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Abstract: The primary measure of the quality of sea surface temperature (SST) fields obtained 16 
from satellite-borne infrared sensors has been the bias and variance of matchups with co-located 17 
in-situ values. Because such matchups tend to be widely separated, these bias and variance 18 
estimates are not necessarily a good measure of small scale (several pixels) gradients in these 19 
fields because one of the primary contributors to the uncertainty in satellite retrievals is 20 
atmospheric contamination, which tends to have large spatial scales compared with the pixel 21 
separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields 22 
appropriate for the study of submesoscale processes and, in particular, of processes associated 23 
with near-surface fronts, both of which have recently seen a rapid increase in interest. In this 24 
study, two methods are examined to address this problem, one based on spectra of the SST data 25 
and the other on their variograms.  26 

To evaluate the methods, instrument noise was estimated in Level-2 VIIRS and AVHRR SST 27 
fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: 28 
along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K 29 
also for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, 30 
scan geometry and day-night. Specifically, daytime, along-scan (along-track), spectral estimates 31 
were found to be approximately 0.05 K (0.08 K) and the corresponding nighttime values of 0.02 K 32 
(0.03 K). Daytime estimates based on the variogram were found to be 0.08 K (0.10 K) with the 33 
corresponding nighttime values of 0.04 K (0.06 K). Taken together: AVHRR instrument noise is 34 
significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise 35 
and daytime levels are higher than nighttime levels. Given the similarity of results and the less 36 
stringent preprocessing requirements, the variogram is the preferred method although there is a 37 
suggestion that this approach overestimates the noise for high quality data in dynamically quiet 38 
regions. 39 

Finally, simulations of the impact of noise on the determination of SST gradients show that on 40 
average the gradient magnitude for typical ocean gradients will be accurately estimated with 41 
VIIRS but substantially overestimated with AVHRR.   42 

Keywords: spatial precision; sea surface temperature; VIIRS; AVHRR 43 
 44 

 45 

 46 
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1. Introduction 47 
To date, a great deal of attention has been focused on the accuracy of satellite-derived sea 48 

surface temperature (SST) fields. By contrast, their local precision1 has only been addressed by 49 
Tandeo et al. [1] (Tan14 hereafter), and that peripherally in an analysis of the anisotropy of SST 50 
fields in the global ocean. Specifically, the primary measure of the quality of SST fields has been the 51 
bias and variance of pixel SST values relative to co-located in situ values. Because of cloud cover 52 
and the paucity of in situ data, satellite-in situ matchups are generally widely separated in space 53 
and time. But a significant contribution to the uncertainty in satellite retrievals results from 54 
atmospheric contamination, the spatial scale of which is, in general, large compared with the pixel 55 
separation of infrared sensors, hence the pixel-to-pixel uncertainty may be substantially smaller 56 
than the accuracy determined from in situ match-ups. The lack of knowledge related to the local 57 
precision of SST fields makes selection of satellite-derived datasets for studies at the one to ten pixel 58 
spatial scale problematic at best.  59 

We refer to the uncertainty of the retrieved SST relative to the actual SST as the values accuracy. 60 
By contrast, we refer to the uncertainty in SST following removal of a bias in the field associated 61 
with long-wavelength phenomena as the local precision of the field. The latter is important in studies 62 
related to the SST gradient, while the former to processes for which the specific value is important, 63 
such as those directly related to air-sea fluxes of a variety of properties. One might also refer to the 64 
temporal precision of the retrievals – the uncertainty of SST retrievals at a given location between 65 
consecutive satellite passes of the sensor from which the fields are being derived. But the time scale 66 
separating consecutive retrievals for most satellite-borne infrared sensors is large relative to the 67 
time scale associated with atmospheric phenomena, hence the temporal precision will be close to 68 
the accuracy as described above. 69 

In this study, we investigate the local precision of Level-22 (L2) SST fields obtained from the 70 
Visible-Infrared Imager-Radiometer Suite (VIIRS) carried on the Suomi-National Polar-orbiting 71 
Partnership (Suomi-NPP) spacecraft launched in October 2012 and L2 SST fields obtained from the 72 
Advanced Very High Resolution Radiometer (AVHRR) carried on NOAA-15. VIIRS fields were 73 
selected because of their high local precision as will be shown in Section 5.1. AVHRR fields were 74 
chosen because AVHRR instruments comprise the longest, global satellite-derived SST record, 75 
dating back to late 2011. L2 data were selected because they form the basis of all higher order 76 
products obtained from these sensors, hence provide a lower limit for the small-scale retrieval noise 77 
to be expected in their products. The contribution of instrument noise3 to the local precision for 78 
each of these datasets will be determined using two methods, one based on spectra, the other on 79 
variograms of the fields [1].  80 

In Section 2 we describe the datasets, the study area and the period covered by the analysis. 81 
This is followed in Section 3 by a discussion of the preprocessing of the datasets and then of the two 82 
approaches used to estimate the ‘instrument’ noise and from that the local precision under 83 
cloud-free conditions. The results of the analyses are in Section 4 and the related discussions are in 84 
Section 5.  85 

But first, we describe the error budget associated with satellite-derived SST fields. 86 

1.1. The Error Budget of Satellite-Derived SST Fields 87 
A number of factors contribute to the uncertainty in satellite-derived SST fields. These are 88 

described in a White Paper prepared by the NASA-NOAA SST Science Team4 and summarized in 89 
Figure 1. Although the accuracy of an L2 skin temperature dataset is determined by the 90 
accumulation of the error elements shown in the upper gray box of Figure 1, which also shows the 91 

                                                
1 The distinction between accuracy and local precision is discussed in more detail later in the introduction. 
2 “Level-2” refers to the processing level of the data, a nomenclature used extensively for satellite-derived 
datasets, although the precise meaning of the level of processing varies by organization. The definition 
promulgated by the Group for High Resolution Sea Surface Temperature (GHRSST) is used here: 
http://science.nasa.gov/earth-science/earth-science-data/data-processing-levels-for-eosdis-data-products/ 
3 Contributors to the SST error budget, relevant to this work are discussed in the next section. 
4 https://works.bepress.com/peter-cornillon/1/  



