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Edge Detection Applied To SST Fields
by
Jean-Francois Cayula and Peter Cornillon

Graduate School of Oceanography
University of Rhode Island
Narragansett, RI 02882

ABSTRACT

The wide availability of workstations has made the creation of sophisticated image processing algorithms eco-
nomically possible. Here the latest version of an algorithm designed to detect fronts automatically in satellite-derived
Sea Surface Temperature (SST) fields, is presented. The Algorithm operates at three levels: picture level, window
level, and local/pixel level, much as humans seem to. Following input of the data, the most obvious clouds (based on
temperature and shape) are identified and tagged so that data which do not represent sea surface temperature are
not used in the subsequent modules. These steps operate at the picture and then at the window level. The procedure
continues at the window level with the formal portion of the edge detection. Using techniques for unsupervised
learning, the temperature distribution (histogram) in each window is analyzed to determine the statistical relevance
of each possible front. To remedy the weakness related to the fact that clouds and water masses do not always
form compact populations, the algorithm also includes a study of the spatial properties instead of relying entirely
on temperatures. In this way, temperature fronts are unequivocally defined. Finally, local operators are introduced
to complete the contours found by the region based algorithm. The resulting edge detection is not based on the
absolute strength of the front, but on the relative strength depending on the context, thus making the edge detection
temperature-scale invariant. The performance of this algorithm is shown to be superior to that of other algorithms
commonly used to locate edges in satellite-derived SST images.

1. INTRODUCTION

Satellite-derived sea surface temperature (SST) fields are often rich in structure reflecting important underlying
oceanographic processes related to eddies, currents, and regions of divergence or convergence. Many oceanographic
studies that make use of satellite-derived data rely on an accurate location of edges associated with these features.
To date, although it is labor intensive, the location of edges in oceanographic images has been performed subjectively
by human operators. However, because of the constantly increasing amount of satellite-derived data available!® and
because computers have become faster and less expensive, there has been a rising interest in designing algorithms
to automatically detect oceanographic features such as temperature fronts!!:!3:16, The primary advantage of such
algorithms, aside from their speed, is that they can be designed to objectively detect fronts. In comparison, decisions
by human operators are in part subjective and as a result, location of the same front will vary from day-to-day
and operator-to-operator. Also, unlike subjective detection, an objective algorithm uses numerical estimates to

determine the validity of a front. Consequently an objective algorithm can produce quantitative information about
a front without additional computations.

Existing computer vision algorithms have been designed for purposes other than the study of oceanographic
data. As a result, they often work poorly when applied to sea surface temperature fields. In this manuscript, we

present a solution to the problem of objectively detecting and locating features of oceanographic interest in SST
fields.

We continue our introductory remarks with a brief review of local versus regional operators and conclude them
with an overview of the algorithm developed in this work. Subsequent sections deal with the details of the algorithm
and a brief discussion of its application to SST fields of the western North Atlantic.
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1.1. Local versus Regional Operators

To detect temperature fronts (step edges), the algorithm implemented in this study, combines algorithms operat-
ing at the local level and the regional level. The difference between local and regional algorithms is best demonstrated
by example. In the case of the regional approach, the edge is defined as the (usually thin) region of separation be-
tween two compact regions of constant temperature. As a result, an edge can only be detected if two populations are
found in the area being examined. For example in the one-dimensional case depicted in Figure 1.a, an edge would
be detected by the regional approach because two compact populations are indeed present and well defined in the
interval considered. Similarly, an edge would be detected in Figure 1.b, although the transition between the two
populations is smooth. However, in Figure 1.c no edge would be detected because, aside from a few points, only
one population is present. On the other hand, the local approach relies on the size and shape of the step separating
the two populations. An example of such an approach is the gradient method in which a high gradient magnitude
indicates the presence of an edge. Depending on the threshold used, an edge is likely to be detected in the cases
shown in Figure 1.2 and 1.c. However, the smoothness of the transition in Figure 1.b may prevent the detection of
the edge.
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Figure 1: a-Two well defined populations. b—-The smoothness of the edge can be a problem for the local approach.
¢—An edge is present, but one of the populations is not well defined.

