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Earlier work of Duffy and Barr consisting of exact calculations on alternating antiferromagnetic 
Heisenberg spin-l/2 chains is extended to longer chains of up to 12 spins, and subsequent extrapolations 
of thermodynamic properties, particularly the susceptibility, are extended to the weak alternation region 
close to the uniform limit. This is the region of interest in connection with the recent experimental 
discovery of spin-Peierls systems. The extrapolated susceptibility curves are compared with corresponding 
curves calculated from the model of Bulaevskii, which has been used extensively in approximate 
theoretical treatments of a variety of phenomena. Qualitative agreement is observed in the uniform limit 
and persists for all degrees of alternation, but quantitative differences of about 10% are present over the 
whole range, including the isolated dimer limit. Potential application of the new susceptibility calculations 
to experiment is discussed. 

PACS numbers: 75.40.Fa, 75.30.Kz 

INTRODUCTION 

Quasi-one-dimensional systems continue to attract 
attention. In addition to the uniform or regular chain, 
the dimerized (alternating) chain, in which the coupling 
alternates in magnitude, is important. Specifically the 
Hamiltonian for an N-spin chain in an applied magnetic 
field, H, is 

N/2 N/2 
-+ 1: -+ -+ N z 

H = 2J1 ill S2i' S2i+l+2J2 1=1 S2i-l'S2i-g~BH"i=1 Si (1) 

Vlhere J l and J 2 are the alternating exchange couplings 

along :he :hain (~1>~2' say), assumed to be antiferro­
magnet1c Slnce th1S 1S the case of interest. We con­
sider only spin S = 1/2. 

In the famous Peierls transition for a half-filled 
band system, a conducting, regular chain distorts 
below some transition temperature to an insulating, 
dimerized chain. Below the transition, some 
experimental Peierls systems may be described by 
Hamiltonian (1) to a good approximation if the 
electrons are well localized. If the electrons re­
tain some mobility, a very closely related Hamiltonian, 
the dimerized Hubbard model, may be more appropriate. 
The magnetic analogue of the Peierls transition is tl,e 
spin-Peier1s transition [1,2] which occurs only be­
tween insulating phases. Here a system of uniform, 
quasi-one-dimensional S = 1/2, linear Heisenberg 
antiferromagnetic chains in a three-dimensional 
phonon field distorts to become a system of alter­
nating linear Heisenberg antiferromagnetic chains, 
well described by Hamiltonian (1), with temperature­
dependent alternation [2J. Experimental evidence for 
many similar phase transitions (first or second order) 
has stimulated renewed interest in alternating anti­
ferromagnetic chains [3J. 

The alternating chain is also interesting to 
physical chemists, particularly those working in the 
area of spin exciton theory [4]. A review of early 
approximate theoretical treatments of Hamiltonian 
(1) is given by Duffy and Barr [5] and others [6J. 
Duffy and Barr use a numerical approach involving 
finite chain calcu~ations of up to ten spins. They 
concentrate primarily on the stronglv dimerized 

regime, where J
l 

is appreciably greater than J
2

. 

It is clear from their work that the best approximate 
closed form approach is the Hartree-Fock calculation 
of Bulaevskii [7J. This simple and elegant approxi­
mate model has subsequently proved very popular in a 
variety of applications; to charge-transfer salts 
[1,8J, to spin-dynamics [9J, and to the uniform 
Heisenberg chain [lOJ, where it gives a surprisingly 
good qualitative account of the thermodynamics [Ill. 

We have extended the work of Duffy and Barr by 
calculating exactly the properties of alternating 
chains of up to 12 spins, and extending the extra­
polations from the dimer limit all the way to the 
uniform limit. Hamiltonian (1) may be rewritten as 

H (2) 

where a = J 2/Jl is a parameter which conveniently 

measures the degree of alternation. a = 0 cor­
responds to the isolated dimer (spin-pair) system 
and a = 1 corresponds to the uniform limit. We 
have examined the ground state energy per spin, the 
energy gap between the (singlet) ground state and the 
band of first excited (triplet) states, and static 
thermodynamic properties such as the susceptibility 
and specific heat, all as a function of alternation 
parameter a. Our goal has been to compare the 
finite chain extrapolations with the Bulaevskii re­
sults, which have been employed so extensively, in 
order to determine their qualitative and quantitative 
accuracy. 