Remote Sens. 2017, 9, x FOR PEER REVIEW  3 of 19 

 

relationship between these errors and the level of processing, it is generally dominated by 92 
contributions from the atmosphere – the green block. As noted above, atmospheric retrieval errors 93 
tend to be long wavelength, with an e-folding distance of many pixels in the case of infrared 94 
retrievals. The local precision, on the other hand, is dominated by instrument noise and classification 95 
errors (e.g., cloud-contaminated pixels passing as clear pixels) for skin temperature L2 and L3U 96 
datasets5. For L3C, L3S and L4 datasets the collation and interpolation schemes used will likely 97 
contribute to a decrease in local precision – an increase in the pixel-to-pixel errors – but the degree 98 
to which this is the case has yet to be documented. Important in the analysis presented herein is the 99 
distinction between instrument noise (elements in the yellow block of Figure 1) and the noise 100 
associated with classification errors (one of the elements in the green block). Classification errors 101 
generally refer to the improper masking of cloud-contaminated pixels and this misclassification is 102 
thought to be dependent on cloud cover – the larger the fraction of the area contaminated by 103 
clouds, the larger the fraction of misclassified pixels. The contribution of misclassified pixels to the 104 
local error is also likely to depend on cloud type. Together, these observations suggest that the 105 
classification error may vary significantly geographically. For this reason our focus is on instrument 106 
noise, which we assume to be less dependent on location; i.e., the estimates of instrument noise 107 
obtained in this work are thought to be good estimates in regions of low cloud cover and a lower 108 
bound in general.  109 

 110 
Figure 1. The error budget developed by the NASA-NOAA SST Science Team for satellite-derived 111 
SST fields. 112 

                                                
5 In the case of ‘buoy’ temperature L2 and L3U datasets, the error in extrapolating from the skin temperature, 
the quantity actually measured by the satellite, to the temperature at the depth of the buoy, generally 1 m 
below the surface, additional contributions to the local precision may result from the horizontal variability in 
the vertical temperature step, the orange block in the figure. Only L2 skin temperature SST fields are 
considered in this study, hence horizontal gradients in the surface to buoy depth temperature difference do not 
contribute to the uncertainty in retrievals discussed herein. 
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2. Data 113 
This study makes use of one dataset consisting of thermosalinograph (TEX) sections, one L2 114 

SST dataset obtained from VIIRS radiances and one L2 SST dataset obtained from AVHRR 115 
radiances. These are discussed below along with the study area and period. 116 

2.1. In situ Temperature 117 
The thermosalinograph, on which the in situ data are based, was mounted on the MV 118 

Oleander, a container ship making weekly round trips between Port Elizabeth, New Jersey, USA 119 
and Hamilton Harbor, Bermuda (Figure 2). Thermosalinograph temperature measurements were 120 
obtained from two thermistors, one from the seawater intake in the interior of the ship and the 121 
second directly at the intake; i.e., “external” to the hull. The exterior measure (referred to as TEX for 122 
“exterior” temperatures) is thought to be the most accurate [2] ( Sch16 hereafter), hence only these 123 
are used in the work presented here. The SBE38 remote temperature sensor, on which the TEX data 124 
are based, has an accuracy of 0.0001 K, a resolution of 0.00025 K (although the TEX instrument noise 125 
is estimated to be 0.00069 K based on the variogram approach discussed in Section 3.3), and a 126 
response time of 0.5 s. The TEX sensor sampled every 10 s resulting in an approximate spatial 127 
resolution of 75 m at the typical 16 knots cruise speed of the Oleander. TEX data for the period 128 
September 2007 to fall 2013 were obtained from the Atlantic Oceanographic and Meteorological 129 
Laboratory. The quality control procedures used to screen these data are described in Sch16.  130 

2.2. Visible-Infrared Imager-Radiometer Suite (VIIRS) 131 
The L2 VIIRS SST retrievals used here were derived from the VIIRS “Moderate Resolution 132 

Bands”, which has a resolution of approximately 750 m at nadir. Because of the way in which the 133 
instrument samples, the resolution decreases very slowly (compared with other satellite-borne 134 
instruments, Figure 3) to approximately 1600 m at the scan edge, a ground distance of 135 
approximately 1500 km from nadir [3, 4].  136 

For this study, we used the VIIRS SST product obtained from NOAA’s Comprehensive Large 137 
Array-data Stewardship System (CLASS)6 produced with the Joint Polar Satellite System (JPSS). 138 
Only quality level 1 data, the ‘best’ quality level, were used. Although screening at this level ideally 139 
removes all cloud contaminated pixels, some are still included in the analysis, leading to the 140 
misclassification error discussed above.  141 

2.3. AVHRR Pathfinder SST  142 
The AVHRR product used was derived with the Pathfinder retrieval algorithm developed at 143 

the University of Miami [5]. The algorithm was applied to the High Resolution Picture 144 
Transmission (HRPT) data stream obtained from the AVHRR on NOAA-15. Retrievals were 145 
performed at the University of Rhode Island. Only pixels with a quality level of 3 or higher were 146 
used. The nominal pixel spacing is 1.1 km although, as can be seen in Figure 3, it increases 147 
significantly from this value. This increase is what motivated use of pixels within 500 km of nadir as 148 
discussed below. 149 

                                                
6  The VIIRS Sea Surface Temperature Environmental Data Record (EDR) obtained from: 
http://www.nsof.class.noaa.gov/saa/products/search?datatype_family=VIIRS_EDR 
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 150 
Figure 2. VIIRS SST image from 12 May 2012. The long black line (73.5W, 40N to 64.8W, 32.6N) 151 
indicates the nominal Oleander track. Blue frame denotes the region of the Sargasso Sea considered 152 
in this study. Shades of gray denote the location of sections extracted from VIIRS SST fields – 153 
discussed in Section 3.1.1. The gray scale indicates distance from nadir (discussed in detail in 154 
subsequent sections). Sections with a constant gray level are along-track sections; those with a 155 
gradient in gray are along-scan. Along-track (along-scan) sections with a negative slope and 156 
along-scan (along-track) sections with a positive slope are daytime (nighttime) sections. The SST 157 
field is simply provided as a background reference field and corresponds to only one of the images 158 
used. 159 

 160 

Figure 3. Spacing in the along-scan direction for AVHRR and VIIRS pixels in L2 fields as a function 161 
of distance from nadir. 162 

2.4. The Study Area 163 
MV Oleander traverses several distinct dynamical regimes: the shelf, the Slope Sea, the Gulf 164 

Stream, and the Sargasso Sea. In that the focus of this analysis is on the spatial resolving power of 165 
satellite-derived SST datasets, it is important to select a region in which the geophysical variability 166 
of the SST field does not overwhelm the uncertainty associated with the SST retrievals, be they 167 
driven by misclassification errors (the green block in Figure 1) or instrument/calibration issues (the 168 
yellow block). Specifically, this means selecting a dynamically “quiet” region in the ocean. The  169 
Sargasso Sea portion of the Oleander track between 32◦N and 36◦N meets this requirement. In order 170 
to increase the amount of satellite-derived data with what we believe to be similar statistics to those 171 
along the Oleander track in the Sargasso Sea, we consider longitudes from 63◦W to 72◦W (Figure 2). 172 
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As shown in Sch16, spectra including the Gulf Stream are substantially more energetic than those 173 
for SST in the Sargasso Sea. 174 