Many examples of both local and regional edge detection algorithms may be found in the literature. Basic
examples of local operators include the Roberts operator!? and the Sobel operator!4. Because these well-known
operators are simple discrete approximations to the gradient, they are characterized by spurious responses when
applied to noisy data. Approaches taken to remedy this problem? are not well suited to oceanographic data because
a learning set to estimate the noise which results from variable environmental conditions such as clouds and fog!8, is
not available. Another problem is that locally based algorithms using gradient operators are not scale-invariant and
weak edges, no matter how well defined, are often left undetected. Methods designed to address this problem, such
as the zero-crossing method'?, despite improvements!®, can still result in poor localization of edges?0.

The main problem with locally based algorithms is that they are not adaptive: they use a fixed threshold. A
popular method to make vision algorithms quasi-adaptive is to segment the image in windows®. Then, each window
can be studied separately to obtain the parameters associated with the data inside the window. Such a region based
method has been used in different ways. In one algorithm?, only the windows not containing any edges are considered
to estimate the parameters of the populations in the image. These parameters are then used to grow regions and
to locate edges. However, to be successful, the algorithm requires globally closed edges and this condition is not
satisfied with SST data. One of the more practical algorithms” is derived from the observation that if an edge is
present in a window, the histogram will be bimodal. It should however be noted that although the presence of an
edge in a window implies a bimodal histogram, the converse is not true. This is a weakness which may arise when
working with oceanographic data because clouds and water masses may not form compact populations.
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1.2. Overview of the Algorithm

The algorithm discussed in this work operates at three levels: picture

level, window level, and local/pixel level, much as humans seem tqll. The DATA INPUT

flow chart of the algorithm is presented in Figure 2. Following input of preprocmhsinglbef_ore applying
the data, the most obvious clouds (based on temperature and shape) are the agl‘l’“‘hm
identified and tagged so that data that do not represent sea surface tem-

Detection/removal of the most obvious

. 3,4
perature are not used in the subsequent modules®®. These steps operate clouds at the PICTURE LEVEL

at the picture and then at the window level. The procedure continues and median-filtering

at the window level with the formal portion of the edge detection. Using |

techniques for unsupervised lea,minglz, the temperature distribution (his-  First step of fine cloud
togram) in each window is analyzed to determine the statistical relevance detection ;Siléeg r‘;‘r’nﬂilr?a%\:; LEVEL:
of each possible front!”-24, To remedy the weakness related to the fact i

that clouds and water masses do not always form compact populations, Seeond step of fine cloud

the algorithm also includes a study of the spatial properties instead of detection at the WINDOW LEVEL:
relying entirely on temperatures. In this way, temperature fronts are un- Correlation Algorithm
equivocally defined. Finally, local operators are introduced to complete |

the contours found by the region based algorithm (contour following!22). athe w::vdrie: ge(‘;::'i"li‘EVEL_

It should be noted that even though local operators are used, they are Histogram Analysis (2.1.2)
used in conjunction with the window based algorithm, and so the qualities I

of scale invariance and of adaptivity associated with the region based ap- Edge verification

proach are not lost. As a result, the algorithm takes advantage of both the at the WINDOW LEVEL:

Cohesion Algorithm (2.1.b)

I

Edge detection and verification
2. THE ALGORITHM at the LOCAL LEVEL:

Contour Following (2.2)

regional approach and the local approach while avoiding their drawbacks.

As indicated above, the complete algorithm deals with both cloud |
and edge detection. However, because the latter is the focus of this re- (Optionally)
search, only the portion of the regional-level algorithm concerned with Extraction of the

Guif Stream northern edge

edge detection and the local-level section will be discussed in the follow-
ing. Information about the cloud detection portion of the algorithm may

be found in 34, Figure 2: Flow chart of the algorithm.

