscillometer does not yield a direct reading of dielectric 

constant and is a relative inethod. Therefore, it is ne cessary to 

standardize the instrument w ith liquids of know n die l e ctric consta nt. 

The expression relating instrument readings to dielectric constant as 

given b y Sherrick, Dawe, Karr and Ewan (3) is 

S = (A (K - 1))/(1 + BK) (2) 

where S is the readout value, K is the dielectric constant of the stan

dard liquid and A and B are constants. Mixtur e s of a cetone and 

benzene and of ac~tof!.e and di s tille d w at e r we re us~d t o gene rate 

values of S. Certifi e d benze ne a nd acetone , 99 m ol % pur e , we re 

used in all cases. The di e l e ctr ic c ons ta.n ts a n d t emp e r atur e coe f

ficient s for the stan dard liquids rn·entione d a b ove are giv e n in the 

lite r a tur e (3). 
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After several values of S were determined from liquids ·of 

known dielectric constant, the constants A and B from equation 2 

were calculated. With A and B known, values of S for the alcohols 

were determined a nd used to calculate the respective diele ctric 

constants from equation 2. 
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The dielectric constants which were ex perhnentally determined 

are show n in Table III w ith their corresponding lite ratur e values. 

The literature values taken from Maryott and Smith (4) w ere usually 

given at zs 0 c. Temperature coefficients w ere giv en for each alcohol, 

however, and values at 25° w ere converte d to those at 30°C by 

Log 10 K2 = Log 10Kl - a(t2 - tl} (3) 

where Kl is the dielectric constant a t 25°, K2 is the caiculate d di

electric constant at 30°, t2 is 30° and tl is 25°. The value a is the 

temperature coefficient given by Maryott and Smith (4), and e quation 3 

is the expression given by these authors for the r e lationship of die l e c

tric constant to temperatur e . 
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TABLE III 

DIELECTRIC CONSTANT VALUES 
FOR 

VARIOUS ALCOHOLS AT 30° CENTIGRADE 

Experimental Literature 
Alcohol Value Value (30°)a 

Methanol 30.4 31.7 

Ethanol 22.7 23.6 

Propanol 19.0 19.4 

Butanol 16.4 16.4 

Pentanol 13.6 13.5 

a A. Maryott and E. Smith, Table ~Dielectric Constants of 
Pure Liquids, National Bureau of Standards Circular 514, 
1951. 
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Although methanol and ethanol were observed to deviate most 

from the literature values, the actual error was less than 4% in 

both cases. More important is the fact that the experimental values 

were less than those cited in the literature. Since water, if present 

in appreciable quantities, would have raised the dielectric constants 

for the alcohols considerably, elevated values would have suggested 

aqueous contamination. The validity of using the dielectric constant 

as an indication of water in the alcohols is substantiated by the work 

of West, Senise and Burkhalter (5) who used oscillometry to determine 

water content in several alcohols. These authors determined for ethyl 

alcohol that a 1% by weight water contamination could be detected to 

+ • 05% in terms of percentage of water by weight. 

Melting Points of Pure Sulfonamides - The melting points of the 

sulfonamides were determined using the6406 - H. Thomas Hoover 

Melting Point Apparatus. The experimental and corresponding 

literature values are presented in Table IV. 
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Sulfonamide 

Sulfadiazine 

Sulfisomidine 

Sulfisox azole 

Sulfadimethoxine 

TABLE IV 

MELTING POINTS 
OF 

PURE SULFONAMIDES 

Experimental 
Value 

. 251-253° c 

242-245° c 

. 194-198° c 

202-206° c 

Literature 
Value 

252-256° ca 

243° ca 

192-195° ca 

197-202° cb 

aRemington 1s Practice ~ Pharmacy, 12th ed., Mack Publishing 
Co. , Easton, Penna., i 961. 

bThe National Formulary, 12th ed., American Pharmaceutical 
Association, Washington, D. C., 1965. 
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Assay Procedure for the Quantitative Determination of Sulfonamides -

A spectrophotometric assay using a Cary Model 16 Spectrophotometer, 

was developed for the quantitative determination of the sulfonamides. The 

procedure was based on establishing the wavelength at which maximum 

absorbance occurs and then evaluating a quantitative relationship be-

tween absorbance and concentration. The mathe1natical expression for 

this relationship, in its general form, as given by Martin (6) is 

Y = MX + B (4) 

where Y is the instrument readout, in this case absorbance, and X 

is the solution concentration in mcg. /ml.. The constants M and B 

are the slope and y intercept respectively; Bis generally very close 

to zero. Because the dependent and indepenC:ent variables are 

linearly related as manifest by the form of the equation, M and B 

were evaluated by the method of least squares. A computer program 

was written for the method of least squares (Appendix I) based on the 

equations given by Yamane (7). Each sulfonamide was dissolved in 

95% ethanol and placed in standard silica cuvettes with a 1. 00 cm. 

lightpath. The maximum wavelengths and values of M and B for 

each sulfonamide are shown in Table V. 
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TABLE V 

VALUE FOR M AND B OF EQUATION 4 
AND 

MAXIMUM WAVELENGTHS FOR VARIOUS SULFONAMIDES 

Sultonamide Maximum 
(solvent-95% Wavelength 

ethanol) (rnillimic rons) M B 

Sulfadiazine 270 8. 09lxl0 
-2 

-l.973xl0 

Sulfisomidine 273. 
. -2 

7.190xl0 6.lOOxlO 

Sulfisoxazole 272 6. 932xl0 
-2 

-4.985xl0 

Sulfadimethoxine 273 6.723xl0 
-2 

5.800xl0 

73 

-3 

-4 

-3 

-3 
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Procedure for Solubility Studies - The determination of the solubility 

of the sulfonamides in several solvents was based essentially on the 

procedure given by Martin (6). A slight excess of solute was placed 

in a glass . vial and a quantity of solvent added. The vials, sealed by 

means of plastic caps with teflon liners, were placed on a rotating 

device in a temperature-controlled water bath for a period of twenty

four hours, a time found sufficient to reach equilibrium. The tem

perature, maintained by a Tecam Tempunit, was observed to vary not 

more than ± O. 1°c. at each of three ter.nperature settings: 25, 30 and 

37°C. An excess of solute was always present during the rotation 

period. 

After the sa1nple s had come to equilibrium, the rotating device 

was stopped in order to allow the e x cess solute to settle in the vials to 

whate"'."er extent the vi-scosity of the solvent permitted. All samples 

were kept in the temperature bath until just prior to assay. 

For assay, a sample vial was removed from the bath; the contents 

were irru:nediately filtered, using a hypodermic syringe fitted with a 

Swinny adaptor, into a second vial; and a portion of the filtrate was 

removed by pipette to a volumetric flask. Suitable dilutions with 95% 

ethanol we re prepared, and the concentration of solute was determined 

by the spectrophotometric assay previously described. Samples were 

read agai!lst a blank of 95 % eth2.nol . The h)'podermic syringes, Sw inny 

adaptors, pipe ttes and transfer vials we re prewanne d in an oven prior 

to use. 
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Densities of the saturated solutions were determined using 

either the plummet method previously described or an alternate 

gravimetric method. The gravimetric procedure involved pipetting 

a known quantity of the solution into a tared vial. The vial contain

ing the solution was then weighed, and the w eight of solution was 

determined by difference. 
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Hydrog en-ion concentrations of aqueous solutions w ere deter

mined using the Leeds Northrup pH meter. Because pH is a tem

perature dependent measurement, the pH meter temperature control 

setting was placed at a temperature corresponding to the temperature 

at which the solubility det e rmination was made. The pH meter w as 

standardized using a buffer which wa s also prewarmed to the desired 

temperature. 

In order to determine if degradation of the solute occurred or if 

polymorphic species were produced during the solution process, 

pooled mixtur e s of the solute w ere air dried and melting point deter

minations made usin_g the 64 06 - H. Thoma s Hoover M e lting Point 

Appara tus. In no case, w ere the melting points outside th e melting 

point range found for the pure sulfona mide, 

Each solubility determ inat ion was the result of a triplicate ruh 

and aberr a nt values . which could not b e explaine d on the basis of ex 

p e rim e n ta l error we r e r ede t e r mined. The r e producibility of the 
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method was checked by running single samples at one temperature 

and comparing the results with the average of the triplicate run at 

the same temperature. These single values were found to be within 

± 5% of the average value. The average values and their respective 

standard deviations were determined using the general equation for 

the standard deviation given by Martin (6) which is 

Std. Dev. = /-(~(Xi - X )2)/(N - l)_j
1

/
2 

(5) 

where Xi is a single determination, X is the average of the deterrnina

tions and N is the number of determinations. 

Procedure for Partition Coefficient Studies - The samples used for 

determining the partition coefficients consisted of equal volumes of an 

aqueous buffered layer in which the drug was dissolved and a non

miscible alcoholic layer. The concentration of the sulfonamide initially 

in the aqueous layer was approximately lo-3 or io-4 molar and the 

ionic strength of the buffer maintained at . 053 to • 057. All alcohols 

were presaturated with distilled water prior to use as partitio ning 

agents. The samples were place.cl in pyrex containers of about 50 ml. 

capacity with round rather than flat bottoms to minimize turbulence 

dur ing the pa rti tioning proces s. The containers we re s e aled w ith 

teflon lined plastic caps. 

Subsequent to preparation, the samples we re s e cured on a rocking 

device; the device wa s place d in a constant t emperatur e environment 

maintained at +.l 0 c. of the de sired temperature setting, and the 
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samples w ere rocked at a constant frequency of about one cycle per 

minute until equilibrium was reached. A period of 24 h .ours w as 

found satisfactory for equilibrium. The rocking device, similar to 

that described by Doluisio and S wintosky (8), had the distinct advan-

tage that, during each cycle, the sample vials moved from a horizontal 

to a vertical position and back again, producing a turbulence much less 

than that produced w hen the samples rotated through a 360° degree cycle. 

Sample containers removed from the rocker at specified intervals w ere 

immediately put in a water bath maintained at · a temperature corres

ponding to that of the rocking period. After the samples had stood in 

the water bath, they were visually ex amine d to determine if emulsifica

tion had occurred; however, on standing, the sample s r everted to 

biphasic systems leaving no apparent disturbance at the interface. 

