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Abstract 

Parathion is an organophosphate pesticide used in great 

quantities in the United States and around the world. The mechanism of 

toxicity for parathion in mammals has been attributed to its enzymatic 

desulfuration to its oxygen analog paraoxon which subsequently fonns a 

covalent bond with acetylcholinesterase (AChE), inhibiting the activity 

of that enzyme and precipitating cholinergic toxicity. The mechanism 

by which parathion produces its toxic effects in insects has not been 

completely determined, but it is believed to be due to the same 

mechanism. The effect parathion exposure has on fresh water inverte­

brates has not been investigated to any great extent, and a goal of 

this project was to determine the effects of parathion exposure and 

the relationship of this toxicity to the metabolism of parathion by the 

fresh water snail Viviparus malleatus and the crayfish Orconectes 

rusticus. 

The determination of the toxicity of parathion in Orconectes 

and Viviparus was made by exposing the organisms to different concen­

trations of parathion or by the direct injection of parathion. The 

possibility that any toxicity exhibited by parathion was produced by 

paraoxon was determined by observing the effect the oxygen analog of 

parathion would have when exposed to the species, and determining the 

metabolism of parath ion by the two species . 



The metabolism of parathion was determined in vitro and ..iI!. 

vivo. The efficient and specific separation and identification of 

parathion and its metabolites were accomplished through the use of thin 

layer chromatography. 

Parathion has been shown to be metabolized by different species 

by a multitude of pathways. Three of the important pathways produce 

£_-nitrophenol as an end product. A spectrophotometric assay was used 

to measure the in vitro production of £_-nitrophenol from homogenates 

of crayfish and snail tissues incubated with parathion. 

The excretion of parathion metabolites by Orconectes and 

Viviparus was determined by identifying the compounds extracted from 

water samples that had contained crayfish or snails exposed to para­

thion. The accumulation of parathion or metabolites in the species was 

determined by extracting the parathion exposed tissues of crayffsh or 

snails and identifying and quantifying the parathion and metabolites 

present. The excretation and accumulation experiments were accom­

plished with the use of 14c labeled parathion which was labeled either 

in the ring or ethyl position. 

The possible metabolism of parathion was also investigated by 

the direct determination of the formation of paraoxon, £_-nitrophenol, 

diethyl phosphate and diethyl phosphorothionate by the homogenates of 

crayfish or snail tissues incubated with parathion and appropriate 

cofactors. This determination was also aided by the use of labeled 

parathion. 

The snail Viviparus malleatus did not metabolize parathion or 

; i 



paraoxon and did not accumulate parathion in its tissues. The snail 

did not exhibit any toxic reaction to parathion or paraoxon by exposure 

or direct injection. Concentrations of parathion that equaled the 

compound's solubility in water produced no effect in exposure 

experiments while injections of 250 mg/kg parathion had no untoward 

effect. 
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I. Introduction 

The organophosphates are a very large class of compounds as 

there are over 50,000 compounds in that category today. Originally 

developed in Germany as nerve gases, the most important ones being 

tabun, sarin, and soman, they have since been found to be of great 

use to mankind as pesticides. 

Parathion (0,0-diethyl 0-Q_-nitrophenyl phosphorothionate) 

was introduced in 1944 by Gerhard Schrader (Neal 1971), it is an 

ester of the acid (H0) 3 P=S with two molecules of ethanol and one 

molecule of the weakly acidic alcohol Q_-nitrophenol. 

Unquestionably the organophosphates elicit their pharmaco­

logical activity in vertebrates predominatly via an inhibition of the 

activity of esterase enzymes, especially acetyl cholinesterase (AChE) 

(EC 3.3.3.7) (Neal 1971). The extent to which enzyme inhibition is 

the mechanism of toxicity to other susceptible species is still being 

investigated, and it is not established that AChE inhibition is the 

1 
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only factor of its toxicity~ O'Brian (1967) and Matsumura (1975). 

Parathion requires enzymatic activiation to its oxygen analog 

to exhibit significant anti-esterase activity. This is supported by 

the work of Alary and Brodeur (1970), Bartels and Nachmansohn (1965), 

Neal (1971), Ptashne and Neal (1972), Roth and Neal (1972). The 

anti-cholinesterase effect of parathion is, therefore, dependent on 

the amount of free paraoxon generated. Thus the conversion of para­

thion to its oxygen analog paraoxon is of great toxicological impor­

tance. The relative degree of formation of alternative products, 

Q_-nitrophenol, paraoxon, diethyl phosphate and diethyl phosphoro­

thionate produced by reactions with parathion are interesting because 

of their divergent toxicities, environmental contamination potentials. 

and use as a marker for parathion contamination. 

The possible accumulation of parathion and/or its metabolites 

in species has been investigated. Miller et al. (1966) showed that 

some fish and the freshwater mussel accumulate parathion. No ac­

cumulation of parathion in crayfish or lobster tissues has been re­

ported and Yu and Sanborn (1975) could not show any accumulation of 

parathion in the snail used in their investigations. 

Parathion has been shown to be toxic to many different species 

of animals. However, those species differ in their degree of suscep­

tibility . The specifics of parathion toxicity in each individual 

species is considered in the literature review section as parathion has 

been shown to be toxic in the hamster, guinea pig ~ 



mouse, rat, rabbit, cow, dog, pig, cat (Whitehouse and Ecobichon 

1975) sunfish (Benke and Murphy 1974) mosquito fish (Chambers and 

Yarbough 1973) fathead minnow (Faust 1964) pink shrimp (Coppage 

and Mathews 1974) and lobster (Carlson 1973). 

3 

Not only is there a difference in species susceptibility to 

parathion but the age and sex of the animal also plays a role in 

the susceptibility of the species (Neal and Du Bois 1965) . The fac­

tor relating the differential toxicities produced by parathion ex­

posure is the differential rate of metabolism of parathion to toxic 

or nontoxic compounds and the detoxification of the toxic metabolite 

paraoxon (Benke and Murphy 1975). 

The chemical reactions and metabolism of this dialkyl pho­

sphoric acid triester, parathion, are thus the essence of its toxi­

cological importance. The two most important of the chemical re­

actions of parathion are hydrolysis and isomeriztion . 

Little research into the toxicity and metabolism of parathion 

in crayfish and snails has been done. However, some interesting data 

have been gathered. Albaugh (1972) and Muncy and Oliver (1963) both 

have shown that crayfish are very sensitive to parathion exposure , 

perishing at concentrations below 1 ppm. However, when Carlson (1973 ) 

and Elmamlouk and Gessner (1976) investigated the necessary toxic 

conversion of parathion to paraoxon in lobsters neither investigator 

could demonstrate any such metabolism. 

Important goals of this research were to determi ne the accumu­

l ati on of parathion and metabolites in Orconectes r usticus and 



Viviparus malleatus and to determine the metabolism of parathion 

by these species with particular emphasis on investigating the 

conversion of parathion to paraoxon by the crayfish. These data 

along with the toxicity exhibited by parathion in these species 

would enlighten the toxicological and environmental significance 

of parathion exposure to Orconectes and Viviparus. 

4 



II. Literature Review 

The mandatory conversion of parathion to paraoxon to produce 

AChE inhibition in mammals points out the importance of the chemical 

reactions possible with parathion. Hydrolysis of organophosphates 

is one of the important chemical reactions that has been investigated. 

Hydrolysis of organophosphates occurs in alkaline environ­

ments via an attack on the phosphours by OH-. This is a nucleophilc 

attack where the phosphorus is positively charged as the result of 

the electron withdrawing capacity of the R groups of the molecule, 

and the dipolar and double bond character of the molecule. ' This con­

cept of the electrophilic character of the R group attached to the 

phosphorus affecting the ease of hydrolysis is important. The con­

version of parathion to paraoxon creates a double bonded oxygen in 

paraoxon which is more electrophilic than the double bonded sulfur 

of parathion. Thus the phosphorus of paraoxon is more positively 

charged and hydrolyzable in alkali medium than that of parathion 

(O'Brian 1967). The hydrolysis of parathion or paraoxon in an 

alkaline environment results in cleavage of the aryl side group 

and its replacement by an H atom and the production of a free .E_.~ 

nitrophenol moiety (Faust et al. 1972). Acid environments would lead 

to a rupture of the OCH2CH3 moiety as the initial step (Faust et al. 

5 
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1972). The hydrolysis of parathion or paraoxon is dependent on pH 

and temperature, and the hydrolysis of both compounds is faster at 

higher pH and temperature (Faust et al. 1972), The method by which 

hydrolysis of parathion occurs chemically is important because in 

the living system the biochemical hydrolysis of paraoxon by AChE 

causes a covalent bonding of the enzyme and compound which leads to 

enzyme inhibition. There are other materials that promote organo-

phosphorus hydrolysis, they include, many amino acids, hydroxamic 

acid, cholrine, inorganic phosphate, copper and molybdate ions 

(O'Brian 1967). 

The different isomerization reactions of organophosphates 

have been investigated and shown to be very important. The most im-

portant conversion reaction is the thioneto OXO conversion. This 

reaction is important to parathion as it is catalyzed in mammals by 

enzymes which transfer the nontoxic parathion into the potent AChE 

inhibitor paraoxon as shown below. 

Controlled cholinergic nervous transmission depends on the 

presence of the enzyme AChE which catalyzes the hydrolysis of 

acetylcholine (ACh) to choline and acetic acid at all cholinergic 

synapses, neuramuscular juctions and centrally. AChE catalyzes this 

reaction by reacting with acetylcholine via two active sites on the 



7 

globular protein enzyme. The sites are des i gna t ed anionic and 

esteratic. The anionic site is characterized by a negative charge 

attributed to a free carboxyl group of a dicarboxylic amino acid. 

This site attracts the positive charged quaternary nitrogen atom 

of the ACh molecule by electrostatic and other weak molecular 

forces. The esteratic site is composed of two components, 2.5 

and 5.0 angstoms from the anionic site. The closer site is a 

basic nucleophilic group which is the imidazole group of the amino 

acid histidine and at the distant site is a hydroxyl group from the 

amino acid serine. Because of the proximity and charge of the 

imidazole group it exerts hydrogen bonding forces to draw the H 

atom of the serine molecule toward the histidine. This creates a 

situation where the 0 of serine is strongly nucleophilic and will 

readily react with the electrophilic carboxyl atom of ACh eventually 

creating a covalent bond. The nucleophilic character of the 

esteratic site is also responsible for the reaction between the 0 

of serine of the AChE and the phosphorus of paraoxon which is 

electrophilic. The phosphorylated enzyme is very stable and 

hydrolytic cleavage of the organophosphate enzyme complex is very 

slow. Parathion will undergo limited hydrolysis of the complex while . 
the two ethyl groups are still a component of the organophosphate. 

However, aging of the compound occurs within hours when one of the 

alkyl groups is cleaved off the complex. The resulting aged organo­

phosphate enzyme complex is stable and the only source of viable 

enzyme after aging is new synthesis . When sufficient AChE is 



inhi.bited by this mechanism the animal will exhibit signs of 

cholinergic toxicity as endogenously released ACh is not 

inactivated. 

Metabolism 

8 

The metabolism of parathion is the essence of its toxico­

logical importance, as it is the conversion of parathion to its 

oxygen analog paraoxon that produces the toxic AChE inhibitor. 

The details of the pathways by which parathion is metabolized have 

been researched extensively in the past decade. Figure 1 has been 

produced by combining all the routes of metabolism referred to in 

this section of the review. Neal and DuBois (1965) reported that 

parathion was more toxic to female rats than male rats but that 

the highly toxic desulfurated metabolite of parathion, paraoxon 

did not exhibit this sex difference. The conversion of parathion 

to paraoxon by desulfuration was then tested in vitro in livers of 

both male and female rats, and it was discovered that male rats 

converted parathion to paraoxon faster than females did. These data 

set the stage for the future work on parathion metabolism by estab­

lishing that not only must parathion be metabolized to paraoxon to 

exhibit toxic effects in mammals, but there must also be some kind 

of detoxification mechanism for both parathion and paraoxon. 

Experiments by Hollingworth (1969), Kamataki et al. (1967 a 

b), Lichtenstein et al. (1973), Neal (1964, 1967a, 1967b, 1971), 

Neskovic et al. (1973), Ptashne et al. (1971), Villeneuve et al. 

(1970), Whitehouse and Ecobochon (1975), and Wolcott et al. (1970) 



establ ished that liver microsomal enzymes were involved with the 

metabolism of pa rathi on to paraoxon or diethyl phosphorothionate 

plus Q_-nitrophenol. 

The experiments of Neal (1967) showed that the metabolism 

9 

of parathion by rat liver microsomes was typical of a mixed function 

oxidase (MFO) system as inhibitors of MFO microsomal system~ re­

duced the metabolism of parathion. Neal (1967) also showed that 

Q_-chloromercuribenzoate, cu2+ and 8-hydroxyquinoline inhibited the 

conversion of parathion to paraoxon more than the conversion of 

parathion to nontoxic diethyl phosphorothionate and Q_-nitrophenol. 