2.1. Window-Level Processing

The first step of the regionally-based algorithm is to segment the entire (median-filtered) image into windows.
Then each window is processed independently from the others to evaluate the probability of an edge being present
in that window. Because an edge located at the boundary between two windows would escape detection, the image
is segmented into overlapping windows. In the current configuration, the size of the windows has been set to 32 x 32
pixels. Such a choice in size results from a trade-off between opposing requirements. First, the data set must
be sufficiently large to obtain reliable statistics. Moreover, the windows must not be too small compared to the
thickness of the edge. This is due to the fact that an edge is defined as the boundary of two regions, w; and wo, each
of approximately constant temperature. If the transition between these regions occupies too much of the window,
the two regions of constant temperature cannot be found and the edge is left undetected. On the other hand, by
choosing a window which is too large, features that interfere with the detection of the edge may be included in the
area under study. Other edges or clouds are examples of such interfering features. Although the window size and
the (spatial) scale of the image are important parameters, the algorithm is robust to changes in these parameters:
similar results were obtained by using 16 x 16, 32 x 32 or 64 x 64 pixels windows in processing images at scales of

1 and 2 kilometer resolution. Note that the window size is also dependent on such factors as image noise and the
resolution desired for edge detection.
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2.1.a. Histogram analysis

The problem addressed in this section is the detection of an edge within a given window. Because of computa-
tional considerations, only the temperature distribution (histogram) is used to determine the presence of an edge.
Qualitatively, it is easy to see that if an edge is not present in the window, the histogram will likely be uni-modal.
On the other hand, if an edge is present, then the histogram will be bimodal. In Figure 3, the histogram of a region
containing a strong front (the window in Figure 4) is shown.
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Figure 3: Histogram of a region containing a strong edge, Figure 4: SST fields off Cape Hatteras, North Car-
the boundaries of the region are represented by window 1in  olina on April 23, 1982.
the image shown in Figure 4.

The problem addressed by the analysis of the histogram is two-fold: the algorithm must determine whether one
or two populations are present and, if two populations are present, a threshold must be defined to separate them.
To achieve this, the algorithm first assumes that two populations are present and the parameters for the populations
are computed. These estimated parameters are then used to determine if the segmentation of the data in two classes
is statistically relevant. If the data in the window come from only one class, then there is no edge present in the
window.

Before presenting the method used in the algorithm, the theoretical basis for the problem of unsupervised
segmentation is examined. Samples from class w; are defined as the cold population and samples from class wy form
the warm population. Let & be a sample (pixel) from the set X (region under study) and t(z) be the temperature
of the sample . The probability density of the mixture can be expressed as:

2
p(t(z) = 3 _p(t(z)/x € wi) Pz € wi). (1)

i=1

Once the parameters of the marginal densities and the a prior: probabilities P(z € w;) are determined, the validity
of classifying the data in two classes versus one can be determined. If the two classes hypothesis is verified, the
threshold 7 that satisfies the Bayes minimum error criterion can be obtained by minimizing the probability of
incorrect classification over the entire set X' of samples:

P(error) = P(t(z) > 7/ € w1)P(z € w1) + P(t(z) < 7/ € w2)P(z € wy), 2

16 / SPIE Vol 1301 Digital Image Processing and Visual Communications Technologies in the Earth and Atmospheric Sciences { 1990)




Exact solutions are available on occasion, in particular when the data are normally distributed'?. However, obtaining
the values of y;, 0; and the a priori probabilities can be very complicated, requiring a large amount of computer
time. Furthermore, the oceanographic data under consideration, do not seem to be normally distributed and so an
exact solution may not be attainable.

