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ABSTRACT

Structural equation modeling (SEM) has become a regular staple of social science

research, however very little is known about small sample size use. A sample size

of 200 or larger for SEM models has been advocated (Boomsma, 1983; Kline,

2011) and the main test of model fit (�2 goodness-of-fit) is sample size dependent

and performs optimally in a range of at least 200-400 (Kenny, 2012). Model

complexity in SEM can vary, however, a simple model could hold potential

benefits to a researcher without the ability to attain 200 observations. Thus

research with models with less than 200 need to be considered more. Two

manuscripts are presented, both stemming from a 3x 3 factorial simulation with

varied sample sizes (n = 50, 100, 200), factor loadings (� = 0.60, 0.75, 0.90), and

bootstrap samples to the sample size n and a population sample of size N = 400.

One study looks at SEM fit indices and independence from the �

2 test as well as

bootstrap extension potential. The second study analyzed the use and ease of

bootstrap confidence intervals (CIs) for any of the fit indices used in tradition

SEM publications, a much needed addition to the field.
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PREFACE

Manuscript format is in use.

This is a manuscript based thesis submission for a masters degree in psychology

at the University of Rhode Island. This thesis contains a total of two separate

manuscripts both intended for separate submissions.

Manuscript 1

Title: SEM Fit Indices and Chi-Square Independence

Co-Author: Dr. Lisa L. Harlow

Intended Journal: Structural Equation Modeling

Status: Not yet submitted, but with the intention to submit by early 2014.

Manuscript is prepared for submission.

Manuscript 2

Title: Confidence Interval Estimation for SEM Fit Indices

Co-Author: Dr. Lisa L. Harlow

Intended Journal: Psychological Methods

Status: Not yet submitted, but with the intention to submit by early 2014.

Manuscript is prepared for submission.
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SEM Fit Indices and Chi-Square Independence

Preface

Manuscript format is in use.

This is a manuscript based thesis submission for a masters degree in psychology

at the University of Rhode Island. This is the first manuscript of two for this

respective thesis.

Manuscript 1

Title: SEM Fit Indices and Chi-Square Independence

Co-Author: Dr. Lisa L. Harlow

Intended Journal: Structural Equation Modeling

Status: Not yet submitted, but with the intention to submit by early 2014.

Manuscript is prepared for submission.

1



Abstract

Structural equation model (SEM) fit indices have exponentially increased, but

many indices are based on the sample-size-dependent �2 goodness-of-fit test and

thus may have similar problems in assessing fit (Bollen, 1989; Kline, 2011).

Debate over the use of SEM fit index usage has continued, but instead of a

monochromatic approach, a synthesis of choosing several indices that behave well

under many conditions and display a model-based lack of dependence on the �

2

goodness-of-fit would be ideal. Use of bootstrapping has steadily become a

common supplement to statistical parameter estimation as well as assisting

potential small sample issues (Efron, 1979). Using a bootstrapping approach, the

current research assesses models varying with small to moderate sample size

(50, 100, 200) and moderate to large factor loadings (0.60, 0.75, 0.90) with the

idea the small samples can compensate with large loadings (Guadagnoli &

Velicer, 1988). Because of the highly correlated nature of fit indices, a partial

least squares (PLS) regression was used to assess which indices showed the lowest

association with the �

2 goodness-of-fit under the multiple conditions. Ratios of

the model fit between bootstrap replicates and the initial samples were also

compared along with model non-conformity. The standardized root mean-square

residual (SRMR) and McDonald’s Centrality Index (MCI) may o↵er reasonable

indices of fit as they were less related to the �

2 goodness-of-fit test under the

conditions presented and displayed the least variation across varied bootstrap

replications.
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SEM Fit Indices and Chi-Square Independence

The debate among structural equation modeling (SEM) practitioners is how

to truly assess model fit. Since Jöreskog (1969) brought LISREL into the SEM

forefront, the field has been burgeoning with fit indices. The catalog of indices has

grown because of known sample size issues with the �2 goodness-of-fit test (Bentler

& Bonett, 1980), which is the only true statistical test used to assess SEM model

fit. Bentler (1985) continued the push forward with his SEM program EQS, which

presented even more potential fit indices to help supplement the �2. An issue thus

surfaces, however, that many of the fit indices regularly used in SEM are generally

based on the �2 goodness-of-fit test which is exactly what the indices were intended

to help remedy.

Past research has focused on specific indices and their relation to sample size,

such as Tucker and Lewis (1973) who demonstrated that their Tucker-Lewis Index

(TLI) was sample size independent. In a similar fashion, Bollen (1989) mathemat-

ically derived that his Incremental Fit Index (IFI) does not rely on sample size.

However, a caveat is that traditionally SEM research involves large sample sizes,

with the �

2 behaving optimally for sample sizes of at least 200-400 (Boomsma,

1983; Kenny, 2012; Kline, 2011). Smaller sample sizes have become slightly taboo

in the SEM literature, however the reality is that large sample sizes are not always

possible. Other research has suggested that simplified designs can still be optimal

with less than 200 observations, alluding to the fact that small samples may be

possible with SEM when there are strong factor loadings (Guadagnoli & Velicer,

1988; Kline, 2011; Nevitt & Hancock, 2001).

Methodological researchers o↵er varying opinions about the choice of fit in-

dices and the �

2-test. Barrett (2007) inflexibly states that only the �

2 should be
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reported in SEM journals, however Markland (2007) rebu↵s that by stating that

fit indices have no “golden rules” and should be used as supplementary to the �

2

index. Steiger (2007) also supports the notion that indices along with power and

confidence intervals are necessary for a broader picture of the SEM model. What

results is a mix of proponents and non-supporters of fit indices, and a catalog that

is so large that any newcomer to SEM may become overwhelmed or simply con-

fused (Beauducel & Wittmann, 2005; Gerbing & Anderson, 1992; Marsh, Balla, &

McDonald 1988; Nevitt & Hancock, 2001).

Fit indices are known to be correlated quite often with sample size even though

some have tried to mathematically deduce and analyze sample size independence

(Bentler, 1990; Bollen, 1989; Ding, Velicer, & Harlow, 1995; Marsh et al., 1988).

Strong correlations can still exist between indices and the �

2 goodness-of-fit as

well as amongst the other indices themselves. An analysis of actual model fit and

their predictive qualities on the �

2 goodness-of-fit are thus imperative to expand

beyond just mathematical independence from sample size.

Several indices have garnered a good amount of use in publications; these

include the root mean square of approximation (RMSEA), the standardized root

mean-square residual (SRMR), the comparative fit index (CFI), the normed fit

index (NFI), and McDonald’s centrality index (MCI) (Bentler & Bonett, 1980;

Kline, 2011; McDonald, 1989; Steiger & Lind, 1980). Most of the measures operate

in a 0.00 to 1.00 range, with larger values ideal for the CFI, IFI, TLI, NFI, and

MCI. Values closer to 0.00 are optimal for the RMSEA and SRMR indices. And

finally, the �

2 goodness-of-fit has a minimum value of 0.00 and should be similar

to the degrees of freedom (df) for the model in a good fitting SEM analysis.

Whereas many SEM indices have been scrutinized for sample size indepen-

dence, what could also be beneficial is a comparison of fit index independence
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from the �

2 goodness-of-fit test itself. By addressing sample size and �

2 indepen-

dence, we could perhaps begin to narrow down the list of fit indices to a select

few that actually work well as a supplement to the �

2 goodness-of-fit test. We

should also keep in mind that extremely large sample sizes are rather uncommon

in practice, so keeping perspective on rational sample sizes also seems worthwhile.

One option for small sample analysis is a process called bootstrapping, or sam-

pling with replacement from an original data set to a desired sample size (Chernick,

1999; Efron, 1979). By taking an empirical sample of size n, we can randomly draw

repeated (anywhere from 1,000 to 10,000 is common) samples with replacement to

the same size n, with the goal that the repeated sampling will display a comprehen-

sive picture of the sampling distribution (Efron & Tibshirani, 1986). Extensions

can also be accomplished by bootstrapping, to not only draw random samples of

size n but even larger sample sizes (i.e. 3n, 5n). In other research, Nevitt and

Hancock (2001) have advised against using bootstrapping with data that have

samples of size 100 or less, however o↵ering the caveat that further research with

simpler models could be possible and beneficial. Others have posited that strong

factor loadings can amend a small sample size with simple structure (Guadagnoli

& Velicer, 1988). A brief overview of bootstrapping is presented next to help illus-

trate this iterative procedure.