This type of metabolism was also stimulated by reduced sulfur, 

EDTA, and ca2+. These results led Neal to the conclusion that the 

metabolism of parathion to both paraoxon and diethyl phosphoro­

thionate was being catalyzed by an enzyme or enzymes in the liver 

microsomes by a MFO system. 

Experiments by Neal (1971) established that reduced nicotin­

amide adenine dinucleotide phosphate (NADPH) and o2 were needed for 

the metabolism of parathion to the oxygen analog paraoxon (pathway 

1, figure 1) or to diethyl phosphorothionate and £_-nitrophenol 

(pathway 3, figure 1). and that this metabolism was inhibited by 

carbon monoxide. These results further strengthened the contention 

that parathion was metabolized to these substances by a MFO system 

associated with cytochrome P-450. The enzymatic mechanism for the 

metabolism of parathion was also found in lung, kidney, and brain 

tissues (Neal 1971), but the greatest enzyme source was liver. 
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Key to Figure 1 Reactions 

1. Via MFO microsomal P-450 linked system in liver (Neal 

1967; Ptashne et al. 1971) and lung, kidney and brain 

(Neal 1971). 

2. Via paraoxonase in liver and blood and other tissue (Benke 

and Murphy 1974; Lichtenstein et al. 1973; Neal 1971). Via 

paraoxonase in sera (Lenz 1973). 

3. Via microsomal enzyme MFO system in liver (Neal 1967; 

Ptashne et al. 1971). 

4. Glutathione dependent S-alkyltransferase (methyl parathion) 

(Benke and Murphy 1975; Hollingworth 1973). 

5. (Same as above) 

6. Glutathione dependent aryl transferase (Dauterman 1971). 

7. Glutathione dependent aryl transferase in rat liver soluble 

fraction (Benke and Murphy 1975; Hollingworth 1974). 

8. Soluble liver fraction reduces paraoxon to amino paraoxon 

(Lichtenstein et al. 1973). 

9. Direct reaction via intermediate (Kamataki et al. 1976b). 

10. 0-dealkylation via microsomal enzymes, NADPH and 02 (Ku and 

Dahm 1973; Whitehouse and Ecobichon 1973). 

11. Soluble liver fraction reduces parathion to aminoparathion 

(Lichtenstein et al. 1973). 

11 
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The metabolism of parathion by soluble liver fractions (pathway 1, 

figure 1) was investigated by Dauterman (1971, Ku and Kahm 1973), 

Lichtenstein et al. (1973), and Neskovic et al. (1973). 

The procedure used by Neal and DuBois (1964) to demonstrate 

the relationship between the MFO and parathion metabolism was to 

measure the production of .e_-nitrophenol by incubation mixtures of 

differentially contrifuged liver homogenates with parathion and 

appropriate cofactors. The production of colored .e_-nitrophenol 

was measured spectrophotometrically. Neal continued his investi­

gation of parathion metabolism (Neal 1967) evaluating his conten­

tion, at that time, that the metabolism of parathion to either 

paraoxon or diethyl phosphorothionate and Q_-nitrophenol employed 

two different MFO enzymes. The .e_-nitrophenol determination, assay 

has been used by many investigators to follow the metabolism of 

parathion and to show that liver microsomal enzymes of the MFO 

system are involved with parathion metabolism via these two pathways 

in the vertebrate. 

Benke and Murphy (1975) used the .e_-nitrophenol assay in their 

investigation on the influence of age and sex on the toxicity of 

parathion and methyl parathion in the rat. Their work also showed 

that the toxicity of parathion varied depending on the age and sex 

of the rat. Whitehouse and Ecobichon (1975) reported data analogous 

to that of many investigators, that there is a great disparity 

among species concerning the rate of metabolism of parathion. 
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They found that the desulfurating ability of the hamster, guinea 

pig, mouse, rat, rabbit, cow, pig, and cat declined in that order. 

Differential reaction rates shown by Benke and Murphy (1975) for 

the metabolism of parathion were shown to be the cause of the sex 

and age toxicity differences. The work also supported the previous 

finding that liver microsomal MFO was important in the metabolism 

of parathion. Similarly use of the Q_-nitrophenol method for 

parathion metabolism detection in vertebrate microsomal MFO P-450 

systems was previously done by Ptashne et al. (1971) who showed 

the same association for MFO catalyzed desulfuration of parathion 

(pathway l, figure 1) or oxidation to diethyl phosphorothionate 

plus Q_-nitrophenol (pathway 3, figure 1) and also a dearylation 

reaction. 

Hollingworth (1969) demonstrated that the rate of dealkylation 

of organophosphates (pathway 4, figure 1) was dependent on the R 

groups of the molecule. He showed that the dealkylation by mouse 

hepatic enzymes of diethyl organophosphates preceded much faster 

than the dealkylation of diethyl compounds. He also showed that 

these 0-dealkylation reactions ..i!!_yivo proceeded to a large extent 

through alkylation of reduced glutathione. 

Cramer and Hollingworth (1976) investigated the dearylation 

reaction of a series of paraoxon analogs by mouse liver homogenates 

(pathway 2, figure 1) and determined that the reaction was NADPH 

independent , and preceeded via an A-esterase. They showed that t he 



determining factor as to whether the reaction would proceed by a 

MFO enzyme or by the A-esterase pathway was the specific length 

of the alkyl side chain. The ethyl side chain of the paraoxon 

molecule favored the A-esterase reaction. 

14 

Villeneuve et al. (1970) used the .e_-nitrophenol assay to 

investigate the MFO role in parathion metabolism by liver microsomes. 

They evaluated plasma esterase activity, and liver carboxylesterase 

(A-esterase) activity to releate the effect of hepatic microsomal 

enzyme induction and inhibition on altering the toxicity and meta­

bolism of parathion. They used SKF-525A, 3, 4-benzpyrene, DDT and 

phenobarbital for the pretreatment of the rats. They determined that 

DDT decreased the acute toxicity of parathion but increased carboxy­

lesterase activity and parathion metabolism while plasma esterase 

levels were not affected. SKF-525A pretreatment caused an increase 

in carboxylesterase activity but no change in the LD50 of parathion, 

plasma esterase activity or parathion metabolism. Benze[a]pyrene 

decreased the toxicity of parathion and increased plasma esterase 

carboxylesterase and metabolism of parathion. 

Alary and Broudeur (1970) also investigated the association 

between microsomal metabolism of parathion and toxicity. They de­

termined that the ability of microsomal fractions to metabolize 

parathion to diethyl phosphoric acid and diethyl phosphorothioinic 

acid \vas a good index for the estimation of the~ vivo toxicity of 

parathion in adult rats. They concluded that phenobarbital stimulates 



only the direct degradation of parathion to diethyl phosphoro­

thioic acid and £_-nitrophenol. 
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Lichtenstein et al. (1973) showed that the liver microsomal 

fraction had a high rate of activity for converting paraoxon to 

2._-nitrophenol and diethyl phosphate (pathway 2, figure 1). 

Lichtenstein et al. (1973) also showed that the majority of the 

paraoxon produced from parathion was from the soluble liver fraction, 

a basic difference from the work of Neal's group. Lichtenstein, 

et al. (1973) did not use the E_-nitrophenol spectrophotometric 

assay technique but employed gas liquid chromatography, thin layer 

chromatography, colorimetric assays and radioactive parathion and 

paraoxon to quantify their results. These methods will be discussed 

in detail in the detection section of the literature review. 

Whitehouse and Ecobichon (1975) investigated the metabolism of 

parathion adopting techniques comparable to those of Lichtenstein 

et al. (1973) analyzing extracted products from incubation mixtures 

of liver and parathion. However, they also used the spectrophoto­

metric .2_-nitrophenol assay similar to the one previously discussed. 

Kamataki et al. (1976b) investigated whether parathion 

oxidation to paraoxon and diethyl phosphorothionate plus E_-nitro­

phenol was catalyzed by two different MFO enzymes or utilized differ­

ent cytochrome P-450 systems or a combination of the both. Previous 

work by Neal (1967) had contended that various inhibitors of hepatic 

MFO enzymes had a differential effect on the products of parathion 

metabolism Pretreatment of animals with inducers of hepatic MFO 
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indicated that the metabolism of parathion to paraoxon and diethyl 

phosphorothionate and Q_-nitrophenol were cata1yzed by separate 

MFO enzymes (Nea1 1967, Norman et al. 1974, Ptashne et al. 1971). 

Utilizing a homogenous preparation of rabbit liver cytochrome 

P-450 Kawataki et al. (1976b) presented evidence that parathion 

could be metabolized to not only both paraoxon (pathway l, figure 

1) and diethyl phosphorothionate plus p-nitrophenol {pathway 3, 

figure 1) but also diethyl phosphoric acid {pathway 9, figure 1) 

a product that had previously been reported to occur only fol1owing 

the hydrolysis of paraoxon. These data indicate that paraoxon, 

diethyl phosphorothionate and diethyl phosphoric acid are all 

capable of being formed utilizing the same species of cytochrome 

P-450. This would suggest that the three compounds are the re­

sult of a common intermediate for the single species P-450 meta­

bolism of parathion is a compound analogous to a sulfine. 

Glutathione dependent metabolism of parathion has been in-

vestigated by Hollingworth (1969), Benke and Murphy (1975), 

Lichtenstein et al. (1973), and Whitehouse and Ecobichon (1975). 

The method used by Hollingworth, and Benke and Murphy employed the 

soluble fraction of liver homogenate and radioactive (35s) gluta­

thione (GSH). Incubation of this mixture with parathion was followed 

by the identification of the metabolities by thin layer chromato­

graphy and quantification by scintillation counting. Benke and Murphy 

(1975) determined that parathion did not undergo glutathiond depen­

dent dearylation (pathway 6, figure 1) in either male or female rats 



as had been shown for mice (Hollingworth 1969). Glutathione 

dependent dealkylation of paraoxon did not occur, but GSH depen­

dent dearylation of paraoxon (pathway 7, figure 1) did occur, 

and that reaction varied with the age and sex of the rat. 
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Hollingworth (1973) also found that the GSH dependent deary­

lation of paraoxon in rat livers (pathway 7, figure 1) was more 

rapid than deethylation. His previous work showed GSH dependent 

0-dealkylation of methyl organophosphates but little or no 

0-dealkylation of ethyl organophosphates, (pathways 4, 5, figure 1) 

(Dauterman 1971, Hollingworth 1973). Ku and Dahm (1973) demon­

strated that 0-dealkylation by liver microsomal enzymes was either 

not effected or only slightly effected by reduced glutatione, 

while Lichtenstein et al. (1973) reported that even though liver 

microsomal MFO was the major route for arylphosphate cleavage of 

parathion there was some glutatione dependent reaction. Whitehouse 

and Ecobichon (1975) concluded that paraoxon detoxification by 

liver homogenates involves hydrolytic dearylation by arylesterase 

glutathione mediated dealkylation, oxodative dealkylation and 

dearylation of nonspecific binding to tissue proteins. They believe 

the role of GSH dependent detoxification is slight in organopho­

sphates that contain other then methyl side groups, but Benke and 

Murphy (1975) concluded that GSH dependent detoxification of para­

thion in rats may be more important than previously thought. 
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Studies by Roth and Neal (1972) established that parathion 

bound to cytochrome P-450 creating both type I and II difference 

spectra. Their experiments also showed that there were at least 

three separate type I spectral binding sites for parathion and 

hexobarbital on cytochrome P-450 as evidenced by a hexobarbital and 

parathion. Stevens (1974) investigated the binding of parathion to 

cytochrome P-450 and found that both parathion and paraoxon would 

bind to reduced P-450 from rats and mice. 

A question that had been unanswered for years was the fate 

of the sulfur released when parathion was converted to paraoxon. 

Norman et al. (1974) used radioactively labeled sulfur (35s) 

and showed that the sulfur would covalently bind to the macromole­

cules of the microsomal membrane and would do so maximally in the 

presence of NADPH. This binding led to a decrease in cytochrome 

P-450 in the microsomes. Kamataki and Neal (1976) showed that the 

sulfur released from the metabolism of parathion to paraoxon be­

came covalently bound predominately to cytochrome P-450. They 

showed that 50% of the bound sulfur attached to the side chain of 

the cysteine in the P-450 apoenzyme to form hydrodisulfide. 

The detoxification of paraoxon to p-nitrophenol plus diethyl 

phosphate is a critical reaction in controlling the toxicity of 

parathion in the species discussed. Unlike the reaction of para­

thion to paraoxon or to p-nitrophenol and diethyl phosphorothionate 

which is catalyzed very rapidly by the MFO system, requires MADPH 

and 02, and is inhibited by CO, this reaction proceeds rapidly in 



particulate liver fractions or serum without NADPH and is carried 

out via esteratic enzymes (pathway 2, figure 1) (Neal 1971). The 

activity of the esterase enzyme that catalyzes paraoxon to Q_­

nitrophenol and diethyl phosphate was further investigated by 

Neal (1967) showing that this esteratic enzyme required ca++ 
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for optimal activity. Benke and Murphy (1975) showed the toxico­

logical importance of the esterase (paraoxonase) reaction con­

verting paraoxon to diethyl phosphate plus Q_-nitrophenol by demon­

strating that the LD50 of parathion in rats correlated with the 

different rates of the reaction associated with age and sex in the 

rat rather than to the activation reaction or detoxification of 

parathion directly. 

