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Edge Detection Algorithm for SST Images

JEAN-FRANCOIS CAYULA AND PETER CORNILLON

Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

(Manuscript received 17 August 1990, in final form 14 June 1991)

ABSTRACT

An algorithm to detect fronts in satellite-derived sea surface temperature fields is presented. Although edge
detection is the main focus, the problem of cloud detection is also addressed since unidentified clouds can lead
to erroneous edge detection. The algorithm relies on a combination of methods and it operates at the picture,
the window, and the local level. The resulting edge detection is not based on the absolute strength of the front,
but on the relative strength depending on the context, thus, making the edge detection temperature-scale invariant.
The performance of this algorithm is shown to be superior to that of simpler algorithms commonly used to
locate edges in satellite-derived SST images. This evaluation was performed through a careful comparison
between the location of the fronts obtained by applying the various methods to the SST images and the in situ

measures of the Gulf Stream position.

1. Introduction

Satellite-derived sea surface temperature (SST) fields
are often rich in structure, reflecting important under-
lying oceanographic processes related to eddies, cur-
rents, and regions of divergence or convergence. Many
oceanographic studies that make use of satellite-derived
data rely on an accurate location of edges associated
with these features. To date, although it is labor inten-
sive, the location of edges in oceanographic images has
been performed subjectively by human operators.
However, because of the constantly increasing amount
of satellite-derived data available (Cornillon et al. 1987)
and because computers have become faster and less
expensive, there has been a rising interest in designing
algorithms to automatically detect oceanographic fea-
tures such as temperature fronts (Cornillon and Watts
1987; Gerson and Gaborski 1977; Holyer and Peck-
inpaugh 1989; Cayula et al. 1991). The primary ad-
vantage of such algorithms, aside from their speed, is
that they can be designed to objectively detect fronts.
In comparison, decisions by human operators are, in
part, subjective and as a result, location of the same
front will vary from day-to-day and operator-to-oper-
ator. Also, unlike subjective detection, an objective al-
gorithm uses numerical estimates to determine the va-
lidity of a front. Consequently, an objective algorithm
can produce quantitative information about a front
without additional computations.

Existing computer vision algorithms have been de-
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signed for purposes other than the study of oceano-
graphic data. As a result, they often work poorly when
applied to sea surface temperature fields. In this article,
we present a solution to the problem of objectively
detecting and locating features of oceanographic in-
terest in SST fields.

We continue our introductory remarks with a brief
review of local versus regional operators and conclude
them with an overview of the algorithm developed in
this work. Subsequent sections deal with the details of
the algorithm and a brief discussion of its application
to SST fields of the western North Atlantic.

a. Local versus regional operators

The algorithm implemented in this study is derived
from a combination of existing algorithms operating
at the local level and the regional level. The difference
between local and regional algorithms is best demon-
strated by example. Temperature fronts, the features
to be detected, are step edges. These can be defined in
different ways depending on which approach is used.
In the case of the regional approach, the edge is defined
as the (usually thin) region of separation between two
regions of constant temperature. As a result, an edge
can only be detected if two populations are found in
the area being examined. For example, in the one-di-
mensional case depicted in Fig. 1, an edge would be
detected by the regional approach because two regions
are indeed present and well defined in the interval con-
sidered. Similarly, an edge would be detected in Fig.
2, although the transition between the two populations
is smooth. However, in Fig. 3 no edge would be de-
tected because, aside from a few points, only one pop-
ulation is present.
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FIG. 1. Two well-defined populations.

On the other hand, the local approach relies on the
size and shape of the step separating the two popula-
tions. An example of such an approach is the gradient
method in which a high gradient magnitude indicates
the presence of an edge. The gradient method may be
improved by noting that the gradient vector along an
edge must have an approximately constant direction.
Depending on the threshold used, an edge is likely to
be detected in the cases shown in Figs. 1 and 3. The
smoothness of the transition in Fig. 2, however, may
prevent the detection of the edge.

b. Overview of the algorithm

The algorithm discussed in this work operates at
three levels: picture level, window level, and local-pixel
level, in much the same way as humans (Cornillon et
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Fi1G. 2. The smoothness of the edge can be a
problem for the local approach.
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FiG. 3. An edge is present, but one of the
populations is not well defined.

al. 1987). The flowchart of the algorithm is presented
in Fig. 4. Following input of the data, the most obvious
clouds (based on temperature and shape) are identified
and tagged so that data that do not represent sea surface
temperature are not used in the subsequent modules
(appendix A). These steps operate at the picture and
then at the window level. The procedure continues at
the window level with the formal portion of the edge
detection. Using techniques for unsupervised learning
(Duda and Hart 1973), the temperature distribution
(histogram) in each window is analyzed to determine
the statistical relevance of each possible front (Kirttler
and Illingworth 1986; Weszka 1978). To remedy the
weakness related to the fact that. clouds and water
massesdonotalwaysformspatially distinct populations,
the algorithm also includes a study of the spatial prop-
erties, such as cohesion and smoothness, instead of re-
lying entirely on temperatures. In this way, temperaiure
fronts are unequivocally defined. Finally, local oper-
ators are introduced to complete the contours found
by the region-based algorithm [contour following
(Ballard and Brown 1982)]. It should be noted that
even though local operators are used, they are used in
conjunction with the window-based algorithm, and so
the qualities of scale invariance and of adaptivity as-
sociated with the region-based approach are not lost.
As a result, the algorithm takes advantage of both the
regional approach and the local approach while avoid-
ing their drawbacks.

2. The algorithm

As indicated above, the complete algorithm deals
with both cloud and edge detection. However, beczuse
the latter is the focus of this research, only the portion
of the regional-level algorithm concerned with edge
detection and the local-level section will be discusised
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preprocessing before applying
the algorithm (Appendix A)
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clouds at the PICTURE LEVEL
and median-filtering (Appendix A.1)

|

First step of fine cloud

detection at the WINDOW LEVEL:
Histogram Analysis (Appendix A.2)
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Second step of fine cloud
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!