Bootstrapping Basics

Starting with a data matrix of observations such that n is the sample size

with c columns each representing a recorded variable. Each row (r) of the matrix

acts as a single observation. The r x c matrix of parameters (p) is expected to be

an adequate representation of the expected population parameters ✓p. The r x c

matrix for any p can be used in a bootstrapping framework such than each row

of the matrix will be available for every replicate with replacement to create a
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bootstrap based data matrix ✓̂p of randomized rows from ✓p. Every row has a

probability of 1/r chances of selection regardless of any previous selections. With

thousands of bootstrap replicates (B), ✓̂B will contain B samples of size n, with

r randomly selected rows from ✓p with replacement. A rather thorough picture of

the sampling distribution can thus be assumed for any of the parameters p in the

B ✓̂p matrices.

Efron (1979) notes that data from an unknown distribution F where

X1, X2, . . . , Xn ⇠ F with replicates of X1 = x1, X2 = x2, . . . , Xn = xn has an

expected mean of

x̄ =
nX

1

xn

n

(1.1)

As pointed out by Efron (1979), x̄ should approximate the expected mean

of the sample EF [X] because of the numerous replications representing a Taylor

series expansion. The variance of the sampling distribution from the bootstrap

replicates can thus be found by EF [X2] � EF [X]2. The standard error of the

sampling distribution (�̂) can thus be found with

�̂(F ) =

✓
EF [X2]� EF [X]2

n

◆1/2

(1.2)

Bootstrap estimates of the CI can be constructed via a non-parametric ap-

proach that finds the desired cuto↵ values of the empirically based probability

mass function. Finding CI estimates from bootstrapping will be briefly described,

shortly. Efron and Tibshirani (1986) state that a minimum of B = 1000 replicates

are necessary for non-parametric CI estimation because of its complex nature. Tee-

tor (2011) displays the use of the quantile function in R and the use of an even
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larger number of replicates (9,999) to provide an empirical estimation of the CI.

In the case of SEM, the Bollen-Stine bootstrap (BSBS) transforms the data

so that it is properly testing the �

2 statistic (Bollen & Stine, 1992). Each ✓̂p will

represent a bootstrap sample from which a covariance matrix can be determined

and the SEM model fit for every one of the thousands of replicates. The parameters

of interest would typically be the B �

2 values, however fit indices of each fitted

model could also be estimated B times.

Modern computing power has made bootstrapping readily available, but the

understanding of the process itself can perhaps seem daunting. Appendix A dis-

plays the structure of a typical bootstrap process, with the resulting ✓̂B matrices

allowing for a simulated mean or median value for starters, as well as a model

based CI of any percentage. The quantile function in R can easily compute the

cuto↵ points for a string of means or medians based on ✓̂B at a given CI level.

As an example, a particular fit index of an SEM model, say the SRMR, could

be estimated using B = 2000 replicates, or double the minimum B suggested

previously (Efron & Tibshirani, 1986). The 90% CI could be found as such for

the SRMR (✓̂SRMR) which includes all of the model fit SRMR indices from 2000

replicates. To find a 90% CI, we would need to estimate the cuto↵ for the lower

(0.05) and upper (0.95) proportion of scores, and the command in R with a vector

of the 2000 SRMR estimates (theta.srmr) would look like:

quantile(theta.srmr, c(0.05, 0.95))

This function could be extended easily by adding a third quantile value (which

is contained between the c( ) in the command), that measures the median of the

sample. The quantile function in R works similar to constructing a box-plot, but

with the user having the ability to specify cuto↵ points for the CI. In this case, we

could find the 90% CI and the median for ✓̂SRMR as such:
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quantile(theta.srmr, c(0.05, 0.50, 0.95))

A similar process can thus be done for any given fit index of a SEM model,

including the �

2. While tedious, a typical model would only need one set of

bootstrap replicates conducted, thus bootstrapping is not as time consuming as

one might perceive. Bootstrapping packages do exist in R and most commercial

programs contain simulated bootstrap additions as well. Allowing the computer to

store all of the ✓̂p matrices and then compute the necessary information allows for

a not so complicated bootstrap process that adds great depth to any researchers

expertise. The resulting bootstrap process assumes that the large number of ✓̂p

replicates will adequately map the sampling distribution of ✓p. In doing so, di�cult

parameters (i.e., fit indices) can be estimated with CIs that are based on the data

as opposed to complex mathematical processes.

Simple Bootstrapping Examples

A very simple bootstrap procedure could be done with something as simple

as the roll of a die. Say we roll the same die repeatedly 20 times, the numbers

would never change on the die, but the resulting values all have an equal chance

of selection with replacement. Using the quantile function in R, we could find

a basic 90% CI of the mean for a standard dice with recorded values stored in a

variable we’ll call dice.

> dice

[1] 6 3 3 5 3 2 2 5 1 3 1 1 3 5 1 4 5 3 3 4

> mean(dice)

[1] 3.15

> quantile(dice, c(0.05, 0.50, 0.95))

5% 50% 95%

1.00 3.00 5.05

While the sample of one die is generic, it gives the basic concept of what

bootstrap replication accomplishes (i.e., a mean, median, CI). Now if we were to
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roll five dice at a time, and take the mean of each roll 20 times, we’d be able to

construct a CI around the mean of the five dice. Note that each roll can have a

mix of any numbers, ranging anywhere from all di↵erent values to all the same.

> dice

[1] 4.4 3.2 3.4 3.2 2.8 3.4 2.8 4.2 2.8 2.8

3.4 2.8 3.0 4.2 3.6 3.0 3.4 3.6 2.8 4.2

> mean(dice)

[1] 3.35

> quantile(dice, c(0.05, 0.50, 0.95))

5% 50% 95%

2.80 3.30 4.21

The reason for the di↵erence in means for one die (M = 3.15) and five dice

(M = 3.35) can be described by the varied nature of resampling. With one die,

each replicate is only represented by a single die, and thus only 20 total values

were included. With five dice, the replicates were the mean of five dice done 20

times, thus 100 total dice values comprised the 20 means. The median and CIs

displayed the same pattern, however 20 replicates are certainly not enough and

therefore results are slightly varied. Doing this same experiment over thousands

of replicates would result in means, medians, and CIs all relatively similar since

the compiled ✓̂B will be a close approximation to ✓p. Any variable or variables in a

data set can be done in this same simple bootstrap process (e.g., CFI, �2, RMSEA,

etc). Instead of dice, one could let a computer randomly select r in each replicate

so that (✓̂p) is equivalent in length to ✓p. Extending ✓̂p by drawing a larger value

of observations r than the data set is possible as well, but bootstrapping to the

same size n as the sample data is usual.

Population Covariance Matrices

Matrix algebra can be used to construct a covariance matrix to generate data

according to the varied parameters in a simulation context. Based on a two factor

CFA model with three items each (Figure 1.1), a matrix would contain six manifest
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variables, and thus the covariance matrix would be 6 x 6, representing two factors

with three measures each. To construct a population matrix for the CFA design

in Figure 1.1, we need the use of several matrices: ⌃ represents a 6x6 population

matrix, ⇤ is a 6x 2 matrix of factor loadings, � is a 2 x 2 matrix of the factor

correlations, and ⇥ is a 6 x 6 matrix of measurement errors which standardizes

results in ⌃ for a diagonal of all ones. Using this, one can create a population

sample of N to bootstrap samples of n from within.

SEM requires one item loading or variance per factor to be set to 1.00 before

analysis, such that the constructed ⇤ matrices contain identical � values within an

acceptable range (0.50, 1.00) and the minimum criteria of three items per factor

to prevent model misfit was also met (Kline, 2011). Thus, the ⇤ loading matrix is

comprised of:

⇤ =

0

BBBBBBBBBBBBBBBBBBBBBB@

�11 0.00

�21 0.00

�31 0.00

0.00 �42

0.00 �52

0.00 �62

1

CCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBB@

1.00 0.00

�21 0.00

�31 0.00

0.00 1.00

0.00 �52

0.00 �62

1

CCCCCCCCCCCCCCCCCCCCCCA

Based on the suggestion of Kline (2011), the factor correlation should be

minimally 0.50 and therefore the factor correlation matrix � consists of:
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� =

0

BBB@

1.00 0.50

0.50 1.00

1

CCCA

Finally, the error matrix ⇥ is constructed such that ⌃ ends up with all diag-

onals of 1.00. The computation necessary for the covariance matrix ⌃ needed for

simulating the population based datasets of N = 400 is completed with:

⌃ = ⇤�⇤0 +⇥ (1.3)

A unique aspect of bootstrapping within SEM is that because the �2 goodness-

of-fit is testing against the null hypothesis, a readjustment needs to be made to

the sample so that we are properly resampling the model fit within a �

2 frame-

work (Bollen & Stine, 1992; Chernick, 1999; Enders, 2001; Nevitt & Hancock 2001;

Sharma & Kim, 2012). Thus a Bollen-Stine bootstrap (BSBS) requires a transfor-

mation to the data matrix so that the samples are reporting accurate simulated

p-values (Figure 1.2). The resulting BSBS gives us a composite Bollen-Stine p-

value (BSp) that is useful to help verify the model fit but also allows for examining

fit index behavior under repeated samples. The transformation converts the co-

variance matrix used in the �

2 goodness-of-fit test to accurately test the null by

forming a new data set, Z, from the initial data when Y represents the centered

raw data, S represents the sample covariance matrix of Y , and ⌃̂ is the implied

covariance matrix such that:

Z = Y S

�1/2⌃̂1/2 (1.4)

Bollen and Stine (1992) then mathematically deduce that the covariance ma-

trix of Z being Z

0
Z/(N � 1) is now equal to the implied covariance matrix ⌃̂ and
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boot-strapping from the transformed data in Z will accurately test the null hy-

pothesis in all bootstrap samples.