The association between compounds that effect liver micro­

somal enzyme induction such as phenobarbital, 3-methylcholanthrene, 

DDT, dieldrin or endrin and organophosphate metabol ism has been 

investigated by Alary and Brodeur (1969), Harbison (1975), Ku and 

Dahm (1973)~ and Villeneuve et al. (1970). 

Alary and Brodeur (1969) showed that phenobarbital pre­

treatment increased liver paraoxonase activity 1.5 fold but had little 

effect on serum paraoxonase activity, both of which convert paraoxon 

to diethyl phosphate plus Q_-nitrophenol. They also showed that pheno­

barbital pretreatment led to a greater increase in the reaction rate 

for parathion conversion to diethyl phosphorothionate plus Q_-nitro ­

phenol (pathway 3, figure 1) than to paraoxon (pathway l, figure 1), 

although the reaction to paraoxon was increased. Villeneuve et al. 



(1970) demonstrated that DDT, phenobarbital and benzo [a] pyrene 

decreased the toxicity of parathion in rats three fold. Harbison 

(1975) investigated the phenomena of phenobarbital induced pro­

tection against parathion toxicity in mice, and showed that 

phenobarbital protected mice fetuses against parathion. 
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Ku and Dahm (1973) showed that phenobarbital, DDT, dieldrin 

and endrin, all compounds that induce liver microsomal enzymes, led 

to an increase in the NADPH-independent paraoxonase (pathway 2, figure 

1). Ku and Dahm (1973) also noted that the 0-dealkylation detoxifi­

cation of paraoxon (pathway 10, figure 1) is dependent on NADPH and 

o2 and inhibited by CO. 

Work designed to specifically investigate liver microsomal 

paraoxonase activity was done by Neal and DuBois (1965) and more 

recently by Whitehouse and Ecobichon (1975) who showed that only rats 

exhibited a sex difference in the hydrolysis of paraoxon, males pos­

sessing higher activity then females, and that various species did 

exhibit different rates of paraoxon hydrolytic activity. The highest 

activity was found in mice followed by cow, rat, guinea pig, rabbit, 

hamster, cat, dog, and pig in decreasing order. They showed that 

the hydrolysis of paraoxon could be by paraoxonases from various 

body tissues including liver or by a MFO system requiring NADPH and 

o2, but the hepatic paraoxonase was the major route for paraoxon 

detoxification. 

The nature of the serum enzyme capable of catalyzing the 

hydrolysis of paraoxon to diethyl phosphate and Q_-nitrophenol in 



mammals was reviewed and investigated by Lenz (1973). Lenz 

found that the reaction was not susceptible to substrate or p~o­

duct inhibition and that the enzyme contained one active group 

which was hydrophobic and required an electron withdrawing group 

in the substracte for binding. 
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In summary the most important discovery brought about by 

this type of research was that the phosphorothionate organophos­

phates must be metabolized by desulfuration to an active toxic 

compound (paraaxon in the instance of parathion) to exhibit anti­

acetylcholinesterase activity. Mammals evaluated in the preceeding 

papers predominatly accomplish this metabolism by a liver microsomal 

MFO cytochrome P-450 dependent system but this desulfuratiorr can 

also be produced by soluble fraction enzymes. The detoxification 

of paraoxon has been shown to be associated with liver microsomal 

paraoxonase, and the rates of production of the different metabo-

1 ites of parathion are species, and for rats, sex dependent. There 

is also direct detoxification of parathion by a microsomal MFO 

system to diethyl phosphorothionate plus E_-nitrophenol and the rate 

of this reaction does not respond to enzymatic inhibition or induction 

the same as the microsomal MFO reaction that converts parathion to 

paraoxon. 

Toxicity 

As stated above, the toxicity of parathion in mammals has been 

shown to be due to its metabolite paraoxon. Parathion is very toxic 
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to adult rats, Faust and Gomaa (1972) reported LOSO values in the 

rat of 3-30 mg/kg orally and 4-200 mg/kg dermally. The results 

for the oral LOSO agree with those of Villeneuve et al. (1970) 

who reported oral LOSO values for parathion of 6.3 to 12.0 mg/kg. 

Villeneuve et al. (1970) also showed that DDT, benzo[a]pyrene and 

phenobarbital pretreatment increased that LOSO value to greater than 

20 mg/kg. DuBois et al. (1968) showed that male rats were more re­

sistant to organophosphate toxicity through different rates of liver 

enzyme activity when compared to female rats. Benke and Murphy 

(197S) showed that male rats were more resistant to parathion than 

females and that an LOSO in adults (greater than S6 days old) was 

2-6 mg/kg i .p. Benke and Murphy (197S) noted that the toxicity 

steadily declined as the rats aged, reporting LOSO values of 2-4 

mg/kg i.p. for rats 23-24 days old and only 1 mg/kg for rats 12 days 

old. Single lethal dose ranges for parathion via i .p. administration 

in mice were reported by Benke and Murphy (1974) to be 13-lS mg/kg. 

The work of Alary and Brodeur (1970) agrees with the preceding data 

concerning acute LOSO values in rats and the effects of phenobarbital 

pretreatment. Parathion toxicity in dogs has been reported (Faust 

and Gamaa 1972) as 10 mg/kg i .v. 

Research concerning the toxicity of parathion in nonmammals 

and invertebrate species in particular is scarce compared to the 

data available concerning mammals (Carlson 1973). Research has been 

done in the area and work by Benke and Murphy (1974, 197S) showed 

that sunfish were much more resistant to parathion on a mg/kg basis 

than the mammals studied. The sunfish LOSO values of 10-200 mg/kg was 
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determined, but they also concluded that the rate of onset of 

AChE inhibition did not explain all of their toxicological findings. 

Benke et al. in 1974 continued their investigation of parathion 

toxicity in sunfish (Lepomis gibbosus) and calculated an LD50 
of 110 mg/kg. They showed that fish cholinesteras~ was inhibited 

by paraoxon, but that the fish had a lower sensitivity to paraoxon 

than mice did. Glutathione dependent metabolism of methyl para­

thion and methyl paraoxon could be detected in liver homogenates 

but not for paraoxon or parathion. Other investigators that have 

delved into the toxicity of parathion in fish include, Faust (1964), 

Chambers and Yarbough (1973, 1974). Chambers and Yarbough 

investigated the toxicity of parathion in the mosquito fish 

(Gambusia affinis). They found that methyl parathion was more 

toxic in the fish than parathion. They also found that resistant 

fish had a higher level of microsomal MFO. Their data indicate that 

the toxicity of parathion varied depending on whether the fish were 

in the susceptable or resistant group and the ti me of year, but in 

all cases the compound was toxic in water at concentrations of 

1.0 ppm or less. The toxicity of parathion in fathead minnows was 

investigated by Faust (1964) who recorded that parathion was acutely 

toxic to the fatheads at 1 .4 ppm in 96 hours. Miller et al. (1966) 

showed that the estuarine fish (Fundulus heteroclitus) would accumu­

late parathion from a model ecosystem experimental apparatus. Ex­

peri ments have thus shown that parathion is toxic at low concentr a­

tions in fish, and that the tox i n can accumulate i n f ish. The 



involvement of the cholinesterase inhibiting action of parathion 

in its toxic manifestations has been shown by Potter and O'Brian 

(1964), Benke and Murphy (1974), and Benke et al. (1974) who 

reported cholinesterase inhibition in exposed animals. 
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The toxicity of parathion in nonvertebrates other than in­

sects has received the least attention. Research in this area 

has been done by Miller et al. (1966) who showed that using a 

model ecosystem developed to si~ulate a cranberry bog they could 

demonstrate the accumulation of parathion in the freshwater 

mussel (Elliptio complanatus). They concluded that since it has 

been shown that oysters and mussels accumulate pesticides, there 

may be an environmental hazard. They also concluded that the 

mussel had a much slower rate of parathion metabolism as measured 

by the TLC identification of radioactive metabolites of parathion 

than fish or mammals. 

Yu and Sanborn (1975) also used a model ecosystem to study 

parathion toxicity and metabolism. Employing radioactive parathion 

and utilizing extraction techniques, they concluded that parathion 

diq not accumulate in the snail used in their study. 

The toxicity of parathion to crustaceans has been investi­

gated to a limited extent. The anti-AChE mechanism of toxicity 

being credited for the toxic effects of parathion has been supported 

by Coppage and Matthews (1974) who showed a reduction of AChE 

activity following organophosphate exposure to pink shrimp (Penaeus 
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duorarum). Carlson (1973) investigated the toxicity and metabolism 

of parathion in lobsters and obtained very interesting data. Point­

ing out that phosphorothionates must be metabolized to their oxygen 

analog to be toxic, and with the knowledge that Brodie and Maickel 

had shown that the lobster hepatopancreas metabolized many drugs, 

he attempted to demonstrate the correlation between the lobster 

hepatopancreas 1 ability to metabolize or detoxify parathion and 

the susceptability of the lobster to parathion. Elmamlouk et al. 

(1974) have since shown that the lobster hepatopancreas does 

contain cytochrome P-450. Carlson determined that after inject-

ing parathion into the cheliped sinus of the lobsters an acute 

dose LD50 of 0.3 mg/kg could be calculated, a value considerably 

lower than that for any of the mammals as yet studied. Carlson 

investigated the ability of the lobster hepatopancreas to de­

sulfurate the parathion to paraoxon. Measuring the ability of 

incubated samples of hepatopancreas homogenate or microsomes 

with parathion to inhibit AChE activity he was not able to de­

monstrate that the lobster hepatopancreas formed paraoxon. 

Carlson also used the spectrophotometric 2_-nitrophenol assay to 

investigate the effect lobster heptopancreas had on parathion 

metabolism to paraoxon and subsequent ly to diethylphosphate plus 

Q_-nitrophenol or directly to Q_-nitrophenol plus diethyl phosphoro­

thionate. The lobster did demonst rate a temperature dependent pro­

duction of Q_-nitrophenol from parathion. Carl son concluded that 

since the lobsters were susceptible to parathion but no paraoxon 



could be detected i n the .i..!!_ vitro experi ments then , the i n vitro 

experi men t s di d not refl ect the j_Q_ s i t u react ion rates or that 

other organs in the lobster were responsible for parathion con-

version to paraoxon. 
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The toxicity of organophosphates to crayfish has been 

investigated by Muncy and Oliver (1963) and Albaugh (1972). Albaugh 

(1972) showed that there was a difference in the susceptibility 

of two different crayfish populations to methyl parathion. The 

crayfish from an enviromental area that was exposed to insecti-

cides capable of causing microsomal enzyme induction produced a 

toxicity value of 3.4 parts per billion whi 'le those from an area 

not exposed to microsomal inducing pesticides produced a value of 

2.4 parts per billion . Muncy and Oliver (1963) used a median to­

lerance limit technique (Tlm) to establish the toxicity in red 

crawfish (Procambarus clarki) by ten insecticides. They determined 

a 24 hour Tlm value of 0.05 ppm and 48 and 72 hour Tlm value, of 

0.04 ppm for methyl parathion. 

The perplexing problem of potent parathion toxicity to 

crustaceans but their apparent lack of ability to produce para-

oxon was further investigated by Elmamlouk and G~ssner (1976). They . 
tested the ability of lobster hepatopancreas derived microsomes to 

convert parathion to paraoxon and compared that with the ability 

of mouse liver microsomes to carry out the same reaction. They 

concluded that no metabolism of parathion to paraoxon or to £_-nitro­

phenol occured in hepatopancreas preparation. They do mention that 



it is possible for the conversion to have ta ken place below the 

l evel of t he ir detection capabilities. 

Detection 
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The determination of metabolites of parathion in snails and 

crayfish would be impossible without using effective extraction 

techniques for separating parathion and its metabolites from both 

tissue and water samples. The extraction, concentration, and 

clean up techniques that can be used for organophosphates in water 

environments have been throughly investigated by Appleton and 

Nakatsugawa (1972), Burchfield and Storrs (1975), Burkhard and Voss 

(1972), Coburn and Chau (1974), Faust and Gomaa (1972) Faust . and 

Suffer (1969, 1972) , Gomaa and Faust (1972), Faust (1964), 

Nakatsugawa (1972), Ripley et al. (1974), Suffet and Faust (1972a) 

The direct measurment of parathion in water samples is impossible 

due to sensitivity and specificity limitations (Faust and Suffet 

1969, 1972 and Suffet and Faust 1972a). 

Extraction Techniques 

Carbon/Absorption 

The carbon absorption method is applicable to large 

samples of water from natural sources in the field or for the preli­

minary cleanup of water samples in the labroatory. This method of 

organophosphate contaminated water sample through activated charcoal 

and then the extraction of the organophosphate that has bound to the 

activated charcoal with solvents (Faust and Suffet 1969, Nicholson et al. 