Just prior to assay, the samples were re1noved from the bath; and 

the alcohol layer was removed carefully ·with the aid of a suction de -

vice and saved if necessary for assay. 

A portion of the rem aining aqueous phase w as rapidly remove d 

for pH measurement, using a Lee ds Northrup pH meter. A special 

housing was constructed to allow the sample to remain at constant 

temperatur e during the pH d e t e rmina tion. In addition, the t en1p e ra

ture control d evice on the pH met e r wa s a djus t ed to corre spond to the 

tempe r a tur e of the p a rtitioning p e riod . Furthe r , the ele ctr o d e s we r e 

allowed to r em a i n i n the aque ous sample fo r 3-5 n1inutes , a p e riod of 
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time that proved sufficient for a constant readout. 

Another portion of the aqueous or alcoholic phase was used for 

spectrophoto1netric analysis with a Cary Model 16 spectrophotometer. 

The sample was suitably diluted and read against a blank of the same 

dilution. The blank was prepared and treated in exactly the same 

manner as the sample except that it contained no sulfonamide. All 

readings were made at a predetermined wavelength. 

The initial concentration-of the sulfonamide in the aqueous phase 

was determ ined spectrophotometric2.lly using the same stock solution 

as that used to prepare the aqueous portion of the sample. The aliquot 

of stock solution used for assay purposes was subjected to the same 

temperature and_ rocking conditions as the sample. 

The stock solution discussed above was obs erved after the rocking 

period to determine whether any colored by-products of a degradation 

reaction had occurred. No discoloration was observed for any samples. 

Sulfadiazine stock solutions kept at room temperature for several days 

were observed to turn slightly yellow and for this reason all such 

solutions we re prepared fresh and the unused po~tion was discarded. 

Partition coefficient values at each pH level \Vere the average of 

at least three runs and were subjecte d to the same statistic2.l analysis 

as described for the solubility determinations . 
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RESULTS AND DISCUSSION 

The present study is an investigation of the solubility of four 

chemically different sulfonamides in a series of norm ... l alcohols and 

in buffered aqueous systems. The solubilities were deterinined as a 

function of temperature which was experimentally var ied over a 

narrow rang e . 

The sulfonamides chosen may all b e generally classified as anti

bacterial agents; however, their structural differences result in varying 

physical-chernical properties . Table I shows the structure of the parent 

moiety, sulfanilamide 1 and the positional substituents for the substances 

under study. It is noteworthy that the N4 substituent is a primary amine 

in all cases wherea s the N 1 substitucnts vary fro1n a pyrimidine to an 

oxazolc. Unlike other useful drugs such as the barbiturate s or esters 

of para-hydroxybenzoic acid , these particular sulfona1nides do not 

follow a homologous s~ries. Thus , magnitudes of _solubi lity for each 

solute in a particular solvent must be viewed o:::ily in ~erms of relative 

substituent effects; there c an be no regular comparative effect such 

as i ncreasing chain l ength. 

Severa l appropriate physical-che1nic,d properties of each sulfona -

mide are presente<l in Table 11. The structural difference of each drug is 
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( 
STRUCTURES OF SULFONAMIDES 

(N4) HzN-0- SOz - NHz (Nll. 

.Sulfanilam idea 

a 
Nl 4 

Sulfonamide Substitutions N . 

Sulfisoxazole -(J HzN 

CH3 CH
3 

Sulf adimethoxine 

-OOCH3 
H

2
N 

.( 
OCH

3 

CH 

Sulfisomidine -QH3 HN 2 
3 

Sulfadiazine -<J H 2 N 

a 
C. Wilson and O. Gisvold, Textbook <2.f Or ganic _and Pharmace L~tica~ 

Chemistry- , 4th ed., J. B. Lippincott Co. 1 Philadelphia , 1962, p . 2 54 . 
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TABLE II 

PHYSICAL-CHEMICAL PROPER TIES OF SULFONAMIDES 

USED IN THIS STUDY 

bMelting 
apKi Molecular Point a a 

Sulfonamide pK2 pKl (isoelectric) Weight (oC) 

Sulfisoxazole 1. 55 5. 1 3. 3 267 192-195 

Sulfadimeth- 2.02 6.7 4. 4 310 cl97-202 
oxine 

Sulf is omidine 2.36 7.5 4. 9 278 243 

Sulfadiazine 2.00 6.48 4.2 250 252-256 

aT. Koizumi, T. Arita and K. Kakemi, Chem. Pharm. Bull., ~ 
413 (1964). 

b Remington's Practice of Pharmacy, 12th ed., Mack Publishing 
Co., Easton, Penna., 1961. 

cThe National Formulary, XIII ed., American Pharmaceutical 
Association, Washington, D. C., -1970, p. 672 
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reflected by the diffe rent melting points, mole cular weights, and 

ionization constants. The t w o ionization constant s for each sulfonamide 

1 4 
derive from the ionizable groups at the N and N positions. The pK2 

values attributed to the ionization of the N
4 

group for the three pyrimidine-

substituted sulfonamides are quite close to one another, while that for 

the oxazole-substituted sulfonamide is about O. 6 pK units less than the 

average of the others, a four fold difference. On the other hand, the 

1 
pKl, which derives from the N substitution, varies by almost one 

hundred times (two logarithm units) among the compounds studied. 

Foernzler and Martin (1) ·have investigated s everal sulfonamides using 

molecular orbital calculations as a measure of the electronic characteristics 

of the molecule. These authors show ed that the electronic charge w as 

approx imately constant at the N
4 

position, but varied at the N
1 

position. 

It may be ·intimated tha t the electronic characteristics of the sulfonamide s 

are functionally related to the ioni z ation constants. Therefore, there is 

at least qualitative agreem ent between the molecular orbital calculations 

and the expe rimentally determined ionization constants. 

The solubility of any substance is dependent on the unique inter-

actions that occur betw een the solute and the solvent. Further, thes e 

interactions and the ir magnitud e s w ill d e pe nd both quali tativ ely and 

quantitative ly on the struc tur e a nd physica l-chemical prope rties of the 

solute. B e caus e of the com plexi t y of these i n te r a ctions, it wa s not 

intende d that solubilit i es stud i e d would be a me:nable to calculation by an 
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~priori theoretical argument. Rather, the data from this study were 

interpreted using established theory. This approach allow s for a 

mechanistic understanding of the solubility process, based on the use 

of established theoretical concepts, without constraining the investigator 

to a pathway dependent entirely upon development of advanced theory. 
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Sulfonamide Solubilities in the Normal Akohols-

The solubilities of the particular sulfonamides in the n-alcohols 

used are given in Tables Ill through XIV. Notations both in mg. /ml. 
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and mole fraction concentration are given to make the data more useful, 

the former to the pharmacist and the latter to the physical scientist. 

As expected, the data in these tables show that the solubility of the 

sulfonamides in each normal alcohol increased with increasing temperature. 

To facilitate the interpretation of these data, graphs (figur es 1-4) were 

constructed using the mole fraction solubility data versus the chain 

length of the normal alcohols. In these plots, the following symbols are 

used to identify each alcohol; 1) Cl =methanol, 2) C2 = ethanol, 

3) C3 = propanol, 4) C4 = butanol, 5) CS = pentanol, 6) C8 = octanol, 

and 7) C 10 = decanol. 

Figure 1 is the plot of the solubility data for the mole fraction 

solubilities of sulfisox azole in the normal alcohols. It shows that the 

solubilities decrease consistently with increasing chain length of the 

alcohols, and the maximum solubility occurs in methanol. The three 

curve s in figure 1 for each temperature are parallel which indicates that 

the same solubility mechanism is operative throughout the t emperature 

range studied. 

Data for sulfadimethox ine solubili~ies are shown i n figure 2. With 

r espect to the t empe ratt:r e e ffect these curves displa y the same 
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Alcohol 

Methanol 

Ethanol 
( 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE III 

SOLUBILITY OF SU LFISOXAZ OLE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

250 CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.) 

4 . 94 x 10 1 3.40 x lo- 1 

l.9lxl0 
l 

2. 34 x 10 -1 

7. 95 x 10 0 1. 31 x 10 -1 

4 .3l xlo 0 5.41 x io-2 

2.61 x io0 9. 57 x io- 3 

9. 38 x 10 -1 1.25 x 10 -2 

5. 12 x io- 1 1. 84 x io- 3 
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Solubility 
(mole fraction) 

7.52xl0-3 

4. 18 x 10 -3 

2. 23 x 10 -3 

1. 48 x 10-3 

1. 06 x 10-3 

1 -4 5. 55 x 0 

4 . 09 x 10-4 
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Alcohol 

Methanol 

Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE IV 

SOLUBILITY OF SULFISOXAZOLE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

30° CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.} 

5. 60 x 10 
1 

1. 04 x 10 0 

2.26x 10 1 1.31x10 -1 

9. 53 x ro 0 - I. 79 x ro- 1 

5. 30 x 10° 4. 96 x ro-2 

3. 20 x 100 1. 66 x ro-2 

l.17xlo0 I.31 x lo-2 

6.79x io- 1 1. o5 x lo-2 
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Solubility 
(mole fraction) 

8. 57 x 10 -3 

4. 99 x 10 
-3 

2. 69 x 10-3 

1. 83 x lo-3 

I. 30 x 10-3 

6. 96 x ro-4 

4. 87 x lo-4 



Alcohol 

Methanol 

Ethanol 
( 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE V 

SOLUBILITY OF SULFISOXAZOLE 
IN 

SEVERAL NORMAL AL.COHOLS 
AT 

37° CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.) 

6.79x 10 
1 

2. 38 x 10 
-1 

2. 66 x 10 1 2.39xl0 -1 

1. 22 x 10 1 . 2. 52 x lo- 1 

6. 53 x 10° 3.lOx 10 -2 

3.95 x 10° 1. 99 x 10 
-2 

l.40x lOO 1. 21 x lo- 2 

8.45 x lo- 1 1. 12 x lo-2 
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Solubility 
(mole fraction) 

1. 04 x 10 
-2 

5. 90 x 10 -3 

3.44x lo- 3 

2.26 x 10-3 

1. 62 x 10-3 

8. 33 x lo-4 

6. 08 x 10-4 
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Alcohol 

Methanol 

Ethanol 

( Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

( 

TABLE VI 

SOLUBILITY OF SU LFADIMETHOXINE 
IN 

SEVERAL NOP.MAL ALCOHOLS 
AT 

25° CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.) 