Absolute Fit Indices

The absolute indices are based simply on the covariance matrix and are most

notably represented by the �

2 goodness-of-fit test and its comparison to a critical

value for the given degrees of freedom (df). It is widely known that �2 is a↵ected

by sample size, however it is usually reported and is preferred to not be significant

in SEM research (Barrett, 2007; Bentler & Bonett, 1980). Absolute fit indices in

the current study will thus be represented by the �

2 as well as another common

absolute fit index, the SRMR. Suggested maximum values for the SRMR have

generally been 0.08, but this value has been noted as being too liberal and that

0.06 might be better (Hu & Bentler, 1999; Kline, 2011).

Non-centrality Fit Indices

Non-centrality indices are those which measure distance between the covari-

ance matrix and the matrix of the null model. The RMSEA (Steiger & Lind, 1980)

has been reported very often in the literature, particularly because it assumes ini-

tially that the model will not have a perfect fit (Raykov, 1998). Beauducel and

Wittmann (2005) state that similar to the SRMR, the RMSEA holds rather steady

even with slightly non-normal data as is common in psychometrics. The use of

RMSEA with a 90% CI has become common and has been recommended by sev-

eral within SEM (Kenny, 2012; Steiger, 2007). Not unlike the RMSEA, the MCI

(McDonald, 1989) has also been shown to lack dependence on sample size, and has

performed well in simulations (Ding et al., 1995; Ding, 1996; Gerbing & Anderson

1992; Widaman & Thompson, 2003) and will be studied further in the current

research. The CFI is a third non-centrality index that has shown some sample size

independence and should be considered simply because of its common use in the
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SEM field with values between 0.95 and 1.00 being preferred (Bentler, 1990; Ding,

1996).

Relative Fit Indices

The TLI has become one of the primary indices for relative fit since its intro-

duction (Tucker & Lewis, 1973) and has performed well, but has shown some de-

pendence on the interaction of sample size and factor loading (Kline, 2011; Sharma

et al., 2005). The similarity of the TLI to the non-centrality based CFI has been

noted with the advice that because of such high intercorrelation, only one should

be reported and the TLI is sometimes preferred (Kenny, 2012). This research has

opted to go with both the CFI (non-centrality) and TLI due to both their popu-

larity and the need for further analysis of both. The IFI will be the second relative

fit index tested particularly because of its reported independence from sample size

(Bollen, 1989). The Normed Fit Index (NFI) (Bentler & Bonett, 1980) will also

be included as a non-centrality index based in part to its popularity in use even

with some advice against its use (Ding et al., 1995; Ding, 1996). While the IFI

and TLI can minimally exceed values of 1.00, all three relative fit indices should

be bounded between 0.00 and 1.00 with a preferred acceptable range between of

0.95 to 1.00 (Kline, 2011).

Thus, the goal of the current research is to address the dual-facetted question

of �2 independence as well as the bootstrapping potential of select fit indices that

have seemingly fared well in past research such as the MCI and IFI (Ding et al.,

1995; Ding, 1996; Gerbing & Anderson, 1992; McDonald, 1989). Focus will be

limited to small and moderate sample sizes of 50, 100, and 200 with moderate to

good loadings of 0.60, 0.75, 0.90 in a simple two factor CFA. Comparison of boot-

strapped samples can be compared to the initial sample as well as bootstrapped

back to the population sample of N = 400 for direct comparison.
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Further research has been needed for some time on the fit indices and their

supplementation of the �

2 for small n designs (Ding, 1996; Gerbing & Ander-

son, 1992; Nevitt & Hancock, 2001; Sharma et al., 2005; Tanaka, 1987). What

is preferred are indices that can remain stable over varied model parameters and

bootstrap replicates that can demonstrate a strong correlation to the original data

set. Indices that function with minimal correlation to the �

2 based on model fit

would also be highly beneficial. Model non-convergence can also be an issue, par-

ticularly with samples below 100, and thus analysis of such will also be important

(Boomsma, 1983; Guadagnoli & Velicer, 1988; Nevitt & Hancock, 2001).

Research Goals

First, based on past SEM simulation research, it is hypothesized that the

MCI might be a prime candidate for use in small sample SEM designs (Gerbing

& Anderson, 1992). Second, the TLI, CFI, and IFI tend to be strongly correlated

(Kline, 2011) and thus it is also hypothesized that they will behave similarly across

conditions and only one really needs to be reported. Third, it is also hypothesized

that bootstrap replicates will highlight very inconsistent �2 values and that stable

fit indices could help support the sample-size-influenced �

2 test. Fourth, the MCI

and SRMR will show strong bootstrap consistency between population (N) and

samples (n) of varied conditions (Beauducel & Wittmann, 2005; McDonald, 1989).

And finally, samples of n = 50 will likely see the largest amount of non-converging

models, particularly with lower levels of � (Guadagnoli & Velicer, 1988).
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Methods

A simulation-based study was used to address the bootstrap based qualities

of eight SEM fit indices with smaller sample sizes. A simple confirmatory factor

analysis (CFA) model with two factors and three items each (Figure 1.1) was used

based on the suggestions of past research (Nevitt & Hancock, 2001) with varied

small samples sizes (n = 50, 100, 200) and moderate to strong factor loadings

(� = 0.60, 0.75, 0.90) which can help compensate for a small n (Guadagnoli &

Velicer, 1988). The factor correlation (�) between the two factors was set at a

modest 0.50, which is considered a lower bound for well-fitting models but could

also help prevent over-powering the varied sizes of n and � (Kline, 2011).

A population matrix based sample of N = 400 was generated for every con-

dition and the samples of 50, 100, and 200 were drawn from N . Within the nine

mixed conditions of n and � (i.e., n = 100 & � = 0.90; n = 200 & � = 0.60),

30 total samples were drawn to increase the robustness of the study and to ex-

ceed the recommended five samples per population matrix (Guadagnoli & Velicer,

1988. Seeds were used to randomly draw the data in R (see Appendix B), however

univariate and multivariate kurtosis were not checked to allow for varied types of

model fit in each condition. The data was simulated on a 7-point integer based Lik-

ert scale, quite typical in social science research. Figure 1.3 depicts the simulation

process used for this research.

All simulations were conducted using the lavaan package in R (R-Core-Team,

2013; Rosseel, 2012). A total of 270 simulated samples (i.e. 3 n’s x 3 �’s x 30 seeds)

were conducted with 2,000 bootstrap replicates taken in each scenario providing a

total of 558,000 total models being fit. The initial fit for the population samples

(N) as well as the samples drawn from the population (n) were stored as well as
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the bootstrap replicated fit indices and CIs for the sample n bootstrapped to a size

of n as well as to the population sample size for comparison (N = 400). R code for

the simulation is presented in Appendix B.

Because of the high amount of correlation between most of the fit indices

and the truncated nature of the zero to one boundaries, standard multiple regres-

sion would not be advised to assess findings. Thus, a partial least squares (PLS)

method of regression will be used, which utilizes a principle components analysis

approach and has been shown to be optimal with small data sets as well as with

high intercorrelations (Sanchez, 2012; Tenenhaus et al., 2005). The goal is to use

a PLS regression to find the weakest fit index predictors of the �

2 value for each

condition. By determining the indices that are the weakest predictors, one can

presume that they are less associated with the �

2 goodness-of-fit, however that

does not mean there is no correlation between the fit index and the �2. Use of the

plsdepot package in R was necessary for the PLS regression aspect to be employed

(Sanchez, 2012).