1962). Nicholson et al. (1962) reported that this technique was 

inadequate for the extraction of parathion from a farm pond. 

Liquid-Liquid Extraction 
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Liquid-liquid extraction has replaced carbon absorbtion 

(Faust and Suffet 1969) for most organophosphate extraction re­

quirements. The choice of solvent to be used in liquid-liquid 

extraction is critical, and there are a large number to choose from. 

The re are many important general criteria when choosing the 

proper liquid-liquid extraction solvents. They include, the pH 

of the water to be extracted and whether that will effect the organ­

ophosphate and/or the extraction procedure; if the compound being 

extracted is volatile, if it undergoes spontaneous reactions under 

the conditions which it is being extracted; and the ultimate goal 

of the extraction procedure. There are also important specific 

criteria that must be evaluated when determining liquid-liquid 

extraction solvents and procedures, such as: the solubility of the 

solvent in water; whether the solvent is polar or nonpolar, aromatic 

or aliphatic ; its ability to be used with the eventual detection 

system; the availability of pure solvents that are pesticide quality 

and the ease of solvent handling, toxicity and flamability (Faust and 

Suffet 1972). 

The pH of the water in which the organophosphate is dissolved 

is important. Parathion will hydrolyze in alkali environments to 

_E-nitrophenol and diethyl phosphorothionate (Faust and Gomaa 1972 ). 

Therefore, it is important that the pH of the water be kn own or 

adjusted, and any extraction procedure that would greatly increase 



the pH of the sample be avoided. Faust and Suffet (1969) deter­

mined that neutral pH values are the best for maintaining the 

integrity of parathion samples as the sample will also hydrolyze 

under extremely acid conditions. 

Volatilization of parathion samples may occur under some 

condition (Faust and Suffet 1969). It has been suggested (E.P.A. 

Training Manual 1974) that when drying parathion samples on thin 

layer chromatography (tlc) plates, the use of hot air be avoided. 

One of the problems of extracting parathion from water 

samples is that parathion itself is not indefinately stable in the 

water environment and undergoes hydrolysis and desulfuration 

(Faust and Suffet 1969. 1972a). To determine the extent to which 

parathion is being metabolized to paraoxon or other compounds, it 

is mandatory to recover all of the compounds. This necessitates 

that the pH and solvent be evaluated critically. 
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Experiments by Faust and Gomaa (1972) show that both para­

thion and paraoxon are more resistant to hydrolysis under acid con­

dition than alkali conditions. They reported rate constants for 

hydrolysis and half lives for the two compounds under different pH 

conditions (table 1). 



TABLE 1 

RATE CONSTANTS FOR HYDROLYSIS AND HALF LIVES FOR 
PARATHION AND PARAOXON AT 200 ca 
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pH T 1/2 (Hours) 

Parathion 

3. 1 1.65 x 10-4 4182 

5.0 1. 88 x 10-4 3670 

7.4 2. 66 x 10-4 2594 

9.0 1. 32 x 10-3 523 

10.4 2.08 x 10-2 33.2 

Paraoxon 

3. l 1. 46 x 10-4 4726 

5.0 1. 66 x 10-4 4156 

7.4 2.00 x 10-4 3450 

9.0 9.87 x 10-3 69.9 

10.4 1. 15 x 10- l 6.0 

aFaust and Gomaa (1972) 



Different methods for the determination of the extent to 

which the organophosphates will partition between the water and 

solvent phase of the extraction fluid have been tried. A 

thermodynamic partition coefficient determination system that 

measures the fraction of solute that partitions into the nonpolar 

solvent is the best system. That system is called the p value 

determination approach. 

31 

Coburn and Chau (1974) showed that benzene could be used as 

a solvent for extracting parathion and metabolites. Benzene ex­

traction was also done by Ripley et al. (1974) who reported 

95 to 100% recovery of pesticide from water samples using that 

method. Kliger and Varon (1975) showed that by extracting water 

samples with a mixture of water and hexane 5:2 the parathion could 

be completely partitioned into the solvent phase while £_-nitro­

phenol and diethylphosphoric acid would remain in the aqueous phase. 

White et al. (1973) showed that in extracting parathion from bean 

plants 5% ethyl ether in benzene was an acceptable solvent, but 

to determine the solvent that would yield the best return the in­

vestigator should use the p value approach. 

The p value determination approach demonstrated that parathion 

and paraoxon in an acid (pH 3.1) environment are effectively ex­

tracted by hexane benzene, ethyl acetate, and ether, and that ether 

is the superior solvent due to it's having the highest p value 

(Faust and Suffet 1972a). When Q_-nitrophenol was to be determined, 

ether with a p value of 0.98 was again the best solvent, especially 



when compared to he xane wh ich only had a p value of 0.20 or 

benzene wi t h a value of 0.60 (Suffet and Faust 1972b). 

Extraction from Tissue 

The extraction of parathion and metabolites from samples 

containing animal cells or cell fragments may require different 

so l vents or procedures than those used in the extraction of these 

compounds from water samples. 

Lichtenstein et al. (1973) found it necessary to extract 

parathion and metabolites from homogenate or microsomal samples. 

They transferred the 2 ml contents of their incubation flasks to 

a separatory funnel with two 5 ml portions of water and 10 ml 

of acetone without acidification. They then extracted the sample 

with two 10 ml portions of hexane and two ml portions of diethyl 

ether added to the hexane. They deter~ined that 98% of the £_-

ni trophenol was in the solvent phase with amino parathion. P­

aminophenol went totally into the water phase with a large portion 

of the amino paraoxon. The extracted components were analyzed by 

liquid scintillation counting, TLC, and autoradiography. 
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Burkhard and Voss (1972) extracted the organophosphate iado-

fenphos and iodofenoxon from milk samples. They used methylene chlo-. 
ride to extract the samples followed by concentration on a water bath 

using a Kuderna-Danish evaporator. They also extracted muscle and 

liver samples by first chopping and then grinding the tissue and 

using 25 g aliquots for extraction. The sample was ground with 
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anhydrous s.odium sulfate (70-100 grams). That mixture was then 

mixed · at high speed for three minutes with benzene (200 ml) 

followed by filtering under vacuum and concentration by rotary 

evaporation. Fat samples were cut and macerated as were the muscle 

and liver samples and then ground with anhydrous sodium sulfate 

and Celite. That mixture was then extracted for three hours with 

300 ml hexane. The solution that was produced was partitioned 

with acetonitrile in a separatory funnel, and the acetonitrile 

phases were re-extracted with hexane. The product was evaporated 

to dryness and then dissolved with benzene. 

Black et al. (1973) extracted parathion from rat hepa~ic 

tissue samples. The parathion was extracted from homogenates' 

equivalent to 2g of liver with 4 ml of hexane for 5 minutes in a 

Thomas tissue grinder . The mixture was centrifuged at 6000 xg 

at OOC for 10 minutes. The hexane supernatant, which was subse­

quently analyzed by gas chromatography, exhibited an extracti.on 

efficiency of 90.0 ± 0.9%. 

Hasselberg and Johnson (1972) extracted pesticides from 

fish tissue samples using a technique similar to the one used by 

Burkhard and Voss (1977) for extracting organophosphates from milk. 

Their procedure included the grinding of their samples with anhydrous 

sodium . sulfate. 

Burchfield and Storrs (1975) described methods for the ex­

traction of organophosphates and metabolites from nonfatty food£ 

using acetonitrile. The chopped samples were mixed with acetonitrile 
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and Celite and blended at high speed. Eventually the acetonitrile 

solution containing the pesticide was extracted in a separatory 

funnel with petroleum ether. Burchfield and Storrs (1975) also 

described a method for the cleanup and isolation of organophos­

phates from animal tissues. A few grams of tissue were chopped 

and blended with 15 ml of cold acetone. Benzene (30 ml) was 

added with 25 grams deactivated siloxid. This slury was put in a 

chromatography column and phosphates eluted with a 2:1 mixture 

of benzene and acetone followed by drying with sodium sulfate and 

rotary evaporation. 

Detection 

The qualitative and quantitative detection of parathion and 

its metabolites required detection techniques that were sensitive 

to very low concentrations of the desired compounds. The techniques 

reviewed here include thin layer chromatography and monitoring of 

radioactive compounds. 

Thin Layer Chromatography 

Thin layer chromatography (TLC) is a sensitive and conven­

ient method for the detection and separation of organophosphates 

and their metabolites (Joiner and Baetcke 1973, Stahl 1965). 

Several stationary phases have been evaluated in TLC systems. 

Silica gels H, G, and G-HR are used to a great extent as are neutral . 

aluminum oxide G and adsorbosil g-1 (Burchfield and Storrs 1975), 

Silca gel is the most popular stationary phase and it was used by 



Gunther et al. (1970), Norman et al. (1974), Joiner and Baetcke 

(1973), Lichtenstein et al. (1973). However, there are some 

unusual phases such as cellulose MN300 that have been used 

(Hollingworth 1969). 
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The possible choices for developing solvent system, absor­

bent, eluent, and method of visualization of the migration spot 

are numerous. The Environmental Protection Agency (EPA) Training 

Manual (1974) recommends the use of 250 micron thick Silica Gel 

plates and visualization aided by Rhodamine B (0.1 mg/ml ethanol) 

spray, and elution recovery with a mixture of ethyl and petroleum 

ethers. The work of many investigators agrees with these recommen­

dations. Rhodamine B spray was the visualizing spray that was 

used by Joiner and Baetcke (1973) to identify organophos phates. 

However, other investigators use different techniques, e.g. Neal 

(1967) eluted parathion off silica TLC plates with 2 ml volumes of 

methanol followed by one 10 ml portion of chloroform methanol 1 :1. 

The choice of the developing solvent system to use is com­

plicated by the large number of systems that have been employed. 

Joiner and Baetcke (1973) evaluated 12 different systems containing 

differing amount of three of the following solvents: ether, petroleum 

ether, ethyl ether, galcial acetic acid, absolute methanol, chloro­

form, ammonium hydroxide, and heptane. They concluded that the best 

separation of photoalteration products (including parathion, paraoxon, 

..e_-nitrophenol and diethyl phosphate, was by the following four systems: 

petroleum ether, ethyl ether, glacial acetic acid (80:15:5) and 



and (50:45;5) or methanol, chloroform~ ammonium hydroxide 

(24:75:3.5) and methanol, chloroform, petroleum ether (10;20;70). 
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There have been many other mobile phases used for organo­

phosphate analysis. Burchfield and Storrs (1975) used the 

following mobile phases: benzene, benzene, cyclohoexane (3:1), 

hexane, acetone (20:80), acetone, hexane (15:85). Hollingworth 

(1969) used a solution of 2-propanol; water; concentrated ammonium 

hydroxide (75:24:1). 

The most popular mobile phase developing mixture is hexane, 

chloroform, methanol, (7:2:1). This solution has been used by 

Gunther et al. (1970) who reported Rf values for paraoxon of 

0.55 and for parathion of 0.75: Lichtenstein et al. (1973) used 

this solvent system and reported aminoparaoxon at an Rf value of 

0.07 and E_-aminophenol at 0.00. This system was also used by 

Elmamlouk and Gessner (1976). 

Autoradiography was one technique used by Hollingworth (1969), 

White et al. (1973) and Lichtenstein et al. (1973) to quantify the 

amounts of compound that were present on the plates. Gas liquid 

chromatography was also a very popular technique used to quantify 

the amounts of compounds present, and Gunther (1970) and Lichtenstein 

et al. (1973) used that procedure. Gunther used the thermionic 

detector while Lichtenstein et al. used a flame photometric +5250 

or phosphorus filter, or an electron affinity detector. 

1he procedure of scraping the coating from the TLC plate that 

contained the compound in question or cutting out that spot from paper 
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strips used in TLC was a technique used with great success by 

Benke and Murphy (1975), Elmamlouk and Gessner (1976) Lichtenstein 

et al. (1973), and MacNeil and Frei (1975). A technique for 

recovering the coating by using an eye dropper plugged with glass 

wool connected to a vacuum was presented in the EPA manual (1974) 

and was reported to be extremely effective. The possible inter­

ferenc.e that could be caused by the coating in the counting pro­

cess was evaluated by MacNeil and Frei (1975) who showed that the 

quenching effect of silica gel in liquid scintillation counting was 

shown to be an excellent technique to quantify compounds that were 

radioactive. 



III. Experimental 

A. Materials and Methods 

Chemicals: Parathion (0,0-diethyl-.E_-nitrophenyl phosphoro­

thionate) and paraoxon (0,0-diethyl-.E_-nitrophenyl phosphate) were 

obtained from New England Nuclear, 575 Albany Street, Boston, 

Massachusetts 02118. New England Nuclear was also the source of the 

radioactive parathion samples used. Two differently labeled radio­

active parathion samples were used, parathion (ethyl-1- 14
c) and 

parathion (2,6 14c). 