8. 84 x 10° 4. 62 x lo-2 

3. 78 x 10° 4. 44 x lo-2 

1. 95 x 10° 1. 64 x io-2 

l.31x10° 1. 38 x io-2 

9. 75 x 10 -1 6.00 x 10 -3 

4.01x10- 1 2. 63 x io-3 

3. 64 x 10 
-1 

4. 91 x 10 
-3 

88 . 

Solubility 
(mole fraction) 

l.16x 10-3 

7.14 x 10-4 

4. 71 x 10-4 

3. 89 x lo-4 

3.4lxl0 -4 

2. 04 x 10-4 

2. 24 x 10 -4 



( 

Alcohol 

Methanol 

Ethanol 

( 
Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE VII 

SOLUBILITY OF SULFADIMETHOXINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

30° CENTIGRADE 

Solubility Standard Solubility 
(mg. /ml.) Deviation (mole fraction) 

(mg. /ml.} 

1. 05 x 10 
1 

1.21x10 
-2 

1. 39 x 10 
-3 

. 0 
4. 52 x 10 1. 74 x 10 

-2 
8. 58 x 10 

-4 

2. 32 x 10° 3. 77 x 10 
-3 

5.63 x 10 
-4 

1. 77 x 10 
0 

5. 60 x 10 
-2 

5. 26 x 10 
-4 

1. 26 x 10 
0 

2. 18 x 10 
-3 

4.4lxl0 
-4 

-1 -2 -4 
5. 43 x 10 2. 10 x 10 2. 78 x 10 

4. 35 x 10 
-1 

1. 03 x 10 
-2 

2. 69 x 10 
-4 

89 
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Alcohol 

Methanol 

Ethanol 
( 

Propanol 

Butanol , 

Pentanol 

Octanol 

Decanol 

l 

TABLE VIII 

SOLUBILITY OF SULFADI.l"\1ETHOXINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

37o CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.) 

l.34x 10 
1 

8. 68 x 10 
-2 

s. 74 x 10 0 3. 93 x io-2 

3.20x io0 · 2.llxlO 
-2 

2.2sx100 3. 69 x io- 3 

1. 60 x 10° i. 58 x io- 2 

6. 99 x io- 1· l.18xl0 -2 

s. 44 x io- 1 4. so x io- 3 

90 

l . 

Solubility 
(mole fraction) 

1. 77 x 10 
-3 

l.lOx 10-3 

7.79xl0 
-4 

6.70x io-4 

S.65 x 10-4 

3.59xl0 -4 

. 3.37 x 10-4 



Alcohol 

Methanol 

Ethanol 

( 
Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE IX 

SOLUBILITY OF SULFISOMIDINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

25° CENTIGRADE 

Standard 
Solubility Deviation 
{mg. /ml.) (mg. /ml.) 

7. 64 x 10° 8. 08 x 10-2 

2. 63 x 100 1. 33 x lo-2 

1. 57 x io 0. 4. 03 x lo-2 

1. 04 x 10° 1. 00 x 10-2 

7.28xlo- 1 3. 85 x io- 3 

2.40x 10-l 4. 83 x lo- 3 

2. 63 x 10- 1 i. 26 x io- 3 

91 . 

Solubility 
(mole fraction) 

1. 12 x lo- 3 

5. 53 x 10-4 

4. 23 x 10-4 

3. 44 x 10-4 

2.84x 10-4 

1. 36 x 10-4 

1. 80 x 10-4 



( 

Alcohol 

Methanol 

( 
Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE X 

SOLUBILITY OF SULFISOMIDINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

30° CENTIGRADE 

Standard 
Solubility Deviation Solubility 
(mg. /ml.) (mg. /ml.) (mole fraction) 

8.67xl0 
0 

5. 74 x 10 
-2 

1. 27 x 10 
-3 

0 -3 -4 
3. 02 x 10 3. 91 x 10 ·6.38x 10 

1.81x10 
0 

2.85xl0 
~2 

4. 89 x lo-4 

1. 26 x 10 
0 

8. 84 x 10 -3 4.17x 10 
-4 

8. 75 x 10 -1 6. 22 x 10 -3 3.43xl0 
-4 

3.20 x 10 -1 4. 21 x 10 
-3 

1.83 x 10 
-4 

2. 97 x 10 
-1 6 -3 1. 0 x 10 .2. 04 x 10 

-4 

92 
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Alcohol 

Methanol 

( 
Ethanol 

Propanol . 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE XI 

SOLUBILITY OF SU LFISOMIDINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

37° CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mgo /ml.) 

1. 12 x 10 1 l.23xlo- 1 

3. 86 x 10 
0 

8. 21 x lo-2 

2. 39 x 10 
0 

1. 75 x 10 
-2 

1. 67 x 10 0 2. 53 .x 10-2 

1. 16 x 10° 
. -3 

3.97 x 10 

4.25xl0 -1 1. 32 x 10 
-3 

6 -1 -3 
3. 6 x 10 6. 32 x 10 

93 

Solubility 
(mole fraction) 

1. 65 x lo- 3 

8.20xl0-4 

6 -4 .48x 10 . 

5. 56 x lo-4 

4.54xlo-4 

2. 44 x 10 -4 

2. 53 x 10 
-4 



Alcohol 

Methanol 

Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

• 

TABLE XII 

SOLUBILITY OF SULFADIAZINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

25° CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.) 

l. 18 x 10° 7.33xlo- 3 

3.28xl0-l l.42xlo- 3 

1. 44 x 1 o- 1 2. 35 x lo- 4 

8.67xlo-2 3.23 x io-4 

6.06 x lo-2 9. 49 x io-4 

2. 23 x io-2 5. 52 x io-4 

9.69xlo-2 l. 79 x lo- 3 

94 

Solubility 
(mole fraction) 

l. 93 x io-4 

7.68x 10- 5 

4. 32 x lo- 5 

3.18x io- 5 

2. 63 x io-s 

1. 41 x 10- 5 

7.40 x 10- 5 



( 

Alcohol 

Methanol 

( Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE XIII 

SOLUBILITY OF SULFADIAZINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

30° CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.) 

1. 40 x 100 9. 21 x lo- 3 

3. 98 x 10 
-1 

2. 53 x 10 -3 

1. 81 x lo-1 1. 73 x lo- 3 

1. II x io-1 1. 53 x Io- 3 

7.61x10 
-2 

4. 61 x 10 
-4 

2. 77 x lo-2 1. 42 x 10-2 

1. 05 x 10-l 4. 04 x lo- 3 

95 

Solubility 
(mole fraction) 

2. 29 x 10-4 

. -5 
9. 36 x 10 

5. 45 x 10-5 

4. 09 x lo-5 

3.3lxl0 
-5 

l.76x io-5 

8. ·04 x lo- 5 
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Alcohol 

Methanol 

.( 
Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

· Decanol 

TABLE XIV 

SOLUBILITY OF SULFADIAZINE 
IN 

SEVERAL NORMAL ALCOHOLS 
AT 

37° CENTIGRADE 

Standard 
Solubility Deviation 
(mg. /ml.) (mg. /ml.) 

1. 82 x 10° 1. 39 x 10-2 

5. 25 x 10- 1 6.23 x lo-3 

2.46x 10-l 1. 41 x lo- 3 

1. 53 x io- 1 2. 15 x io- 3 

l.06xlo- 1 2. 33 x 10- 3 

4. 15 x lo- 2 1. 09 x io- 3 

1.23x io- 1 i. 76 x lo- 3 

96 

Solubility 
(mole fraction) 

2. 99 x 10-4 

1.24 x lo-4 

7.44 x lo- 5 

5. 66 x 10-5 

4.61 x 10-5 

2. 65 x io- 5 

9.47 x io- 5 
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characteristics as those in figure l; however, in figure 2 the mole 

fraction solubility for the drug at 25°C is slightly higher in decanol 

than in octanol. 

101 

Table VI shows that up to octanol the sulfadimethox ine solubilities 

in terms of mole fraction decrease consistently with increasing chain 

length of the alcohol but from octanol to decanol, the trend is reversed. 

On the other hand, the mg. /ml. solubilities decrease consistently with 

increasing chain length of the alcohol, and there is no reversal of trend 

between oc t anol and decanol. It appears that solubilities in a series of 

solvents may vary according to which concentration units are chosen. 

Paruta (2) has shown that the interpretation of solubility data depends 

greatly upon units chosen to express concentration, and in the present 

case, there are two reasons why the mole fraction data do not follow the 

same trend as the mg. /ml. data; First, the mole fraction solubility is 

dependent upon the mg. /ml. concentration of the solute com ponent and 

upon the molecular weights of both the solute and the solvent. Sec ond , 

when the solubilities of a particular solute are measured in a serie s of 

solvents, the molecular weight of the solute r e1nains constant but the 

molecular weights of the solvents vary. If the mg . /ml. solubilities do 

not differ greatly from solvent to solve nt 1 then the molecular weights of 

· the solvents may assume unique i1nportance in determining the mole 

fraction solubility, even r eversing the solubilities trend whe n c e r tain 

conditions are met. The present cas e is one in point: the molecular 
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weight of decanol is 1. 22 times greater than the molecular weight of 

octanol and the mg. /ml. solubility of the drug in decanol is about O. 9 

times its solubility in octanol. The difference in the data trend has 

already been cited. 

Figures 3 and 4 show the solubility data for sulfisomidine and 

sulfadiazine respectively. These plots exhibit the same trends observed 

in figures 1 and 2. The maximum solubilities for sulfisomidine occur 

in methanol, and the solubilities decrease consistently up to octanol. 

From octanol to decanol the mole fraction solubilities for both sulfis-

omidine and sulfadiazine increase, dramatically so in the case of sulfa

diazine. The solubility of sulfadiazine in decanol is approximately the 

same as its solubility in ethanol, an unusual fact when the polarities of 

the two solvents are compared. Decanol may be considered a 1noder

ately nonpolar molecule with respect to ethanol, and the approxiinately 

equivalent solubilities in the two solvents suggest that the solubility of 

sulfadiazine in decanol is a net effect involving a multiplicity _of factors. 