Edge detection

at the WINDOW LEVEL:
Histogram Analysis (ILA.1)

I

Edge verification
at the WINDOW LEVEL:
Cohesion Algorithm (I1.A.2)

I

Edge detection and verification

at the LOCAL LEVEL:
Contour Following (1I.B)

!

(Optionally)
Extraction of the
Gulf Stream northern edge (II1.A)

FI1G. 4. Flowchart of the algorithm indicating the section of this
article in which each step is explained.

in the following. For the sake of completeness, the pic-
ture-level portion of the algorithm and the regional-
level section dealing with cloud detection are sum-
marized in appendix A.

a. Window-level processing

The first step of the regionally based algorithm is to
segment the entire (median-filtered ) image into win-
dows. Then each window is processed independently
from the others to evaluate the probability of an edge
being present in that window. Because an edge located
at the boundary between two windows would escape
detection, the image is segmented into overlapping
windows. In the current configuration, the size of the
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windows has been set to 32 X 32 pixels. Such a choice
in size results from a trade-off between opposing re-
quirements. First, the dataset must be sufficiently large
to obtain reliable statistics. Moreover, the windows
must not be too small compared to the thickness of
the edge. This is because an edge is defined as the
boundary of two regions, w; and w,, each of approxi-
mately constant temperature. If the transition between
these regions occupies too much of the window, the
two regions of constant temperature cannot be found
and the edge is left undetected. On the other hand, by
choosing a window that is too large, features that in-
terfere with the detection of the edge may be included
in the area under study. Other edges or clouds are ex-
amples of such interfering features. Although the win-
dow size and the (spatial) scale of the image are im-
portant parameters, the algorithm is robust to changes
in these parameters: similar results were obtained by
using 16 X 16, 32 X 32, or 64 X 64 pixel windows in
processing images at scales of 1- and 2-km resolution.
Note that the window size is also dependent on such
factors as image noise and the resolution desired for
edge detection.

1) HISTOGRAM ANALYSIS

The problem addressed in this section is the detection
of an edge within a given window. Because of com-
putational considerations, only the temperature dis-
tribution (histogram) is used to determine the presence
of an edge. Qualitatively, it is easy to see that if an edge
is not present in the window, the histogram will likely
be unimodal. On the other hand, if an edge is present,
then the histogram will be bimodal. Examples of his-
tograms for real data are shown in the next two figures:
Fig. 5 represents the histogram of a window with weak
edge (see window 2 in Fig. 6a), while in Fig. 7 the
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FIG. 5. Histogram of a region containing a weak edge, the bound-
aries of the region are represented by window 2 in the image shown
in Fig. 6a.



VOLUME 9

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

70

*PIB[I2A0 SIZP3 PUB INO PAOISZ SPNOJD Yiim sesdney ade) Yo spiey 1SS UL 'q9 “Oid

"BUI[OIED) YLION ‘SeioyeH ade)) Jo spjoy LSS YL ‘89 'Ol




FEBRUARY 1992

ol _

h(t)

160. 200. 240.

FiG. 7. Histogram of a region containing a strong edge, the bound-
aries of the region are represented by window 1 in the image shown
in Fig. 6a.

histogram of a region containing a strong front is shown
(window 1 in Fig. 6a).

The problem addressed by the analysis of the his-
togram is twofold: the algorithm must determine
whether one or two populations are present and, if two
populations are present, a threshold must be defined
to separate them. To achieve this, the algorithm first
assumes that two populations are present and the pa-
rameters for the populations are computed. These es-
timated parameters are then used to determine if the
segmentation of the data in two classes is statistically
relevant. If the data in the window came from only
one class, then there is no edge present in the window.

Before presenting the method used in the algorithm,
the theoretical basis for the problem of unsupervised
segmentation is examined. Samples from class w,; are
defined as the cold population and samples from class
w, form the warm population. Let x be a sample (pixel)
from the set X6 (region under study) and #(x) be the
temperature of the sample x. The probability density
of the mixture can be expressed as

2
plt(x)] = 2 plt(X)| x E w; ]P(X E w;). (1)

i=1

Once the parameters of the marginal densities and the
a priori probabilities P(x € w;) are determined, the
validity of classifying the data in two classes versus one
can be determined. If the two classes hypothesis is ver-
ified, the threshold  that satisfies the Bayes minimum
error criterion can be obtained by minimizing the
probability of incorrect classification over the entire
set 26 of samples:

P(error) = P[t(x) = 7| x € 0 ]1P(x € w)

+ Plt(x) < 7| X E 0 ]P(x €E wy). (2)
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Exact solutions are available on occasion, in particular
when the data are normally distributed (Duda and Hart
1973). However, obtaining the values of u;, o; and the
a priori probabilities can be very complicated, requiring
a large amount of computer time. Furthermore, the
oceanographic data under consideration do not seem
to be normally distributed and so an exact solution
may not be attainable.