The radioactive parathion samples were diluted with nonradio­

active parathion to obtain concentrations of parathion in the ppm or 

ppb range that were desired for that experiment and to produce a 

specific activity for the diluted radioactive sample that would produce 

cpm in a range that would be quantitative without using samples of 

unnecessarily high specific activity. 

Diethyl phosphorothionate and diethyl phosphate were synthe­

sized and generously provided by Dr. R. M. Hollingworth, Purdue 

University. 

All other chemicals and solvents used were either analytical or 

pesticide grade. 

38 
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Radioactive Parathion Samplesa 

Parathion 2,614c Parathion 
Ring Label [ethyl-1-14c] 

Batch C-37 C-34 

MW 291 .27 291 .27 

Sp. Activity 2.2 19 mCi/mM 

ml/sample 0.5 0 .51 

total activity 50 uCi 50 µCi 

DPM/µ Mole 4.88 x 106 4. 21 x 107 

DPM/mg l.67 x 107 144 x 108 

DPM/µ1 2.22 x 105 2 .17 x 105 

µg/µl 13.212 l.50 

aSupplied by New England Nuclear. 
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B. Animals 

Crayfish used in this project were the species Orconectes 

rusticus and were obtained from Connecticut Valley Biological Supply 

Co. Inc. (Southampton, Massachusetts). The crayfish were stored in 

fresh water aquariums containing glass distilled aerated water. 

Adult male rats were obtained from Charles River Breeding 

Laboratories (Wilmington, Massachusetts). They were housed in an air 

conditioned room and supplied food and water ad libitum. 

The snails used in the project were Viviparus malleatus which 

were collected from Silver Lake in North Kingston, Rhode Island. 

Snails were housed in fresh water aquariums in the animal quarters at 

the University of Rhode Island. 

C. Analytical Procedures 

1. Toxicity Due to Parathion 
and Paraoxon Exposure in 
Water in Viviparus and 
Orconectes 

The effect exposure to parathion or paraoxon in the water 

environment had on Orconectes or Viviparus was determined by placing 

the crayfish individually or snails in groups of three in 1 liter 

beakers containing 500 ml of glass distilled water. Tygon tubing 

connected to a 11 Silent Giant 11 air pump produced a constant gentle air 

stream to the beakers. Parathion or paraoxon dissolved in ethanol was 

then added to the beakers to produce different nominal concentration 

levels, where some of the beaker concentratons were theoretically 

greater than the solubility of parathion in the water. Control 



experiments were done to determine the effects of ethanol, air being 

pumped, maximum possible number of animals per beaker and the possi-

bility of parathion leaching into and then out of the glassware. The 
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animals were observed for periods of 24, 48 and 96 hours and recordings 

made of toxic signs and/or death if they occurred. 

2. Snail Toxicity to Parathion 
Due to Direct Injection 

The possibility that the route of administration may alter 

toxicity was investigated by the direct injection or parathion into 

the snail Viviparus malleatus rather than through exposure in the water 

environment. A small hole was made in the shell of the snail by filing 

down the shell and then boring a hole in the shell with a dissecting 

needle. Samples of parathion dissolved in ethanol were injected into 

the snail, and observations made after 24, 48 and 96 hours . 

3. E_-Nitrophenol 
Spectrophotometric Assay 

Livers from rats, hepatopancreas and gills from crayfish 

(Orconectes rusticus) and whole intestinal tissues of snails (Viviparus 

malleatus) were removed, blotted and weighed. Three grams of tissue 

were then homogenized in 9 ml of a cold solution of 0.15M NaCl, 0.015M 

MgS04, and 0.008M nicotinamide. The homogenate was centrifuged at 

6,000 x g for 15 minutes in a Sorvall refrigerated centrifuge. 

The 6,000 x g supernatant fraction was used in the following 

assay procedure to determine the production of E_-nitrophenol . The 

i ncubation mixture consisted of 1 .5 ml supernatant fract i on, 0.18 ml of 
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phosphate buffer pH 8.0 (buffer made from 5.3 ml of 0.05M monobasic 

soldium phosphate plus 94.7 ml of 0.05M dibasic sodium phosphate 

diluted to 200 ml containing 0.1 % Triton X-100), 0.12 ml H2o, 0.12 ml 

NADP (100 mg/10 ml), 0.17 ml glucose 6 phosphate (85 mg/10 ml), and 

0.10 ml parathion (12.0 mg/ml in ethanol) or, when the metabolism of 

paraoxon to diethyl phosphate and Q_-nitrophenol was being tested 100 µg 

of paraoxon in 10 µl of ethanol. Thus the 2.19 ml incubation flask 

contained 9.8 mM monobasic sodium phosphate 0.21 M dibasic sodium 

phosphate, 2.5 mM glucose-6-phosphate 0.188 mM parathion and 0.737 mM 

NADP or 0.735 mM NADPH. The reaction was started by addition of the 

substrate. This mixture was incubated in 20 ml glass beakers aero­

bically at 37° C for either 30 or 60 minutes in a Dubnoff precision 

scientific metabolic shaker. 

In some experiments the incubation mixture contained 

dithiothreitol (l0-4M) to protect sulfhydryl groups. On other occasions 

NADP was replaced by NADPH in the incubation mixture for comparison 

purposes. Appropriate tissue blanks were also included. Inactivation 

of supernatant fractions for control value determinations (spontaneous 

hydrolysis) was accomplished by boiling the sample for 15 minutes. 

The reaction was tenninated by addition of 5.0 ml of cold 

acetone. The samples were then alkalinized by the addition of 0.5 ml 

of 0.5 M glycine-NaCH buffer (pH 9.5). The mixture was left to stand 

in test tubes at -10° C for 30 minutes. The samples were centrifuged 

to remove the acetone precipitated protein . The optical density of the 

supernatant was determined at 410 nm using a Beckman model DBG 
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spectrophotometer. The amount of Q_-nitrophenol produced was determined 

by comparing absorbance values with those obtained from standards. 

Corrections were made for nonenzymatic hydrolysis by incorporating 

appropriate control {heat deactivated homogenate) and blank samples. 

The results were expressed as µg of 2_-nitrophenol formed/hour/gram of 

tissue. 

4. Procedure for Spotting, 
Scraping, and Eluting 
Samples off Thin Layer 
Chromatography Plates 

Thin layer chromatography was used to separate, identify and 

quantify parathion and its metabolic products. 

Silica Gel-G coated TLC plates 250 microns in thickness were 

used. The plates were spotted with microliter quantities of parathion, 

paraoxon, 2_-nitrophenol, diethyl phosphate, diethyl phosphorothionate 

or unknown above the level of the solvent bath present in the chroma­

tography tank. The solvent system employed consisted of hexane, 

chloroform, and methanol 7:2:1, all pesticide grade. One hundred ml of 

solvent mixture was used with this amount forming a 1 cm deep pool of 

solvent in the · tank. A large square of filter paper was placed in the 

tank to assure saturation. 

The solvent front was allowed to develop to 10 cm before the 

plate was removed from the tank to dry. Identification of the separated 

spots was aided by the use of Rhodamine B 0.1 mg/ml in ethanol which 

was sprayed on the plate until a light pink color covered the plate. 

The plate was then viewed under ul traviolent light where the parathion 



44 

and metabolite spots were plainly visible against a light background. 

When radioactive compounds were to be recovered, the sprayed 

plates were marked to isolate the desired area of the plate to be 

scraped by tracing around the area with a dissecting needle. That area 

of the coating was scraped from the plate with a small spatula. The 

silia gell coating was then retrieved with the use of a glass wool 

plugged eye dropped attached to a vacuum hose. Care was taken to be 

sure no significant amount of coating was lost in this process and 

controls were run to determine the effectiveness and reliability of 

this process. The glass wool containing the Silica Gel G and compounds 

was then deposited into a scintillation vial containing Hydromix 

Packard Liquid Scintillation Counter. Blanks and controls were 

included to determine the effect of the glass wool, Silica Gel G and 

Rhodamine B spray. Raw counts were used for all subsequent data 

calculations. 

5. Elution Procedure 

Parathion and metabolites were recovered from the TLC plates 

in liquid form for subsequent gas liquid chromatograph characterization 

or as a comparison to the above procedure by scraping the area of the 

plate and then using the eye dropper technique to transfer the coating 

along with glass wool to a vial containing 5 ml of anhydrous ethyl 

ether. This mixture was shaken and poured into a funnel with filter 

paper. The filtering funnel was rinsed with 5 ml more of ether, and 

the liquid containing the parathion or metabolites was evaporated with 
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suction down to less than 4 ml. The ether was then placed into a 

scintillation counting vial containing 10 ml of Hydromix and counted or 

analyzed with the gas chromatograph. 

6. Extraction of Parathion and 
Metabolites from Water 
Samples 

The extraction of parathion, paraoxon, .P_-nitrophenol, diethyl 

phosphate and diethyl phosphorothionate from 500 ml samples of water 

was done using anhydrous ethyl ether as the sole extracting solvent. 

The water sample was placed in a large (1000 ml) separatory 

funnel and extracted with 40 ml of ether. The sample was shaken for 2 

minutes. The ether layers from three consecutive extractions were 

pooled and passed through a glass column containing 3 inches of 

anhydrous sodium sulfate to remove any water. Ether layers that were 

in a semigel state had additional 20 ml ether portions added to 

re-establish the more liquid state before passage through the column. 

The dried sample was then placed in rotary evaporator flasks and the 

volume reduced under suction but without heat. The sample was then 

either spotted on a thin layer chromatography plate or injected into 

the gas chromatograph. 

7. Extraction of Parathion and 
Metabolites Excreted into 
Water Samples by Crayfish 

Four crayfish were individually placed into 1 liter beakers 

contain i ng 500 ml of glass distilled water. The water in two of the 

beakers then had 14c parathion labeled in the ethyl group added while 



the other two beakers had 14c parathion ring labeled added. The 

amounts of parathion added to all of the beakers were such that a 

concentration of 100 ppb was attained. One and one-half hours after 

exposure, the crayfish were removed from the water and frozen for 
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subsequent analysis of their tissues for parathion and metabolites. 

The water in which they were exposed was immediately extracted employ­

ing the water extraction procedure to determine if any metabolites 

could be detected. 

8. Extraction of Parathion and 
Metabolites from Crayfish 
and Snail Tissue 

The recovery of parathion and metabolites from the tissues 

of crayfish following exposure to parathion in water was accomplished 

using the crayfish that had been exposed to 100 ppb parathion and then 

frozen. The same procedure for extraction from tissue was performed on 

the whole snail tissue from the snails that were exposed to radio-

activity labeled parathion at a concentration of 320 ppm for 48 hours. 

The day following the exposure, the hepatopancreas and tail 

muscles of the 14c-ethyl parathion exposed crayfish tissue were pooled 

as were the tissues from the crayfish exposed to the ring labeled 

compound. The tissues were homogenized with a blade homogenizer in 

9 ml of ether for 30 seconds. The homogenate was then scraped into 

centrifuge tubes containing 9 ml of ether. The tissue attached to the 

homogenizer blades was rinsed into the tube with additional ether. The 

centrifuge tube containing the tissue and ether was shaken for 2 minutes 



and then centrifuged at low speed to separate the tissues from ether 

layer. 

Following the centrifugation the ether layer was removed with 
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a Pasteur pipet and transferred to a rotary evaporator flask. The 

sample was then evaporated without heat to a volume small enough to be 

spotted onto TLC plates. The plates were developed and sprayed as 

described along with standards for identification of the products. The 

spots were removed and counted in the liquid scintillation counter to 

quantify the amount of product recovered. 

9. Production of 2_-Nitrophenol, 
Paraoxon, Diethyl Phosphate 
or Diethyl Phosphorothionate 
from Parathion via in vitro 
Metabolism by Orconectes or 
Viviparus Tissues 

The procedure for this assay was almost identical to that for 

the 2_-nitrophenol spectrophotometric assay. 

Tissues from snail or crayfish were removed and homogenized 

in NaCl, MgS04, nicotinamide in the same way. The tissue was incubated 

in the same way with the parathion added to initiated the reaction 

containing a known amount of radioactive parathion. Ring labeled 14c 

parathion was used to follow the fate of parathion, paraoxon and 

2_-nitrophenol while 14c ethyl label was employed to investigate the 

possible production of diethyl phosphate and diethyl phosphorothionate. 

The reaction was stopped by the addition of 5 ml of cold ether 

and the mixture was stored in glass stoppered test tubes. The mixture 
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was extracted with two 5 ml portions of ether by shaking the sample 

with ether for 2 minutes and removing the ether layer and depositing it 

into flash evaporator flask. The extraction solvent was then evapora­

ted under suction without heat to a small volume (300 µl) which was 

subsequently spotted on thin layer chromatography plates. The plates 

were developed and sprayed as previously described and the spots 

corresponding to metabolites were scraped and placed in scintillation 

vials. The amount of parathion that was metabolized to the -other 

products was determined by the relative amounts of radioactivity found 

in parathion spot versus the .E_-nitrophenol, paraoxon, diethyl phosphate 

and diethyl phosphorothionate spots. 