Thermodynamic investigation of solution behavior, discussed elsewhere, 

would be a basic consideration. 

The magnitudes of solubility for each drug solute is of importance 

sinc e it is indicative of the extent of solute-solvent interactions. The 

solubility :ratios in Table XV show the relative solubilities for cc...ch 

solute at 25°C. Since of all the sulfonamides the .highes t sobbilitics in 

all the alcohol solvents occurred vvith sulfisox.azole, this solute was 
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Alcohol 

Methanol 

Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

TABLE XV 

SOLUBILITY RATIOSa 
AT 

250 CENTIGRADE 

(R) 
Sulfa-

(R) 
Sulfi-

(R) 
Sulfi
soxazole dimethox ine somidine 

1. 0 o. 15 o. 15 

1. 0 o. 17 o. 13 

1. 0 0.21 o. 19 

1. 0 0.26 0.23 

1. 0 0.32 0.27 

.l. 0 0.37 0.25 

1. 0 o.55 0. 44 

(R) 
Sulfa
diazine 

0.026 

0.018 

0.019 

0.022 

o. 025 

o. 025 

o. 18 

aSolubili ty ratio = R = (mole fraction solubility sulionan1ide/mole 
fraction solubility sulfisoxazole) 
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chosen as a basis for comparison. The solubility ratios, R, were 

calculated ·by dividing the mole fraction solubility of sulfisoxazole into 

the mole fraction solubility of the sulfonamide in question; therefore, the 

ratios for sulfisox azole are one and all other values are less than one. 

Very small values for R indicate that the mole fraction solubility for the 

sulfonamide is much less than the mole fraction solubility of sulfisoxazole. 

Table XV shows that the sulfadimethoxine and sulfisomidine solubilities 

in methanol are smaller than the mole fraction solubility of sulfisox azole 

in the same solvent by a factor of o. 15. The solubilities for the same 

solutes in decanol, however, are only about one-half the sulfisoxazole 

solubility in decanol. In relative terms, decanol appears to be a much 

better solvent for sulfadimethox ine and sulfisomidine than methanol. 

The solubility ratios for sulfadiazine in methanol through octanol show 

that sulfadiazine, when compared with sulfisoxazole, is extremely 

insoluble. In fact, the average sulfadiazine solubilities in methanol 

through octanol are about 2. 5 percent that of the sulfisoxazole solubilities. 

In decanol, .however, the sulfadiazine solubility increases to eighteen 

percent of the sulfisoxazole solubility in the same solvent. This large 

increase may possibly be due to a steric effect betwe e n solute and 

solvent which promotes increased interactions. 

The differ e nce in magnitudes of solubility of the sulfonamides in 

the alcohol series can probably be attributed to changes caused by the 

N
1 

substituents , because e ach solute spe cies diffe rs structurally only 
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at this position. 
1 

Reference to Table I shows that the N group for 

105 

sulfisoxazole is 3, 4-dimethylisoxazole. This group obviously promotes 

the solubility of this particular sulfonamide molecule to a far greater 

extent than do the substituents of the other sulfonamides . The substitutions 

for sulfadimethoxine and sulfisomidine at the . N 1 position are both 

pyrimidines; dimethoxypyrimidine in ·the case of sulfadimethoxine and 

dimethylpyrimidine in the case of sulfisomidine. As expected, because 

of the chemical similarities of the two drugs, the solubilities for both 

these solutes are very close. The. solubility of sulfadimethoxine is 

slightly greater than that of sulfisomidine, and this difference is quite 

liJ.<.ely due to the methoxy groups which are more polar than the methyl 

groups. The lowest solubility of the sulfonamides studied was reached 

with sulfadiazine which has for the N
1 

substituent an unsubstituted 

pyrimidine group. These data indicate that in the pyrimidine series, 

the addition of the methyl or methoxy groups substantially favors higher 

solubilities. 
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Polarity Aspects of Nonelectrolyte Solubility-

Several authors (3-6) have recognized the dependence of 

observed solubility upon the relationship between the polarity of the 

solute and solvent. Paruta (5) used solvent polarity as a parameter to 

explain changing solubility for a solute dissolved in a series of related 

solvents. He plotted the values for the solubilities of a particular 

solute versus the dielectric constants of the solvents to generate a 

curve which suggested that the solubilities change in a manner consistent 

with changing solvent polarity. These changes were interpreted as 

indications of solute-solvent interactions which are apparently related 

to the polarity of the system. 

Solubility parameters and dielectric constants are the values 

most commonly used to describe the polarity spectrum and the values 

for the normal alcohols used in this investigation are shown in Table 

XVI. These data show that both polarity indicators decrease as the 

carbon chain length of the alcohol increases; however, the solubility 

parameter scale is much more compressed than the dielectric scale. 

Gordon and Scott (7) have observed that regular solution theory 

should apply to three-component systems with no further assumptions 

than those involved in the tw o-component case. Therefore, it is 

anticipated that, if the relative polarity of the solute lies between the 

polarities of two pure liquids, the solubility of the solute w ill be greater 
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TABLE XVI 

SOLUBILITY PARAMETERS AND DIELECTRIC CONSTANTS 

Alcohol 

Methanol 

Ethanol 

Propanol 

Butanol 

Pentanol 

Octanol 

Decanol 

OF THE NORMAL ALCOHOLS 

AT 25° CENTIGRADE 

Solubilitya 
Parameter 

14.5 

12.7 

11. 9 

11. 4 

10. 9 

10.3 

9. 3b 

aH. BurreU, Interchemical Revie w , . .!.!• 31 (1955). 

Dielectric c 
Constant 

32.6 

24.3 

20. 1 

17 .1 

13.9 

10.2 

8. 1 (20°} 

bcalculated from- solubility parameter = dielectric constant 
x o. 22 + 7. 5 

c A. Maryott and E. Smith, Table ~ Dielectric Constant s ~ 
Pure Liquids, National Bureau of Standards Circular 514, 1951. 
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in certain binary liquid ble.nds than in either pure liquid. In order to 

test the possibility that sulfonamide solubilities may be maximized in 

certain solvent blends, sulfadiazine was dis solved in diox ane /water 

mixtures, and these data a -re summariz ed in Table XVII. Figure 5 is 

a plot of mole fraction solubility versus dielectric constant of the 

solvent; it reveals that a max imwn solubility occurs in a solvent mixture 

with a dielectric constant of about 6. The increased solubility is a 

manifestation of the simple theory that "like dissolves like". It must 

be recognized, how ever, that mix tures of solvents do not necessarily 

lead to a hypothetical "single solvent" with polarity properties that 

represent an average of the individual pure liquids. Rather, cosolvent 

systems must be considered to be complex in nature and, any solute

solvent interactions which lead to incr e ased solubility are correspondingly 

complex. The solubility max imum in figure 5 demonstrates that regular 

solution theory is qualitatively accurate, and solute- solvent interactions 

may be enhanced by altering the polarity characteristics of the solvent 

system. 

Solubility-polarity profile s for the solubilitie s of the sulfonam ides 

determine d in norm.al alcohols ar e show n in figures 6-9. In the case of 

sulfisox azole , which has a dime thylisox azole substitue nt at t h e N 1 

position , th e curve is smooth, with solub ility values r ising to a peak in 

pure n1e thanol. For the o th e r th r ee sulfonam i de s, whic h hav e pyrim i d ine 
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PERCENT 
WATER 
(w/w) 

47.5 

42.5 

37.5 

( 32.5 

30.0 

25.0 

20.0 

15.0 

10.0 

o. 0 

TABLE XVII 

SOLUBILITY OF SULFADIAZINE IN 

DIOXANE /WATER MIXTURES 

AT 25° CENTIGRADE 

Solubility Standard 
(mg. /ml.) Deviation 

(mg. /ml.) 

5.45 9. 50 x 10 
-2 

.. 

5.53 1. 51 x 10 
-1 

6.55 9. 48 x 10 
-2 

-1 
8.18 4. 70 x 10 

-1 
8.58 l.57xl0 

8. 91 8. 16 x 10 
-2 

-1 
9.75 2. 35 x 10 

9. 79 l.55x 10 
-1 

9.71 1.37 x 10 
-1 

2.94 8. 72 x 10 -2 
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Solubility 
(mole 

fraction) 

6.61x10 
-4 

-4 
7. 17 x 10 

9. 15 x 10 
-4 

l.24xl0 
-3 

1. 36 x 10 
-3 

-3 
l.56x 10 

-3 
1. 90 x 10 

2.13xl0 
-3 

2.41 x 10 
-3 

l.OlxlO 
-3 
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substituents at the N
1 

position, the profiles are similar in nature. 

The solubility minima occur in the area of a dielectric constant of 

about 10, and peak solubilities occur in methanol. Examination of 

these curves does not yield any significant quantitative correlation 

between mole fraction solubility and solvent polarity. Qualitatively, 

however, it is clear that the dielectric constant, ~ ~· , the polarity, 

of the solvent is related, at least in part, to the changes in observed 

solubilities as the pure solvent systems are varied. 
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Melting Point ~the Solute and Nonelectrolyte Solubility-

The general equation relating mole fraction solubility for a 

nonelectrolyte solute to its melting point is 

-In X 2 = (Hf/R).l (Tm-T)/TmT_/ 
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where x 2 is the mole fraction solubility, Hf is the heat of fusion 

(calories/mole), Tm is the melting point of the pure solute and Tis 

the temperature at which the process takes place. The equation 

indicates that, as the melting point of a nonelectrolyte solute increases, 

the mole fraction solubility decreases. Hildebrand (8) has demon

strated that this data trend does ex ist for three related dinitrobenz enes 

dissolved in the same solvent at 50°C. In Table XVIII the melting 

points of the sulfonamides used in the present study are listed together 

with the mole fraction solubilities of the four solutes in methanol at 

25°C. These data confirm the expectation suggested by the equation, 

since the solubilities do decrease with increasing melting point. 