2.5. The Study Period 175 
The analyses presented here are based on SST fields from the summer of 2012 only – June, July 176 

and August. Sch16 show that spring (March, April and May) and summer spectra tend to be about 177 
twice as energetic, over the spectral range examined, 1 to 100 km, as fall and winter spectra 178 
suggesting that the latter would be more appropriate for the evaluation proposed here, but the 179 
summer months are also substantially less cloud contaminated than the other seasons. Furthermore, 180 
the increased spectral energy is likely due in part to diurnal warming, the effect of which may be 181 
mitigated by selecting nighttime fields only as shown in Section 4.2. This raises a concern with 182 
regard to the TEX data because TEX sections are not synoptic, taking approximately 20 hours to 183 
cross the study area. However, since the TEX samples between 5 and 6 m below the surface, diurnal 184 
warming is not thought to be a significant problem [6]. 185 

3. Methodology 186 

3.1. The Spectral Approach 187 
The spectral method, to determine retrieval noise at the pixel level, is based on an analysis of 188 

the large wavenumber tail of the power spectral density of SST temperature sections extracted from 189 
the SST fields. Spectra are based on the Discrete Fourier Transform (DFT) determined from the Fast 190 
Fourier Transform (FFT) (see Sch16 or Wang [7], who also used the DFT to analyze TEX spectra). 191 
The FFT requires equally spaced, gap-free data; i.e., gaps, if they exist in the original series, must be 192 
filled and the data must be interpolated to equal spacing, if not already equally spaced, prior to 193 
applying the FFT algorithm. For satellite-derived fields, gaps result from cloud cover, intervening 194 
land values (not an issue for the region studied here) or missing scans while pixel spacing depends 195 
on the product. (The filling of gaps is discussed the Section 3.1.1.) In the case of L2 products the 196 
spacing of pixels in the along-scan direction varies with distance from nadir (Figure 3), as does the 197 
along-track spacing, although much less so (<0.5% change from nadir to the swath edge for both 198 
AVHRR and VIIRS). For the in situ data, intermittent system failures resulted in gaps although not 199 
to the extent of those in the satellite data and sample spacing depends on the ship speed, which 200 
varies.  201 

Of importance to the analysis presented here is that interpolation, either to fill gaps or to 202 
regularize the spacing of samples on a section, impacts the resulting spectrum, with the impact 203 
generally increasing as the wavenumber increases; i.e., in the spatial range of most importance to 204 
the analysis here. Furthermore, the impact is a function both of the fraction of “good” values 205 
(defined as 𝑄 by Sch16), and the degree to which the “missing” data are clustered (referred to as 206 
cohesion and assigned the symbol 𝐶 by Cayula and Cornillon [8]). Sch16 found that “…spectral 207 
slopes are increasingly biased low as 𝑄 decreases and 𝐶 increases, and this effect becomes more 208 
pronounced as the true spectral slope increases”. Based on this they only considered VIIRS spectra 209 
for 𝑄 − 𝐶 > 0.1 and 𝑄 > 0.5 in their analysis. We found these thresholds to be too permissive for 210 
our purposes; the impact of interpolation on spectra in the 1 to 10 pixel range can overwhelm the 211 
underlying spectrum as will be shown below. We therefore chose more stringent constraints on 𝑄, 212 
generally resulting in 𝑄 > 0.9. At this level, the cohesion of the data has a relatively small impact 213 
on the spectra for slopes in the range of those observed in the Sargasso Sea (Sch16), so we did not 214 
impose an additional constraint on cohesion. 215 

3.1.1. Selection of the Sections 216 
Satellite-Derived Fields. The satellite-derived SST fields evaluated here are obtained from 217 

scanning radiometers, the characteristics of which may differ in the along-scan versus along-track 218 
directions. This is indeed the case for VIIRS due to the use of multiple detectors for each scan, 219 
which results in striping of the fields [9]. The decision was therefore made to separate the data into 220 
along-scan and along-track sections. The data were farther divided into day and night fields to 221 
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allow analysis of the possible effect of diurnal warming on the spectral characteristics of the fields. 222 
This is of particular importance given the selection of the Sargasso Sea in summer months, a period 223 
when diurnal warming is significant [10].  224 

Also with regard to the selection of sections from the L2 datasets is their distance from nadir. 225 
Both the area of each pixel7 and the spacing of pixels along the scan increases away from nadir 226 
(Figure 3). Both of these factors impact along-scan spectra at small scales, while the increase in pixel 227 
size impacts along-track spectra, again at these scales. Although the pixel spacing of along-track 228 
sections is virtually independent of the distance from nadir, the size of the pixel is not; i.e., the SST 229 
values associated with pixels is averaged over increasingly larger areas away from nadir. This is 230 
similar to smoothing along-track with a moving average, which in turn depresses the power 231 
spectral density at small scales, this, independent of the preprocessing performed on the data and it 232 
affects along-track and along-scan spectra equally. Along-track interpolation (discussed below) to 233 
address the change in pixel spacing in the along-scan direction (Figure 3) also impacts the resulting 234 
spectra. In order to reduce the impact of both of these effects, only sections within 500 km of nadir 235 
are used for this analysis. 236 

The final criterion used to select sections from the L2 fields relates to the gappiness of the data. 237 
For clarity, we combine this step with the interpolation to fill missing pixel values in the study area. 238 
The actual implementation of the algorithm is slightly different to reduce processing time but the 239 
result is the same. Missing values in the study area were replaced using a Barnes filter if 13 of the 24 240 
pixels in a 5×5 pixel square surrounding the pixel of interest are cloud-free, otherwise the pixel 241 
remains flagged as missing. This corresponds to a decay scale associated with the averaging of 1.5 242 
km for VIIRS and 2 km for AVHRR and follows the approach taken by Sch16. Following this gap 243 
filling, all complete (no missing values) 256 pixel, non-overlapping sections in the along-track 244 
direction meeting the distance from nadir criterion were selected as were all non-overlapping 245 
along-scan sections. Only a small fraction of sections used in the final analysis had more than 15 246 
missing pixels in the original data (more than 6% of the pixels were filled on <10% sections). The 247 
impact of this on the final spectra was evaluated by using the Barnes filter to fill every point on a 248 
section8 – the worst case scenario – not just the pixels with missing values. The result suggests that 249 
the gap filling performed only for pixels with missing values has little impact on the final spectra, 250 
because the number of missing values is in general small; less than 0.6% of all values contributing 251 
were replaced with the Barnes filter. 252 