The problem can be drastically simplified, however,
if we assume that the probability of error associated
with the Bayes minimum error threshold, Eq. (2), is
negligible. In such a case, the overlap between the cold
and the warm population is small. Once the optimal
threshold is known, parameters such as the mean and
the variance of each population can easily be computed:

2 th(t)

wi(r) = Sha) (3)
2 th(t)

pa(7) = SHD (4)

2 (1= m)*h(1)

2 _I<T

o°(1) = TS 0] , (5)

Z (1= m2)*h(1)
o (1) = g, (6)

2 h(t)

j=2d
where A(t) is the value of the histogram at temperature
t. Although the threshold is not known, we note that
the histogram only takes a finite number of values [0,
n], where n is the number of quantization levels for
the computer representation of the temperature. This
means that 7 can only take the values 1 to #. Because
n is not too large (n = 255 for the data available to this
study), one can compute an estimate of the parameters
of the mixture, for every 7 possible. Then, the estimated
parameters can be used to maximize or minimize a
given criterion over all the possible values of the
threshold 7. For example, if the density function of
each population is assumed to be known and depends
only on the first- and second-order moments, the
threshold 7. can be chosen such that,

J(T) = 2 {p[zlﬂl(‘l'), MZ(T)s 0'1(7'), 02(7)]
t=0

—h(n}* (T)

is minimized. It is also noted that the minimum value
of J(7pest) gives an indication of the goodness of fit of
the mixture density (with estimated parameters) to the
histogram (estimated mixture density). Some refine-
ments to improve the various estimates are possible;
in particular, when the data are assumed to be normally
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distributed (Kittler and IHlingworth 1986). However,
the data used in this project are not normally distrib-
uted and the hypothesis of normal distribution is im-
plicitly rejected when the tails of the distribution are
neglected.

Because a theoretically optimal criterion function
may not exist and would likely require a large number
of computations when it exists, it is more practical to
heuristically design the criterion function. An example
of heuristics that leads to a computationally simple
algorithm can be obtained by expressing the total vari-
ance Sy as the sum of two terms: J.(7) and J,(7).
Here J.(7) represents the sum of the variances within
each of the two populations that result from segmenting
the region with respect to the threshold 7. We refer to
J.(7) as the within-cluster variance and we define it
as follows:

M AL
Jo(7) = NN, Si(7) +N1 Y S2(7), (8)
where
2 [t~ m(m)1*h(2)
Si(r) == , and
§ [t = ua(7)1?(2)
Sp(1) == , , 9)
with
Ny =2 h(t) and N, =2 h(1). (10)

<r =T

Here J,(7) represents the contribution to the total
variance resulting from the separation of the two clus-
ters:

NN, [
(N, + N2 1

Assuming that the histogram exhibits two well-defined
peaks, if 7 is chosen optimally most of the variance in
the window will be due to the difference in temperature
between the two populations. Therefore, J,(1) will
likely be large compared to J,(7). On the other hand,
if pixels from one population are mistakenly included
in the other population, some of the terms contributing
to the between-cluster variance will be shifted to terms
contributing to the within-cluster variance, J,(7). The
preceding reasoning leads us to define the optimal
threshold 7, as the value that maximizes the between-
cluster variance J,(7). Furthermore, the ratio J;(7)/
Sior measures the proportion of the total variance due
to the separation between clusters and as such gives an
indication on the goodness of the segmentation. In
particular this ratio, denoted 6(7), when evaluated at
. Topt, indicates how good the best segmentation is. Ac-
cordingly, 8(7.,) is the criterion used to decide whether
one or two populations are present. The reasoning fol-
lowed to select the best threshold and determine the

Jo(7) = (1) — ()% (11)
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number of populations is only approximate but w2 be-
lieve that it holds in the present case because the: dif-
ferent populations (masses of water) generally have
similar variances. Because conditions are not well de-
fined, we are not able to establish the statistical rele-
vance of the criterion 6(7). Although the ratio, J,(7op)/
Siot, 18 similar to such familiar statistical quantitiss as
p? (the ratio of explained variance to total variance),
it must be remembered that because the tails of the
distributions in the mixture were neglected, the re-
sulting estimates of the means and variances are biased.
Furthermore, because no condition is imposed on the
shape of the probability density function of each pop-
ulation, common statistical tests cannot be used.

Although an exhaustive analysis is not possible, the
behavior of the criterion function 6(7) must be studied
to define what criterion threshold leads to a relevant
decision on the unimodality or bimodality of the his-
togram. We begin this study by examining the expected
value of 8(7,,) for different unimodal distributions.
For a normal population, the expected maximum value
of the criterion function is

E[6(tom)] = 2/7m ~ 0.63, (12)
while for a triangular distribution, it is
E[0(1op)] = 2/3 ~ 0.66. (13)

In both the triangular and normal cases, the expected
value of 6( 7., ) is independent of the parameters of the
distribution and the size of the sample set and has a
maximum value lower than 0.7. In fact, this threshold
of 0.7 appears to hold whenever the histogram is clearly
unimodal: for a 32 X 32 pixel window with normally
distributed data, a rough approximation (Duda and
Hart 1973) gives P[8(7,x) < 0.7] =~ 0.99. Inversely,
to show that the criterion is greater than 0.7 when two
modes are present, several different bimodal distribu-
tions were simulated (Cayula 1988). The results for
one simulation (Fig. 8) are presented in Table . In
light of all the cases studied, we selected 0.7 as the
critical value discriminating between bimodal and
unimodal distributions for use in the algorithm devel-

TABLE 1. Case of a mixture composed of two well-separatec! pop-
ulations of unequal size that are normally distributed, with very dif-
ferent variances. Although it is difficult to distinguish the two rnodes
by looking at the histogram (Fig. 8), the algorithm correctly ideatifies
these two modes. Simple methods that use fixed thresholds, or local
maxima of the histogram, would likely not work in this case.

Parameters Exact Estimated
P(w,) 0.75 0.76
w0 50.0 50.3
I 150.0 153.2
(2] 3 .0 6.4
o3 30.0 26.5
Topt 61.8 74
(T op) — 0.91
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FI1G. 8. Histogram of the mixture described in Table 1.

oped in this study. There are, however, potential prob-
lems associated with this critical value that require fur-
ther discussion. First, we note that when the values of
such parameters as the size and variance of the two
populations are unequal, the algorithm performance
deteriorates rapidly for a signal-to-noise ratio of less
than 4 (we define the signal-to-noise ratio as [(u;
— 12)?/J.]"%. Although this requirement on the max-
imum amount of noise may seem very strict, it should
be remembered that because the images are median
filtered, if the populations are assumed to be normally
distributed, a signal-to-noise ratio of 4 (or 6) would
approximately correspond to a signal-to-noise ratio of
only 2.3 (or 3) in the original unfiltered image (Cayula
1988).