The problem can be drastically simplified, however, if we assume that the probability of error associated with
the Bayes minimum error threshold, equation (2), is negligible. In such a case, the overlap between the cold and the
warm population is small. Once the optimal threshold is known, parameters such as the mean and the variance of
each population can easily be computed:

21<rt h(Y)

m(r) = Zt(T h(t)’ ®

- Et>rt h(t)
1 = TR “

Lier(t — m1)?h(t)
Licr B

— p2)2h
72(7) = Emz(izrlf:(t)) =, ©

where h(t) is the value of the histogram at temperature ¢. Although the threshold is not known, we note that the
histogram only takes a finite number of values [0, n], where n is the number of quantization levels for the computer
representation of the temperature. This means that 7 can only take the values 1 to n. Because n is not too large
(n = 255 for the data available to this study), one can compute an estimate of the parameters of the mixture, for
every 7 possible. Then, the estimated parameters can be used to maximize or minimize a given criterion over all the
possible values of the threshold r. For example, if the density function of each population is assumed to be known,
the threshold 73.,; can be chosen such that,

(5)

0’1(T) =

70 = Y (p(t/m(), (), (), o) — ) ™

t=0

is minimized. It is also noted that the minimum value of J (Tvest) gives an indication of the goodness of fit of the
mixture density (with estimated parameters) to the histogram (estimated mixture density). Some refinements to
improve the various estimates are possible, in particular, when the data are assumed to be normally distributed!?.
However, the data used in this project are not normally distributed and the hypothesis of normal distribution is
implicitly rejected when the tails of the distribution are neglected.

Because a theoretically optimal criterion function may not exist and would likely require a large number of
computations when it exists, it is more practical to heuristically design the criterion function. An example of
heuristics that leads to a computationally simple algorithm can be obtained by expressing the total variance,- S;.,
as the sum of two terms dependent on the threshold 7. The first term Je(7), represents the sum of the variances
within each of the two populations that result from segmenting the region with respect to the threshold r. We refer
to Je(7) as the within-cluster variance and we define it as follows:

Je(T) = S1(7) + Sa(7), (8)

where,

Su(r) =) (t~m()’h(t)  and  Sy(r) = 3 (t - pa(r))?h(). 9

i<t (>34

The second term, J;(7), represents the contribution to the total variance resulting from the separation of the two
clusters: N

T(r) = = (1) = (), (10)
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where,

Ni=) h(t) and Np= A1) (11)

i<T 27

Assuming that the histogram exhibits two well-defined peaks, if 7 is chosen optimally most of the variance in the
window will be due to the difference in temperature between the two populations. Therefore, J,(7) will likely be
large compared to J.{(r). On the other hand if pixels from one population are mistakenly included in the other
population, some of the terms contributing to the between-cluster variance will be shifted to terms contributing to
the within-cluster variance, J¢(r). The preceding reasoning leads us to define the optimal threshold, Topt, S the
value which maximizes the between-cluster variance Jo(7). Furthermore, the ratio Jo(7)/Stor measures the proportion
of the total variance due to the separation between clusters and as such gives an indication on the goodness of the
segmentation. In particular this ratio, denoted #(7), when evaluated at Topt indicates how good the best segmentation
is. Accordingly, 6(7,,,) is the criterion used to decide whether one or two populations are present. The reasoning
followed to select the best threshold and determine the number of populations is only approximate but we believe
that it holds in the present case because the different populations (masses of water) generally have similar variances,
Although the ratio, J;(7opt)/Siot, is similar to such familiar statistical quantities as p? (the ratio of explained variance
to total variance), it must be remembered that because the tails of the distributions in the mixture were neglected,
the resulting estimates of the means and variances are biased. Furthermore, because no condition is imposed on the
shape of the probability density function of each population, common statistical tests cannot be used.

Although an exhaustive analysis is not possible, the behavior of the criterion {unction f#(7) must be studied to
define what criterion threshold leads to a relevant decision on the uni-modality or bimodality of the histogram. As
an example, for a single normal population, the expected maximum value of the criterion function is:

E[0(7opt)] = 2/m ~ 0.63. (12)