Oleander Sections. Only TEX sections that met the selection criteria of Sch16 were considered. Of 253 
these only sections with a maximum pixel separation of 150 m in the Sargasso Sea were selected9. 254 
Barnes filtering with a decay scale of 0.2 km was used to fill these gaps and the resulting sections 255 
were nearest neighbor interpolated to a mean spacing of 74.9 m, the mean spacing averaged over all 256 
sections; the mean spacing varies from section-to-section with a minimum of 74.6 m and a 257 
maximum of 75.0 m [11].  258 

Table 1 lists the number of satellite-derived sections by along-scan/along-track, day/night 259 
combination for the summer (June-August) of 2012 and the number of Oleander TEX sections for 260 
the summers of 2008-2013.  261 
  262 

                                                
7 Pixel area is approximately the along-track spacing, 741 m for VIIRS and 1,115 m for AVHRR, times the 
along-scan spacing 
8 Gap filling was still possible in that adjacent pixels were left as is; i.e., not set to missing values. 
9 Selection of temperature sections with maximum sample spacing in excess of 150 m resulted in a significant 
steepening of the spectral slope for wavelengths smaller than approximately 1 km. This is due to the nearest 
neighbor interpolation to 75 m spacing, which repeats samples for these large separations. 
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Table 1.  Number of sections meeting the given selection criteria discussed in this section and in 263 
Sections 2.4 and 2.5. 264 

       Day      Night 
 Along-Scan Along-Track Along-Scan Along-Track 

VIIRS 126 517 561 615 

AVHRR 266 256 104 193 

Oleander                      42 

3.1.2. Interpolation to Equal Spacing 265 
Satellite-Derived Fields. As previously noted the pixel separation in the along-scan direction 266 

changes with distance from nadir. Because the spectral energy determined with the standard FFT is 267 
a function of pixel spacing and the number of pixels in the section, combining data with different 268 
spatial resolutions tends to add noise to the spectra. To address this, along-scan sections were 269 
divided into three groups each for VIIRS and AVHRR based on mean pixel spacing. First, all 270 
adjacent temperature sections for a given satellite pass were grouped into subgroups and the mean 271 
separation of pixels for the subgroup was calculated. (The subgroups ranged in size from 1 to O 272 
(100) sections depending on cloud cover.) Each subgroup was then assigned to the group indicated 273 
in Table 2 based on the mean pixel spacing of the subgroup. All of the temperature sections falling 274 
in a given group were then interpolated to the same pixel spacing, also shown in Table 2. This pixel 275 
spacing was determined from the mean pixel spacing determined from the contributing 276 
temperature sections for the given group. This, together with the relatively small size of the ranges, 277 
tended to eliminate problems associated with different spatial sampling and with an interference 278 
between the sampling frequency along the original section and that along the interpolated section. 279 
Nearest neighbor interpolation was used. Figure 4 shows the effective transfer function of three 280 
different interpolation algorithms available in Matlab: linear, nearest neighbor and cubic spline10. 281 
To determine the most appropriate resampling strategy, SST values on the VIIRS sections were 282 
replaced with white noise and interpolated. Linear interpolation smooths the field the most 283 
resulting in a significant loss of energy at small wavelengths, the portion of the spectrum of most 284 
interest here. Cubic spline does better but still results in a loss of energy at small wavelengths. 285 
Nearest neighbor interpolation does not significantly alter the distribution of values but does alter 286 
the effective wavelength – by shifting the values in space. However, the effect on the spectrum is 287 
small since the values have been shifted to locations, which are on average relatively close to the 288 
original values – the use of the mean spacing of pixels (which varies from group-to-group) rather 289 
than a fixed spacing for all sections. 290 

Table 2. Grouping of along-scan sections based on mean pixel spacing of the temperature section. 291 
The values indicated correspond to the lower limit on the range – the value to which temperatures 292 
sections in this range are interpolated – the upper limit on the range. 293 

 Group 1 (m) Group 2 (m) Group 3 (m) 

 VIIRS 770-805-820 860-885-910 940-995-980 

AVHRR 760-765-810 820-865-920 940-947-980 

 294 

                                                
10 The roll-off at small wavenumbers results from the detrending. The roll-off at large wavenumbers results 
from the different interpolations. 
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 295 
Figure 4. Spectral response of the interpolation methods applied to white noise. 296 

3.1.3. Detrending 297 
Typically, a windowing function is applied to time series (or temperature sections in this case) 298 

prior to obtaining the spectrum so as to reduce leakage between frequencies and the introduction of 299 
spectral energy due to step changes at the ends of the section. However, windowing functions tend 300 
to depress the amount of energy in the spectrum, which results in an underestimate of the 301 
instrument noise, so we elected not to window the data. Specifically, several different windowing 302 
functions, as well as simple detrending, were applied to simulations generated by adding white 303 
noise to randomly generated temperature sections with a linear power spectral density (in log-log 304 
space) typical of the spectra obtained from the SST sections but with random phase of the spectral 305 
elements between –π and +π. Detrending provided the most accurate estimate of the imposed noise 306 
when compared to analysis of the data with the various windowing functions or to analysis of the 307 
data with no preprocessing.  308 

3.1.4. FFT 309 
Finally, the FFT function available in Matlab was used to obtain the spectra from the detrended 310 

temperature sections. For the along-scan direction, power spectral densities were ensemble 311 
averaged over each of the subgroups defined in Section 3.1.1. This resulted in a total of 312 
approximately 100 subgroups for all groups of the AVHRR/VIIRS, day/night combinations; i.e., 313 
there was an average of eight subgroups for each of the defined groups. Similar averaging was 314 
performed for the subgroups of the along-track direction.  315 

Oleander spectra were ensemble averaged over all of the selected sections. 316 

3.2. Estimation of Instrument Noise 317 
Instrument noise in the satellite-derived fields is estimated from the shape of the power 318 

spectral density on the short wavelength (large wavenumber) end of the retrieved spectra. To better 319 
understand the approach, consider the factors contributing to this portion of the spectrum. If 320 
adjacent values on a given temperature section are independent with no noise, then the shape of the 321 
spectrum is defined by the geophysical processes in the region. If the field has been smoothed or 322 
averaged over a significant region, there is little additional information in the value of one point 323 
relative to an adjacent one and the spectrum falls off more rapidly than the shape associated with 324 
geophysical processes. This is what we found for the spectra of the AVHRR SST fields associated 325 
with large scan angles (not shown here) as well as with the oversampled TEX sections with 326 
maximum spacing of samples in excess of 150 m resampled to a spacing of 75 m discussed in 327 
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Section 3.1.1. To avoid the roll-off of the spectra at small wavelengths the data were not smoothed. 328 
If the field is not smoothed and, white noise is added to the values at individual pixels, the 329 
spectrum will tend to level off; the point at which it begins to do so being a function of the level of 330 
the added noise. Finally, if energy remains in the geophysical spectrum at wavenumbers larger 331 
than those at the end of the retrieved satellite-derived spectra, the spectra will also tend to level off 332 
near their end as a result of energy aliased from the larger wavenumbers. This is likely the reason 333 
the ensemble averaged Oleander TEX spectrum levels off (Figure 5). (It is not clear whether the 334 
slight fall off in the TEX spectrum beginning at approximately 1 km is a result of a fall-off in the 335 
geophysical signal or some form of averaging of the TEX data. However, this roll-off is very slight 336 
and ignored here.) In summary, the large wavenumber tail of the satellite-derived spectra is subject 337 
to the following: 338 