It was also noted that with a signal-to-noise ratio of
4, parameter estimates are quite accurate as long as
the size of the two populations does not differ by more
than a factor of 3. As a result the algorithm was designed
to discard any segmentation that would result in an
estimated probability that does not obey the condition:

P(w;)=025 for i=1,2. (14)

In Table 1, the exact value of 7y is the threshold
that satisfies the Bayes minimum error criterion of Eq.
(2). The reason for the difference between the esti-
mated and the exact values (in particular, the standard
deviations of the two populations tend to average out)
is mainly due to the fact that the clusters are not well
defined. Indeed, a population with high variance forms
a loose cluster. If the second population forms a tight
(low variance) cluster, then the algorithm is confused
by the two different kinds of clusters. When the loose
cluster is compared to the tight cluster, the loose cluster
may not look like a cluster at all. However, unequal
variances are not a major problem for two reasons.
First, the variances in SST associated with two adjacent
masses of water are usually similar. Second, significant
differences in the value of the variances most often
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occur when one of the populations is a cloudy or a
land region (high variance), and the other population
is a mass of water. In such cases, however, the difference
in temperature between the two populations is often
large, hence, correct partitioning can still be achieved.
Table 1 shows that although the exact and estimated
Topt fOr two unequal normal distributions are different,
the error committed in the estimated size of the largest
population is only about 1%.

The two other distributions presented highlight a
fundamental deficiency of any segmentation algorithm
based solely on pixel values. If the data are distributed
such that:

pli(x)=k] =p[t(x) =k + 1] =1/2 for x E X,
(15)

then, by looking at the histogram of such a mixture, it
seems likely that only one population is present. How-
ever, maximizing the criterion function leads to 8( 7o)
= 1 (for 7o« = k + 1/2), indicating that the hypothesis
of two populations is highly probable. Until further
information is made available, such as limits on the
possible range of the variances, an objective decision
cannot be reached. A similar problem exists with the
uniform distribution u(m, b), such that:

0, if x<(m-—b);
p(x)y=4 1/2b, if (m—b)sx<(m+b),
0, if x=(m+b).

(16)

When two populations of equal size, with distributions
u(m,, b) and u(ms,, b) are present and do not overlap
(|m; — my| = 2b), the following expression is derived:

3/4(my, — m,)?
3/4(m1 - H’Iz)z + bz ’

For my, — m; = 2b, 6( 7, ) can be found to equal 0.75.
This result is satisfying if two populations are present
in the mixture. However, this last case could also rep-
resent the situation when only one population with the
distribution u[(m; — m,)/2, 2b] is present. Again, it
is not possible to distinguish between one or two pop-
ulations in this case unless more information is sup-
plied. In the section on posthistogram analysis, an al-
gorithm that offers a solution to such a problem by
using the spatial distribution of the data as a source of
new information is discussed.

Thus far, it has been assumed that, at most, two
populations exist in a window. Sometimes, however,
three populations are present. When the third popu-
lation represents a small portion of the window under
study, the algorithm will only detect the two principal
populations. In most cases, such behavior is acceptable
because the third population will likely be detected in
one of the overlapping windows, in which it represents

0(Topt) = (17)
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a larger proportion of the dataset. If the detection of
three populations is required, a new criterion function
0(r,, 72), which would be similar to 8(7), could be
designed. The resulting algorithm would then consist
of maximizing the new criterion function for every ,
and 7, such that 7, < 7,, and then, the best segmen-
tation into three populations would have to be com-
pared to the segmentation into two populations and
to the one population case. However, for an image
composed of 8-bit pixels, the computational cost can
be multiplied by as much as 128. For satellite-derived
fields of 1-km resolution, overlapping 32 X 32 pixel
windows were sufficiently small to eliminate the mul-
tiplicity of fronts within a given window as a serious
problem; this providing that fronts associated with land
or clouds are removed prior to applying the edge de-
tection algorithm (appendix A).

2) COHESION ALGORITHM

By neglecting to take into consideration the spatial
distribution of the data in the previous section, a large
amount of information was left unused. For example,
in the case described by Eq. (15), if all the pixels of
value k map to a specific region of the window, then
the hypothesis of a front being present in the area would
definitely seem more legitimate. On the other hand, if
pixels of any value are uniformly distributed through-
out the window, then the hypothesis that a front exists
in the window would be invalidated. Whenever the
histogram indicates the presence of two populations,
the spatial distribution of the data should be examined
to see if a front is present or if the bimodal distribution
is simply a result of an erratic temperature pattern. In
studying SST fields, the problem of a bimodal distri-
bution resulting from scattered clouds over water with
no front present is encountered on occasion. This
problem may also occur when the sensor has inter-
mittent noise, as was the case with some NOAA-6 data.

In general, if a front is actually present, segmentation
obtained by thresholding the data at 7, will map the
two populations to a few large blocks within the win-
dow. To test for such spatial compactness (compact is
intended in the common sense), an algorithm that
measures the cohesion of each population has been
designed. This algorithm is only applied when two
populations, ) and w5, have been detected in the his-
togram analysis. Populations ) and % are defined
such that, for a pixel x with temperature #(x):
and

HX) < Top = X E 0 HX)> Topt = X E w).

(18)

The cohesion coeflicients for populations ' and
w5, and for the entire dataset are defined as follows:

(19)
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R,
C=—, 20
=T (20)
R, + R,
C= , 21
T, + T, (21)

where T';, the total number of comparisons between
center pixels belonging to population w and neighbor
pixels belonging to either population, is given by:

T, = [{(x,y),such that y € [N (x) N %],
Vx€wi}], (22)

and R,, the total number of comparisons between cen-
ter pixels and neighbors that both belong to population
w', 1s given by:

R, = |{(X, _VA), such that y € [N (x) N w'],
VxE wh}l. (23)

Here R, and T, are similarly defined by substituting
wh for w} in Egs. (22) and (23)and | | is defined as
the cardinality of the set. For reasons of computational
economy and simplicity, only the first neighbors of a
given pixel are used to evaluate the cohesion. If x; ; is
the center pixel, the set of first neighbors is N (x; ;)
= {Xi,j+1, Xij—15 Xi+1,js xi—l,j} .