We note that this expected value is independent of the parameters of the distribution and the size of the sample
set, and has a maximum value lower than 0.7. In fact this threshold of 0.7 appears to hold whenever the histogram
is clearly uni-modal: for a 32 x 32 pixels window with normally distributed data, a rough approximation!? gives,
P(0(1opt) < 0.7) 2 0.99. Inversely, to show that the criterion is greater than 0.7 when two modes are present, several
different bimodal distributions were simulated®. In light of all the cases studied, we selected 0.7 as the critical value
discriminating between bimodal and unimodal distributions for use in the algorithm developed in this study. There
are however potential problems associated with this critical value that require further discussion. First when the
values of such parameters as the size and variance of the two populations are unequzl, the algorithm performance
deteriorates rapidly for a signal-to-noise ratio of less than 4. Although this requirement on the maximum amount of
noise may seem very strict, it should be remembered that because the images are median filtered, if the populations
are assumed to be normally distributed, a signal-to-noise ratio of 4 (or 6) would approximately correspond to a
signal-to-noise ratio of only 2.3 (or 3) in the original unfiltered image3.

t was also noted that with a signal-to-noise ratio of 4, parameter estimates are quite accurate as long as the
size of the two populations does not differ by more than a factor of 3. As a result the algorithm was designed to
discard any segmentation that would result in an estimated probability which does not obey the condition:

P(w)>0.25 for i=1,2. (13)

Another distribution presented highlight a fundamental deficiency of any segmentation algorithm based solely
on pixel values. If the data are distributed such that:

1
p(t(z)=k) = p(t(z)=k+1) = 3 for ze€ X, (14)
then, by looking at the histogram of such a mixture, it seems likely that only one population is present. However,
maximizing the criterion function leads to 0(Topt) = 1 (for mops = k + 1), indicating that the hypothesis of two
populations is highly probable. Until further information, such as limits on the possible range of the variances, 18
made available, an objective decision cannot be reached. In the section on post-histogram analysis, an algorithm
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that offers a solution to such a problem by using the spatial distribution of the data as a source of new information
is discussed.

Thus far, it has been assumed that at most two populations exist in a window. Sometimes, however three
populations are present. When the third population represents a small portion of the window under study, the
algorithm will only detect the two principal populations. In most cases, such behavior is acceptable because the
third population will likely be detected in one of the overlapping windows in which it represents a larger proportion
of the data set. If the detection of three populations is required, a new criterion function 6(r1, 1) which would
be similar to 6(7), could be designed. The resulting algorithm would then consist of maximizing the new criterion
function for every 71 and 73 such that 71 < 73, and then, the best segmentation into three populations would have
to be compared to the segmentation into two populations and to the one population case. However, for an image
composed of 8-bit pixels, the computational cost can be multiplied by as much as 128. For satellite-derived fields
of 1 km resolution, overlapping 32 x 32 pixel windows were sufficiently small to eliminate the multiplicity of fronts
within a given window as a serious problem; this providing that fronts associated with land or clouds are removed
prior to applying the edge detection algorithm.

2.1.b. Cohesion Algorithm

By neglecting to take into consideration the spatial distribution of the data in the previous section, a large
amount of information was left unused. For example, in the case described by equation (14), if all the pixels of
value k form a compact region, then the hypothesis of a front being present in the area would definitely seem more
legitimate. On the other hand, if pixels of any value are uniformly distributed throughout the window, then the
hypothesis that a front exists in the window would be invalidated. Whenever the histogram indicates the presence
of two populations, the spatial distribution of the data should be examined to see if a front is present or if the
bimodal distribution is simply a result of an erratic temperature pattern. In studying SST fields, the problem of a
bimodal distribution resulting from scattered clouds over water with no front present is encountered on occasion.
This problem may also occur when the sensor has intermittent noise as was the case with some NOAA-6 data.

In general, when two populations have been detected by histogram analysis, the segmentation obtained by
thresholding the data at Topt Will lead to spatially compact populations if a front is actually present. To test for such
spatial compactness, an algorithm that measures the cohesion of each population has been designed. This algorithm
1s only applied when two populations, A and B, have been detected in the histogram analysis. Populations A and B
are defined such that, for a pixel z with temperature t(x):

)< Topt = z€A and ) > 1t = zxz€B. (15)

"The cohesion coefficients for populations A and B, and for the entire data set are defined as follows:

_ Ra

CA = ':ZT, (16)
_Rp .