• An increase in the magnitude of the slope of the spectrum due to averaging over the footprint 339 
of the sensor, 340 

• A decrease in the slope due to geophysical noise aliased into the spectrum, especially at high 341 
wavenumbers, and 342 

• A decrease in the slope due to instrument noise, the quantity of interest here. 343 

 344 

Figure 5. Power spectral density from Oleander TEX for all Oleander summer sections 345 
(June-August) of 2008 through 2013 with maximum sample separation less than 150 m. 346 
Temperature sections detrended prior to determining and ensemble averaging the spectra. Straight 347 
red line: least squares best fit straight line (slope = -2.12) of log10 (PSD) to log10 (wavenumber) 348 
between 10-5 and 10-3 m-1. 349 

In order to determine the instrument noise, i.e., to separate it from the other factors cited above, 350 
we defined a two steps process based on the following three assumptions: 351 

1. log10 of the geophysical power spectral density in the study area falls off linearly with log10 352 
of the wavenumber over the spectral range sampled by the satellite-borne sensors (1.5 km to O [100 353 
km]). 354 

2. The spectrum continues to roll-off with approximately the same slope, at wavenumbers 355 
larger than those associated with the Nyquist frequency of the satellite temperature sections. This 356 
and the previous assumption are borne out by the mean TEX spectrum shown in Figure 5 as well as 357 
from the analysis of the spectra from the two sensors. 358 

3. The instrument noise for both sensors is white; i.e., that it contributes equally at all 359 
wavenumbers associated with the given temperature sections. This is not quite the case for VIIRS 360 
hence one has to take a bit more caution with the results presented herein. 361 

In the first step, the slope, intercept and noise level of a hypothetical spectrum yielding the best 362 
fit to the satellite spectrum is determined in a least squares sense. This is done by minimizing 363 
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gamma, the sum of the squared difference between the hypothetical spectrum and the satellite 364 
spectrum: 365 

𝛾 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑛𝑜𝑖𝑠𝑒 =  10 !"#$%∗!"#!"!!!!"#$%&$'# + 𝑛𝑜𝑖𝑠𝑒 − 𝑃𝑆𝐷!!"#
!

!
!!!      (1) 366 

where slope and intercept define the straight line portion of the best fit spectrum in log-log space 367 
(assumption 1 above), noise is the noise level (assumption 3) also in spectral space, ki is the 368 
wavenumber of the ith spectral component and 𝑃𝑆𝐷!!"# the corresponding power spectral density 369 
of the satellite spectrum. In the second step, the constant noise level used to generate the spectrum 370 
in Eq. 1 is related to white noise in the spatial domain. Specifically, 1000 noise-free temperature 371 
sections, with one tenth the sample spacing of that associated with the sensor of interest, are 372 
generated by inverse Fourier transforming spectra with the same slope and intercept found with Eq. 373 
1 but with the phase of each spectral component randomly selected between -π and π. A 10-point 374 
moving average is then applied to each temperature section and the result is decimated by 10. 375 
Gaussian white noise of magnitude σ is then added to each point on each section, the sections are 376 
Fourier transformed, ensemble averaged and a new figure of merit is obtained: 377 

𝛾 𝜎 =  (𝑃𝑆𝐷!!"#$%&'()(𝜎) − 𝑃𝑆𝐷!
!"#$ !"#(𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡))!!

!!!             (2) 378 

where 𝑃𝑆𝐷!!"#$%&'()(𝜎)  is the ensemble averaged power spectral density of the simulated 379 
temperature sections and 𝑃𝑆𝐷!

!"#$ !"#(𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒�𝑐𝑒𝑝𝑡)  is the linear (in spectral space) power 380 
spectral density associated with the best fit slope and intercept values found with Eq. 1. This is 381 
repeated over a range of white noise levels σ to find the level, which best corresponds to the noise 382 
level obtained with Eq. 1. Of importance, is that generating temperature sections with 1/10 the 383 
spacing of the data associated with the sensors of interest, the energy at higher wavenumbers than 384 
those resolved by the instrument are aliased into the results thus allowing for a more accurate 385 
estimate of the instrument noise. Also, averaging the oversampled temperature section simulates 386 
averaging performed over the footprint of the sensor. However, this does not take into account 387 
additional averaging, which takes place in the 2nd dimension of the sensor’s footprint. This is not 388 
thought to contribute significantly to the determination of instrument noise outlined above. 389 

3.3. The Variogram Approach 390 
To determine instrument noise from variograms, a model, which includes instrument noise as 391 

one of its parameters, is fit to the empirical variogram. The model is intended to reflect the spatial 392 
characteristics of the underlying data, hence selection of an appropriate model for the data of 393 
interest is critical. A variety of models have been identified in the literature [12]. Tan14 used an 394 
exponential model of the form: 395 

𝛾 𝛥! !" ! = 𝜎!! + 𝜎!(1 − 𝑒
!
!! !" !

! )                     (3) 396 

where 𝜎!!, referred to as the nugget, is the variance of the difference in the retrieval at a given 397 
location from that at a neighboring location as the separation between the two locations goes to 398 
zero; i.e., the instrument noise in this case, 𝜎!, referred to as the sill, is the variance associated with 399 
the variability for a spatial separation of L, the decorrelation scale. Note that the sill is a measure of 400 
the geophysical variance of the field plus the ‘large’ scale retrieval variance, which depends on the 401 
variance in the atmosphere, the variance of the surface emissivity, instrument noise, etc. So,  402 

𝜎! ≈  𝜎!"#! + (𝜎!"#!$"%&'! − 𝜎!!)                     (4) 403 

where 𝜎!"#!$"%&'!  is the total variance of the retrieval. 404 
The formulation used by Tan14 works well for relatively homogeneous datasets for which the 405 

underlying variogram has an exponential form [1]. However, in the Sargasso Sea, the shape of the 406 
empirical variograms, for the L2 SST fields of interest, differ from subregion-to-subregion, not only 407 
in terms of parameters but also in terms of the model itself, with an exponential model fitting in 408 
some cases and a Gaussian model in others. In light of this we have elected to use the “stable 409 
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semivariogram” [12], a slightly modified single model, of the form:   410 

𝛾 𝛥! !" ! = 𝜎!! + 𝜎!(1 − 𝑒
!(

!! !" !
! )!)                        (5) 411 

Note in comparison with Eq. 3, that Eq. 5 includes an extra parameter, w, which ranges from 1 for 412 
the exponential form to 2 for the Gaussian form. Although variograms can be developed in two 413 
dimensions for the model of interest, we chose to use variograms for the along-scan and along-track 414 
directions separately for much the same reasons presented in the discussion of the preliminary 415 
processing of the data, 416 

As in Tan14 we use the formulation given by Cressie to estimate the variogram [13]: 417 

𝛾 𝛥! !" ! =
!!" !! !!!" !!