Also recorded was the counts of model non-convergence for the three sizes of

n and �. The fit indices for the original population sample N was recorded as were

the indices for the sample n randomly selected from N . A BSp was calculated and

recorded for each of the 270 total samples bootstrapped, as were the quantile based

90% CI values for the bootstrapped models and a corresponding median value of

the replicates.
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Results

The correlation matrix of the indices to the �

2 goodness-of-fit in the original

population sample of N and sample of n as well as the bootstrap replicates of both

sizes suggest varied results (see Table 1.1). The NFI has the lowest correlations

with �

2 regardless of sample size or whether bootstrapping was used or not. The

TLI and CFI had equal correlations to �

2 for the population samples (r = �0.747)

and samples of n (r = �0.562). The IFI had correlations for population values

and samples of n (r = �0.751, r = �0.614), almost similar to the TLI and CFI.

The RMSEA and MCI both displayed the strongest correlations with �

2 for N , n,

and bootstrap values back to n and N .

Use of PLS regression for the 270 samples suggests that the TLI and CFI are

the weakest predictor of �2 within the N = 400 population samples (� = 0.002)

followed closely by the IFI, again supporting strong correlation between the three

indices (see Table 1.2). The SRMR was the least significant indicator of �2 for the

samples of size n (� = 0.008) followed by the correlated CFI and TLI (� = �0.025)

having identical values. The IFI is the least associated with �

2 for the bootstrap

replicate models of size n (� = �0.006) whereas the RMSEA (� = 0.485) and

MCI (� = �0.405) both display very large standardized weights with �

2. In

the replicates of size N = 400, the SRMR shows a very weak association with

�

2 (� = �0.026). Compiling all four of these conditions, a PLS regression was

run for the indices with the TLI and CFI being the weakest in association to the

�

2 (r = �0.009). The SRMR also show a weak association in the overall PLS

comparison to the �

2-test (r = �0.053).

Correlations between bootstrapped (BS) models and the original samples of

N and n for all the fit indices (see Table 1.3) posits that the NFI (r = 0.724),
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and SRMR (r = 0.664) are strongly correlated between their values for N and the

BS N replicates. The same pattern follows for the correlation of samples n and

the BS values of size n respectively (r = 0.834, r = 0.710). The NFI (r = 0.545)

and SRMR (r = 0.443) have the highest correlation between population samples

N and samples n drawn from N . The use of Cronbach’s alpha (↵) to address

inter-correlation between the values of N , n, BS to n = 400, and BS to n = n

suggests that the NFI (↵ = 0.759) and SRMR (↵ = 0.729) have the strongest

item correlation as seen in Table 1.3. The RMSEA had the weakest overall inter-

correlation of the varied conditions in Table 1.3 (↵ = 0.090).

Table 1.4 displays the means of the ratios of index values in N = 400 over

the bootstrap replicates back to size n = 400 from the various sample sizes of

n. The MCI had the mean ratio closest to 1 for the population based ratios in

Table 1.3 (M = 0.999, SD = 0.005). The MCI also had the ratios closest to

1 in the sample size n of 50, 100, or 200 bootstrapped back to the same size

of n (M = 0.995, SD = 0.023). The TLI, IFI, NFI, and CFI also preformed

rather consistently with correlations between 0.99 and 1.00 as well, again a re-

flection of their covariation. The �

2 (M = 1.212, SD = 0.611) and RMSEA

(M = 1.623, SD = 1.674) both had rather large mean ratios of population sam-

ples to bootstrap of n = 400. For the sample n to bootstrap n ratios, the �

2

(M = 1.262, SD = 0.635) and RMSEA (M = 1.683, SD = 1.645) both preformed

poorly.

Non-conformity within the n = 50 bootstrap replicates was influenced by �,

with loadings of 0.60 (n = 8879), 0.75 (n = 847), and 0.90 (n = 2) (see Table 1.5).

The replicates to size n = 400 for n = 50 only resulted with non-conforming models

for � = 0.60 (n = 1970), while � = 0.75 and 0.90 had no issues with conformity.

Samples of 100 (n = 2752) and 200 (n = 107) for the � = 0.60 subgroup in the
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replicates to size n as well as for 100 (n = 1309) and 200 (n = 5) in the replicates

to n = 400 had varied conformity results. Table 1.5 also shows the replicates in

the � = 0.75 and � = 0.90 conditions all had 0 non-conforming models for BS

replicates from n back to the size of 400.

Figure 1.4 shows an interaction e↵ect between the Bollen-Stine p-values (BSp)

between the varied levels of n and �. When � = 0.90, the BSp holds relatively

stable as sample size increases. Conversely, the means for the BSp drop drastically

for � = 0.60 and � = 0.75.

Interactions are evident for the �

2 goodness-of-fit for n and � for the initial

samples drawn from N (Figure 1.5). An interaction is not evident for BS replicates

of �2 with size n (Figure 1.6), but an interaction is observed for the BS replicates

of size n (Figure 1.7). The RMSEA has an interaction e↵ect for the samples of size

n (Figure 1.8), but not for the bootstrap replicates of size n (Figure 1.9). There

is an interaction again for the RMSEA in Figure 1.10 where n is BS replicated to

size N . The MCI has an interaction of n and � for samples of n (Figure 1.11), but

not for the BS replicates of size n (Figure 1.12). Figure 1.13 shows an interaction

for n and � of the MCI in replicates to size N = 400. The interaction e↵ects for

these indices suggest a joint dependency for each index in relation to sample size

and loading when bootstrap sample sizes are extended to 400 as well as the initial

samples. The varied values of n are each e↵ected by � as well.
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Discussion

The correlational analysis of the fit indices from this research portray the

RMSEA as highly correlated with the �2-test and also has the strongest association

with the �

2 in a PLS form as well. The RMSEA may thus be okay for use as a

supplement, but its strong association with the �

2 for model fit in the context of

small samples might suggest it as not a primary index for use with SEM model fit.

According to the PLS analysis in this research (see Table 1.2), the IFI seems to

show the weakest correlation with �

2 while the SRMR excelled in the BS replicates

to the population size of N = 400. The NFI appeared weakly correlated to the �2,

particularly for the initial population fits, however its advice against use should be

kept in mind as well (Ding et al., 1995; Ding, 1996).

The NFI and SRMR also showed strong inter-correlation between their initial

values and the BS replicate values. The RMSEA on the hand had very little

inter-correlation within its values and again supports the notion that the RMSEA

might not be an optimal primary fit index because of its high correlation with �

2

and potential for interaction e↵ects. Because of these findings, the RMSEA could

be advised against use in bootstrap extensions within SEM because of its poor

inter-correlation with samples and bootstrap replicates.

The CFI, IFI, and TLI acted in similar fashions for their ratios of initial

population and sample fit measures compared to their bootstrap replicated fit

measures regardless of sample size. Because of the similar correlations and ratios,

it may only be necessary to select only one of the three indices since they have

negligible di↵erences. The �

2 and RMSEA not surprisingly had varied and rather

large overall ratios of non-bootstrapped initial fit measures to BS fit measures for

both sizes of n and N . The MCI however seemed to hold a ratio closest to one
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for its initial fit in comparison to its BS replicate fits and could be an ideal stable

index for use in small n models and bootstrapping in general.

The issues for non-conformity for sizes of n and N were quite evident when

� = 0.60, but does improve as n increases. The combination of � = 0.60 and n

= 50 seems to be very inconsistent with regards to conforming models and would

thus be ill-advised for bootstrapping use. Extending the bootstrap size to N did

seem to alleviate some of the non-conformity issues, particularly for � = 0.75.

The overall non-conforming models for � = 0.60 did decrease considerably with

the larger bootstrap size, so this option could potentially assist a very small n in

assessing its model fit. The BSp values did not show a di↵erence with regards to

�, but did for n as would be expected with the idea that �

2 is influenced by n.

The interaction of n and � for the BSp (see Figure 1.3) does allude to the BSp

being much smoother for � = 0.90 versus the other �’s. Again, larger loadings

could help with consistency when n is small and even for bootstrap purposes.

The hypothesis that the MCI could be an optimal index for small samples was

met as the MCI displayed a very consistent ratio of initial and bootstrap values

across sample sizes. The hypothesis that the MCI and SRMR would be optimally

consistent for small n models was only partly accepted in that the MCI didn’t have

a very strong correlation between n and N replicates, however the SRMR did fair

well. The hypotheses that the �2-fit would be sporadic with the varied conditions

and that the samples of n = 50 would have the most non-conforming models were

both fully accepted. And finally, the TLI, CFI, and IFI did prove to be rather

correlated as expected, with the IFI potentially being slightly better with regards

to �

2 independence.

Simulation studies always have the limitation of non-real data being used.