High cohesion means that for a given pixel that is
not close to the edge, neighboring pixels are likely to
belong to the same population. This implies that the
spatial segmentation of the area into populations w/
and w} is validated. Inversely, low cohesion means that
there is a nonnegligible probability that a given pixel
has neighbors from a different population and s¢ the
presence of the front detected by the histogram analysis
is improbable. For a checkerboard pattern the three
cohesion coefficients are zero and for an image with
the bottom half coming from one population and. the
top half coming from the other population, the cohe-
sion coefficients will tend to unity when the effects at
the edge between the populations are neglected. A
threshold of 0.92 for C and 0.90 for C; and C, was
chosen in this work to eliminate edges resulting from
noisy distributions; that is, if C is less than 0.92 or C,
or C, was less than 0.90, the segmentation is discarded
as unreliable. The selection of 0.92 and 0.90 as thresh-
olds is discussed in appendix B.

To reduce the number of computations needed to
estimate the cohesion coeflicients, only two neighbors
[N'(x:;) = {Xij+15 Xi+1,;} ] of the center pixel are ex-
amined. The algorithm has also been slightly modified
to make the cohesion coefficients relatively invariant
to different edge contours; for example, diagonal or
horizontal straight edges result in the same cohesion
coeflicients.

There are cases, however, for which the contribution
of the edge to the estimate of the cohesion may be
different from the contribution of a straight edge. It
should be noted though, that if P(error) is zero, the
threshold on C can accommodate a front about three
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times longer than a straight front. This trade-off be-
tween length of the front and signal-to-noise ratio is
actually an interesting property of the algorithm. Be-
cause SST fronts are generally associated with meso-
scale oceanographic processes, the fronts are expected
to be fairly straight (or at least smooth) on the scale
of the 32 X 32 pixel windows. On the other hand, rug-
ged edge contours are most often found at the boundary
of clouds or of land areas; that is, they are not edges
between water masses. Because long (not straight ) edges
often are not valid temperature fronts, they are less
reliable than shorter (straight ) fronts. Accordingly, the
condition on the minimum signal-to-noise ratio should
be made more stringent for accepting long edges as
valid temperature fronts.

In summary, it can be seen that the cohesion algo-
rithm estimates both the length of the edge contour in
a window and the compactness of each population.
Although the edge effects on the cohesion could be
reduced, physical considerations of the problem justify
the approach used to estimate the cohesion coefficients.

3) LOCATION OF EDGE PIXELS

The window-level aigorithms discussed above were
designed to detect and confirm the presence of an edge
in each individual window. The last step in this process
is to locate the edge pixels in the windows where the
presence of a front was detected and confirmed. The
output of this algorithm is an edge image in which any
pixel that is not an edge pixel is set to a digital count
of zero. Pixels that are determined to be edge pixels
are set to a value equal to the temperature threshold
obtained by histogram analysis. Using the indicator
function Q(x) such that,

0, if x€Euwi;

24
1, if xE wh, (24)

VxE X, Qx) = [

an edge pixel can be simply expressed:
Vx€eX, if Iye N'(x), such that Q(x) # Uy),

= x is an edge pixel. (25)

b. Local-levél processing

The edge image obtained by window-level processing
does not really contain edges, but independent edge
pixels. Because oceanographers are interested in study-
ing the statistics associated with a temperature front,
the edge image is inadequate, and further processing
is required to link the independent edge pixels so that
they form continuous contours. For this reason, a con-
tour following algorithm (local-level processing) is in-
cluded to complete the algorithm for frontal detection.
Basically, the algorithm assigns to the nth pixel of the
pth contour the value (n, p). Among the edge pixels
detected at the window level that are neighbors of con-
tour pixel (n, p), the algorithm selects the pixel that
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least changes the direction of the contour to become
contour pixel (n + 1, p). However, no pixel is added
if the contour direction has to change by more than
90° in 5 pixels. When no previously detected edge pix-
els can be added to the contour, the algorithm examines
the ratio of the magnitude of gradient sum to the sum
of gradient magnitude in a 3 X 3 pixel window centered
on the last contour pixel. If the ratio is greater than
0.7, one of the pixels in the 3 X 3 pixel window centered
on the last contour pixel is added to the contour. The
algorithm selects the pixel for which the scalar product
of the gradient vector at that pixel with the gradient
vector at the last contour point is maximized.

A few of the problems associated with the edge image
obtained by the window-level algorithm can be cor-
rected at the local level by a contour-following algo-
rithm. For example, in windows where more than one
front is present, fronts may often be missed. However,
portions of the fronts missed in one window can often
be detected in neighboring windows. Because the local-
level algorithm only relies on the first neighbors of the
last edge pixel to find a new edge pixel to add to the
existing contour, the algorithm can still follow a par-
ticular front even when it comes close to another one.
As a result, fronts can often be detected in windows
containing more than one front. A second problem
often encountered in the edge image is that there may
exist isolated edge pixels. This effect is mainly due to
the fact that P(error) # 0. By imposing a minimum
length for a valid contour, isolated points can be re-
moved from the edge image. In the present version of
the program, contours containing fewer than 15 pixels
are deleted from the list of contours: all contour pixels
(n, p) are set to (0, 0) to delete contour p.