Cr= 72, )
R4+ Rp

= —, 18
Ta+Tp (18)

where T, the total number of comparisons between center pixels belonging to population A and neighbor pixels
belonging to either population, is given by:

Ty = I{(:c,y), such that ye& (M(z)NX), Vze A}l, (19)
and Ry, the total number of comparisons between center pixels and neighbors that both belong to population A, is
given by: .

Ra= I{(x,y), such that y € (M(z)NA), Vze A}’ / (20)
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Rp and Tp are similarly defined by substituting B for A in equations (19) and (20) and |-| is defined as the cardinality
of the set. For reasons of computational economy and simplicity, only the first neighbors of a given pixel are used to
evaluate the cohesion. If z; ; is the center pixel, the set of first neighbors is N(zi;) = {Tij+1, Tij—1, Tit1,j, Ti-1,}

High cohesion means that for a given pixel which is not close to the edge, neighboring pixels are likely to
belong to the same population. This implies that the spatial segmentation of the area into populations A and B is
validated. Inversely, low cohesion means that there is a non negligible probability that a given pixel has neighbors
from a different population and so the presence of the front detected by the histogram analysis is improbable. For
a checker-board pattern the three cohesion coefficients are zero and for an image with the bottom half coming from
one population and the top half coming from the other population, the cohesion coefficients will tend to unity when
the effects at the edge between the populations are neglected. As a matter of fact, when the noise is assumed
independently distributed, the following equation can be derived®*:

C ~1—2P(error). (21)

A threshold of 0.92 for C and 0.90 for C4 and Cp was chosen in this work to eliminate edges resulting from noisy
distributions, i.e., if C is less than 0.92 or C4 or Cp was less than 0.90, the segmentation is discarded as unreliable.

Although the actual algorithm takes into account the presence of an edge in the window, there are cases for
which the contribution of the edge to the estimate of the cohesion may be different from the contribution of a straight
edge. It should be noted however, that if P(error) is zero, the threshold on C can accommodate a front which is
about three times longer than a straight front. This trade-off between length of the front and signal-to-noise ratio
is actually an interesting property of the algorithm. Because SST fronts are generally associated with mesoscale
oceanographic processes, the fronts are expected to be fairly straight (or at least smooth) on the scale of the 32 x 32
pixel windows. On the other hand, rugged edge contours are most often found at the boundary of clouds or of land
areas, i.e., they are not edges between water masses. Because long (not straight) edges often are not valid temperature
fronts, they are less reliable than shorter (straight) fronts. Accordingly, the condition on the minimum signal-to-noise
ratio should be made more stringent for accepting long edges as valid temperature fronts. In summary, it can be
seen that the cohesion algorithm estimates both the length of the edge contour in a window and the compactness of
each population. Although the edge effects on the cohesion could be reduced, physical considerations of the problem
justifies the approach used to estimate the cohesion coefficients.

2.1.c. Location of Edge Pixels

The window-level algorithms discussed above were designed to detect and confirm the presence of an edge in
each individual window. The last step in this process is to locate the edge pixels in the windows where the presence
of a front was detected and confirmed. The output of this algorithm is an edgé image in which any pixel which is
not an edge pixel is set to a digital count of zero. Pixels that are determined to be edge pixels are set to a value
equal to the temperature threshold obtained by histogram analysis. Using the indicator function Q(z) such that,

Ve € X,Q(z) = {‘1) e g;’ (22)
an edge pixel can be simply expressed:
Vee X, if JyeN'(z), suchthat Q(z)# Qy),
== ¢ isan edge pixel. . (23)

2.2. Local-level processing
The edge image obtained by window level processing does not really contain edges, but independent edge pixels.