The data in Table XVIII show , how ever, that a relatively large 

change in melting poin~ does not necessarily result_ in a commensurate 

change in solubility. For example, the difference betw een the rn e lting 

points of sulfadimethox ine and sulfisomidine is 43°C, but the solubi litie s 

for these solutes ar e nearly equal. On the other hand, only a ten degree 

difference exi s ts b e tw een sulfisom idine and sulfadia z ine , yet sulfis

omidine is n e arly six times mor e soluble . The s e findi ng s sugge st that 

factors, such as the h eats of fu sion and th e chemical s tru ctur e s of the 

solute s, al s o influe nc e the m agnitude s of obs e r ve d solubilities. 
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TABLE XVIII 

SOLUBILITIES OF SULFONAMIDES 

. IN METHANOL AT 25 °c 

COMPARED WITH MELTING POINTS 

OF PURE SOLUTES 

Sulfonamide Solubility Average 
(mole fraction) Melting Point 

(degrees C) 

( 
Sulfisoxazole 7.52xl0 -3 193 

Sulfadimethox ine 1. i6 x 10 
-3 

200 

Sulfi s ornidine 1. 12 x 10 
-3 

243 

Sulfadiazine 1. 93 x 10 
-4 

253 
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Thermodynamic Evaluation 0 Nonelectrolyte Solubility Data

The relationship between temperature and mole fraction 

solubility is given by 

log 10 x 2 = -Hs / (2. 303R T) + Sf (2. 303R) (1) 
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where Hs is the heat of solution and S is the corre spending entropy. 

Equation 1 is a special form of a general physical-chemical equation (9), 

and its usefulness derives from the fact that enthalpy and entropy are 

basic theoretical quantities. These quantities may be applied to the 

interpretation of an equilibrium process to determine the change between 

the initial and final stages. Solubility is a special type of equilibrium 

wherein the heat of solution and its corresponding entropy are valuable 

interpretive quantities that suggest both the change in heat content and 

the randomness of the solution system relative to the solid state. 

The enthalpy term in equation 1 is the heat change involved 

when a solute undergoes a phase change from the solid to the solute in 

solution. For nonelectrolyte solutions, the enthalpy quantity is 

usually positive, ind~cating that the process is ez:idothermic. The 

entropy term may be positive or negative depending upon the ordered 

nature of the system relative to the initial state . 

Enthalpy and entropy are macroscopic thermodynamic quant

ities and do not deal directly with molecular behavior. Therefore, 

their .usefulness in solution the ory is enhanced if a molecular impli

cation can be ascribed. The enthalpy of solution, Hs, has b een given a 
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qualitative meaning by Higuchi (10) who relates this quantity to the 

interactions occurring in solution. Higuchi 1 s theory is based on the 

following relationship 

Hs = -Hi z + (H1 l +Hz 2> ' . . (Z) 

where H1, l is the molar heat of vaporization of the solvent, Hz, z is 

the molar heat of vaporization of the solute, and H1 z is the energy • 
notation, in calories per mole, of the interaction that has occurred 

between the solute and solvent. Thus, as Hi z increases in magnitude, 
• 

Hs becom.es smaller and there is an indication that at the molecular 

level the solute~solvent interaction is relatively large. Equation 2 is 

derived from a model which requires that the solute and solvent 

molecules be of approximately the same size. Since this requirement 

will not usually be met, the equation cannot be considered to be 

quantitative. However, it is of qualitative usefulness and suggests very 

strongly that Hs may be regarded as the INTERACTION term. 

The entropy term in equation l is indicative of the molecular 

orderliness in the system being analyzed. Butler (11) has noted that 

"The entropy is a measure of the number of possible configurations of 

the system having a given energy. When the solute molecule is brought 

into the field of force of the solvent there may be some restrictions of 

its possible configurations, which will lower the entropy, and this effect 

might well be proportional to the energy of interaction of the solute with 

the solvent. Conversely, the solvent molecules around the solute will be 
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affected in the sam.e way, and any change of entropy which arises 

therefrom will appear in the partial entropy of the solute. 11 Thus, in 

molecular terrns the entropy can be regarded as a configuration.al 

term which is obviously related to the extent of interactions, the enthalpy 

of solution, and the magnitude of solubility . 

With the molecular i nterpretations of enthalpy and entropy 

in mind, it should be possible to develop a general theory or model to 

e xplain solubility at the molecular level. The following phase transitfons 

are r epresentative of solubility phenomena: 

solid 
solute 

Hf liquid 
(1) ~ solute 
Sf 

H..x solute in 
(2} ~ solution. 
Sx 

The enthalpy and entropy of solution represent the thermodynamic 

quantities , with respect to the solute, that are i nvolved in the chang e 

of the solid solute to a solute in solution. The enthalpy involved in 

step 1 is the enthalpy of fusion, Hf , and the corresponding entropy is 

the entropy of fus i on, Sf. 0 £ particular interest are the enthalpies and 

entropies associated with step 2, designed as !:-L-x and Sx, r espectively . 

The following equations then obtain: 

Hs =Hf+ Hx (3) 

and 

S = S.f + Sx (4 ). 

When Hx and Sx are z.ero, the solute in the solution phase acts essentially 

as the solute in the liquid ph;:i.se , and the solubility is independent of the 
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solvent. An example of this type of behavior is the dis solution of 

naphthalene in benzene. The implications of this behavior are that the 

solute-solvent interactions are of the same magnitude as the solute

solute and solvent-solvent interactions. 

When Hx is relatively large, there is an indication of 

correspondingly decreased interactions by virtue of equation 2; and the 

mole fraction solubility, X2, can be expected to ~.e relatively small. 

One explanation for this decreased solubility is that the solvent mole

cules have "squeezed out" the solute molecules and in so doing have 

brought about a higher level of molecular disarray in the solution phase. 

The resulting entropy term, S, would then be ex pected to be positive 

and the solubility process would be essentially entropy-governed, 

especially at higher temperatures. Conversely, when Hx becomes 

small~ there is an expectation of increased interactions. Under these 

conditions, however, the solvent molecules no longer "squeeze out" 

those of the solute, and the .solution phase displays increased orderliness, 

manifested by a small positive or even negative entropy term. This 

theory is basically consistent with that discussed by Hil.debrand {12). 

There are obv iously other conditions which may be met with 

regard to the sign and m a gnitude of Hx and Sx , but these two will 

generally be used as a b a sis for the explanation of sulfonamid e solubility 

in the norm al alcohols studie d. Unfqrtuna tely, the Hf a nd Sf quantitie s 

for the solute are not available; hence, it is not possible to calculate 
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Hx and Sx from Hs and S. However, the relative magnitude of Hs and 

S as well as their sign should serve to interpret the data. 

Equation 1 provides a means of calculating the enthalpy of 

solution and its corresponding entropy and predicts that a plot of 

loglO x2 versus l/T should generate a straight line. The slope of the 

line would be -Hs/2. 303R and the y-intercept S/2. 303R. The enthalpy 

and entropy quantities can then be calculated by 

-Hs = (slope)(2. 303R) (5) 

and 

S = (y-intercept)(2. 303R) (6). 

Shown in figures 10 through 13 are plots of log 10 x2 ~sus l/T for the 

sulfonamides studied. In each of the systems investigated, solubility 

increased with increasing temperature in the linear manner suggested 

by equation 1. The temperature range of 25°C to 37°C is shown to be 

wide enough to exhibit measurable solubility changes. 

· With the aid of a computer, the values for the enthalpies and 

entropies of solution were calculated using the method of least squares 

(Appendix ). These data are presented in Tables XIX through XXII. 

Table XIX shows that the lowest heat of solution value occurs for 

sulfisoxazole dissolved in methanol. Since sulfisoxazole displayed the 

highest solubility in methanol, the magnitude of the enthalpy value is 

in keeping with equation 2; that is, increased solubility occurs with 

increased interactions and correspondingly low er Hs values. 
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TABLE XIX 

HEATS OF SOLUTION AND CORRESPONDING ENTROPIES 
FOR SULFISOXAZOLE 

AS DETERMINED IN A SERIES OF NORMAL ALCOHOLS 

Heat of 
Solution Entropies 

Alcohol (calories/mole) (calories/degree) 

Methanol 
. 3 

5. 02 x 10 7. 12 

Ethanol 5. 20 x 10 
3 

6.58 

Propanol 6. 58 x 10 
3 · 

9.97 

Butanol 6.40xl0 3 
8.57 

Pentanol 6. 38 x 10 3 
7.83 

Octanol 6. 10 x 103 5.64 

Decanol 6. 04 x 10 3 
4.78 
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Decreased solubility of this solute in ethanol leads to the expected 

increase in the enthalpy term. However., the entropies for the methanol 

and ethanol systems differ by only O. 54 entropy units, indicating that 

the interaction term, enthalpy, is predominate over the configurational 

term, entropy, in determining the difference in solubility for sulfis -

oxazole in these two solvents. From propanol through decanol there 

appears to be a pattern with regard to enthalpy and entropy; both values 

decrease with increasing chain length of the alcohol. Even though the 

solubilities continue to decrease in these solvents, the decrease in 

enthalpy and in entropy suggests that the sulfisoxazole molecules are 

not being "squeezed out" and there is a tendency to promote orderliness 

in the solution phase. A more subtle explanation for the enthalpy term 

and its corresponding entropy might be found if the effective molecular 

sizes of the solute and solvent were known. Obviously. the size of the 

solvent molecules in question varies considerably and the size and/or 

shape may be very important for a more complete interpretation of the 

thermodynamic quantities. From the decreasing entropy values, it is 

apparent that the solute and solvent molecules affect each other so that 

the number of configurational possibilities are decreased and would 

seem to be dependent upon steric factors related to molecular size and 

shape . From a purely thermodynamic point of view, the d e creased 

solubilities of the solute in propanol through decanol occur b e cause of 

the r e lati•J"e w.agnitudes of the enthalpies and entropies. The spontaneity 

of th e process w ill be enhanced when Hs is relatively small and the 
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corresponding entropy is of the same sign and relatively. large (13). 

The thermodynamic functions for sulfadimethoxine are presented 

in Table XX. These data show that the heats of solution increase 

steadily for methanol through butanol with corresponding decreases 

in the solubility of sulfadimethoxine. The entropies associated with 

these solutions also inc:r:ease with increasing chain length of the alcohol, 

except for ethanol. The ethanol solution when compared with the 

methanol solution exhibits an entropy decrease of O. 66 calories/ degree. 