3. Validation
a. Extraction of the Gulf Stream northern edge

To evaluate the performance of the edge detection
algorithm, it was applied to a set of 98 satellite-derived
(NOAA-7) SST fields used in a previous comparative
study (Cornillon and Watts 1987). In the previous
study, the location of the northern edge of the Gulf
Stream off Cape Hatteras, determined subjectively from
satellite imagery by a trained analyst, was compared
with the location of the Gulf Stream determined from
inverted echo sounders (IES) moored on the sea floor.
With each subjective determination the analyst also
assigned a quality factor Q,from O (no useful data due
to excessive cloud cover) to 4 (completely free of
clouds). The position of the Gulf Stream determined
from IESs corresponds to the surface projection of the
15°C isotherm at 200 m, 7’5, the generally accepted
definition of the northern edge. A detailed description
of the inverted echo sounders can be found in Chaplin
and Watts (1984 ). For the present purpose, it is suf-
ficient to note that three inverted echo sounder lines
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were available for the period covered by the images
used here (see Fig. 9). Also shown in Fig. 9 is the edge
of the Gulf Stream extracted from the edges shown in
Fig. 6b. The algorithm designed to extract only those
edges associated with the Gulf Stream uses three main
criteria. First, only the edges inside the envelope shown
in Fig. 9 are considered. Second, the average gradient
along a contour must be directed toward the southeast.
Third, edges are kept only if the temperatures of the
adjacent masses of water are consistent with the tem-
perature in the Gulf Stream region. Note that the ex-
traction algorithm also defines its own objective quality
factor Qyas a function of the temperature of the water
masses adjacent to the contour selected. The algorithm
is described in more detail in Cayula (1988). To com-
pare the position of the northern edge of the Gulf
Stream located by the edge detection algorithm with
the IES data, xsat is defined as the intersection of an
IES line with the temperature front (if it exists ) located
by the edge detection algorithm. Here xjgs denotes the
location of the intersection of 7';s with the IES line.
Watts and Johns (1982) have estimated that the stan-
dard error associated with the IES location of 7',5 com-
pared with the location determined by XBT (expend-
able bathythermograph) is about 5 km.

To compare the satellite-derived Gulf Stream edge
with the IES-derived path, statistics related to the sep-
aration of xgat and Xxigs are generated. The distance
| xsat — Xes|, corrected for the fact that the Gulf
Stream does not, in general, cross the IES line orthog-
onally, is the variable used in the comparison. Because
isotherms intersecting the sea surface are not vertical
and because the surface projection of T';5 is being com-
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FiG. 9. This figure represents the area shown in Fig. 6. The Gulf
Stream northern edge is indicated by a solid line, while the three IES
lines are represented by dashes. The Gulf Stream envelope is shown
in dots.
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pared with the surface front, a mean offset between the
two is expected. This offset is given by

1

MSAT-IES;, = 35 Z COS(G)(XSAT - X]Es). (26)

XsAT/ Qr=4

The figure of merit used to evaluate the edge detection
algorithm is the scatter about the mean offset given by

1

(N=1) > [cos(8)(XsaT — XiEs)

xsat/ Qr=4q

2 -
OSAT-IES, =

¢ - mSAT—lESJ_]2> (27)
where 6 is the angle between the normal to the Gulf
Stream edge and the [IES line, and Ndenotes the number
of points that satisfy the minimum quality factor. In
obtaining these values it is noted that one IES line may
intersect several edges identified in the satellite imagery
as being associated with the Gulf Stream. In such cases,
only the warmest southernmost intersection is used in
the comparison.

In Table 2, the edge detection algorithm (alg), the
subjective detection (sub), the gradient method (grd),
and the skew method (skw), where the last two meth-
ods are objective edge detection algorithms used in the
previous study (Cornillon and Watts 1987) are com-
pared. Subjective detection means that an analyst
manually located the northern edge of the Gulf Stream.
On the other hand, the gradient method is an auto-
mated approach that relies on the Sobel operator (Duda
and Hart 1973). The skew method consists of com-
puting the skew of the data in a 7 X 7 pixel window
and detecting an edge whenever the skew changes sign.
Because the various methods operate differently, they
assign different quality factors for the same edges: the
quality factor is different if the edge is studied globally,
regionally or locally. As a result, quality factors for
different methods are not directly comparable and Ta-
ble 2 is structured so that in a particular row, the bias
and standard deviation associated with each method
are given as a function of the number N of intersections,
between IES lines and the Gulf Stream northern edge,
which satisfy a minimum quality factor. The varations
in the value of N on a particular row are not significant
and are simply due to the fact that Nis not a continuous
function with respect to Q.

In comparing the results in Table 2, one notes the
following: first, subjective detection leads to the lowest
scatter about the mean and as a result, it is still the
most accurate method to locate the northern edge of
the Gulf Stream from satellite-derived images. How-
ever, scatter for temperature fronts obtained with the
edge detection algorithm is very close to that obtained
subjectively. The other methods lead to osar—ies,’s
which are larger than the osar—igs, associated with the
subjective method or with the edge detection algorithm.
Second, the mean offsets associated with the edge de-
tection algorithm and the subjective method are the
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TABLE 2. Comparative results of the edge detection algorithm (alg), the subjective detection (sub), the skew method (skw), and the gradient
method (grd). Here N is the number of intersections between the IES lines and the selected Gulf Stream fronts for those edge points that
satisfy a minimum quality factor. When the minimum quality factor decreases, N increases since intersection points, which are not as reliable

(lower quality factor), are selected.

N MSAT-IES, OSAT-IES,
alg sub skw grd alg sub skw grd alg sub skw grd
39 45 49 42 -9.26 —13.32 -21.02 —23.58 14.12 13.29 20.90 21.87
87 80 82 90 —11.08 —13.52 —18.94 -23.97 15.65 13.46 18.40 22.48
110 113 110 109 —-12.50 —13.59 —~17.37 ~24.50 15.61 14.62 18.97 21.92
131 141 131 126 —14.18 —13.80 —16.91 —25.56 17.17 14.50 18.14 22.40

smallest observed. This means that the warmest,
southernmost front being detected is further to the
south; that is, closer to 7';5. Indeed, one can often detect
two fronts in the region of the Gulf Stream northern
edge: a first and weaker front between warmer and
warm waters, and a second and stronger front between
warm and cold waters. It is the first front that this edge
detection algorithm and the analysts are able to detect,
while the gradient and skew methods will, in general,
detect only the stronger front farther north.

b. Running time

The processing time required by the edge detection
algorithm varies from image to image. In the set of the
98 images, an average of 30 s of DECstation 5000/200
CPU time was used to process each image.