!
(!!,!!)

!!
            (6) 418 

where 𝑆𝑆𝑇 𝑠!  is 𝑆𝑆𝑇 at location 𝑠!, Δx or y is the spatial separation in kilometers of (𝑠! , 𝑠!) pairs 419 
in the along-scan (x) and along-track (y) directions, and 𝑛 is the number of such pairs, which varies 420 
with 𝛥! !" ! and the number of cloud contaminated pixels.  421 

For each of the combinations of interest (along-scan/along-track, day/night), a variogram was 422 
obtained (Eq. 6) for each of the interpolated, equally spaced temperature sections used in the 423 
spectral approach and described in Sections 0 and 0. Next, for each variogram, the values of 𝜎!, 𝜎!, 424 
𝐿 and w of Eq. 5, which minimized the weighted squared difference between Eq. 5 and the 425 
variaogram, were obtained. The fit was performed over separations up to 20 km11. The weight 426 
assigned to each separation was equal to the number of pairs at that separation over the total 427 
number of separations contributing to the variogram; i.e., the weight assigned to a given separation 428 
decreased as the separation increased. The best-fit nuggets were then averaged for all temperature 429 
sections corresponding to a given sensor/day-night combination to obtain the estimate for 430 
instrument noise for that combination. Nuggets were also averaged by the subgroups identified in 431 
Section 3.1.1.  432 

4. Results 433 
The local precision of satellite-derived SST retrievals, the noise resulting from processes in the 434 

yellow and green boxes of Figure 1, which we refer to as instrument noise here, is shown in Table 3 435 
for each of the along-scan/along-track, day/night combinations. The first row for each sensor 436 
(labeled Spectra) corresponds to the estimates obtained from the spectral method. Only subgroups 437 
consisting of five or more temperature sections and with a spectral slope steeper than -1 were used. 438 
The instrument noise for subgroups with shallower spectral slopes tended to dominate the 439 
geophysical signal increasing the uncertainty in the fit of Eq. 1. The noise estimates provided in the 440 
table are the means of the estimates associated with each subgroup. The uncertainty is the square 441 
root of the variance of these means over the number of contributing subgroups. Variogram 442 
estimates follow in the next row (labeled Variogram) for each sensor, the mean of the estimates from 443 
the same subgroups used in the spectral approach and the uncertainty is calculated as for the 444 
spectral approach. The final row of the table (labeled Upper Limit) for each sensor is an ‘upper limit’ 445 
on the instrument noise assuming that the pixel-to-pixel noise is white. This was obtained by noting 446 
that the variance of the difference of adjacent SST values, 𝜎! Δ𝑥!"# , is the sum of the variances of 447 
the noise of each of the two values, 2𝜎!!, plus the contribution due to the geophysical variance 448 
between the two values, 𝜎!"#! Δ𝑥!"# : 449 

𝜎! Δ𝑥!"# =  2𝜎!! +  𝜎!"#! Δ𝑥!"#  ⟹  𝜎!  ≤   ! !!!"#
!

                   (7) 450 

If the noise is not white, for example, the actual level of noise may, in fact, be larger than the ‘upper 451 
limit’.  452 

                                                
11 The nugget did not vary significantly for fits up to approximately 40 km. However, fitting to a larger range 
generally resulted in an increase in the nugget, which was thought to be unrealistic – the nugget wandered 
away from the variance at the smallest observed separation. 
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4.1. AVHRR    453 
Day-versus-night, along-scan instrument noise levels obtained for the AVHRR data are not 454 

statistically distinguishable. Nor are the along-track levels. The levels for the variogram estimates 455 
based on the same subgroups as the spectral estimates (2nd row) are also statistically similar. 456 
Furthermore, although somewhat larger the variogram estimates are quite close to the spectral 457 
estimates and all of the estimates are close to the ‘upper’ limit for the given 458 
sensor/day-night/scan-track combination suggesting that the instrument noise is white. It is 459 
possible that the pixel noise is correlated at small scales but, again, the mechanism for this is not 460 
obvious.  461 

Table 3. Estimated instrument noise in satellite-derived SST fields. Numbers in parentheses are the 462 
number of subgroups from which the means are determined. The indicated uncertainty of the 463 
means is the square root of the variance of the contributing subgroups over the number of 464 
subgroups. 465 

 Method 
Day (K) Night (K) 

Along- Scan Along-Track Along- Scan Along-Track 

AVHRR 

Spectra 0.172±0.001 
(5) 

0.209±0.001 
(7) 

0.173±0.003 
(2) 

0.209±0.008 
(4) 

Variogram 0.185±0.004 
(5) 

0.219±0.006 
(7) 

0.183±0.001 
(2) 

0.219±0.006 
(4) 

Upper Limit 0.189 0.218 0.194 0.208 

VIIRS 

Spectra 
0.046±0.001 

(4) 
0.076±0.002 

(10) 
0.021±0.001 

(24) 
0.032±0.002 

(14) 

Variogram 0.081±0.013 
(4) 

0.097±0.006 
(10) 

0.042±0.004 
(24) 

0.056±0.004 
(13) 