The data for the methanol through propanol systems indicate that the 

solute is being excluded from the solvent as the solute passes from 

the liquid solute to the solute in solution. This exclusion is manifested 

by decreased interactions, larger Hs values, and increased disarray, 

b ~·, larger positive entropy values. With pentanol, there is evidence 

of increased interactions, but the solubility of the solute does not in

crease because of the influence of the entropy factor. The enthalpy 

and entropy values for the octanol solution show an increase over those 

of the pentanol system; and the increase, as previously explained, is 

probably due to the decrease in the solute-solvent interactions and the 

corresponding increase in molecular randomness. in the solution phase. 

The decanol solution is interesting because of the large decrease in 

the heat of solution and entropy. Although the solubility of sulfadi

methoxine in decanol is much less than its solubility in methanol, 

there is a large difference in the respective entropy values. The 
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TABLE XX 

HEATS OF SOLUTION AND CORRESPONDING ENTROPIES 
FOR SULFADIMETHOXINE 

AS DETERMINED IN A SERIES OF NORMAL ALCOHOLS 

Heat of 
Solution Entropies 

Alcohol (calories/mole) (calories/ degree) 

Methanol 6. 43 x 103 8. 16 

Ethanol 6. 52 x 10 3 7.50 

Propanol 7. 76 x 10 3 10.8 

Butanol 8.18 x 10 3 11. 9 

Pentanol 7.61 x 10 3 9.72 

Octanol 8.48 x 10 3 11. 6 

Decanol 6. 21 x 103 4.17 
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entropy for the decanol solution is ahnost 4 . 0 calories /degree lower 

( than that for the methanol solution, and the heat of solution for the 

' 
decanol system is about 200 calories /mole less than that for the 

methanol system. Therefore, it appears that, when sulfadimethoxine 

is dissolved in decanol, the molecular interactions are somewhat in-

creased and the randomness _ of the system is diminished. The smaller 

entropy term also indicates that steric factors are very important in 

the decanol-sulfadimethoxine system. 

The magnitudes of the heats of solution and the corresponding 

entropy values for sulfisomidine follow the same trend as the thermo-

dynamic data for sulfisomidine. Again, the decanol system exhibits 

a decrease in enthalpy and a very small entropy term of about O. 3 

calories/degree. From a structural point of view, it seems that the 

dimethylpyrimidine group of sulfisomidine is able to interact and "fit" 

into the solvent structure of decanol much better than the dimethoxy-

pyrimidine group of sulfadimethoxine. This possibility is suggested 

by the fact that the entropy for sulfisomidine in decanol is about four-

teen times less than the entropy value for sulfadimethoxine in the same 

solvent. In fact, the entropies for all the sulfisomidine solutions, with 

the exception of octanol, are smaller than the corresponding entropies 

for sulfadimethox ine. 



TABLE XX! 

HEATS OF SOLUTION AND CORRESPONDING ENTI\OPIES. 
FOR SU LFISOMIDlliE 

AS DETERMINED IN A SERIES OF NORMAL ALCOHOLS 

Heat of 
Alcohol Solution Entropies 

(calories /mole) (calories/degree) 

Methanol 6. 05 x 10 3 6.77 

Ethanol 6. 07 x 10 3 5.44 

Propanol 6. 58 x 10 3 b.64 

Butanol 3 8.86 7.36x .10 • 

Pentanol 7.16~10 3 6.73 

Octanol 8.81x10 3 
11. 9 

Decanol 5. 19 x 10 
3 

0.277 
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The thermodynamic data for sulfadiazine are presented in 

Table XXII and these values follow the trend established for sulfadi-

methoxine and sulfisomidine solutions. Attention is again drawn to 

the decanol system where it will be noted that the enthalpy and entropy 

have decreased by a relatively large magnitude. The negative entropy 

term for this solution indicates that steric factors play an important 

role in the solubility mechanism for sulfadiazin~ and decanol.. It is 

difficult to visualize the possibility of configurational relationship 

between solute and solvent, but the relatively small enthalpy indicates 

that the interactions are strong and that they are due, at least in part, 

to the way in which the solute can "fit" into the solvent structure. 

It is also of interest to compare the thermodynamic data for 

sulfadiazine in decanol with that for sulfadimethoxine and sulfisomidine 

in the same solvent. The deletion of the methoxy or methyl groups 

from the pyrimidine moiety seems to promote an increase in mole.cular 

orderliness in the solution phase. Thus, there appears to be a functional 

relationship between the N 1 substituent of the sulfonamide molecule 

and the configurational interpretation of entropy. 

The thermodynamic data for sulfadiazine suggest that the solu

bilities of · this solute in decanol should be unusually high. Indeed, 

within the temperature range studied, the solubility of sulfadiazine in 

decanol is approx imately the same .as that of sulfad.iazine .in ethanol. 

From a thermodynamic point of view, how ever, the ethanol· system is 
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TABLE XXII 

· HEATS OF SOLUTION AND CORRESPONDING ENTROPIES 
FOR SULFADIAZINE 

AS DETERMINED IN A SERIES OF NORMAL ALCOHOLS 

Heat of 
Alcohol Solution Entropies 

(calories/mole) (calories/ degree) 

Methanol 6. 73 x 10 
3 

5.58 

Ethanol 
. 3 

7. 34 x 10 5~79 

Propanol 8. 28 x 10 3 7.82 

Butanol 8. 77 x 10 3 
8.85 

Pentanol 8.59xl0 
3 

7.86 . 

Octanol 9. 72 x 10 
3 

10.4 

Decanol 3.80 x 10 3 -6.18 
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favor ed because of the positive enthalpy and entropy values , which 

will promote increased solubilities: especially at higher temperatures 

( 13 ). 
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Solubiliti~s of Sulfonamides in Buffered Aqueous Systems-

Solubilities of nonpolar or semipolar nonelectrolytes in wate r 

are gene rally limited. The low magnitude of solubility is attributed to 

extensive cohesive forces that occur between the solvent mole cules 

themselves which tend to exclude those oJ the solute phase (14). 

However, solubility-limiting characteristics of nonelectrolytes are 

complex and involve polar and nonpolar (hydrophobic) interactions of 

the solute with water (15, 16). When a semipolar nonelectrolyte 

containing both a hydrophobic substituent and a polar group that is 

capable of intermolecular hydrogen bonding is introduced into an 

aqueous environment, two types of interactions might occur: first, the 

polar substituent may interact with the water molecules by way of 

hydrogen bond formation; and second, interaction as a result of Van der 

Waals forces between water and the hydrophobic portion of the solute may 

take place. 

Investigations have shown that the transfer of a hydrocarbon 

solute from a nonpolar. to a polar (aqueous) system is associated with 

a negative entropy of solution ( 16). It has been postulafed that the 

entropy term derives frmn the Van der Waals interactions with the 

nonpolar molecule, resulting in a promotion of molecular ordering as 

the water forms a partial cage around the hydrophobic portion of the 

solute. The concept of structured wate r or water "clusters" resulting 

from hydrophobic-water interactions can b e better understood by 
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considering the model as a dynamic one based on rnicroenvironm.ental 

regions in the system. 

As might be expected, the hydrogen bond formation is ener

getically favored over the Van der Waals interaction. Therefore, the 

aqueous solubilities of nonelectrolytes should increase as a function of 

increasing hydrogen bonding possibilities. Contribution from Van der 

Waals interactions are determined by the size and shape of the solute 

(16) and actually place a limitation ·on aqueous solubilities because of 

the large negative entropies and resulting positive free energy changes 

(15 ). 

Considerable care must be exercised with models that use 

energetic or entropic quantities to explain nonelectrolyte solubilities 

in water. The extent to which solubility occurs is the net result of all 

energetically governed processes, including hyd.rogen bonding, dipole 

interactions and Van der Waals forces. Accordingly, actual systems 

must be viewed as the resultant of numerous effects that cannot be 

isolated and recognized on a singular basis to give support for any 

particular model. 

In the present study, aqueous solubilities of sulfisoxazole, 

sulfadimethoxine , sulfisomidine and sulfadiazine were measured at 

varying temperatures and these data are su1nn~arized in Table XXIII. 

Krebs and Speakman (17) have demonstrated that sulfadiazine dissolved 

in water shows large changes in solubility as a function of pH. These 
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authors a l so pr esented equations showing tha t an amphoteric sulfo-

narn.ide acts essentially as a nonelectrolyte at the isoelcctric pH. 

For this reason, all aqueous systems were appropriately buffered 

so that ionization of both substitue nt groups was precluded. The 

co1nplexi::y of aqueous systen1s containing dis solved non.electrolytes 

is increased because of the presence of salts include d for their buffer 

effe ct (18). However, the observed sulfonamide solubilities mai ntain 

the ir instructive integrity in a relative manner by virtue of a c onstant 

buffer concentration. 

The data in Table XXIV are included to demonstrate the re-

lative solubilities of each solute at a particular temperature. Ratios 

of m ole fraction sulfonamide solubilities divided by the mole fraction 

sulfi sornidine solubility were calculated for this purpose . Table XXIV 

shows that sulfis01nidine has the largest re l ative solubility of any of the 

sulfonamides s tudied . O the r authors have noted that this solute has 

the highest solubility of the available pyrimidine substituted sulfonamides 

(1 9}. Although sulfadiinethox ine and sulfadiazine are pyri1nidine sub-

stjtuted sulfonamides , the i r aqueous solubilities are significantly l ower 

than sulfi s omidine . 

The data in T able XXIII were further analyzed by calculating 

h eats of solution and thei r corr esponding entropies , using the 

established relationship between log . mole fraction solubility and 
10 

·recipr ocal ten1perat urcs (Ke lvjn). These therrnodynamic data arc 



( 

( 

TABLE XXIII 

SOLUBILITIES OF SULFONAMIDES IN WATER a 

Sulfonamide oc Solubility Standard Solubility 
(mg. /ml.) Deviation (mole fraction) 

(mg. /ml.) 