Because oceanographers are interested in studying the statistics associated with a temperature front, the edge image
is inadequate, and further processing is required to link the independent edge pixels so that they form continuous
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contours. For this reason, a contour following algorithm (local level processing) is included to complete the algorithm
for frontal detection. Basically the algorithm is a directional contour following one, meaning that points are added
to the contour provided that the direction of the contour does not change by more than 90 degrees in 5 pixels. Note
that when no previously detected edge pixels can be added to the contour, the algorithm uses local properties of the
gradient field to add new edge elements.

A few of the problems that are associated with the edge image obtained by the window level algorithm can
be corrected at the local level by a contour following algorithm. For example, some fronts may have been partially
missed because more than one front is present in the window. However, if the fronts are separated by more than
a few pixels, the local level algorithm will have no difficulty continuing the front since it only relies on the first
neighbors of the last edge pixel to find a new edge pixel to add to the existing contour. A second problem which is
often encountered in the edge image, is that there may exist isolated edge pixels. This effect is mainly due to the
fact that P(error) # 0. By imposing a minimum length for a valid contour, isolated points can be removed from the
edge image. In the present version of the program, the minimum length of a contour is 15 pixels.

3. VALIDATION

To evaluate the performance of the edge detection algorithm, it was applied to a set of 98 satellite (NOAA-
7) derived SST fields used in a previous comparative study!!. Figure 5 shows one of the images (Figure 4) after
processing. In the previous study, the location of the northern edge of the Gulf Stream off Cape Hatteras, determined
subjectively from satellite imagery by a trained analyst, was compared to the location of the Gulf Stream determined
from inverted echo sounders (IES) moored on the sea floor. The position of the Gulf Stream determined from IES’s
corresponds to the surface projection of the 15°C isotherm at 200 meters, T1s, the generally accepted definition of
the northern edge. A detailed description of the inverted echo sounders can be found inf. For the present purpose,
it is sufficient to note that three inverted echo sounder lines were available for the period covered by the images used
here. To compare the position of the northern edge of the Gulf Stream located by the edge detection algorithm with
the IES data, zg 7 is defined as the intersection of an IES line with the temperature front (if it exists) located by
the edge detection algorithm and z 1Es denotes the location of the intersection of T15 with the IES line.(Watts and
Johns®® have estimated that the standard error associated with the IES location of Ti5 compared to the location
determined by XBT (expendable bathy thermograph) is about 5 km.)

Figure 5: SST fields off Cape Hatteras with clouds zeroed out and edges overlaid (thin black lines).
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To compare the satellite-derived Gulf Stream edge with the IES-derived path, statistics related to the separation
of zsar and zrps are generated. The distance |€sar — zrEs| corrected for the fact that the Gulf Stream does not
in general cross the IES line orthogonally is the variable used in the comparison. Because isotherms intersecting the
sea surface are not vertical and because the surface projection of Tys is being compared with the surface front, a
mean offset between the two is expected. This offset is given by:

1
MSAT-1ES, = 3 E cos(6)(zsar — zIES), (24)
rsar/Qs29

where Qy is a quality parameter, that permits the selection of the best N edges to compute the statistic. The figure
of merit used to evaluate the edge detection algorithm is the scatter about the mean offset given by:

1 . 2
02saT—-1ES, = ] Z (005(9)(1‘5147" — ZIES) — mSAT—IES_,_) ) (25)

TsaT{Qs2>4

where 0 is the angle between the normal to the Gulf Stream edge and the IES line. In obtaining these values it is
noted that one IES line may intersect several edges identified in the satellite imagery as being associated with the
Gulf Stream. In such cases, only the warmest southern-most intersection is used in the comparison.