Upper Limit 0.078 0.101 0.050 0.057 

The along-scan AVHRR spectra are shown in Figure 6 for a daytime subgroup and a nighttime 466 
subgroup. Also shown in the figure are the best-fit linear spectra with noise, obtained as discussed 467 
in Section 3.2. Figure 7 shows the corresponding along-track AVHRR spectra. In all four cases, noise 468 
is seen to impact the spectrum for wavelengths (wavenumbers) up (down) to approximately 25 km 469 
(0.04 km-1). Also apparent from these plots is that the approximately linear portion of the AVHRR 470 
spectrum corresponds to a small fraction (~10%) of the 129 spectral values. This means that 471 
relatively small changes in the low wavenumber end of these spectra will have a more significant 472 
impact on the estimated background slope than for spectra less impacted by noise. However, the 473 
spectral method for determining instrument noise is relatively insensitive to this; significant 474 
changes in slope and intercept result in virtually identical values of instrument noise. For example, 475 
for the spectrum shown in the left panel of Figure 7, a slope, offset combination of (-1.7570, -6.2730) 476 
yields the same level of instrument noise. This is because the instrument noise is one to two orders 477 
of magnitude larger that the assumed geophysical signal, the straight line portion of the spectrum, 478 
over a significant fraction of the spectrum (remember the fits are in regular, not log-log space) so 479 
changes in the slope do not result in a significant difference in the squared sum of the differences 480 
between the model and the observed spectrum. For spectra that level off substantially at large 481 
wavenumbers, the noise is effectively determined by the power spectral density level at these 482 
wavenumbers. This is readily seen in Figure 6 and 7; the high wavenumber end of the simulated 483 
spectra with noise are at a similar level for the along-scan sections and at a slightly higher level for 484 
the along-track sections. Care must be taken however when the level of instrument noise is similar, 485 
or smaller, in magnitude to the geophysical signal at these wavenumbers, as will become clear in 486 
the analysis of the VIIRS spectra. 487 
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 488 

Figure 6. Mean AVHRR spectra for contiguous along-scan sections (black). Best-fit linear spectra 489 
with noise to the mean VIIRS spectra (green). Best-fit linear portion of the best-fit linear spectra with 490 
noise (red). Mean TEX spectrum shifted vertically to allow for comparison (magenta). 491 

 492 
Figure 7. Mean AVHRR spectra similar to Figure 6 except for along-track sections. Daytime 493 
spectrum for 21:08 GMT on 10 June 2012. Nighttime spectrum for 09:34 GMT on 23 June 2012. 494 

AVHRR along-track instrument noise is approximately 20% larger than along-scan instrument 495 
noise. This is presumably due to the line-by-line calibration undertaken in the development of the 496 
L1b data product used as input to the L2 retrieval algorithm.  497 

4.2. VIIRS   498 
Mean VIIRS spectra similar to those shown for AVHRR in Figure 6 and Figure 7 are shown in 499 

Figure 8 and Figure 9, respectively. The spectra in these figures differ in several key ways from 500 
those associated with AVHRR. First, the level of instrument noise is, in all cases, substantially lower 501 
than that for AVHRR. Second, spectral peaks, especially in the daytime spectra, are evident at 1.5, 502 
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2.2, and 2.9 km as well as a broad peak at 12 km in the along-track spectra (Figure 9). There are 16 503 
detectors for each of the VIIRS moderate resolution bands used for SST retrievals, hence, one scan 504 
of the instrument consists of 16 scan lines. The gain of these detectors may differ slightly and this 505 
difference is not regular; i.e., it changes along-scan and between scans. This is what gives rise to the 506 
observed peaks; the peaks at 1.5, 2.2, and 2.9 km correspond to a separation of one, two and three 507 
pixels and the peak at 12 km corresponds to the 16 pixel repeat scans of the instrument (750 m × 16 508 
detectors = 12 km). Reassuringly, the along-scan spectra do not show these peaks. Also note that the 509 
noise from the different detectors contributes to a general elevation of the large wavenumber end of 510 
the spectrum – the simulated spectra with noise in Figure 9 tend to separate from the associated 511 
straight line spectrum at wavelengths smaller than approximately 8 km for along-track sections 512 
compared with approximately 5 km for along-scan sections. The point of separation is, of course, a 513 
function of the magnitude of the geophysical signal. In regions with a significantly larger 514 
geophysical signal, in the vicinity of the Gulf Stream for example, instrument noise will likely have 515 
no effect on the spectrum, with the possible exception of a few of the peaks. 516 

The third significant difference between AVHRR and VIIRS spectra relates to the daytime 517 
spectra compared with the nighttime spectra. Specifically, there is a statistically significant 518 
difference between daytime and nighttime VIIRS spectra, with the daytime spectra being more 519 
energetic at wavelengths smaller than approximately 100 km. This is likely due to diurnal warming, 520 
which occurs frequently in the Sargasso Sea in summer months [6, 10]. Also note that the slope of 521 
nighttime spectra for both along-scan and along-track sections is closer to that of the TEX spectrum 522 
than the daytime spectra. Surprisingly, the level of instrument noise is also larger at daytime than at 523 
nighttime as is evident both from the figures and from Table 3. This may result from the sensitivity 524 
of the banding to the energy in the SST field. Banding is difficult to correct for because it is not the 525 
entire scan line that has higher values than its neighbors, but rather, what appear to be randomly 526 
located segments of a given scan line. Furthermore, the magnitude of the difference in these regions 527 
appears to be related to the magnitude of the retrieved temperature. 528 

Finally, the level of instrument noise estimated with the spectral approach is substantially 529 
smaller than (as much as one half) that estimated based on the variogram. The reason for this is not 530 
clear. Although the spectral approach provides slightly better estimates of the noise added to 531 
simulated temperature sections than the approach based on the variogram, the estimates do not 532 
differ by the amounts seen in the actual data for VIIRS. 533 

 534 

 535 
Figure 8. Mean VIIRS spectra similar to the AVHRR spectra in Figure 6. 536 
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 537 

Figure 9. Mean VIIRS spectra similar to the AVHRR spectra in Figure 7.  538 

5. Discussions 539 

5.1. Comparison of the AVHRR L2 instrument noise estimates Tandeo et al’s results 540 
Tan14 estimated the nugget in the L3 Meteosat AVHRR data set produced by the O&SI SAF 541 