RESULTS 

Details of our results for the ground state 
energy as a function of alternation, E = EO/JIN = 

E(a), will be presented elsewhere [6,12J. In brief, 
our extrapolations are in fair agreement with 
Bulaevskii [7] but in excellent agreement with 
recent work of Cross and Fisher [13] involving an 
extension of the Luther-Peschel continuum spin-l/2 
model [14J to alternating or dimerized systems. A 
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Fig. 1 Antiferrornagnetic chain susceptibility vs. tem­
perature, for various alternations. 

brief account of our results for the energy gap 
has already been presented [15). Our extrapolations 
demonstrate that an excitation energy gap exists for all 
a<l, i.e., for all non-zero degree of alternation. This 
result is in contrast with exact calculations for the 
corresponding classical (5 = ~) alternating antiferro­
magnetic Heisenberg chain, which has acoustic mode 
(i.e., gapless) excitations only, and with a recent 
Green's function theory [16). Quantitatively, our 
results are in fairly good agreement with Bulaevskii 
[7). Exact comparison is difficult near the uniform 
limit because of uncertainty in the numerical extra­
polations. This uncertainty is not, however, suf­
ficiently large to cast doubt on our conclusion that an 
energy gap does indeed exist for a<l. The rather close 
agreement of our gap calculations and those of 
Bulaevskii is useful in performinc the susceptibility 
extrapolations. 

Results for the specific heat are available [6), 
and may be useful in connection with the analysis of 
families of inorganic linear chain systems, some of 
which appear to have an alternating character. 
These systems are of interest in coordination 
chemistry [17). Magnetic specific heat calculations 
are not, however, very useful in connection with 
baSically organic Peierls and spin-Peierls type 
systems because of difficulties in subtracting the 
very large lattice specific heat of such systems 
[18). 

Hence, for the remainder of this paper, we 
concentrate on an analysis of the susceptibility per 
spin as a function of alternation parameter a. 
In Fig. 1 we show zero-field susceptibility curves, 
calculated exactly on the basis of information in 
the paper of Bulaevskii [7). Note that the suscep­
tibility curves vanish exponentially as temperature, 
T+O, for all a<l. This is in accordance with the 
presence of an excitation energy gap discussed above. 
In the uniform limit, a = 1, the ground and excited 
states approach one another as lIN. The gap there­
fore vanishes in the thermodynamic limit, and a finite, 
non-zero susceptibility is obtained in the limit T+O. 
At finite temperatures, all the susceptibility curves 
show rounded maxima characteristic of one-dimensional 
systems. The locus of susceptibility maxima is shown 
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Fig. 2 Antiferromagnetic chain susceptibility vs. tem­
perature, for various alternations. 
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Fig. 3 Comparison of anti ferromagnetic chain suscepti­
bility curves in the uniform limit. 

as the solid curve through the circles. The variation 
is rather small (in percentage terms) as a varies 
from 0 to 1. 

In Fig. 2, we show the corresponding suscepti­
bility curves obtained by extrapolation from finite 
chain susceptibilities (except for the case a = 0 
which is trivial to calculate exactly: It is the well­
known Singlet-triplet spin-1/2 dimer). The alternation 
a values are the same as for the Bulaevskii calculations, 
except that c/, = 0.98 is omitted because extrapolation 
becomes very uncertain at very low temperatures for CI 

very close to 1. Clearly, the qualitative similarities 
between the Bulaevskii curves and the extrapolations 
are quite striking. Even the locus of the suscepti­
bility maxima (shown in Fig. 2 as the solid line 
through circles) has the same behavior. This result 
demonstrates a justification for use of the Bulaevskii 
approximation in previous treatments of the spin­
Peierls transition and other phenomena. However, 
quantitatively, the two sets of curves show a differ­
ence which persists for all values of the alternation 
parameter. For example, the peak values of the 
Bulaevskii curves are consistently higher than the 
extrapolations, varying from about 8% at the dimer 
limit to about 11% at the uniform limit. The zero­
point s~sc~ptibility for the uniform limit, which is 
(JXo/Ng ~B ) = 1/[2(rr+4))~0.0700 in the Bulaevskii 

calculation, is about 30% higher than exact result 
2 2 2 (JXo/Ng ~B ) = l/2rr ~0.050661 [19). In the uniform 

limit, the position of the maximum differs by about 
9% from our numerical estimates. Fig. 3 is a compari­
son of the Bulaevskii calculatlon for a uniform 
chain [10) and extrapolations [20). 