In Table 1, the edge detection algorithm (alg), the subjective detection (sub), the gradient method (grd) and
the skew method (skw), (where the last two methods are objective edge detection algorithms used in the previous
study!!) are compared. Subjective detection means that an analyst manually located the northern edge of the Gulf
Stream. On the other hand, the gradient method is an automated approach that relies on the Sobel operator!2. The
skew method consists of computing the skew of the data in a 7 x 7 pixel window and detecting an edge whenever
the skew changes sign. Because the different methods operate differently, they assign different quality factors for the
same edges: the quality factor is different if the edge is studied globally, regionally or locally. As a result, quality
factors for different methods are not directly comparable and Table 1 is structured so that on a particular row, the
bias and standard deviation associated with each method are given as a function of the number N of intersections,
between IES lines and the Gulf Stream northern edge, which satisfy a minimum quality factor. The variations in the
value of N on a particular row are not significant and are simply due to the fact that N is not a continuous function
with respect to Q.

Table 1: Comparative results of the edge detection algorithm (alg), the subjective detection (sub), the
skew method (skw) and the gradient method (grd). N is the number of intersections between the IES lines
and the selected Gulf Stream fronts for those edge points which satisfy a minimum quality factor. When
the minimum quality factor decreases, N increases since intersection points, which are not as reliable (lower
quality factor), are selected. *The Gulf Stream northern edge was automatically selected among all the
detected edges.

N MSAT-IES OSAT—-IES,
alg |sub [ skw | grd alg sub skw grd alg | sub | skw grd

39* 45 49 | 42} -9.26 | -13.32 | -21.02 | -23.58 | 14.12 | 13.29 | 20.90 | 21.87
87* 80 82 90 |-11.08 | -13.52 | -18.94 | -23.97 | 15.65 | 13.46 | 18.40 | 22.48
110 | 113 | 110 | 109 | -12.50 | -13.59 | -17.37 | -24.50 | 15.61 | 14.62 | 18.97 | 21.92
131 | 141 131 | 126 |-14.18 |-13.80 | -16.91 | -25.56 | 17.17 | 14.50 | 18.14 | 22.40
196 | 226 | 199 | 181 [ -12.69 | -12.53 | -18.29 | -25.70 | 15.68 | 14.91 | 18.71 | 23.63

In comparing the results in Table 1, one notes the following: first, subjective detection leads to the lowest scatter
about the mean and as a result, it is still the most accurate method to locate the northern edge of the Gulf Stream
from satellite-derived images. However, scatter for temperature fronts obtained with the edge detection algorithm
is very close to that obtained subjectively. The other methods lead to osar—rES ,’s which are larger than the
osar-IEs, associated with the subjective method or with the edge detection algorithm. Second, the mean offsets
associated with the edge detection algorithm and the subjective method are the smallest observed. This means that
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the warmest, southern-most front being detected is further to the south, i.e., closer to Tis. Indeed, one can often
detect two fronts in the region of the Gulf Stream northern edge: a first and weaker front between warmer and warm
waters, and a second and stronger front between warm and cold water. It is the first front that this edge detection
algorithm and the analysts are able to detect, while the gradient and skew methods will in general detect only the
stronger front which is farther north.

The processing time required by the edge detection algorithm varies from image to image. On the set of the 98
images, an average of 3 minutes of yVax III CPU-time was used to process each image. The result of a comparative
study® indicates that the edge detection algorithm while requiring at most one quarter of the computing time,
performs at least as well as the algorithm (based on a local level approach) described inl. As a matter of fact, it
seems that such a multilevel approach is generally preferable to a single level approach®2!,

4. SUMMARY

We have presented an algorithm which is able to detect edges reliably without intervention from a human
operator. To accomplish this task the algorithm operated at different levels to detect and differentiate between true
and false edges.

For comparison purposes, the algorithm was applied to a test set of 98 sea surface temperature images to detect
the northern edge of the Gulf Stream. For this data set, the algorithm was shown to perform better than automated
methods previously used to detect the edge of the Gulf Stream from satellite-derived sea surface temperature fields:
the algorithm successfully detected valid temperature fronts and ignored false edges. Furthermore, the algorithm
produced statistics about the temperature fronts that are useful in the subsequent analysis of these fronts. Although
the comparative evaluation has been performed on Gulf Stream edges, it is assumed that the algorithm performs
equally well on other SST fronts such as those associated with rings, the subtropical convergence, the shelf/slope
fronts, etc.
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