25 
-1 , -4 -6 

Sulfisoxaz ole l.40 x l0 6. 53 x 10 -3 9.47xl0 
30 1. 77 x 10-1 -5 2.17xl0 1. 20 x 10 
37 2.43x lo-1 6. 67 x 10- 3 l.65xl0-5 

Sulfadimethoxine 25 
-2 -4 -6 

2.2lxl0 2.05 x 10 1. 28 x 10 
30 

-2 -4 -6 . 2. 66 x 10 7. 05 x 10 1. 55 x 10 -6 
37 -2 8. 73 x lo-4 4.20 x 10 2.45xl0 

Sulf is omidine 25 0 -2 -5 1. 33 x 10 2. 04 x 10 8. 62 x 10 
30 0 -3 -4 

1. 56 x 100 9. 57 x 10 1.01x10 
37 2. 61 x 10-2 -4 

1. 91 x 10 l.24x 10 

. -2 -4 -6 Sulfadiazine 25 6.59xlo_
2 

9. 53 x 10. 4. 75 x 10 
-4 

5. 84 x lo:~ 30 8. 09 x 10 -1 9.44xl0_ 3 
37 l.19xl0 2.57 x 10 8.58xl0 

asolubilities determined in buffered aqueous systems within± O. 2 pH 
units of the isoelectric pH of the sulfonamide. (Salt concentration 
maintained at O. 1 molar) 

138 



( 

.( 

TABLE XXIV 

SOLUBILITY RATIOSa FOR SULFONAMIDES 

DISSOLVED IN WATER AT 25° CENTIGRADE 

Sulfonamide R 

Sulfisomidine 1. 0 

Sulfis oxa zole o. 11 

Sulfadiazine 0.055 

Sulf adimethoxine 0.015 

aSolubility Ratio = R = 
(mole fraction solubility sulfonamide/ 
mole fraction solubility sulfisomidine ) 
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presented in Table XXV. The enthalpies and entropies for sulfisoxazole, 

sulfadimethoxine and sulfadiazine are remarkedly close in view of the 

chemical dissimilarity of these solutes. Heats of solution for these 

three solutes are relatively large and are in keeping with small solute

solvent interactions and diminished solu"Qilities. The large negative 

entropy for sulfisomidine gives evidence of increased order in the 

solution phase. Sulfisomidine may possess the a_l?ility to interact with 

the aqueous environment in a manner which promotes a more 

"structured" solution. One possible explanation lies in the postulated 

cage of water molecules that surrounds the hydrophobic portion of the 

solute molecule and results in a large negative entropy (15, 16). The 

observed solubility for the sulfisomidine molecule is relatively large, · 

however, b_ecause the decr·ease in enthalpy partially compensates_ for 

the sign and magnitude of the entropic contribution. As a macroscopic 

thermodynamic quantity, the negative entropy is a limiting factor w ith 

regard to increasing solubilities at much higher temperatures (13). 
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TABLE XXV 

HEATS OF SOLUTION AND CORRESPONDING ENTROPIES 

FOR SULFONAMIDES AS DETERMINED IN WATERa 

Sulionamide 

Suliisomidine 

Suliisox azole 

Sulf adia zine 

Suliadimethox ine 

Heat of Solution 
(calories /mole) 

3 
5. 50 x 10 

3 
8. 44 x 10 

3 
9. 09 x 10 

4 
I. 00 x 10 

Entropies 
(calories/ degree) 

-5.52 

5.33 

6. 13 

6. 53 

aSolubilities determined in buffered aqueous systems within 
± O. 2 pH units of the isoelectric pH of the sulfonam ide . 
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Partition Coefficie nt Data-

Partition coefficients have been used by several authors (20-22) 

for a variety of investigative purposes. In the present study, the 

partition coefficients for a particular sulfonamide, sulfadiazine, were 

determined as a measure of the relative hydrophobic nature of the 

solute molecule. 

The equations relating the partition coefficient and the pK of a 

weak electrolyte are 

. l 
pH= pK(N ) + l_ (T. P. C. /A. P. C. )-l_j (7) 

and 

4 - -
pH= pK(N ) -l_ (T. P. C. /A. P. C. )-l_j (8) 

where T. P. C. is the true partition coefficient and A. P. C. is the 

apparent partition coefficient. The true partition coefficient is the 

value measured in a system where the aqueous portion of the sample 

is buffered so as to preclude ionization. Conversely, the apparent 

partition coefficient is the value measured in a system where the aqueous 

portion of the sample is buffered so as to allow ionization. The 

relationship betw een p~(N 1 ) and pK(N
4

) for a sulfonan 1ide is 

(9). 

In order to test the se equations, the hydrogen-ion conc entrations of the 

aqueous portion of several sample s were varied, and the partition 

coefficients m ea s u r e d for wate r /n-octa nol system s . The T. P. C. and 

1 4 
A. P. C. values were the n us e d to c a lculate pHi, pK (N ) and pK(N ). 
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These data are su...rnmarhed in Table XXVI which shows that the 

experimental pK values correlate very well with those found in the 

literature. This agreement indicates that the true partition coefficient 

value in Table XXVI is an accurate measure of the properties of the 

solute molecule as they relate to the theoretical equations in question. 

The true partition coefficients for sulfadiazine in water I 

n-alcohol systems are shown in Table XXVII. These data indicate 

several interesting facts. First, the partition coefficients increase 

with increasing polarity of the alcohol phase, until a maximum is 

reached in pentanol. In fact, the value for the pentanol system is about 

6. 5 times greater than that for the decanol system, an indication that 

the attraction between the solute molecules and pentanol is much greater 

than between the solute and w ater. In other words, pentanol-sulfadiazine 

interactions exceed those for water-sulfadiazine. The trend of the data, 

although not the actual magnitudes for the T. P. C. values, is not 

surprising since sulfadiazine is much more soluble in the alcohols than 

it is in water. Second, the true partition coefficient for butanol is less 

than that for pentanol. This shift in the data trend may be misleading 

because it sugge sts that sulfadia zine interactions with pentanol are 

larger than those for sulfa dia zine and butanol. The validity of the T. P. C. 

value becomes questionable when th e aqu eous and alcohol phas e s ar e not 

immiscible. Butanol is significantly soluble in wat e r (23), and the 

measure·d partition coefficient proba bly doe s not suggest the prope rtie s 
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TABLE XXVI 

PARTITION COEFFICIENT DA TA 

FOR SULFADIAZINE 

IN aWATER/n-OCTANOL SYSTEMS 

TRUE PARTITION 
COEFFICIENT 

0.797 

AT 3o0 c 

observed 

6.41 

4.26 

2.09 

pK 

pK(N 1) 

pHi 

4 
pK(N ) 

literature 

6.45b 

4.28 

2.10 

alonic strength of aqueous portion of sample maintained at 
o. 05. 

bH. Krebs and J. Speakman, J. Chem. Soc., 593 (1945). 
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TABLE XXV.II 

PARTITION COEFFICIENT DATA 

FOR SULFADIAZINE IN 

a 
WATER/n-ALCOHOL SYSTEMS 

AT 37°C 

Alcohol True Partition Standard 
coefficient Deviation 

Butanol 2.39 1.40 x 10 
-1 

Pentanol 2.61 
-2 

7.17x 10 

Octanol 7.67xl0 
-1 

5. 14 x 10 
-2 

-1 -2 
Decanol 4. 07 x 10 1.46 x 10 

aionic strength of aqueous portion of sample m aintaine d at O. 05. 
Aqueous portion of sample maintained w ithin O. 2 pH units of the 
pHi for sulfadiazine. 

146 



I 

( 

147 

normally attributed to it. Therefore, any correlations between the 

butanol system and the other alcohol systems are of doubtful value. 

Further 1 the usefulness of partition coefficients is definitely limited 

since only immiscible solvent phases yield values of theoretical 

importance. 



VII 

SUMMARY 

1) The solubilities of four sulfonamides dissolved in a series of 

n-alcohols diminish as the N 1 substituent of the parent sulf

anilamide is altered. Solutes in decreasing order of mole 

fraction solubility are: 

1) sulfisoxazole 

2) sulfadirn.ethox ine 

3) sulfisomidine 

4) sulfadiazine. 

2) Solubility-polarity profiles show that ·eac~ sulfonamide has the 

greatest solubility in methanol, a rela:tively polar solvent. 

3) Solubility data for sulfadiazine dis solved in dioxane-water 

mixtures show a maximum solubility in a solvent blend with 

a dielectric constant of about 6. O. This maximum solubility 

demonstrates qualitative accuracy of regular solution theory 

as applied to three component systems. 

4) The magnitudes of solubility for each sulfonamide dissolved in 

methanol at 25°C qualitatively follow the trend predicted for 

solutes with different melting points. Solutes in decreasing 

order of solubility and increasing order of melting point are: 
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l _) suliisoxazole 

2) s uliadimethoxine 

3) suliisomidine 

4) suliadiazine. 

5) Solubilities of the sulfonamides dissolved inn-alcohols increase 

with increasing temperature. Thi s temperature dependence is 

indicative of a.n endothermic process as the -solute molecule 

undergoes a phase transition from the sohd solute to the solute 

in solution. 

6) Thermodynamic data for sulfonamides dissolved inn-alcohols 

indic ate that enthalpy and entropy are quantities related to the 

solut e - solvent interactions and associated steric factors. 

Suliadiazine dissolved in decanol shows a dramatic increase in 

solubility and a large decrease in entropy. The increased 

solubility suggests a relationship with the entropy tenn and 

hence, the way in which sulfadiazine-octanol molecules "fit" 

at the molecular level. 

7) The solubilities of the sulfonamides dissolved in aqueous 

syste1ns buffered at the isoelectric pH are significantly lo vier 

than those in the n-alcohol solvents . Solutes in decreasing 

order of mole fraction solubility are : 
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1) sulfisomidine 

2) sulfisoxazole 

3) sulfadiazine 

4) sulfadimethoxine. 

The enthalpy quantities associated with the suliisomidine 

solubilities are much smaller than those for the other 

sulfonamides. The large negative entropy for sulfisomidine 

supports the theory regarding hydrophobic interaction with · 

water molecules and increased structuring in the solution 

phase. 

8) Partition coefficient for sulfadiazine in a water/octanol system 

demonstrates the us~fulness of partitioning as a method of 

determining the pK values for weak electrolytes of limited 

solubility. 

