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Abstract

Drinking water contamination with poly- and perfluoroalkyl substances (PFASs) poses risks to
the developmental, immune, metabolic, and endocrine health of consumers. We present a spatial
analysis of 2013-2015 national drinking water PFAS concentrations from the U.S.
Environmental Protection Agency’s (US EPA) third Unregulated Contaminant Monitoring Rule
(UCMR3) program. The number of industrial sites that manufacture or use these compounds,
military fire training areas, and wastewater treatment plants are all significant predictors of PFAS
detection frequencies and concentrations in public water supplies. Among samples with
detectable PFAS levels, each additional military site within a watershed’s 8-digit hydrologic unit
is associated with a 20% increase in PFHxS, a 10% increase in both PFHpA and PFOA, and a
35% increase in PFOS. The number of civilian airports with personnel trained in the use of
aqueous film-forming foams (AFFFs) is significantly associated with the detection of PFASs
above the minimum reporting level. We find drinking water supplies for 6 million U.S. residents
exceed US EPA’s lifetime health advisory (70 ng/L) for PFOS and PFOA. Lower analytical
reporting limits and additional sampling of smaller utilities serving <10,000 individuals and

private wells would greatly assist in further identifying PFAS contamination sources.
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Introduction

Poly- and perfluoroalkyl substances (PFASs) are a large group of persistent
anthropogenic chemicals used in industrial processes and commercial products over the past 60
years.! Widespread use and extreme resistance to degradation have resulted in the ubiquitous
presence of these compounds in the environment. The 2011-2012 U.S. National Health and
Nutrition Examination Survey reported detectable serum PFAS concentrations in virtually all
individuals (97%).> > Human PFAS exposure has been linked to cancer, elevated cholesterol,
obesity, immune suppression, and endocrine disruption.*® Health concerns in the early 2000s
prompted manufacturers in Europe and North America to phase out production of some long-
chain PFASs.”'? Declines in production of these compounds have been offset by increases in
developing regions such as Asia.® Limited available data suggest widespread exposure to
replacement (short-chain) PEASs may also adversely affect human health.'" '

Human PFAS exposure includes dietary sources, household dust, air, and drinking

13, 14
water. ™

Exposure from drinking water is a serious concern due to the high aqueous solubility
of many PFASs."> '® Relatively low PFAS concentrations can lead to elevated exposures in the

general population.'” Elevated PFAS concentrations in U.S. drinking water have been reported in

15,16, 18, 19 6,16, 20
> 16, 1o, 10,20 |

numerous regions, especially near industrial sites that produce or use them. or
example, perfluorooctanoic acid (PFOA) concentrations 190-fold higher than the lifetime health
advisory (70 ng/L) recommended by the U.S. Environmental Protection Agency (US EPA)*!
were measured in drinking water near a fluorochemical facility in Washington, West Virginia

where PFOA was used in fluoropolymer production.'®

Many civilian airports and military fire training areas have been contaminated by PFASs

contained in aqueous film-forming foams (AFFFs) that are widely used during firefighting
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training activities. Groundwater and surface waters surrounding these sites containing PFAS
concentrations that are three to four orders of magnitude higher than the US EPA health advisory

level for drinking water have been reported.** >

Wastewater treatment plants (WWTPs) are
another important PFAS source because these compounds are not removed by standard treatment
methods®* and labile precursors biodegrade, increasing concentrations in effluent relative to

25,26

influent. Land application of approximately half of the biosolids generated by WWTPs may

contribute to human exposure through subsequent contamination of water, food, livestock, and
wildlife.”’

Understanding nation-wide PFAS exposures from drinking water is important for
identifying potentially vulnerable populations. However, previous studies have mainly focused
on individual point sources of PFAS contamination and site-specific drinking water exposures.'™
' Here we develop a statistical framework for investigating whether increased PFAS
concentrations in drinking water are associated with the number of point sources within a
watershed (represented by an 8-digit hydrologic unit code, from here on abbreviated HUC). We
used publicly available drinking water concentration data for six PFASs from the US EPA’s third
Unregulated Contaminant Monitoring Rule (UCMR3), including: perfluorobutane sulfonic acid
(PFBS), perfluorohexane sulfonic acid (PFHxS), perfluoroheptanoic acid (PFHpA), PFOA,
perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) (Table S1).% We
discuss the utility of the UCMR3 database for identifying PFASs sources to U.S. drinking water

supplies, locations of vulnerable populations, and priorities for future monitoring.