While the samples used in this simulation were based strictly on 1-7 Likert scale
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interval based results, it was still artificial. The samples used were not specifically

checked for univariate and multivariate skewness and kurtosis as is advised, sim-

ply to allow the simulated data to be varied more than just selecting only very

good fitting models. Empirical data should ideally meet univariate normality for

skewness and kurtosis as well as multivariate measures of normality such as that

provided by Mardia’s test for multivariate normality to allow for proper estimation

by maximum likelihood (Gao, Mokhtarian, & Johnston, 2008; Harlow, 1985; Kline,

2011; Mardia, 1970).

Future research could certainly aim at a bootstrap approach to larger samples

as well. Fit indices could certainly vary with larger n designs, especially since many

are based on the �

2 which is influenced by n. The use of real empirical data sets

with this bootstrap approach to small n designs could certainly help add credence

to the reliability of the BSBS for SEM models. More research with varied factor

loadings could certainly display some di↵erent patterns as well, and thus a larger

set of conditions could help to delineate the di↵erence between fit indices and �.

What seems to be reasonable for fit indices is to act as a supplement to the

�

2 goodness-of-fit. Instead of focusing on whether fit indices should even be used

(Barrett, 2007; Markland, 2007; Steiger, 2007), maybe the approach should be

taken of fit indices being used as what they were intended for, a supportive case

along with the �

2. Fit index independence based on sample size alone is an issue

of its own, but when determining what fit indices are optimal for reporting in SEM

literature, looking at the correlations among the fit indices and particularly with

the �

2 may be more important. Including two or three fit indices that function

di↵erently from one another and yet supplement the �

2 goodness-of-fit regardless

of sample size could perhaps be the most beneficial use of indices in SEM.

Keeping in mind that indices are not true statistical tests and that there
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really are no set cuto↵ limits, it becomes the researchers’ role to provide specific

interpretation relative to their study. However, cherry-picking indices that support

ones model the best within a single study is quite counterintuitive to the ideal of

using a fit index in the first place and shouldnt have a place in SEM research.

Therefore, a primary goal for fit indices is to thin out the massive catalog of

them and find the several that are least correlated with one another and with the

�

2 goodness-of-fit test. The current research suggests the CFI, TLI, and IFI as

potentials, but again their high intercorrelation should lead researchers to utilize

only one of the indices. Highly correlated index measures such as the RMSEA

may not provide enough non-redundant information as they are mimicking the �2

goodness-of-fit too closely. Thus, more research on this index is also needed.

Further work is needed in the area of fit index correlation and �

2 goodness-

of-fit independence beyond the initial presentation in this research to make solid

claims on which indices are truly optimal. Model specifications and complexity will

ultimately weigh a huge burden on optimal fit index usage, so continued research is

needed. However, within a small n framework, it appears that the IFI and SRMR

might provide good indices because of their lack of �2 association and are most

optimal in terms of their relatively low correlation with chi-square. The MCI also

faired rather well in this small sample bootstrap framework, particularly in keeping

a very consistent ratio of actual fit to bootstrap fit ratios. The SRMR and MCI

could both be strongly advised for small n models as well as when bootstrapping

a model becomes a reasonable option.

The use of the �2 goodness-of-fit is usually presented for covariance modeling,

but the fit indices used need further clarification. This research seems to suggest

that the �2 mixed with the SRMR and MCI as well as either the IFI, TLI, or CFI

would be most optimal. The BSp should also be included for any SEM research,
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especially when the BSBS is a readily available option. More work is needed in the

area of using bootstrap replication to expand a small sample size issue in SEM,

however there seems to be some potential strengths within some indices such as

the MCI, SRMR, and IFI. While BS sampling can never replace real data, it can

also help to assess the sampling distribution used and could posit an opportunity

for research where samples of at least 200 might be hard to achieve.
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Table 1.1. Correlation matrix of fit indices in comparison to the �2 goodness-of-fit
test within the population samples (N = 400), sample size n from the N = 400
sample, the bootstrap replicates of size n, and the bootstrap replicates of size
n = 400.

Index N = 400 n = n BS to n BS to N

SRMR 0.815 0.454 0.237 0.068

TLI -0.747 -0.562 -0.225 -0.204

IFI -0.751 -0.614 -0.276 -0.208

NFI -0.620 -0.287 -0.048 -0.018

RMSEA 0.951 0.868 0.765 0.998

CFI -0.747 -0.562 -0.232 -0.204

MCI -0.937 -0.778 -0.692 -0.984

Note: BS = bootstrap
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Table 1.2. Partial least squares regression based � coe�cients for fit index associ-
ation to the �

2 within population samples (N = 400), samples drawn from N of
size n, bootstrap replicates of the CFA model to size n, replicates to size N , and
all four conditions combined into one PLS regression. Two principal components
used for each PLS regression.

N = 400 n = n BS to n BS to N All 4

SRMR 0.23138 0.00828 -0.05056 -0.02631 -0.05256

TLI 0.00216 -0.02470 0.03303 -0.03007 -0.00910

IFI -0.00285 -0.08341 -0.00566 -0.03227 -0.07703

NFI 0.09660 0.19337 0.19571 0.06230 0.23659

RMSEA 0.43022 0.49019 0.48500 0.49482 0.57359

CFI 0.00216 -0.02470 0.02663 -0.03007 -0.00997

MCI -0.42763 -0.34486 -0.40518 -0.48563 -0.29438
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Table 1.3. Correlations between the population samples of N = 400, the samples
of size n drawn from N , and the bootstrap (BS) replicated models of size n and
n = 400. Cronbach’s ↵ is also included for each index between the samples of
N = 400 and n = n as well as the bootstrap replicates of n = n and n = 400.

Index r(N,BS N) r(n, BS n) r(n,N) Cronbach ↵

�

2 -0.12610 -0.12606 0.13372 0.10086

SRMR 0.66393 0.70990 0.44345 0.72886

TLI 0.36846 0.26615 0.18224 0.31488

IFI 0.37071 0.23409 0.18105 0.30665

NFI 0.72437 0.83407 0.54498 0.75893

RMSEA -0.11996 0.04744 0.09630 0.08954

CFI 0.36846 0.25156 0.18224 0.30726

MCI -0.11913 0.15791 0.02305 0.12302
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Table 1.4. Means and SD for the ratios of population sample size N = 400 to its
corresponding bootstrap (BS) values of n = 400 as well as means and SD for ratios
of samples of size n to the bootstrap (BS) replicates of size n.

N = 400 / BS n = 400 n = n / BS n = n

Index Mean SD Mean SD

�

2 1.21179 0.61063 1.26199 0.63477

SRMR 1.09297 0.32703 1.14169 0.35451

TLI 0.99446 0.01703 0.98233 0.09379

IFI 0.99712 0.00880 0.99139 0.03997

NFI 0.99532 0.01265 0.98270 0.04737

RMSEA 1.62328 1.67355 1.68310 1.64499

CFI 0.99706 0.00904 0.99057 0.04801

MCI 0.99860 0.00509 0.99499 0.02339
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Table 1.5. Means and SD for the ratios of population sample size N = 400 to its
corresponding bootstrap (BS) values of n = 400 as well as means and SD for ratios
of samples of size n to the bootstrap (BS) replicates of size n.

Condition n = 50 n = 100 n = 200 Total

BS to n = n

� = 0.60 8879 2752 107 11,738

� = 0.75 847 10 0 857

� = 0.90 2 0 0 2

BS to n = 400

� = 0.60 1970 1309 5 3284

� = 0.75 0 0 0 0

� = 0.90 0 0 0 0
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Figure 1.1. Two factor model utilized for the presented simulation study. Fac-
tor loadings (�) are varied between 0.60, 0.75, and 0.90 where as the correlation
between the two factors (F1 and F2) is set to 0.50.
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Figure 1.2. Density of the �

2 distribution with df = 8 as well as the standard
bootstrap and the Bollen-Stine bootstrap. The Bollen-Stine transformation is a
necessary step in �

2 resampling.
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Population Matrix Σ

Population Sample S !
(N = 400)

Sample drawn from S!
(n = 50, 100, or 200)

2,000 Bootstrap Replicates 
(n = 50, 100, or 200)

2,000 Bootstrap Extension 
Replicates (n = 400)

90% CI based on !
Replicate Statistic Values

90% CI based on !
Replicate Statistic Values

Figure 1.3. Flowchart of the simulation based design used.
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Abstract

Many scientific journals now require confidence intervals (CIs) of a mean or

median to be reported in any publication. Social science has been slow to follow

on this trend, particularly with the very informative yet inconsistently reported

field of structural equation modeling (SEM). However, because of the nature of

the �

2 goodness-of-fit test and SEM testing against a null model, a Bollen-Stine

transformation is necessary for bootstrapping processes and may have hindered

some researchers from doing so (Bollen & Stine, 1992). Many commercial

programs and R packages now include this feature to bootstrap SEM models.