9) Data for sulfadiazine partitioned in water In-alcohol systems 

show that the partition coefficients increase with increasing 

polarity of the alcohol phase. These data demonstrate, however, 

that partition coefficients are of limited value as indicators of 

the relative hydrophobic nature of a solute 1nolecule , because 

the nonaqueous-liquid portion of the partitioning system is 

restricted to solvents which are immiscible with water. Hence, 

the polarity spectrum that can be investigated is necessarily 

limited. 
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A. Computer Program for a Method of Least Squares 
in FOR TRAN IV Language 

DIMENSION X(ZO), Y(20), XD(ZO), YD(ZO), 
1XDS(20), YDS(ZO}, XY(ZO}, ALF(15} 
READ(5, l)ALF 

1 FORMAT(l5A4) 
READ(5, Z)N,AN 

2 FORMAT(IZ, FlO. 0) 
READ(5, 3)P, TEST 

3 FORMA T(2!2) 
DO 7 I=l,N 
READ(5, _4}X(I), Y(I) 

4 FORMAT(2Fl0. O} 
7 CONTINUE 

IF(TEST)70, 71, 70 
70 IF(P)l50, 60, 150 

150 CONTINUE 
DO 36 I=l,N 
X(I)= 10. *~~X(I) 

36 CONTINUE 
IF(P)l99,300,300 

199 DO 40 I=l, N 
Y (I)= 1. /Y (I) 

40 CONTINUE 
GO TO 60 

300 DO 50 I =l, N 
Y(I)=l. /Y(I} 
X(I)= 1. /X(I) 

50 CONTINUE 
GO TO 60 

71 DO 55 I=l, N 
Y(I)=ALOGlO(Y(I)) 

55 CONTINUE 
GO TO 60 

60 XSM=O 
YSM=O 
DO 5 I=l, N 
XSM=XSM+X(I) 
YSM=YSM+Y{I) 

5 CONTIN UE 
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XA=XSM/AN 
YA=YSM/AN 
XYS=O 
XDSS=O 
YDSS=O 
DO 6 !=I, N 
XD(I)=X(I)-XA 
YD(I)=Y(I)-YA 
XDS (I)=XD (I) ~:*2 
YDS(I)=YD(I) ~: ,~2 

XY(I)=XD(I)*YD(I) 
XYS=XYS+XY(I) 
XDSS=XDSS+XDS(I) 
YDSS=YDSS+YDS(I) 

6 CONTINUE 
SLOPE=XYS/XDSS 
R=XYS/SQR T(XDSS*YDSS) 
B=YA-(SLOPE ~:XA) 

RATE=SLOPE >::2. 303 
RATE=RATE* (-1.) 
TIMHLF=. 693/RATE 
T90=(2. 303/~ATE)>::(l. 954) 
IF(TEST)20I, 202, 20I 

20I IF(P)350, 360, 375 
350 PK=I. /B 

PKAA=PK*SLOPE 
PKA=ALOGIO(I. /(PKAA)) 
GO TO 80 

375 PK=I. /B 
PKAA= 1. / (PK ~:SLOPE) 

PKA=ALOGIO(I. /(PKAA)) 
G.0 TO 8I 

360 WRITE(6, IO) 
IO FORMAT(///, TIO, 'P=O IS LEAST SQUARES') 

GO TO 200 
80 WRITE(6, I I) 
11 FORMAT(///, TIO, 'P=-I IS 1 /K(PRLM E)=KA/K*H + I /K') 

GO TO 200 
81 WRITE(6, I2) 
I2 FORMAT(///, TIO, 'P=+ I IS I/K (PRIME} =H/KA *K +I/K') 

GO TO 200 
202 WRITE(6, !3) 
I3 FOR MA T(///, TIO, 'TEST=O IS FIRST ORDER EQUATION') 

GO TO 200 
200 WRITE(6, 14 )ALF 
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14 FORMAT(/, TIO, I5A4) 
WRITE(6, I5)XYS 

I5 FORMAT(/, TIO, 'SUM (X-X AVE. )(Y-Y AVE.) IS ', E20. 7) 
WRITE(6, I6)XDSS 

I6 FORMAT(TIO, 'SUM (X-X AVE. )*':~2 IS 1
, E20. 7) 

WRITE(6, I 7}XA 
I7 FORMAT(TIO, 'AVE. OF X VALUES IS 1,E20. 7) 

WRITE(6, I8)YA 
I8 FORMA T(T IO, 'AVE. OF Y VALUES IS '• E20. 7) 

WRITE(6, I 9)SLOPE 
I 9 FOR MA T(T IO, 'SLOPE IS ', E20. 7) 

WRITE(6, 20)B 
20 FOR MA T(T IO, 'Y INTERCE:f>T IS '• E20. 7) 

WRITE(6, 2 I}R 
2 I FORMA T(T IO, 'R IS ', F20. 4) 

WRITE(6, 22) 
22 FORMAT(//, TIO, 'THE FOLLOWING ARE X VALUES') 

WRITE(6, 23)(X(I). I=I, N) 
23 FORMA T(T IO, E20. 7) 

WRITE(6, 24) 
24 FORMAT(//, TIO, 'THE FOLLOWING AREY VALUES') 

WRITE(6, 25)(.Y(I), I=I, N) 
25 FORMA T(TIO, E20. 7) 

IF(TEST)I4I, I40, I4I 
I4I IF(P}90, 9 I, 90 
90 WRITE(6, 26)PK 
26 FORMAT(//, TIO, 'TRUE PART. COEFF. IS ',E20. 7) 

WRITE(6, 27}PKAA 
27 FORMAT(/, TIO, 'IONIZA T. CONSTANT IS '• E20. 7) 

WRITE(6, 28)PKA 
28 FORMAT(/, TIO, 1PKA IS 1, E20. 7) 

GO TO 9I 
I40 WRITE(6, 29)RAT;E 
29 FORMAT(//,TIO,'DEGRADATION RATE IS 1,E20.7} 

WRITE(6, 30)TIMHLF 
30 FORMAT('/,TIO, 'TIME 1/2 IS f,E20. 7) 

WRITE(6, 3 I)T90 
3I FORMAT(/,TIO, 'TIME 90 PERCENT IS 1,E20. 7) 

GO TO 9I 
9I CONTINUE 

STOP 
END 
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Comments concerning method of least squares 
1) Input 

a) ALF is an alphabetic or numerical statement which may be 
used to identify the data and is not to exceed 60 characters. 
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b) N and AN are the number of independent or dependent 
variables in the data set. N is an integer number ( a decimal 
number with no decimal point) and AN is a floating point 
number ( a decimal number with a decimal point). 

c) P and TEST are integer numbers used to designate the type 
of operation the method of least squares is to follow. · 

1) P=O and TEST=+l or -1 is for a linear relationship 
between the dependent and independent variables on a 
nonlogarithmic basis. 

2) P=+l or -1 and TEST= + l or -1 is for a linear relationship 
between the partition coefficient and hydrogen-ion 
concentration. For a weak acid P=.:.l and for a weak base 
P=+l. TESTmay be +l or -1 in either case. 

3) P=O, +l~ or -1 and TEST=O is for a linear relationship 
between the log of the dependent variable and the 
independent variable. 

d) X and Y are the independent and dependent variables 
respectively and are entered as floating point numbers. 

1) X must be entered as pH rather than hydrogen-ion 
concentration when using the partition coefficient, 

. hydrogen-ion r .elationship. The Y values must be entered as 
the actual partition coefficient, not the reciprocal, because 
reciprocals are taken internally. 

2) Y must be entered as a nonlogarithmic number when using 
the semilogarithmic operation because logs are taken 
internally. 

2) Output 
a) The statistics of the least squares process, the slope, the 

y-intercept, the correlation coefficient, the X and Y values, 
the title which indicates which operation was followed and the 
ALF statement. 

b) When using the partition coefficient, hydrogen-ion ope ration, 
the output includes the true partition coefficient, the 
ionization constant and its corresponding pK value. 

c) When using the semilogarithmic operation, the output 
includes the time of 50% reaction, the time of 10% reaction 
(commonly called t 1 /2 and t90 respe ctive ly) and the 
degradation rate. These values are included if the user 
desires to enter kine tic data. 



B. Computer Program for Calculation of Partition 
Coefficients in FOR TRAN IV Language 

DIMENSION CW(30), C0(30), X(30), K(30),ALF(l5) 
READ(S, !)ALF 

1 FORMA T(l5A4) 
READ(S, 2)N 

2 FORMA T(I2) 
READ(5, 3)CINT 

3 FORMA T(F 10. 0) 
DO 20 I=l, N 
READ(S, 4)CW{I) 

4 FORMA T(F 10. 0) 
20 CONTINUE 

DO 30 I=l, N 
CO(I)=CINT-CW(I) 
X(I)=(CO(I)) I (CW(I)) 

30 CONTINUE 
J=O 
DO 40 I=l, N 
J=J+l 
K(I)=J 

40 CONTINUE 
WRITE(6, 10) 

10 FORMAT(///, TIO, 'CALCULATION OF PART. COEFF. 
FROM ABSORB. DATA 1) a 

WRITE(6, l l)ALF 
11 FORMAT(//, TIO, 15A4) 

WRITE(6, 12)(K(I), X(I), I=l, N) 
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12 FORMAT(T 10, 'SAMPLE NO. 1
, I3, 1 PART. COEFF. =1

, E20. 6) 
STOP 
END 

a To be put on one line when type d into compute r 
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Comments concerning partition coefficient calculation 
1) Input 

a) ALF is an alphabetic or numerical statement which may be 
used to identify the data and is not to exceed 60 characters. 

b) N is the number of pieces in the data set and is entered as 
an integer number. 

c) CINT is the original concentration of solute prior to the 
partitioning process. 

d) CW is the concentration of the solute in the aqueous phase 
subsequent to the partitioning process. 

2) Output 
a) The title of the program, the ALF statement, the calculated 

partition coefficient and its corresponding sample number 

3) General Comment 
a) The program was designed to accept CINT and CW as 

absorbance units taken directly from a spectrophotometric 
as say. CINT and CW may be entered, however, in any 
convenient units such as normality or molarity. 

b) The basic stipulation concerning CINT and CW is that the 
concentration unit chosen be consistent for any data set. 
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