4. Summary

In this article we have presented an algorithm that
is able to detect edges reliably without intervention
from a human operator. To accomplish this task the
algorithm operated at different levels to detect and dif-
ferentiate between true and false edges.

For comparison purposes, the algorithm was applied
to a test set of 98 sea surface temperature images to
detect the northern edge of the Gulf Stream. For this
dataset, the algorithm was shown to perform better
than automated methods previously used to detect the
edge of the Gulf Stream from satellite-derived sea sur-
face temperature fields: the algorithm successfully de-
tected valid temperature fronts and ignored false edges.
Furthermore, the cloud-detection portion of the algo-
rithm successfully identified a large number of clouds
and, in particular, those that were the most likely to
interfere with the edge detection. Finally, the algorithm
produced statistics about the temperature fronts that
are useful in the subsequent analysis of these fronts.
Although the comparative evaluation has been per-
formed on Gulf Stream edges, it is assumed that the
algorithm performs equally well on other SST fronts,
such as those associated with rings, the subtropical
convergence, and shelf-slope fronts.
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APPENDIX A
The Data—Preprocessing and Cloud Identification

The algorithm was developed for application to SST
fields. These fields were obtained from the AVHRR/
2, an infrared sensor flown on the TTROS-N series of
polar-orbiting satellites (Schwalb 1978).

Prior to application of the edge detection algorithm
to the infrared data, several preprocessing steps were
performed to obtain SST fields. These steps are de-
scribed in detail in Cornillon et al. (1987) and that
discussion will not be reproduced here. We simply note
that the result of these steps are SST fields in a common
coordinate system with a rms uncertainty for sea sur-
face temperature in cloud-free regions of approximately
0.7°C. We also note that infrared sensors operating in
the thermal portion of the spectrum cannot ‘“‘see
through” clouds. Hence, clouds represent a special
problem in the analysis of the data and, in particular,
in the operation of the edge detection algorithm dis-
cussed herein. For this reason, additional cloud detec-
tion preprocessing steps at the picture level and window
level are applied to the data prior to edge detection.

a. Cloud identification at the picture level

Processing at the picture level is accomplished in
four basic steps. First, clouds are usually colder than
the underlying sea surface. Therefore, a simple tem-
perature thresholding is applied to the image to flag
cloudy regions. Second, cloudy regions are often char-
acterized by a high gradient magnitude. The algorithm
therefore also applies a threshold to the temperature
gradient to achieve a rough segmentation of the data
between noncloudy and possibly cloudy regions. The
next two steps are used to refine the segmentation re-
sulting from the thresholding; that is, to determine
whether those regions flagged as possibly cloudy are
indeed cloudy. In effect this results in the algorithm
being less dependent on the threshold values. Unlike
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areal edge, gradient vectors associated with pixels inside
a cloudy area do not have a coherent direction. Regions
flagged as possibly cloudy, for which the ratio of the
magnitude of gradient sum to the sum of gradient
magnitude is lower than 0.3, are therefore assumed to
consist of clouds. On the other hand, for a ratio greater
than 0.7, the region is flagged as clear. Finally, because
clouds often form bulky shapes while edges produce
elongated profiles, a threshold is applied to the aspect
ratio of the regions flagged that have a gradient ratio
between 0.3 and 0.7. An aspect ratio (larger eigenvalue
of the spatial covariance matrix divided by smaller ei-
genvalue) that is more than 6 indicates a clear region.

Note that land can also lead to false temperature
fronts. However, for the images used in this study, the
location of land is well defined; hence, edges detected
at the shoreline are easily identified as land-water edges
by their location in the image. To avoid detecting the
shoreline as an edge, land regions in the image can be
masked before the edge detection algorithm is applied.

The final step before window-level processing in-
volves filtering the original image with a 3 X 3 median
filter (Huang 1981) and then removing the clouds de-
tected by the previous algorithm. The cloudy regions
can be removed from the median-filtered image by
logically multiplying (logical AND) the image and the
cloud map.

b. Cloud identification at the window level: Correlation
algorithm

The idea behind this portion of the algorithm stems
from the observation that cloudy areas, and to a lesser
extent land areas, are regions that usually have high
variability in temperature when compared with water
areas. The problem, when trying to remove clouds, is
that fronts (the features to be detected) are also asso-
ciated with high variability.

In order to separate high variability due to clouds
and high variability due to edges, the image is seg-
mented into overlapping windows (see beginning of
section 2a) and the histogram analysis (section 2a.1)
is applied. If the histogram in a window is found to be
bimodal, then parameters estimated by the histogram
analysis define two populations for that window and
the variability inside each population can be analyzed
separately from the edge effect. Such an algorithm has
the property of refining the result obtained by the cloud
detection algorithm at the picture level (i.e., better de-
tection of clouds near edges and of small clouds).

A measure of temperature variability can be obtained
by estimating the autocorrelation or autocovariance
functions, but this method would be computationally
expensive and, to fully use its results, complex models
of the autocorrelation functions for every type of pop-
ulation would have to be defined (Kittler and Pairman
1985).
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The approach taken here is much simpler: the av-
erage of the absolute differences is used. To eliminate
the possible linear trend of the data, the absolute value
of the expected value is subtracted:

vx=E(lx—yl)— [E(x =),
V(x,y) € X? suchthat, y€ N'(x), (Al)

where X is either population w or population w5.