IV. Results 

A. Parathion Toxicity 

The fresh water snail Viviparus malleatus was not sensitive to 

parathion in the dose range to which the animal was exposed in these 

experiments. A level of 1000 ppm failed to exert any observable toxic 

effects on the snail (table 3). The solubility of parathion in water 

is only 20 ppm so the attempt to create a 1000 ppm concentration was to 

be certain that saturation was reached. 

The crayfish Orconectes rusticus demonstrated extreme sensitiv­

ity to parathion exposure in its water environment. Concentrations as 

low as 1 .0 parts per billion (ppb) produced death in 100% of the cray­

fish exposed in less than 24 hours (table 2). The toxicity was evi­

denced by twitching movements and exaggerated muscle contractions in 

response to provocation immediately before death. 

The concentration of 0.1 ppb was the only concentration that 

did not produce 100% lethality in 24 hours. Three of the four cray­

fish tested at that concentration did die in 24 hours. The remaining 

animal dies in less than 48 hours. 

It should be noted that it was necessary to employ new tygon 

tubing, new air stones and new beakers for this study as it was shown 

that beakers that had contained parathion and were subsequently cleaned 

could still leach enough parathion to cause death to crayfish. 
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TABLE 2 

SUSCEPTIBILITY OF ORCONECTES RUSTICUS TO 
PARATHION EXPOSURE IN WATER 

Exposure 
Concentration 

(ppb) 

0 
0. 1 
1.0 

10.0 
100.0 

4 
4 
4 
4 
4 

aNumber of animals individually exposed. 

TABLE 3 

Number dying in 
24 hours 48 hours 

0 
3 
4 
4 
4 

0 
1 

SUSCEPTIBILITY OF VIVIPARUS MALLEATUS TO 
PARATHION EXPOSURE IN ~JATER 

Exposure 
Concentration 

Na (ppm) 

0 6 
32b 6 

100 6 
320 6 
500 6 

1000 6 

aNumber of animals exposed . 

bParathion solubility in water is 20 ppm. 

Number dying in 
24 hours 48 hours 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 



51 

The calculation of Tlm50 values for these data was not possible 

because of the lack of snail susceptibility and extreme crayfish 

sensitivity. 

The resistance of the snails to parathion was further studied 

by injecting the snail directly with parathion. The two snails that 

were each injected with 5.0 mg (approximately 250 mg/kg) of parathion 

showed no toxic sign in 96 hours. 

B. Paraoxon Toxicity 

The susceptibility of Viviparus malleatus or Orconectes 

rusticus was determined for the oxygen analog of parathion, paraoxon. 

These data show no snail mortability due to paraoxon exposure at 10 

ppm exposure in 96 hours (table 5). 

The crayfish was extremely senstitive to paraoxon (table 4). 

All of the animals exposed to concentrations ranging from 0.1 to 20 ppb 

died in less than 24 hours and exhibited the same toxic signs (e.g., 

twitching movements and exaggerated muscle contractions in response to 

provocation) as those that dies in the parathion exposure experiment. 

The resistance of the snails to paraoxon was studied by 

injecting paraoxon directly into two snails. The snails that were each 

injected with 1.0 mg (approximately 50 mg/kg) of paraoxon showed no 

toxic signs in 96 hours. 

C. Q_-Nitrophenol Spectrophotometric Assay 

The spectrophotometric _p_-nitrophenol assay measured the 

production of .P_-nitrophenol from parathion by crayfish hepatopancreas, 



TABLE 4 

SUSCEPTIBILITY OF ORCONECTES RUSTICUS TO 
PARAOXON EXPOSURE IN WATER 

Exposure 
Concentration 

(ppb) 

0 .1 
0.33 
0.5 
1.0 
3.3 

10 
20 

2 
4 

10 
10 
10 
10 

2 

aNumber of animals individua11y exposed. 

TABLE 5 

SUSCEPTIBILITY OF VIVIPARUS MALLEATUS TO 
PARAOXON EXPOSURE IN WATER 

Exposure 

52 

Number dying in 
24 hours 

2 
4 

10 
10 
10 
10 

2 

Concentration 
Na 

Number dying in 
{ppb) 24 hours 48 hours 96 hours 

1.0 3 0 0 0 
1.8 3 0 0 0 
3.2 3 0 0 0 

. 5 .6 3 0 0 0 
10 3 0 0 0 

aNumber of animals exposed. 
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crayfish gill, snail whole intestine and rat liver homogenates . 

The results of these experiments are presented in table 6. 

These data show that rat liver homogenates produce .E_-nitrophenol from 

parathion at a rate of 32.40 µg/hour/gram tissue when determined over 

a 1 hour incubation period. The male rat is a species known to be 

susceptible to parathion toxicity at a dose of 7.0 mg/kg ip (Benke and 

Murphy, 1975) . 

The homogenate of whole snail intestine did not produce 

.E_-nitrophenol at a level that could be measured by this technique. The 

possibility that the reaction that could produce .E_-nitrophenol by these 

tissues was NADPH dependent and that the NADPH generating system 

employed in the assay procedure was ineffective in the incubation mix­

ture was tested by the addition of NADPH in place of NADP. No 

.E_-nitrophenol was detected. Dithiothreitol at 10-4 M was also tested 

for its effect on .E_-nitrophenol production. However, no .E_-nitrophenol 

production was discernible. 

The hepatopancreas of crayfish Orconectes rusticus was 

evaluated using the .E_-nitrophenol assay for its ability to metabolize 

parathion. The data of table 6 show that no conversion of parathion 

to .E_-nitrophenol by Orconectes hepatopancreas homogenates could be 

detected. 

The effect the addition of NADPH and/or OTT would have on the 

production of .E_- nitrophenol was also tested. No convers i on of para­

thion to .E_-nitrophenol could be detected using the spectrophotometric 

assay. 



TABLE 6 

IN VITRO METABOLISM OF PARATHION WITH THE PRODUCTION OF P-NITROPHENOL 
~~ MEASURED SPECTROPHOTOMETRICALLY 

Tissuea 

Rat 1 i ver 
Crayfish gi 11 
Crayfish gi 11 
Crayfish hepatopancreas 
Crayfish hepatopancreas 
Crayfish hepatopancreas 
Crayfish hepatopancreas 
Crayfish hepatopancreas 
Snail intestine 
Snail intestine 
Snail intestine 
Snail intestine 

Nb 

6 
7 
2 

21 
7 
2 
2 
2 

33 
2 
2 
2 

aThree grams of tissue used. 

bNumber of Animals. 

cDithiothreitol 10-4 M. 

dPresent in incubation mixture. 

eAbsent from incubation mixture. 

Incubation 
Time 

(hour) 

1.0 
1.0 
0.5 
1.0 
0.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

NADP 

+d 
+ 
+ 
+ 
+ 

+ 
+ 

+ 

NADPH 

+ 
+ 

+ 

e 

DTTc 

+ 
+ 

+ 
+ 

µg .Q_-Nitrophenol 
g Tissue/Hour 

32.4 ± 1.9 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 

lJ1 
.i::. 
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The lungs of mammals have the ability to metabolize parathion, 

are in ready contact with the material and are capable of lipid 

absorption, so the gills of Orconectes were tested for parathion 

metabolizing ability as a comparison. The data in table 6 show that 

no .e_-nitrophenol production could be detected using that tissue and 

the spectrophotometric assay. 

0. Thin Layer Chromatography 

The use of Rhodamine B spray (0.1 mg/ml ethanol) made it 

possible to visually identify parathion, .e_-nitrophenol, paraoxon, and 

diethyl phosphorothionate spots under ultraviolet light. Initial 

experiments determined that 1 .0 µg of parathion spotted on a TLC plate 

and subsequently developed with the hexane; chloroform, methanol, 

solvent mixture (7:2:1) could be visualized. Amounts of parathion 

below 1 .0 µg were occasionally difficult to visualize so that identi­

fication was inconsistent. 

The efficiency and reliability of the techniques used in this 

study that required TLC were evaluated. The Rf values for .e_-nitro­

phenol, paraoxon, parathion and diethyl phosphorothionate were 0.17, 

0.42, 0.69 and 0.75 respectively, using the hexane, chloroform, 

methanol (7:2:1) system with the 250 µSilica Gel-G plate, but because 

the Rf value of a compound may change with slight alterations in the 

solvent mixture, standards were run concurrently with the unknowns to 

facilitate accurate identification. 

Radioactive parathion and its metabolites were separated, 
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identified and quantitatively recovered by TLC using techniques that 

required knowledge of the effect glass wool, Silica Gel-G and Rhodamine 

B spray would have on recovery and counting efficiency. Preliminary 

tests determined that glass wool, scraped Silica Gel-G coating and 

Rhodamine B spray in the amounts used in these experiments did not 

interfere with the liquid scintillation counting procedure. 

The efficiency of the procedure used to recover parathion and 

its metabolites from TLC plates is presented in table 7. These data 

show that TLC followed by liquid scintillation counting could be 

effectively used as a procedure for the separation, identification, 

recovery and quantification of parathion and its metabolites. 

E. Extraction of Parathion and Metabolites 
From Water Samples 

The extraction of parathion and metabolites from water samples 

was necessary to evaluate the excretion of parathion metabolites from 

crayfish and snails exposed to the pesticide. Prior to experiments to 

determine if parathion and/or metabolites could be recovered, the 

efficiency and reproducibility of the extraction process was determined 

(table 8). The ether extraction procedure of water samples extracted 

77% of the parathion in the sample with less than 10% standard error. 

The ability of crayfish to metabolize parathion and then to 

excrete those metabolites into their water environment was tested by 

exposing the crayfish for 1-1/2 hours to water samples containing 100 

ppb parathion (labeled in the ring or ethyl position) and then deter-

mining the metabolites present in the water samples. The ether 



TABLE 7 

EFFICIENCY OF THIN LAYER CHROMATOGRAPHY PROCEDURES 

Procedure Na CPM Percentb 
Recovery 

Scrape sprayed plate (background) 4 23 ± 0.4 

Spot radioactive parathion on 
plate, no development, spray and 
scrape 4 224 ± 5.7 100 

Spot radioactive parathion on 
plate, develop platec spray and 
scrape 4 196 ± 3.7 81 

Spot radioactive parathion on 
plate, no development, spray, d 
scrape elute sample off coating 
count 4 200 ± 5.8 92 

aNumber of samples run. 

bEqual amount of stock radioactive parathion was placed directly 
into scintillation vials to compute percent recovery. 

cHexane, chloroform, methanol 7:2:1, was developing solvent, 
Silica Gel-G 250 µthick plate. 

dEther used to elute sample (10 ml added and then evaporated to 
less than 4 ml for counting. 
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346 
388 
375 
414 

+ 412 

TABLE 8 

EFFICIENCY OF THE ETHER EXTRACTION OF 
PARATHION FROM WATER SAMPLES 

Standarda CPM 

343 
292 

+ 260 

Extracted Sampleb CPM 

x 387 ± 12.0 = 2.5 µg parathion x 298 ± 24.0 = 1 .9 µg parathion 
= 3.85 ppb 

aStandards were the radioactive compounds placed directly into 
scintillation vials. The amount of radioactive parathion was equiva­
lent to 2.5 µg or the amount of parathion in 500 ml of water to equal 
5 ppb. 

bsamples were 2.5 µg of radioactive parathion dissolved in 500 ml 
of water and then extracted using the water extraction procedure. 
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extraction, thin layer chromatographic separation and scintillation 

counter quantification technique was used for that determination. The 

data in table 9 show that unquestionably the vast majority of the 

total amount of compound recovered from the exposure was in the form of 

parathion. 

The snails were exposed to 320 ppm of ring labeled parathion 

for 48 hours with subsequent extraction of the aquarium water as with 

the crayfish (table 10). The results presented in tables 9 and 10 

show that for both the crayfish and the snail there was no excretion 

of parathion metabolite into the water environment. There was no 

production of 2_-nitrophenol with either species. However high values 

for 2_-nitrophenol were obtained which was shown to be due to spontane­

ous hydrolysis. 

F. Evaluation of Parathion and Metabolites Accumulation in 
Crayfish and Snail Tissues Following Parathion 

Exposure in a Water Environment 

To study the accumulation of parathion by tissues of the 

species animals were exposed to 100 ppb 14c labeled parathion for 

one-half hour and were then sacrificed for subsequent analysis. The 

extraction of labeled 14c parathion and metabolites from crayfish 

tissues showed that there was no indication of any accumulation of 

these compounds in hepatopancreas or muscle tissues. The data (table 

11) show that when hepatopancreas or muscle samples from animals 

exposed to ring or ethyl labeled 14c parathion were pooled, no accumu-

lation could be detected. 