Thus, empirically based CIs and medians can easily be deduced for any index

much like the Bollen-Stine p-value which is based on bootstrap resampling of a

SEM model to assess its empirical likelihood of fit. This research aims to show

the ease of simulating CIs with the lavaan package in R, along with trying to

extrapolate some SEM indices that display narrower and more accurate CIs in

small-sample SEM models. Results suggest the standardized root mean-square

residual (SRMR) and McDonald’s Centrality Index (MCI) have consistently

smaller CI ranges across the simulated conditions and could thus be rather

consistent and not as sample size dependent as other indices presented and their

CI ranges. The SRMR also has a large amount of sample fit indices not

contained within the estimated CI for each condition, an indication of sensitivity

to model misfit in small n CFA models.
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Confidence Interval Estimation for SEM Fit Indices

Confidence intervals (CIs) have been a widely accepted and in many cases

required practice of modern day scientific research (Cumming, 2012). The vastly

growing field of structural equation modeling (SEM) has, however, been slow to

present viable CIs for its vast aspects of fit besides the root mean square error of

approximation (RMSEA). This deficit has led some to conclude that fit indices may

not be appropriate. For example, Barrett (2007) is a big proponent for the elimi-

nation of fit indices whereas Steiger (2007) has countered that with the suggestion

that power and confidence intervals be more readily available in SEM research.

The RMSEA (Steiger & Lind, 1980) is a fit index that is commonly presented with

a 90% CI in SEM results, however it is not empirically based nor have any other

indices adopted CIs. Markland (2007) takes notice that there are no “golden”

cuto↵ values for indexes, and therefore CIs could o↵er a more complete picture.

The potential problem for SEM CIs is that estimation is best done by boot-

strapping, a procedure that takes constant resampling with replacement from an

empirical set of data to estimate a parameter’s sampling distribution as well as its

CI (Chernick, 1999; Efron, 1979). A simulation bootstrap process within the SEM

framework requires a transformation to the data matrix or else the null hypothe-

sis is not being tested correctly with the �

2 goodness of fit (Figure 2.1) and will

thus lead to erroneous results without a proper shift of the �

2 distribution. The

problem of resampling error in SEM models has been corrected by the Bollen-Stine

bootstrap (BSBS) which allows for an adjusted simulated p-value of an empirical

SEM model (Bollen & Stine, 1992). This transformation also allows for fit indices

to have sampling distributions constructed based on empirical data, and thus 90%

CI estimation is possible not only for the RMSEA or �2 goodness-of-fit test, but
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also for any fit index a research might choose to utilize. The BSBS has proven

quite useful to SEM yet it has not become commonplace knowledge in the field

yet.

A naive bootstrap, or selecting repeated observations with replacement from

the empirical sample, is the simplest bootstrapping approach and generally works

with most data. However, the use of naive bootstrapping in SEM has been re-

peatedly shown as inaccurate (Bollen & Stine, 1992; Chernick, 1999; Enders, 2001;

Nevitt & Hancock, 2001). Thus, the Bollen-Stine transformation must be per-

formed so the covariance matrix becomes consistent with the null hypothesis. That

is, one can find the resulting Bollen-Stine p-value (BSp) by finding the total num-

ber of bootstrapped �

2 values larger than the �

2 statistic of the actual empirical

dataset used to bootstrap the SEM model divided by the number of replicates. In

the following equation, Bollen and Stine (1992) state the transformation for the

new data set Z from the initial data where Y represents the centered raw data,

S represents the sample covariance matrix of Y , and ⌃̂ is the implied covariance

matrix:

Z = Y S

�1/2⌃̂1/2 (2.1)

Bollen and Stine (1992) then mathematically deduce that the covariance ma-

trix of Z being Z

0
Z/(N � 1) is now equal to the implied covariance matrix ⌃̂ and

bootstrapping from the transformed data in Z will accurately test the null hypoth-

esis in all bootstrap samples. While this process may seem tedious, the lavaan

package in R comes readily installed with the capability to do BSBS replications

and thus the ease for CI estimation is nowhere near as di�cult as it might be pre-

sumed (R-Core-Team, 2013; Rosseel, 2012). Presented below, is some preliminary

information on bootstrapping.

Bootstrapping Basics
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Starting with a data matrix of observations such that n is the sample size

with c columns each representing a recorded variable. Each row (r) of the matrix

acts as a single observation. The r x c matrix of parameters (p) is expected to be

an adequate representation of the expected population parameters ✓p. The r x c

matrix for any p can be used in a bootstrapping framework such than each row

of the matrix will be available for every replicate with replacement to create a

bootstrap based data matrix ✓̂p of randomized rows from ✓p. Every row has a

probability of 1/r chances of selection regardless of any previous selections. With

thousands of bootstrap replicates (B), ✓̂B will contain B samples of size n, with

r randomly selected rows from ✓p with replacement. A rather thorough picture of

the sampling distribution can thus be assumed for any of the parameters p in the

B ✓̂p matrices.

Efron (1979) notes that data from an unknown distribution F where

X1, X2, . . . , Xn ⇠ F with replicates of X1 = x1, X2 = x2, . . . , Xn = xn has an

expected mean of

x̄ =
nX

1

xn

n

(2.2)

As pointed out by Efron (1979), x̄ should approximate the expected mean

of the sample EF [X] because of the numerous replications representing a Taylor

series expansion. The variance of the sampling distribution from the bootstrap

replicates can thus be found by EF [X2] � EF [X]2. The standard error of the

sampling distribution (�̂) can thus be found with

�̂(F ) =

✓
EF [X2]� EF [X]2

n

◆1/2

(2.3)
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Bootstrap estimates of the CI can be constructed via a non-parametric ap-

proach that finds the desired cuto↵ values of the empirically based probability

mass function. Finding CI estimates from bootstrapping will be briefly described,

shortly. Efron and Tibshirani (1986) state that a minimum of B = 1000 replicates

are necessary for non-parametric CI estimation because of its complex nature. Tee-

tor (2011) displays the use of the quantile function in R and the use of an even

larger number of replicates (9,999) to provide an empirical estimation of the CI.

In the case of SEM, the Bollen-Stine bootstrap (BSBS) transforms the data

so that it is properly testing the �

2 statistic (Bollen & Stine, 1992). Each ✓̂p will

represent a bootstrap sample from which a covariance matrix can be determined

and the SEM model fit for every one of the thousands of replicates. The parameters

of interest would typically be the B �

2 values, however fit indices of each fitted

model could also be estimated B times.

Modern computing power has made bootstrapping readily available, but the

understanding of the process itself can perhaps seem daunting. Appendix A dis-

plays the structure of a typical bootstrap process, with the resulting ✓̂B matrices

allowing for a simulated mean or median value for starters, as well as a model

based CI of any percentage. The quantile function in R can easily compute the

cuto↵ points for a string of means or medians based on ✓̂B at a given CI level.

As an example, a particular fit index of an SEM model, say the SRMR, could

be estimated using B = 2000 replicates, or double the minimum B suggested

previously (Efron & Tibshirani, 1986). The 90% CI could be found as such for

the SRMR (✓̂SRMR) which includes all of the model fit SRMR indices from 2000

replicates. To find a 90% CI, we would need to estimate the cuto↵ for the lower

(0.05) and upper (0.95) proportion of scores, and the command in R with a vector

of the 2000 SRMR estimates (theta.srmr) would look like:
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quantile(theta.srmr, c(0.05, 0.95))

This function could be extended easily by adding a third quantile value (which

is contained between the c( ) in the command), that measures the median of the

sample. The quantile function in R works similar to constructing a box-plot, but

with the user having the ability to specify cuto↵ points for the CI. In this case, we

could find the 90% CI and the median for ✓̂SRMR as such:

quantile(theta.srmr, c(0.05, 0.50, 0.95))

A similar process can thus be done for any given fit index of a SEM model,

including the �

2. While tedious, a typical model would only need one set of

bootstrap replicates conducted, thus bootstrapping is not as time consuming as

one might perceive. Bootstrapping packages do exist in R and most commercial

programs contain simulated bootstrap additions as well. Allowing the computer to

store all of the ✓̂p matrices and then compute the necessary information allows for

a not so complicated bootstrap process that adds great depth to any researchers

expertise. The resulting bootstrap process assumes that the large number of ✓̂p

replicates will adequately map the sampling distribution of ✓p. In doing so, di�cult

parameters (i.e., fit indices) can be estimated with CIs that are based on the data

as opposed to complex mathematical processes.