Methods

Drinking water data
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Our analysis included analytical results for six PFASs in 36,149 drinking water samples
from the US EPA’s UCMR3 program collected between January 2, 2013 and December 9,
2015.%® Samples cover all 4,064 public water supplies serving > 10,000 individuals. Data are
also available for 800 public water supplies serving <10,000 individuals but this represents only
a small fraction (0.5%) of the 144,165 in this category. Minimum reporting levels (MRLs) for

the six PFASs analyzed are listed in Table S1.

One limitation of the UCMR3 database is that national data on system intakes for public
water supplies are classified,” making it difficult to place them within a specific hydrological
network. We therefore extracted the zip codes for areas served and aggregated data within 8-digit
HUCs to capture the most detailed hydrologic information that exceeds the spatial resolution of
PFAS data (zip code areas). We used the highest reported PFAS concentrations when multiple
systems were located within a single zip code and/or when multiple zip code areas were located

within the same HUC.

PFAS point sources

Our spatial analysis (Figure S1) included point source information for: (a) 16 industrial
sites listed in the US EPA’s 2010/2015 PFOA Stewardship Program (Table S2);*' (b) 8572
WWTPs;* (¢) 290 military fire training areas that contain 664 military fire training sites;>> and
(d) 533 civilian airports that are compliant with Title 14 Code of Federal Regulations, Part 139
for personnel trained in the use of AFFF (from here on referred to as “AFFF certified
airports™).”* PFASs produced and/or used vary across industrial sites and not all compounds were
associated with all sites. For example, a fluorochemical manufacturing facility in Decatur,

Alabama, produced both PFOS and PFOA,> while only PFOA was used in the manufacturing
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process of another fluorochemical production facility in Parkersburg, West Virginia.”® We
conducted a sensitivity analysis to examine the potential production misclassification bias by
limiting industrial sites to include the ones that only produced or used each specific compound
(Table S3). We used the Google Maps application program interface (API) to geocode
coordinates based on addresses. Potentially important PFAS sources such as landfills, biosolids,
and small industrial PFAS users could not be included in this analysis because comprehensive

geospatial data are not available.

Spatial and statistical analysis

We used ArcMap 10.3.1 (ESRI) to explore statistical differences between the number of
point sources in 8-digit HUCs with PFAS levels above and below detection. We developed a
multivariate spatial regression model for watersheds with detectable PFASs that adjusts for
correlations and co-location among point sources. A natural log transformation was used to
normalize the distribution of individual PFASs. PFNA and PFBS were excluded from the spatial
regression analysis due to low detection frequency (15 and 14 out of 1601 watersheds,
respectively). We used Moran’s I statistic to test for spatial dependence in the model residuals
from an ordinary least square (OLS) regression and correct for spatial dependence in the final
spatial regression model. Akaike Information Criterion®” was used to compare the OLS and
spatial regression models, where a lower value implies a better model fit. A series of cross-
validation tests were also completed to assess the predictive capacity and stability of the final set
of models. The OLS and spatial regression models were constructed using GeoDa 1.6 software,’®

and cross-validation was implemented in R version 3.1.3.



137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Results and Discussion
PFAS:s in U.S. drinking water

PFASs were detected at or above the MRLs in 194 out of 4,864 public water supplies,
serving 16.5 million residents in 33 different states, three American territories (American Samoa,
Northern Mariana Islands and Guam), and the Salt River Pima-Maricopa Indian Community.
Drinking water from 13 states accounted for 75% of detections, including, by order of frequency
of detection: California, New Jersey, North Carolina, Alabama, Florida, Pennsylvania, Ohio,
New York, Georgia, Minnesota, Arizona, Massachusetts and Illinois (Figure 1). Detection
frequencies for PFASs across the 4,864 public water supplies were 2.2% for PFOA, 2.0% for
PFOS, 1.7% for PFHpA, 1.1% for PFHxS, and <0.003% for others.

Many detectable PFAS concentrations in the UCMR3 database are above chronic
drinking water and water quality standards for other regions (i.e., surface water European Union:
PFOS <I ng/L; drinking water Sweden: sum of 7 PFASs < 90 ng/L; ground water State of New
Jersey: PFNA <10 ng/L; drinking water State of Vermont: sum of PFOS and PFOA <20 ng/L).>*"
*2 A recent analysis developed a benchmark-dose for immunotoxicity in children and suggested a
drinking water limit of approximately 1 ng/L for PFOS and PFOA.”® Data from rodents that
measured sensitive endpoints such as mammary gland development support a similar level.*®

Six million people were served by 66 public water supplies that have at least one sample
at or above the US EPA’s 2016 health advisory for PFOS and PFOA (70 ng/L individually or
combined). Concentrations ranged as high as 349 ng/L for PFOA, 1,800 ng/L for PFOS, and 56
ng/L for PENA.