Project Team [1, 14]. This product was assembled by remapping the full resolution nighttime 542 
AVHRR fields onto a regular 0.05° × 0.05° global grid and averaging the results into 12 h fields.  543 
They found 𝜎! ≈ 0.14 K for the study area. This is larger than would be expected if instrument 544 
noise of the full resolution Meteosat AVHRR data is similar to that found for NOAA-15 AVHRR (on 545 
the order of 0.20 K) and if this noise is uncorrelated from pixel-to-pixel, the assumption made in the 546 
analyses presented herein. Specifically, we would expect the noise for the L3 product to be 547 
approximately 0.05 K since order 25 pixels are averaged for each 0.05° × 0.05° SST estimate. It is 548 
possible that the level of instrument noise (elements in the yellow block of Fig. 1) associated with 549 
the AVHRR on Meteosat is higher than that of NOAA-15. More likely however is that the difference 550 
results from misclassification errors associated with cloud flagging (the most significant element in 551 
the green block). Specifically, Tan14) processed all of the data for one year, 2008; i.e., they did not 552 
constrain their analysis to relatively cloud free fields as we did. Cloud-contaminated L2 pixels were, 553 
of course, excluded from the production of the L3 fields and Tan14 also excluded pixels flagged as 554 
cloud-contaminated. However, the likelihood of misclassification, cloud-contaminated pixels not 555 
being flagged as such, increases as the fraction of cloud cover increases. Furthermore, classification 556 
errors tend to be small-scale errors, a small number of pixels here, a small number of pixels there, as 557 
opposed to large regions, which are misclassified. This means that such errors will likely contribute 558 
to noise at small spatial scales. A histogram of Tan14 nuggets (not shown) shows a broad 559 
distribution ranging from 𝜎! in the 0.05 K range to order 0.3 K with a peak around 0.14 K. If the 560 
nugget resulted primarily from instrument errors (those in the yellow block), one would expect a 561 
relatively narrow peak; the instrument noise is unlikely to vary substantially for the region. Thus 562 
the broad 𝜎! range suggests that it is a combination of classification errors and instrument noise. 563 
Because our analysis required long sections of cloud-free pixels the data were likely much more 564 
clear, on average, than those of Tan14. Also contributing to the difference between our estimate of 565 
local noise and that of Tan14 is that noise may be added through the combination of L2 fields to 566 
obtain the L3 product. Using nighttime only data, as Tan14 have done, will minimize, but not 567 
completely remove, this. Finally, we found that the model, which best fits the SST field in the 568 
Sargasso Sea, varies from an exponential form to a Gaussian form, hence our use of the standard 569 
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model. Tan14 used the exponential form. This will likely also contribute to an overestimate of the 570 
instrument noise in regions in which a mixed form is more appropriate. 571 

5.2. Impact of noise on Sobel Gradient 572 
Of interest is how levels of noise, typical of the values found thus far, impact gradients and 573 

fronts. In order to address this, we simulated 10,000 3 × 3 pixel squares for a given gradient in x, 574 
added Gaussian white noise to each of the elements, applied the 3 × 3 Sobel gradient operator in x 575 
and y to these squares and then determined the mean gradient and the standard deviation of the 576 
gradient. This was done for gradients ranging from 0.001 to 0.01 K km-1, values typical in the ocean, 577 
and for levels of instrument noise ranging from 0.001 K to 0.02 K. Figure 10 and 11 show the means 578 
and standard deviations of the x- and y-components of the gradient, respectively. The mean x- and 579 
y-components are unaffected by the noise; the mean x-component is the same as the initial value 580 
and the mean y-component is very nearly zero. The standard deviation of the components is very 581 
nearly independent of the imposed noise. For a noise level typical of VIIRS, 0.05 K, the vertical 582 
white lines in the figures, the uncertainty of each of the components is approximately 0.022 K and 583 
for a level typical of AVHRR, 0.2 K, the uncertainty in the components is 0.09 K. In general, the 584 
uncertainty in the given component is approximately one half of the level of imposed noise.  585 

 586 
Figure 10. Simulated impact of Gaussian white noise of magnitude sigma imposed on a field with 587 
an x-gradient indicated on the vertical axis. The vertical white line is an imposed noise level typical 588 
of VIIRS values. 589 

 

Figure 11. As in Figure 10 except for the 
y-component of the gradient.  

 

Figure 12. As for Figure 10 except for the gradient 
magnitude. 
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The impact on the gradient magnitude (Figure 12) is more dramatic. The mean of the estimated 590 
gradient is no longer equal to the magnitude of the imposed gradient. For example, for a relatively 591 
robust gradient of 0.05 K/km, the mean of the estimated gradient ranges from 0.05 to in excess of 0.1 592 
K/km as the imposed noise ranges from 0 to 0.2 K/km. Note that contours of the estimated gradient 593 
tend to become level for imposed noise levels less than approximately 0.07 K. This means that 594 
VIIRS estimates of the mean gradient magnitude will be centered on the actual value of the 595 
gradient, but that the gradient magnitude will be substantially overestimated in AVHRR fields. The 596 
uncertainty of the estimated gradient magnitude increases with the imposed noise, nearly doubling 597 
from the value associated with a zero imposed gradient to an imposed gradient of 0.1 K/km. These 598 
observations do not mean that a front with a gradient of this magnitude (0.05 K/km) is undetectable 599 
in a field with an AVHRR noise level but detection will be problematic. Simulations using front 600 
detection algorithms need to be undertaken to evaluate this. Although none of this is surprising, we 601 
are not aware of any studies involving the gradient magnitude of satellite-derived SST fields 602 
accounting for this – including many of our own. 603 

6. Conclusions 604 
The accuracy with which the local gradient of any digital field can be determined is a function 605 

of the local precision of the underlying data, where the local precision is defined as the square root 606 
of the variance of individual pixel values following removal of real trends in the data and removal 607 
of noise that is correlated over scales that are large compared with the scale used to calculate the 608 
gradient. In the case of fields obtained from satellite-borne sensors this noise is attributed to 609 
characteristics of the sensor, ‘instrument noise’, and to the retrieval process, ‘retrieval noise'. Two 610 
approaches, a spectral-based approach and a variogram-based approach, were used to estimate the 611 
instrument portion of this noise in L2 AVHRR and VIIRS SST fields. In order to reduce the 612 
non-instrument portion of the local noise in the analysis, only cloud free sections were used, the 613 
assumption being that the dominant contribution to the non-instrument local noise is due to the 614 
misclassification of clouds. Because instrument noise was thought to differ between the along-scan 615 
and along-track directions and because the geophysical variance was thought to differ between day 616 
and night, the analysis was performed separately for the four along-scan/along-track and day/night 617 
combinations.  618 

Both methods yielded similar results for AVHRR, with daytime and nighttime along-scan 619 
values of ~0.18 K and along-track values of 0.21 K. VIIRS instrument noise, on the other hand, was 620 
found to differ by method, scan geometry and day-vs-night – ranging from 0.021 K for the 621 
nighttime, along-scan spectral estimate to 0.097 K for the daytime, along-track variogram estimate. 622 
Day and night along-scan estimates based on the spectral approach are close to one half those based 623 
on the variogram. For both methods, the nighttime estimates are also roughly one half the 624 
corresponding daytime estimates. Finally, the along-track estimates are roughly 50% larger than the 625 
along-scan estimates for the spectral approach but only about 25% larger when based on the 626 
variogram. In all cases, the estimates were smaller than the ‘upper’ limit. 627 

In summary: VIIRS instrument noise is substantially smaller than AVHRR instrument noise, 628 
with levels as low as 0.02 K in the along-scan direction at nighttime. In fact, VIIRS instrument noise 629 
under these conditions is near the level of the geophysical signal in the dynamically quietest 630 
regions in the ocean.  631 
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