Simple Bootstrapping Examples

A very simple bootstrap procedure could be done with something as simple

as the roll of a die. Say we roll the same die repeatedly 20 times, the numbers

would never change on the die, but the resulting values all have an equal chance

of selection with replacement. Using the quantile function in R, we could find

a basic 90% CI of the mean for a standard dice with recorded values stored in a

variable we’ll call dice.
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> dice

[1] 6 3 3 5 3 2 2 5 1 3 1 1 3 5 1 4 5 3 3 4

> mean(dice)

[1] 3.15

> quantile(dice, c(0.05, 0.50, 0.95))

5% 50% 95%

1.00 3.00 5.05

While the sample of one die is generic, it gives the basic concept of what

bootstrap replication accomplishes (i.e., a mean, median, CI). Now if we were to

roll five dice at a time, and take the mean of each roll 20 times, we’d be able to

construct a CI around the mean of the five dice. Note that each roll can have a

mix of any numbers, ranging anywhere from all di↵erent values to all the same.

> dice

[1] 4.4 3.2 3.4 3.2 2.8 3.4 2.8 4.2 2.8 2.8

3.4 2.8 3.0 4.2 3.6 3.0 3.4 3.6 2.8 4.2

> mean(dice)

[1] 3.35

> quantile(dice, c(0.05, 0.50, 0.95))

5% 50% 95%

2.80 3.30 4.21

The reason for the di↵erence in means for one die (M = 3.15) and five dice

(M = 3.35) can be described by the varied nature of resampling. With one die,

each replicate is only represented by a single die, and thus only 20 total values

were included. With five dice, the replicates were the mean of five dice done 20

times, thus 100 total dice values comprised the 20 means. The median and CIs

displayed the same pattern, however 20 replicates are certainly not enough and

therefore results are slightly varied. Doing this same experiment over thousands

of replicates would result in means, medians, and CIs all relatively similar since

the compiled ✓̂B will be a close approximation to ✓p. Any variable or variables in a

data set can be done in this same simple bootstrap process (e.g., CFI, �2, RMSEA,

etc). Instead of dice, one could let a computer randomly select r in each replicate
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so that (✓̂p) is equivalent in length to ✓p. Extending ✓̂p by drawing a larger value

of observations r than the data set is possible as well, but bootstrapping to the

same size n as the sample data is usual.

Applying Bootstrap CIs to SEM Fit Indices

To find the 90% CI of any size of bootstrapped index or parameter, one must

find the interval from the lowest 5% of replicated values to the largest 5%, which

can be done with the quantile function in R (Teetor, 2011). The quantile limits

thus provide is the likelihood that the median value will fall within these values

90% of the time, and therefore the smaller the CI the better presumption that

the simulated parameter is accurate. It should also then be presumed that the

empirical index values should also fall within this CI range or the index might not

be well representative of the model. Some researchers warn against bootstrapping

SEM models of less than sample size 100 (Nevitt & Hancock, 2001), and others

state SEM sample size should be at least 200 for accuracy reasons (Kenny, 2012;

Kline, 2011). However, work with small n models with simple designs could be

possible and needs further research (Nevitt & Hancock, 2001). In essence, small

sample size fit indices could be verified or rejected by CI estimation using the BSBS

procedure, and therefore empirical CIs with a median could be readily presented

for any one of the fit indices in SEM.

It is thus expected that CI construction will be relatively easy when the appro-

priate BSBS process is used. From the sampling distributions of various models,

90% CIs can be constructed along with a median index value to supplement the

actual index values. Because of the minimal amount of CI research in SEM, this

research is more about the process and an exploratory procedure to determine

what fit indices seemingly behave well in small n SEM models as it relates to CI

estimation.
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Methods

A simulation study varying several small to moderate sample sizes (n =

50, 100, 200), small to moderate factor loadings (� = 0.60, 0.75, 0.90), and boot-

strap replicated of size n as well as back to the initial population matrix derived

size of 400 was used in a 3 x 3 factorial design. Because of the minimal research

with small samples in SEM, it seems important to start here with these di↵erent

conditions for CI estimation and then move forward. Because of the small n con-

straint, a simple six-item and two-factor confirmatory factor analysis (CFA) model

will be used (Figure 2.2).

A selected set of commonly used fit indices will be monitored with a 90%

CI similar to that commonly presented with the RMSEA, but with an empirical

bootstrap basis. Two absolute fit indices (�2 goodness-of-fit; and standardized

root mean-square residual, SRMR) will be used, which are generally covariance

matrix based indices (Kline, 2011). Three relative fit indices (Tucker-Lewis Index,

TLI; Bollen’s incremental fit index, IFI; and normed fit index, NFI) (Bentler &

Bonett, 1980; Bollen, 1989; Tucker & Lewis, 1973) will be used with the caveat

that the TLI, IFI, and the comparative fit index (CFI) show heavy correlation with

one another (Kenny, 2012). And finally, three non-centrality indices (McDonald’s

centrality index, MCI, CFI, and RMSEA) (Bentler, 1990; McDonald, 1989; Steiger

& Lind, 1980) which measure the distance of the proposed model from a null model

will be used.

For robustness, 30 multiple random samples in each of the nine simulated con-

ditions were chosen. All data were simulated to form integer based 7-point Likert

scales similar to those used in much of the SEM literature. The samples for the

nine conditions were pulled from a population matrix based sample created from

57



the varied levels of n and �. Population matrices were constructed randomly and

a set sample of 400 was drawn as a population sample for the sake of comparison.

The samples of size n were drawn from the population samples of size 400 and

were also randomly generated for all 30 samples in each of the nine conditions,

for a total of 270 simulated models. Figure 2.3 illustrates the organization of the

methods used in this simulation.

Efron and Tibshirani (1986) make note that bootstrap replication for CI es-

timation should be a minimal of B = 1, 000 replicates because of the complex

nature of CIs. Thus B = 2, 000 replicates was used for each initial sample along

with three � levels and two bootstrap sizes using the lavaan package in R (R-Core-

Team, 2013; Rosseel, 2012). The sample generation code is presented in appendix

B. A simulated BSp as well as simulated values for nine fit indices were examined

for all of the 270 simulated models comprised by the nine combinations of n and

� used in the study, as well as for the bootstrap replicates to size n and back to

the population sample size of N = 400.

The range of the CI is of importance and should be analyzed, as well as the

likelihood of the fit indices from the model actually being contained within the

simulated 90% CI. Any size CI can be constructed, but this research opted for a

90% interval since it is commonly used with the RMSEA. The standard RMSEA

is mathematically deduced, so using the non-parametric BSBS to get a RMSEA

CI is also of interest.
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Results

Tabulations of the model fit indices encapsulated by their respective 90% CIs

for the varied conditions of n and � can highlight subtle di↵erences in the indices

(Table 2.1). CIs for when n = 50 failed to contain the fit index values of the

samples quite often, with the exception of the �2 and SRMR (Table 2.1). The NFI

had the lowest rate of indices contained by their CI for n = 50, with only 3 for

� = 0.60, 1 model for � = 0.75 and no model indices contained for � = 0.90. The

TLI, CFI, and IFI had only modest performance and only 3 CIs containing the

indices for all three when n = 50 and � = 0.90.

The smallest CI ranges (Table 2.2) in the sample size n 90% CI bootstrap esti-

mates were observed in the SRMR and MCI indices whereas the RMSEA and TLI

indices had the largest CI regions for the 0 to 1 bound indices. The �

2 goodness-

of-fit had a median value of 8.347 for simulated samples, which is relatively close

to the 8 df ’s of the model. The 90% CI range for the median lower and upper

confidence levels for the �

2 was 14.138.

Table 2.3 displays the ratios of the simulated medians of the bootstrap repli-

cates for all models compared to the actual model index values as well as a 90%

CI for the ratios of the 270 bootstrapped models in relation to their original val-

ues. The TLI (Med = 1.0004), IFI (Med = 1.0002), and CFI (Med = 1.0001)

were all very close to an ideal value of 1, or identically similar bootstrap values to

original sample index values. The RMSEA (Med = 1.492) and �

2 (Med = 1.145)

had simulated model indices farther from their original sample fit indices. Table

2.3 also shows the RMSEA with by far the largest CI range of ratio values for

the replicates compared to original model indices [0.000, 4.710]. The MCI had the

smallest 90% CI range of simulated to original index values [0.948, 1.026] as well
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as a median ratio of the bootstrap to sample values (Med = 1.0009).