The detection frequency in drinking water sourced from groundwater was more than

twice that from surface water (Table S4). Long-chain PFASs* (PFHxS, PFOS, PFOA, PFNA)
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were more frequently detected in groundwater and short-chain compounds (PFHpA, PFBS) were
detected more frequently in surface waters. This may be due to both the original mode of
environmental release (as an aerosol, application to soil, aqueous discharge) and the inverse
relationship between PFAS mobility and chain length.** The MRLs (10-90 ng/L) in the UCMR3
database are up to two orders of magnitude higher than the limit of quantitation in most

45-49

published studies,”™ and more than 10 times higher than the drinking water limit (1 ng/L)

suggested by human and animal studies.*® *° Since PFASs are detectable in virtually all parts of

5,7,9,13, 14, 20, 44, 51

the environment, we infer that the large fraction of samples below reporting

limits (Table S4) is driven in part by high MRLs.

Sources surrounding locations with detectable PFASs

Our analysis indicates point sources are significantly more abundant in HUCs with
detectable PFASs (two-sided t-test, p<0.05, Table 1, Figure S2). This includes drinking water
samples from 1601 of the 2158 total U.S. HUCs. For example, HUCs with detectable PFOA
levels (8% of the total) have more industrial sites, military fire training areas, AFFF certified
airports, and WWTPs than those with concentrations below detection. These trends are
observable across all PFASs. Similarly, HUCs with point sources have higher detection
frequencies for PFASs (Table S5). For example, 10.4% of the HUCs with no military fire
training areas have a detection of any PFAS, but this percentage increases to 28.2% for HUCs
with at least one. One caveat is that imprecise information on public water supply intakes can
cause misclassification bias. Systems that draw water upstream from point sources, such as
Minneapolis and St. Paul in Minnesota, may not actually be affected as indicated the by

aggregated spatial analysis.



183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

Results of the spatial regression model

Spatial regression modeling explains 38-62% of the variance in drinking water
concentrations for the four PFASs considered (Table 2). Each additional industrial site within a
HUC is associated with an 81% increase in PFOA (p<0.001), which is the strongest statistical
association across compounds and point sources. Increasing PFOS concentrations are positively
associated with the number of industrial sites but this relationship is not statistically significant
(p=0.124). The small number of sites that have manufactured or used PFOS likely accounts for
the lack of a statistically significant relationship.

The number of military fire training areas within each HUC is positively associated with
increasing levels of all PFOS, PFOA, PFHxS and PFHpA, and is statistically significant for
PFHxS (p=0.045) and PFOS (p=0.007). Each additional military fire training area within the
same HUC is associated with a 20% increase in PFHxS (p=0.002), 10% increase in PFHpA
(p=0.155), 10% increase in PFOA (p=0.111) and 35% increase in PFOS (p<0.001). AFFFs
typically contain relatively high concentrations of PFOS and PFHxS and their polyfluorinated

23:325% which is consistent with these

precursors compared to other perfluorinated carboxylates,
statistical results.

We find a small but significant increase in PFOS and PFOA (2%, p<0.01) with each
additional WWTP within the same HUC. This is consistent with the greater abundance but
smaller quantities of PFASs released by WWTPs.” Similarly, results from Valsecchi et al. °'
show PFAS releases from WWTPs are important but less significant than fluoropolymer

manufacturing facilities in Italy. The number of WWTPs may also be a proxy for other

population-driven PFAS sources.

10
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The number of AFFF certified airports is not significantly associated with PFAS
concentrations in the current dataset. This may reflect misclassification bias because the
certification used to identify airports indicates eligibility but not actual use of AFFF. The
UCMR3 database contains limited data for smaller drinking water systems where localized

reports of contamination from airports have been most abundant.** >

Current data limitations and future monitoring efforts

The UCMR3 database has several limitations that restrict its predictive power for
identifying U.S. drinking water supplies likely to contain elevated levels of PFASs.
Classification of geospatial data on intakes for public water supplies limits the spatial resolution
of the current dataset and associated statistical models to a radius of 50 km (median radius of

57,58

watersheds). Many of the impacted drinking water systems are groundwater systems and

contaminated groundwater plumes are often much smaller than 50 km.>>>*

Geospatial data are lacking for many potentially important PFAS point sources such as a
wide-range of industries, landfills, biosolids application, and other AFFF-impacted sites where
relatively smaller volumes of AFFF were released®” >* °**” Data on PFAS releases from smaller
industrial facilities (e.g., plastics, textiles, paper, lubricants) are usually withheld as confidential
business information and little information on airborne emissions is available for characterizing
the importance of atmospheric releases and potential long-range transport. For example,
biosolids application resulted in one of the largest PFAS drinking water contamination in

Europe® but could not be included in this analysis because U.S. use data are not available on a

national scale.
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Sources not included in our spatial analysis are represented by the highly significant
lambda (L) coefficients (Table 2). Areas with high model residuals (greater than 1.5 standard
deviation) mean that current information on sources cannot fully explain the high observed
PFAS concentrations. The map of model residuals (Figure S3) can thus be used to guide high
priority sampling regions in future work.