TABLE 9 

PARATHION METABOLISM AND EXCRETION INTO THE WATER ENVIRONMENT BY ORCONECTES RUSTICUS 

CPM for Area of TLC Plate Corresponding to:a 
Exposure 

Label a 
Concentration diethyl-

ppb Q_-Ni tropheno 1 Paraoxon Parathion phosphorothionate 

Ethyl 100 . 23b 23b 556 22b 

Ethyl 100 24b 22b 396 23b 

Ring 100 45C 34b 211 22b 

Ring 100 54C 29b 283 26b 

-
aRaw counts {not corrected for background). 

bValue not above background (does not indicate compound production-test sensitivity 4.7 µg ethyl 
and 9.3 µg ring). 

cHigh value due to spontaneous hydrolysis. 

°' 0 



TABLE 10 

PARATHION METABOLISM AND EXCRETION INTO THE WATER ENVIRONMENT BY VIVIPARUS MALLEATUS 

CPM for Area of TLC Plate Corresponding to: 
Exposure 

Concentration Diethyl-a Label ppm Q_-Nitrophenol Paraoxon Parathion Phosphorothionate 

Ring 

Ring 

320 12lc 42b 393 

320 128c 38b 400 

al 4c labeled parathion sample. 

bValues do not indicate compound production (test sensitivity 16 mg). 

cHigh value due to spontaneous hydrolysis. 

2lb 

25b 

en _, 



TABLE 11 

ACCULUATION OF PARATHION AND METABOLITES IN ORCONECTES RUSTICUS TISSUES FOLLOWING EXPOSUREa 

CPM for Area of TLC Plate Corresponding to: 

Diethyl-
Tissue Nb Q_-Nitropheno 1 Paraoxon Parathion Phosphorothionate 

Hepatopancreasc 2 25e 24e 

Hepatopancreas d 2 24e 22e 

Muse lee 2 25e 26e 

Muscled 2 24e 29e 

--
aOne and one-half hour exposure to 100 ppb. 

bNumber of animals pooled sample was taken from. 

cl 4c label used for exposure (Ring) (Test sensitivity 9.3 µg). 

dl 4c label used for exposure (Ethyl) (Test sensitivity 4.7 µg). 

25e 

25e 

26e 

30e 

eValues do not indicate any production or accumulation of parathion or metabolite. 

26e 

25e 

26e 

30e 

°' N 



The accumulation of parathion or metabolites in snails was 

tested by exposing two snails to 14c ring labeled parathion at a 

concentration of 320 ppm for 48 hours. The animals were then 

sacrified and their tissues analyzed for parathion and metabolites. 

The data in table 12 show that there was no accumulation of parathion 

or metabolites in Viviparus malleatus. 

G. Production of Parathion Metabolites by Crayfish 
Hepatopancreas and Whole Snail 

Intestinal Tissue 
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An assay was developed to utilize the procedures employed to 

determine if crayfish hepatopancreas or snail intestinal homogenates 

could metabolize parathion to £_-nitrophenol, paraoxon or diethyl 

phosphorothionate in vitro. The results obtained by the incorporation 

of radioactive parathion into the £_-nitrophenol spectrophotometric 

assay procedure followed by the extraction of the incubation mixture 

to recover parathion and any radioactive metabolites are presented in 

tables 13 and 14. 

The results (table 13) show that there was no production of 

.e..-nitrophenol, paraoxon or diethyl phosphorothionate from snail tissues 

that were active or deactivated by boiling. That there was 120 µg of 

radioactive parathion present in the incubation mixture (4.0 cpm/µg for 

ring label and 3.0 cpm/µg for ethyl label) and a large percentage of 

that radioactivity was effectively extracted, separated and recovered 

is illustrated by the CPM values for parathion itself. 

The resu l ts of the experiments with crayfish hepatopancreas 



TABLE 12 

ACCUMULATION OF PARATHION AND METABOLITES IN VIVIPARUS MALLEATUS TISSUES FOLLOWING EXPOSUREa 

CPM for Area of TLC Plate Corresponding to: 

Tissue Nb £_-Ni tropheno l Paraoxon 

Whole Snailc 2 30d 

aForty-eight hours exposure to 320 ppm parathion. 

bNumber of animals pooled sample was taken from. 

26d 

cRing 14c label used for exposure (test sensitivity 16.0 µg). 

Parathion 

27d 

Di ethyl­
Phosphorothi onate 

27d 

dValues do not indicate any production or accumulation of parathion or metabolite. 

°' ~ 



Tissueb 

TABLE 13 

METABOLISM OF 14c LABELED PARATHIONa INTO P-NITROPHENOL, PARAOXON, AND 
DIETHYL PHOSPHOROTHIONATE BY VIVIPARUS MALLEATUS 

Counts Per Minute 
Position Diethyl 

Present NC of Label £_-Nitrophenol Paraoxon Parathion Phosphorothionate 

Deactivatedd 4 Ethyl 19 19 105 20 

Active 4 Ethyl 20 21 149 20 

Deactivated 4 Ring 24 22 126 21 

Active 4 Ring 23 20 170 20 
-

aOne hundred twenty µg (4.0 cpm/µg ring label, 3.0 cpm/µg ethyl label) (test sensitivity 11.5 µg 
ring and 15.3 µg ethyl). 

bWhole tissue homogenate equivalent to 0.5 g of tissue (1 hour incubation). 

cNumber of animals tested. 

dBoiling 15 minutes. 

O'\ 
<..Tl 



Ti ssueb 
Present 

None 

Active 

Deactivatede 

Active 

Deactivated 

TABLE 14 

METABOLISM OF 14c LABELED PARATHIONa TO P-NITROPHENOL, PARAOXON, AND 
DIETHYL PHOSPHOROTHIONATE BY ORCONECTES RUSTICUS 

Counts Per Minute 
Position 

NC of Label e_-Ni tropheno 1 Paraoxon Parathion 

4 Ethyl xd x 720.2±22.7f 

4 Ethyl x 23.0 0.57 534.3±50.7f 

4 Ethyl x 25.0 1.35 511.7±65.6f 

4 Ring x x 228.0±10.2f 

4 Ring x x 189.5±09.3f 

Diethyl 
Phosphorothfonate 

27.0±2.6 

22.6±1.2 

22.7±1.2 

x 

x 

aFifty µg (13 cpm/µg ring label, 30 cpm/µg ethyl label) (test sensitivity 3.5 µg Ring and 1.5 µg 
Ethyl). 

bHepatopancreas homogenate (1 .5 ml) used in incubation (1 hour) mixture equivalent to 0.1 g of 
tissue. 

cNumber of animals tested. 

dx = no spot on TLC plate or CPM was below blank. 

eBoiling for 15 minutes. 

fSignificantly different from blank, using student's !_-test (e_<0.05). 

°' °' 
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incubation with labeled parathion are presented in table 14. These 

data show that there was no metabolism of parathion to diethyl phos-

phorothionate, paraoxon or E_-nitrophenol in the active tissues or 

deactivated tissues. The fact that sufficient labeled parathion (50 

µg, 13 cpm/µg ring label, 50 µg, 30 cpm/µg ethyl label) was added to 

the incubation mixture to determine metabolism of the organophosphate, 

if it were present, is shown by the high radioactive recovery of para-

thion from all the samples tested. 

H. In Vitro Metabolism of Paraoxon by 
Orconectes and Viviparus 

The possibility that both crayfish and snails might be able to 

metabolize the oxygen analog of parathion, paraoxon, to diethyl 

phosphate and E_-nitrophenol was evaluated by using the E_-nitrophenol 

spectrophotometric assay with paraoxon added to initiate the reaction 

in place of parathion. The results from this experiment (table 15) 

show that in no instance did crayfish or snail tissue demonstrate any 

significant production of E_-nitrophenol that could be measured by this 

method. 
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TABLE 15 

IN VITRO METABOLISM OF PARAOXON TO P-NITROPHENOL BY ORCONECTES 
AND VIVIPARUS DETERMINED SPECTROPHOTOMETRICALLY 

Species Tissuea Nb Paraoxonc Abs.±S.E.d 

ViviEarus 0 2 no 0.135±0.015 

ViviEarus + 2 no 0.144±0.000 

ViviEarus 0 2 yes 0.208±0.002 

ViviEarus + 2 yes 0.204±0.000 

Orconectes 0 2 no 0.084±0.001 

Orconectes + 2 no 0.087±0.001 

Orconectes 0 2 yes 0 . 1 51±0. 000 
Orconectes + 2 yes 0.149±0.003 

No Tissue 2 yes 0.074±0.004 

aO = tissue (ViviEarus intestine equivalent to 0.5 g, Orconectes 
hepatopancreas equivalent to 0.1 g) deactivated by boiling 15 minutes. 

+ = tissue active. 

bNumber of samples tested. 

eyes = 10 µl of 10 µg/µl paraoxon in ethanol added to incubation 
mixture. 

no = paraoxon not added to incubation mixture. 

dAbsorbance measured at 410 nm ± standard error. 



V. Discussion 

The investigation of the metabolism of parathion by fresh 

water invertebrates is more than an academic exercise in pesticide 

metabolism and detection. The problems that followed the use of the 

chlorinated hydrocarbon pesticides were in part due to the lack in 

understanding of the environmental consequences of their use and 

ignorance as to the effects the compounds would have on organisms other 

than the target species and man. 

The increase in use of the organophosphates along with a 

limited understanding of their toxicity and metabolism in nonmammals is 

a situation analogous to the one that led to problems with chlori:;rated 

hydrocarbon pesticides. Nicholson et al. (1962) did investigate the 

environmental exposure consequences of parathion and showed that para­

thion would accumulate in a farm pond, and that it would persist in the 

environment for at least nine months. These times are similar to those 

that were reported by Faust (1964). 

Nicholson et al. (1962) showed that following the normal 

agricultural spraying of an orchard, concentrations of l .22 ppb of 

parathion could be detected in a farm pond that was subject to rain 

runoff from that orchard. The concentration of parathion recovered 

from the bottom mud samples from that pond were even greater than the 

concentrations in the water. Nicholson's evaluation of the fauna 

69 
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present in the farm pond showed no crayfish present. 

The environmental implications of parathion use were considered 

an integral part of the stimulus for this project, as the possible 

toxocity and/or metabolism of parathion by Orconectes rusticus and 

Viviparus malleatus would be a result of environmental exposure. The 

determination of parathion-induceci toxicity to Orconectes or Viviparus 

was investigated with an awareness of the environmental exposures 

possible and an interest as to the possible accumulation of the toxin 

and/or metabolites in the species. 

The results obtained by the exposure and injection toxicity 

experiments have shown that the snail Viviparus malleatus is not 

susceptible to acute parathion induced toxicity, and no accumulation of 

parathion or metabolites were detected in the snail. This correlates 

with the work of Yu and Sanborn (1975) who could not detect any 

accumulation of parathion in snail tissues following exposure to the 

pesticide. The toxicity data derived concerning the crayfish 

Orconectes rusticus demonstrates the opposite, that Orconectes is 

susceptible to acute parathion induced toxicity at the extremely low 

concentration of 1.0 ppb. Realizing that parathion concentrations of 

greater than l .0 prb can be attained in natural waters as a result of 

the normal agricultural use of parathion and that no crayfish were 

reported in the pond investigated by Nicholson et al. (1962), the 

possibility that the use of parathion may have deleterious effects on 

the crayfish populations gains credence. 

The reasons why parathion exposure was toxic to Orconectes 
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and not to Viviparus were evaluated by this project. The fact that 

acute toxicity due to parathion exposure is due to its inhibition of 

AChE had been shown by many investigators and that evidence has been 

presented in the literature review section. It is important to 

remember that parathion itself is not the compound that exerts the 

inhibition of the AChE enzyme but rather the desulfurated metabolite of 

parathion, paraoxon. Previous research has shown that not only must 

parathion be metabolized to paraoxon to produce toxic effects but 

parathion can be metabolized directly to relatively nontoxic meta­

bolites diethyl phosphorothionate plus .P_-nitrophenol or diethyl phos­

phate plus .P_-nitrophenol, through the same intermediate which gives 

paraoxon. The toxic compound paraoxon can be detoxified prior to its 

aging to diethyl phosphate and.P_-nitrophenol. Many routes of metabolism 

of parathion and paraoxon other than these two important pathways have 

also been elucidated, such as the glutathion dependent alkyl and aryl 

transformations. These pathways are all presented in Figure 1. The 

important point is that these reactions occur and that the rates at 

which they compete for parathion and paraoxon influences the toxicity 

of parathion exhibited in that particular species (Benke and Murphy, 

1975). 

The parathion exposure experiments showed that Viviparus was 

not sensitive to parathion in its water environment even when the 

solubility of parathion in the water was exceeded while Orconectes was 

sensitive to parathion in its water at 1 ppb. The question that pre­

sented itself was why there was such a species difference in 
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susceptibility. Refering to Figure 1 and with an understanding of the 

data from other investigators the possible mechanisms for these results 

were envisioned. The snail could be resistant to parathion exposure 

due to the following reasons: 

1. Parathion was not entering the shell of the snail. 

2. Parathion was entering the shell but not being metabolized to 

paraoxon, which if produced would cause toxicity. 