If the correlation between neighbors is close to unity,
or if the variance is not too large, (low variability area)
then vy will be small. On the other hand, if high vari-
ance and low correlation are observed (high variability
area) then vy will take a value close to the estimated
variance of the population (which is high). As a result,
a decision threshold can be defined so that if vy is
larger than the threshold, then the population is marked
as a cloudy area. Because cloud detection depends on
the value of the population variance, it is not temper-
ature-scale invariant. The algorithm would have to in-
clude a much more sophisticated analysis of the clouds
(such as making use of the correlation function, Mar-
kov random fields or fractals) to obtain this property
of temperature-scale invariance. However, although the
present cloud detection algorithm is not scale invariant,
it is translation invariant in the temperature domain.
For a given image the average temperature of a cloud
does not affect the probability of detecting a cloud.

After running the program on a number of images,
it was decided to use two thresholds. Because clouds
are usually colder than their surroundings, when two
populations are present in the area, the cold population
is more likely to be a cloudy area than the warm pop-
ulation. As a consequence, a lower decision threshold
of 4 was selected for vy associated with the cold pop-
ulation, while a higher threshold of 8 was chosen for
vx associated with the warm population.

APPENDIX B
Determination of the Cohesion Threshold

The algorithm that examines bimodal distributions
for cohesion makes use of threshold values on the
cohesion coeflicients defined in the body of this paper.
In this appendix, we derive the threshold values when
the noise in the image is independently distributed.
Note that although the hypothesis of independence is
not always verified for actual SST images, the theoret-
ically derived threshold values match those obtained
through experiments.

Note that w’ and w5 are the populations obtained
by thresholding the temperature field [Eq. (18)], while
w, and w, are the actual underlying populations. If we
define P, as the probability of misclassifying a sample
belonging to w;, and P,, as the probability of misclas-
sifying a sample belonging to w,:



FEBRUARY 1992

P, =P(xEw|xEw) and
P,=P(xE€E v |xE w), (B1)

we can express the probability associated with ' and
w5:

P(wh) = P(w1)(1 = Pg) + P(w2) Pe,,
P(w?) = P(@2)(1 = Pe,) + P(w1) Py,

(B2)
(B3)

If only one population is actually present, Egs. (B2)
and (B3) still hold, with either P(w;) = 1 and P(w;)
=0or P(w;) = 0and P(w;) = 1.

More generally, assuming that the noise added to
the image is a random process, the expected value of
the cohesion coefficients can be determined as a func-
tion of P(w;) and P(w,) and P,, and P,,. These rela-
tions will help define the value of the cohesion coefli-
cients that indicate a reliable segmentation. To obtain
Eas. (B4) and (BS) we assume that a pixel from w,
and a pixel from w, cannot be neighbors. The deter-
ministic effect on the cohesion coefficients due to the
presence of an edge, where the two populations are in
contact, is reintroduced later:

_ P(center € w and, neighbor € w))

< Pah) ’
— 2 2
C = P(w)(1 — P, )"+ P(wz)P@. (B4)
P(w)(1 — P,) + P(w,) P,
_ P(center € w’ and, neighbor € w5)
? P(wh) ’
2 _ 2
G, = P(w,)Pe + P(wy)(1 — P.,) (B5)

P(w))P,, + P(wy)(1 = P,,)

The expected value of the global cohesion coeflicient
can be obtained as the weighted average of C) (B4)
and C, (BS) or from its fundamental definition:

C = P(center and neighbor from
the same population),
C = P(w))C) + P(w3) (3,
C=1-2[P(w)P, + P(w;)P,,]
+ 2[P(w,) P2, + P(w;)PL]. (B6)

When only one population, for example w;, is present,
P(w;) =1 and P(w,) = 0. As a result, from Eq. (B2),
P(w}) = P, and if the noise is a completely random
process, the global cohesion coefficient C becomes [1
— 2P(wh) + 2 P(w})?]. For the condition imposed by
Eq. (14), P(w%) = 0.25, we find C < 0.625. Usually,
the noise is not completely random and even though
a front does not exist in the area, C can be found to
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be greater than 0.625. However, if we assume that a
front is actually present under normal conditions P,
and P,, should be small with respect to unity and the
quadratic terms may be ignored. Furthermore, Eq. (2)
can be used in Eq. (B6) to obtain a simple approxi-
mation for the expected value of the global cohesion
coeflicient:

C ~ 1 — 2P(error). (B7)
Although the pixels physically located at the edge be-
tween populations w, and w, have been ignored, their
effect on the value of the cohesion coefficients is not
completely negligible. For a window of n X n pixels,
containing a straight edge that crosses the window di-
agonally from corner to corner, the value of the global
cohesion factor is decreased by »!. In particular, for
a window of 32 X 32 pixels, C is decreased by 1/32
~(0.03:

C ~0.97 — 2P(error). (B8)

While studying the histogram based algorithm in the
case of normally distributed data, it was noted that a
signal-to-noise ratio of at least 4 was needed to obtain
reliable results. This condition is also equivalent to a
maximum tolerable probability of error, P(error), of
approximately 0.025. By replacing P(error) by its lim-
iting value in Eq. (B8), it becomes apparent that the
estimate of C must be greater than 0.92 to obtain a
reliable segmentation. Consequently, in this program,
any segmentation that yields a value of C lower than
0.92 is discarded as unreliable. Similar results are ob-
tained for C, and C,. However, it should be noted that
the effects on C; and C, due to the edge depend on the
size of each population. Furthermore, because the es-
timates of the partial cohesion coefficients are com-
puted with fewer samples, they are less reliable than
C. As aresult, a larger allowance was made for possible
edge effects:

C, ~0.95 - 2P.,
C,~0.95 = 2P.,,

(B9)
(B10)

and the minimum value of C; and C,, to accept the
hypothesis of a front, was chosen to be 0.90.
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