We found statistically greater abundance of point sources in watersheds with detectable
PFASs, including AFFF certified airports. However, multivariate spatial regression models did
not show a significant association between AFFF certified airports and concentrations of PFASs
in nearby drinking water. Other studies have reported elevated PFAS concentrations in
groundwater wells adjacent to AFFF certified airports.”> Small drinking water systems and
private wells may be disproportionately affected by PFASs originating from AFFF use at civilian
airports but representative data for these small drinking water systems are not included in the
UCMR3 program.”

Approximately 44.5 million U.S. individuals rely on private drinking water wells’’ and
52 million individuals rely on smaller public water supplies (< 10,000 served). The UCMR3
program includes 0.5% testing incidence for smaller public water supplies’' and no testing of
private wells, meaning that information on drinking water PFAS exposures is therefore lacking

for almost 1/3 of the U.S. population.
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Table 1. Mean abundance of point sources within 8-digit hydrologic unit codes (HUCs) with
drinking water PFAS concentrations above and below method reporting limit in the UCMR3
program.

481

Compound Mean abundance® within 8-digit hydrologic unit codes 482
Major Military fire AFFF certified WWEP3®

industrial sites” training areas airports 484

PFBS 485
<90 ng/L (n=1587) 0.01 0.15 0.29 486
>90 ng/L (n=14) 0.21 0.71 0.50 A4H
p-value® 0.206 0.105 0.148 0049
PFHxS 489
<30 ng/L (n=1507) 0.01 0.13 0.27 8%
>30 ng/L (n=94) 0.06 0.60 0.63 490
p-value 0.056 <0.001 <0.001 <A
PFHpA 492
<10 ng/L (n=1509) 0.01 0.13 0.26 493
>10 ng/L (n=92) 0.09 0.57 0.67 4947
p-value 0.016 <0.001 <0.001 <QO6
PFOA 496
<20 ng/L (n=1473) 0.01 0.13 0.26 497
>20 ng/L (n=128) 0.05 0.52 0.56 498

p-value 0.038 <0.001 <0.001 <(

5
<40 ng/L (n=1487) 0.01 0.13 0.26 %,
40 ng/L (n=114) 0.05 0.54 0.57 5Q
p-value 0.064 <0.001 <0.001 L
PFNA 503
<20 ng/L (n=1586) 0.01 0.15 0.28 50%
>20 ng/L (n=15) 0.13 1.13 1.13 3051
p-value 0.366 0.014 0.008 G067
507

*Mean abundance is calculated as the mean numbers of point sources within HUCs with PFASs
above or below-detection.

® Only the major industrial sites participating in US EPA 2010/2015 PFOA Stewardship Program
were included.
¢ Wastewater treatment plant.
4 Two-sample t-test p-values.
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Table 2. Spatial regression models for drinking water PFAS concentrations as a function of
abundance of point sources.

Major b A.FFF c d 2

Compound . .. .0 MFTAs certified WWTPs A R
industrial sites .
airports

PFHxS
Coefficient® 24% 20% -13% 1% 94% 0.62
p-value' 0.249 0.002 0.073 0.045 <0.001
PFHpA
Coefficient 10% 10% -2% 0.5% 72% 0.40
p-value 0.569 0.155 0.761 0.436 <0.001
PFOA
Coefficient 81% 10% -6% 2% 52% 0.38
p-value <0.001 0.111 0.353 0.006 <0.001
PFOS
Coefficient 46% 35% -6% 2% 79% 0.46
p-value 0.124  <0.001 0512 0.007 <0.001

* Only the major industrial sites participating in US EPA 2010/2015 PFOA Stewardship Program

were included.

® MFTA = military fire training area.
“WWTP = wastewater treatment plant.

4 Coefficient for the spatial error term characterizing spatial influence.

Results have been transformed to reflect expected changes in drinking water concentrations per

increase in the abundance of different sources. Positive coefficients in the results indicate

increasing concentrations with increasing abundance of point sources within the same hydrologic

unit.
f

p-values for spatial error regression model. The spatial error term is used to incorporate spatial
autocorrelation structures into a linear regression model.
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Figure 1. Hydrologic unit codes (8-digit HUCs) used as a proxy for watersheds with detectable
PFOA and PFOS in drinking water measured in the US EPA’s UCMR3 program (2013-2015).

Blank areas represent regions where no data are available.
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