That the Bulaevskii curve is significantly 
quantitatively different from the exact result in the 
dimer limit may be worthy of further comment. The 
Bulaevskii approximation fails to preserve the spin 
rotational symmetry of the Heisenberg Hamiltonian. 
The Bulaevskii chain therefore resembles a linear 
chain with some transverse anisotropy, i.e., an XY­
Heisenberg linear chain. The susceptibility in the 
dimer limit (J

2 
= 0) is given exactly by the expression 

J1 X/Ng2~B 2= (J1/kT) [3+exp (2J1/kT) ]-1; (3) 

and in the Bulaevskii approximation by 
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Fig. 4 Comparison of antiferrornagnetic chain suscepti­
bility curves near the dimer limit. 
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Fig. 5 Comparison of anti ferromagnetic chain suscepti­
bility curves for intermediate alternation. 

JlX/Ng211 2=(1/2) [1+ (2kT/J1) cosh2 (cp/2kT) ]-1 (4) 
B 

where CP=J1 [l+tanh(cp/2kT)]. Expressions (3) and (4) 
agree in the low temperature and high temperature 
limits, but differ in the mid-range. 

In Figs. 4 and 5, for a = 0.2 and a = 0.8, re­
spectively, we compare the Bulaevskii and extrapolated 
susceptibilities for intermediate alternation. We 
should mention that the earlier Duffy-Barr suscepti­
bility extrapolations showed good convergence for 
a~0.6, and our calculations on longer chains do not 
significantly differ from their results. However, 
for a = 0.8 there is some discrepancy. For kT/J l 
~ 0.8, the Duffy-Barr estimate (which exists only 

down to kT/Jl~0.3) is a few percent higher than our 

extimate. (We show also the points for finite N=12 
in this region, in Fig. 5.) 

For a close to the uniform limit, the energy 
gap is relatively small and this gives rise to a 
"shouldering" effect. For kT/J l large compared with 

the energy gap (AE/Jl ), the susceptibility tends to 

behave as though it has a finite, non-zero value at 
T = 0 (as is the case for the uniform limit). Only 
when the temperature is comparable to the gap, does 
the susceptibility "notice" the existence of a gap, 
and turn downwards rather abruptly, going exponenti­
ally to zero as T-->O. This "shouldering" effect is 
characteristic (and therefore diagnostic) of weak 
alternation, and may even be mistaken for a spin­
Peierls transition. The effect is rather more 
apparent for the Bulaevs~i curves of Fig. 1 than for 
the extrapolations of Fig 2, but extrapolation un­
certainties make this conclusion rather tentative. 

In Fig. 6, the variation with a of the value of 
the susceptibility at the peak is shown for the two 
cases of the Bulaevskii approximation, Fig. I, and 
the finite chain extrapolations, Fig. 2. Both curves 
have a similar shape, the Bulaevskii curve lying above 
the accurate, extrapolated curve by an amount which 
remains nearly constant as a function of a, and 
therefore the difference changes slightly in percentage 
terms, from 8 to 11%, as noted earlier. In the uniform 
limit, the peak value of the susceptibility deduced 
by extrapolation is (JX INg211B2)~0.07346 at kT IJ 

'max 2 max 
~1.28. The Bulaevskii maximum is (J\nax/Ng llB2) 

0.10 

JIIIIA] 
N,t~: 

0..0.9 

0.0« 

! I ! I I J I I ! T 
0.2 0.4 0.6 0.8 ID 

a 

Fig. 6 Variation of peak susceptibility with alterna·­
tion. 
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~0.0816 at kT IJ ~ 1.168. (See Fig. 3.) It may 
be noted thatmr~e lower curve in Fig. 6 may be useful 
for rough experimental analysis. Given a measured 
susceptibility curve suspected to correspond to an 
alternating chain, the degree of alternation Ca) 
can be estimated as follows: Determine J 1 from the 

temperature corresponding to \nax (since kT(\na)/"l 
~ 
~1.25 independent of a), then convert \nax to re-

ciuced units and read off the value of a using Fig. 6. 
This preliminary estimate should be helpful in 
setting the stage for a more precise experimental­
theoretical fit. 

In summary, we present rather accurate numerical 
susceptibility calculations for spin-1/2 alternating 
antiferromagnetic chains in the expectation they will 
be useful both to experimentalists working in the field 
of spin-Peierls and generalized Peierls transitions, 
and to coordination chemists. More extensive data 
are available than have been presented in this short 
report, and are available on request to the authors. 

One of uS (J.C.B.) would like to thank W. Duffy, 
Jr., for supplying eigenvalue data at an early stage 
of the investigations. 
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