3. The parathion was being metabolized extremely rapidly and 

efficiently via pathways 3, 4, 6, 9 or 11 (Fig. 1) to the nontoxic 

metabolites or being bound to tissues where no metabolism could 

occur. 

4. The parathion was being metabolized to paraoxon (pathway 1, Fig. 1) 

very slowly while pathways 2, 5, 7, 8 or 10 were operating very 

quickly. 

5. The snail may be converting parathion to paraoxon but be 

insensitive to paraoxon. 

The goal of the investigation of the resistance of Viviparus 

malleatus to parathion was then to design experiments to determine 

which of these mechanisms was responsible for the lack of parathion 

toxicity in the snail. 

The possibility that the parathion was not entering the shell 

of the snail was evaluated by injecting snails with 5.0 mg/kg. The 

results show that there were no toxic signs demonstrated by the snails. 

Paraoxon was also injected directly into snails. Two snails were 

exposed to 50 mg/kg of paraoxon by direct injection with no toxic 
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signs demonstrated in 96 hours. The results of these two experiments 

establish that the ability of the compound to enter the shell of the 

snail was not a limiting factor in its lack of toxicity. The results 

also show that the snail is resistant to paraoxon as well as parathion 

so that the absence of pathway 1 of Figure 1 would not be the mechanism 

responsible for the animals' resistance to the organophosphate. 

The 2_-nitrophenol spectrophotometric assay was used with whole 

snail homogenates to determine if the snail was capable of metabolizing 

parathion via pathways 2, 3 or 9 of Figure 1. Since these pathways 

are the most important detoxification pathways for parathion resistance, 

the demonstration of measurable 2_-nitrophenol would show that the 

parathion or paraoxon was being detoxified and could possibly be the 

cause for the animals' resistance to parathion and paraoxon exposure. 

The 2_-nitrophenol spectrophotometric assay with whole snail intestine 

did not produce Q_-nitrophenol at a level that could be measured by 

this technique. The reason for the lack of production was not due to 

deficiency of NADPH for dependent enzyme reactions or the destruction 

of essential sulfhydryl groups of the membranes or enzymes, as NADPH 

and dithiothreitol were added. The same spectrophotometric assay 

incorporating paraoxon in the place of parathion was also done to 

determine if pathway 2 of Figure 1 was possible but not detected with 

parathion in the incubation due to the absence of the conversion of 

parathion to paraoxon (pathway 1, Fig. 1). Again, no 2_-nitrophenol was 

produced indicating the lack of pathway 2 route of metabolism. 

The Q_-nitrophenol assay is designed to demonstrate t he presence 
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of metabolism occurring but because the measured compound can be 

produced by numerous pathways if the compound is detected the exact 

pathway followed cannot be determined. A method to determine if 

specific pathways were used in the metabolism of parathion would be to 

determine the presence of the specific compounds paraoxon and diethyl 

phosphorthionate, along with E_-nitrophenol and parathion. 

The extraction of parathion and metabolites from water samples 

measured the excretion of metabolites of parathion into the water 

environments of snails. The results of that experiment (table 10) show 

again that there was no metabolism followed by excretion of parathion 

by the snail. To be certain that there was no metabolism of parathion 

occurring by Viviparus malleatus an experiment was designed where 

homogenates of snail tissue were incubated with radioactive parathion, 

that mixture subsequently being extracted and the metabolites separated 

by thin layer chromatography and quantified by liquid scintillation 

counting. The results (table 13) further substantiate the conclusion 

that parathion is not metabolized by Viviparus malleatus. The snail is 

demonstrating a biologic resistance to parathion, as the inhibition of 

AChE if present has no effect on the organism. 

The crayfish demonstrated susceptibility to acute parathion 

toxicity, and the muscle twitching signs were consistent with AChE 

inhibition. The mechanism by which this toxicity was produced was 

assumed to follow the desulfuration of parathion to paraoxon via 

pathway 1 of Figure 1. This conversion would have to be at a rate 

high enough to account for a paraoxon concentration that would cause 



toxicity. The reaction rates for the toxic conversion reaction and 

detoxification reactions has been shown to be an important factor in 

the toxicity exhibited by species to parathion exposure does not 

establish the existence or absence of detoxifying reactions by 

Orconectes, only the existence of a toxic conversion reaction 
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The goal, then, for the investigation of the Orconectes 

susceptibility to parathion was to demonstrate the presence of the 

reaction coverting parathion to paraoxon and any other metabolic path­

ways present as depicted in Figure 1. This is closely related to the 

question of the accumulation ~f parathion and/or its metabolites in 

crayfish tissues. The results presented in table 11 show that there 

was no accumulation of these compounds in the gill, muscle or hepa­

topancreas of crayfish following exposure to parathion. 

The possibility that the crayfish toxicity was due to concen­

trations of paraoxon too low to detect could not be overlooked in this 

investigation considering the research of Carlson (1973) and Elmanlouk 

and Gessner (1976). They reported that the hepatopancreas of the 

lobster is the organ responsible for drug metabolism, but the 

hepatopancreas of the lobster had very little, if any, observable 

ability to convert parathion to paraoxon. 

Establishing if paraoxon was capable of producing the toxicity 

in crayfish was done by exposing the crayfish to paraoxon in the 

aquarium water as had been done with parathion. The experimental 

results showed that the crayfish was sensitive to paraoxon and that the 

toxic signs exhibited by the crayfish following paraoxon exposure were 



the same as those following parathion exposure. The concentration 

range that produced the toxicity in the crayfish due to paraoxon 

(table 4) was consistent with the theory that the parathion was 

exhibiting its toxicity through conversion to paraoxon and subsequent 

AChE inhibition. 

The toxicity determination experiments did little to increase 

the understanding of the metabolism of parathion by Orconectes. 

Experimental procedures similar to the ones used to determine the 

metabolism of parathion in snails needed to be done to determine the 

pathways of metabolism of parathion and paraoxon in crayfish. 
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The .e_-nitrophenol spectrophotometric assay was used to 

ascertain if any metabolism of parathion or paraoxon could be deter­

mined with that technique. Rats are susceptible to parathion toxicity 

at 7.0 mg/kg i.p. (Benke and Murphy, 1975) so they were used as 

controls in these experiments to compare their metabolism of parathion 

to that in the crayfish. The .e_-nitrophenol assay was perfonned on 

rat liver homogenates as well as homogenates of crayfish hepatopancreas 

and gill (t able 6). The results show t hat the rat liver homogenate 

caused the production of 32.4 µg/hour/gram of tissue when determined 

over a l hour incubation period, but the crayfish hepatopancreas and 

gill homogenates which would be expected to be the organs capable of 

metaboliz i ng parathion produced no .e_-nitrophenol that could be measured 

spectrophotometrically. These results were not due to lack of NADPH 

for dependent enzyme processes or the destruction of vital enzymes 

since the addition both NADPH and dithiothreitol (l0-4 M) added to 



some incubation samples as had been done in the snail tissue experi­

ments, were not effective. 
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Since the E_-nitrophenol assay was done using both parathion and 

paraoxon in the incubation flasks, the assay had the capability of 

monitoring pathways 2, 3 and 9 of Figure 1 all of which cause the 

production of E_-nitrophenol. No E_-nitrophenol could be detected by 

this technique. However, because the crayfish were sensitive to the 

parathion and paraoxon exposures other experimental designs were used 

in an attempt to monitor some metabolism of parathion or paraoxon by 

the crayfish or its tissues. 

The possibility that the crayfish was able to absorb parathion 

from its water environment and then to excrete metabolites of parathion 

back into the water was evaluated. 14c Parathion labeled either in 

the ethyl or ring positions was used for these exposure-excretion 

experiments. Following the exposure of crayfish to labeled parathion 

at a concentration of 100 ppb for 1-1/2 hours, the water in which the 

crayfish were kept was extracted with ether, the samples separated by 

thin layer chromatography and the appropriate spots scraped and counted 

by liquid scintillation counting. The results showed that after the 

spontaneous hydrolysis of stock parathion is considered there was no 

excretion of parathion metabolites into the water that would be 

indicative of parathion metabolism. 

The ability to produce even minute amounts of parathion 

metabolites by crayfish tissues was tested by the use of an incubation 

technique similar to the E_-nitrophenol assay. Homogenates of crayfish 
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hepatopancreas were incubated with 14c parathion in either the ring or 

ethyl positions. When the incubation was completed, the mixture was 

extracted, separated and quantified by thin layer chromatography and 

scintillation counting. The results (table 14) show that there was no 

production of .e_-nitrophenol or paraoxon both of which would be detected 

through the use of the ring label and no production of diethyl phos­

phate or diethyl phosphorothionate detectable through the use of the 

ethyl label. 

Retrospectively, it is easy to propose a number of mechanisms 

by which the metabolism of parathion and paraoxon could be responsible 

for the crayfish exhibited toxicity without the metabolism being 

detected by sensitive mechanisms. The crayfish could be so exquisitely 

sensitive to paraoxon that a very small amount of metabolite below 

detectability could be responsible. The paraoxon that was produced 

could bind with the enzyme to cause AChE inhibition and remain attached 

to the enzyme. The .1IJ.. vivo experiments demonstrated that the crayfish 

are sensitive to very small quantities of paraoxon. Unfortunately the 

.1IJ.. vitro techniques for the detection of .e_-nitrophenol are not quali­

tative and quantitative enough to separate the nonspontaneous 

hydrolytic production of .e_-nitrophenol from the small amounts of 

2_-nitrophenol that would accompany any paraoxon inhibition of AChE. 

The question that rises from these results is how is the 

parathion producing its toxicity if no metabolism can be detected. 



VI. Conclusions 

The goal of determining the toxicity and metabolism of para­

thion in the fresh water invertebrates Orconectes rusticus and 

Viviparus malleatus made the extraction, detection and quantification 

of minute quantities of organophosphate and its metabolites necessary. 

Groups of the crayfish Orconectes rusticus when exposed to 

1.0 ppb or greater of parathion all died. The snail Viviparus 

malleatus was resistant to parathion exposure at the level of parathion 

solubility and to direct injection of parathion with a dose of 

approximately 50 mg/kg. The crayfish demonstrated extreme sensitivity 

to paraoxon exposure and showed the same signs of cholinergic stimu­

lation that were exhibited with parathion exposure, while the snail was 

not effected. 

The ether extraction of water samples for parathion and 

metabolites was both efficient and reproducible. That technique 

demonstrated that neither parathion or metabolites accumulated in the 

tissues of Orconectes or Viviparus following exposure. 

The thin layer chromatography technique used in the investi­

gation was simple, reliable, specific, and sensitive. The combination 

of Silica Gel G 250 µ plates developed in hexane, chloroform, and 

methanol (7 :2:1) and sprayed with Rhodamine B (0.1 mg/ml in ethanol) 

allowed for the ultravio let visualization of as little as 1 .0 µg of 

79 



organophosphate. Excellent separation of £_-nitrophenol, paraoxon, 

parathion, and diethyl phosphorothionate was obtained. 
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The ability of the crayfish and the snail to metabolize 

parathion was determined through the use of the £_-nitrophenol spectro­

photometric assay, the investigation of excreted metabolites that were 

extractable from water samples, the determination of the presence of 

metabolites accumulating in tissue, detection of radioactive metabo­

lites from tissue incubation experiments and the toxicity experiments. 

All of the experimental data support the conclusion that there was no 

metabolism of parathion by the snail and that this lack of metabolism 

and the insensitivity of Viviparus to paraoxon form the basis for the 

lack of toxicity exhibited by those compounds to the snail. 

The data indicate no metabolism or accumulation of parathion 

or its metabolites by the crayfish, but the conclusion that no 

metabolism was taking place cannot be made as the toxicity experiments 

do not support that contention. 

The data from the £_-nitrophenol spectrophotometric assays with 

parathion and paraoxon using either crayfish or snail tissue revealed 

no production of £_-nitrophenol by either the snail or the crayfish 

indicating that pathways 1, 2, 3 and 9 of Figure 1 could not be 

demonstrated by that technique. 

The extraction experiments show that there was no detectable 

accumulation of parathion or metabolites in Orconectes or Viviparus 

and no detectable excretion of parathion metabolites into the water 

environment. 
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The experiments performed with radioactive parathion incubated 

with either crayfish or snail tissues were unable to demonstrate any 

metabolism of parathion, paraoxon, p_-nitrophenol, diethyl phosphoro­

thionate and diethyl phosphate by crayfish or snails. 

The resistance to parathion and paraoxon demonstrated by the 

snail does not stem from enzyme systems capable of detoxifying the 

compounds. The snail is biologically resistant to the inhibition of 

AChE. 

The mechanism by which parathion exhibits toxicity in 

Orconectes cannot be determined from the results obtained by these 

experiments. The extreme sensitivity to parathion and the clinical 

signs demonstrated by the crayfish following parathion exposure are 

consistent with the production of effective concentrations of paraoxon 

that can inhibit the AChE at synapse and neuromuscular junctions. 

However, until the production of some metabolism of parathion by some 

crayfish tissue can be demonstrated more definitive conclusion cannot 

be made. 
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