The dispersion of the indices with a zero to one boundary (Figure 2.4) suggests

very little di↵erence in the spread of the indices at the bootstrap level of sample

size n. Furthermore, the SRMR, MCI, and RMSEA are without outliers in the

box-plots (Figure 2.4), where as the TLI has the largest spread of values and

outliers. Plotting the di↵erence between the lower confidence limit (LCL) and the

median compared to the upper confidence limit (UCL) and the median (Figure

2.5) for several indices with small CI ranges shows the SRMR and MCI both have

minimal amounts of variation in their CIs. The CIs for the SRMR and MCI have

the smallest di↵erences between the limits and the median as seen in Figure 2.5

as well.
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Discussion

Fit index CIs definitely have a strong potential of use for SEM researchers,

as the levels of confidence can add great depth to any fit index. The use of the

lavaan package in R is one example of simplifying the BSBS procedure to achieve

not only a BSp-value but also 90% CIs for any or all of the fit indices available

through the bootstrapLavaan function (see Appendix B). It would be helpful to

have bootstrap fit CI values become regularly available to all SEM researchers in

an easy to execute manner.

Because of the ease and added bonus fit index CIs can present to SEM research

(i.e., providing more insight into the degree of uncertainty), simulated index values

and CIs would be helpful to include with the actual index values selected by the

researcher. In this presented research with smaller sample sizes, the SRMR and

MCI appear to be preferable because of their minimal CI size variance regardless

of n or �. The SRMR also seems to be rather consistent with including the actual

fit index value in its bootstrapped CI, which could be beneficial in regards to small

n SEM models.

With a simple CFA model of sample sizes of 50, 100, and 200 the SRMR and

MCI seemed to behave with the least amount of variance. Across all sizes of n and

�, the minimal variances and di↵erences in means between the MCI and SRMR

appear to be least sensitive to parameter variation. The RMSEA similarly showed

patterns of being e↵ective across all nine conditions, but resulted with slightly

larger CI ranges compared to the SRMR and MCI (Figure 2.5). The TLI, IFI,

NFI, and CFI behaved similarly across conditions which was likely due to their

high intercorrelations, and all four have the widest variance of CI ranges for the

varied sizes of n and �.
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Many of the indices were only moderate at simulating CIs that contained

their respect fit index value from the sample itself (Table 2.1). The NFI most

notably was only adequate for when n = 200 and thus its use in small sample SEM

could be ill-advised, further supporting the notion that the NFI is over-sensitive to

parameters (Ding et al., 1995; Ding, 1996. The SRMR managed to stay consistent

regardless of n and � and could be an ideal fit index for small samples as well as

bootstrap CIs.

The MCI and the SRMR both had the smallest CI ranges based on the median

values of the 270 bootstrapped intervals. Since a small CI range is ideal, the MCI

and SRMR seem viable options for empirically based CIs. The CFI and IFI also

had rather small ranges for the 270 simulated CIs (Table 2.2). The ratios of the

median values for the bootstrap replicates in comparison to the actual sample fit

indices again suggests the MCI as one of the closest to an ideal ratio of 1:1 from

fit index to bootstrap fit index as well as having a minimal 90% CI range based

on the these values (see Table 2.3). The IFI and CFI had slightly closer ratios to

1 than the MCI, but had 90% CIs for their respective 270 ratios as almost double

the size of the MCI CI range.

The addition of a �

2 goodness-of-fit 90% CI would be valuable to any re-

searcher within SEM, and should therefore be considered for usage whenever pos-

sible. The benefits of an added CI to the �

2-test would undoubtedly add some

increased depth to the research presented in the field. Research presented with an

empirical CI for the �

2 of a SEM model lends credence to how strong the model

may or may not be and the model becomes clearer to the reader and even allows

for added ability of power and e↵ect size estimation for current and future use.

Within the eight indices presented in this research, the SRMR has a strength

of bootstrap stability (i.e. the fit index being contained in the 90% CI) as well as
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having a minimal amount of variance within the CI ranges themselves. The SRMR

thus seems to have an edge over the other indices in its minimal CI ranges and

stability of the sample SRMR value being contained within its bootstrapped CI.

The MCI displayed small CI ranges as well regardless of n and � and also added a

strong ratio of fit index to bootstrap fix index median being close to 1:1 and having

minimal variance in the ratios. The IFI and CFI both have benefits in these areas

as well, and could be worth adding to a SEM CI estimation.

The use of several indices as opposed to just one in general is advised (Kline,

2011) and therefore the SRMR may very well be a good option for any researcher

to use or continue using as a supplement to the �

2 goodness-of-fit. The MCI

could make a good compliment to the research as well as the SRMR and �

2, and

mixed with empirical CIs for all three would add strength to SEM research. Due

to the high correlation between the IFI and CFI, either one could make a viable

addition as well to the fit indices used with bootstrap CIs, but certainly both are

not necessary.

A limitation of this research is that it was conducted with only one CFA

model based on several possible conditions (e.g., three sample sizes and three fac-

tor loading sizes). Future research could examine additional conditions including

di↵erent SEM models types and sizes. Further, larger sample sizes and varied

� levels could be investigated in future research. Another limitation is that the

artificiality of any simulation may not always generalize to real-world research.

However, the constructed data sets in this research were made to be integer based

and similar to what a real Likert scale study would look like. Still, true empirical

data would obviously lend more credit to this CI estimation method and would be

complementary to the current findings.

Future research could also include statistical power analysis as a factor to
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further the information that can be presented with a given SEM model. Power in

SEM is a much more di�cult task than CI estimation, and thus may be better

to address on its own. However, both power and CI estimation would o↵er more

clarity and depth to SEM research, as suggested by Steiger (2007). Although

many of the common and well-supported SEM indices were included in the current

research, other indices can also be examined with the procedures presented in this

study.

Other research could also focus directly on the expansion of small sample sizes

to larger ones with bootstrapping. Analysis investigating how large the bootstrap

extensions should be (i.e., to what extended sample size) and what fit indices would

be best to utilize. Another possible bootstrapping approach to SEM could focus

on one model with varied subsamples of di↵erent sizes. Overall model fit might

be good, but comparison of the model to specific groups within the overall sample

(i.e., gender or race) may not have balanced subsample sizes and thus comparison

could be slightly di�cult. The issue to address then becomes, should a researcher

bootstrap smaller samples to the size of the larger samples, or could smaller repli-

cated bootstrap samples of the larger subsample sizes be more adequate?

The need for CIs in any research has become obvious and in many cases a

requirement (e.g., Cumming, 2012). Taleb (2010) sums it up best by suggesting

that no measure of central tendency should ever be trusted without a range of

confidence. SEM has been surprisingly absent of CIs other than for the RMSEA,

and thus the goal of this research is to help illustrate the necessity and the rather

non-complex nature of adding 90% CIs to all published models. Modern comput-

ing has opened many new gateways and it has become rather easy in the 21st

century to conduct repeated iterations of any model in a bootstrap fashion, espe-

cially since many programs and packages already allow replication. Researchers
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need to become more familiar with these methods and journals need to provide

more guidelines for SEM publication requirements, which should include CIs and

adequately justified fit indices a priori.
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Table 2.1. Summation of model fit index values contained within the simulated
90% CI broken down by sample size (n) and factor loading (�). Each cell has a
max of 30 samples.

Index n � = 0.60 � = 0.75 � = 0.90

n = 50 30 26 27

�

2
n = 100 30 27 27

n = 200 30 25 26

n = 50 27 25 26

SRMR n = 100 27 25 26

n = 200 27 24 24

n = 50 11 10 3

TLI n = 100 18 14 9

n = 200 19 19 14

n = 50 12 10 3

IFI n = 100 18 14 9

n = 200 19 19 14

n = 50 3 1 0

NFI n = 100 12 9 7

n = 200 30 25 25

n = 50 14 15 19

RMSEA n = 100 17 16 19

n = 200 20 19 15

n = 50 11 10 3

CFI n = 100 18 14 9

n = 200 19 19 14

n = 50 20 21 11

MCI n = 100 19 18 12

n = 200 20 19 15
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Table 2.2. Median values for lower and upper 90% confidence limits as well as for
the fit index for bootstrap samples. The CI range for each index based on the
median LCL and UCL values is also included.

Index LCL Median UCL CI Range

�

2 2.68060 8.34702 16.81871 14.13811

SRMR 0.02159 0.04025 0.06308 0.04149

TLI 0.89678 0.97772 1.00000 0.10322

IFI 0.94743 0.98871 1.00000 0.05257

NFI 0.90387 0.95212 0.98501 0.08114

RMSEA 0.00000 0.02972 0.10619 0.10619

CFI 0.94495 0.98812 1.00000 0.05505

MCI 0.95547 0.99035 1.00000 0.04453

Note: LCL = Lower 90% Confidence Limit

UCL = Upper 90% Confidence Limit
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Table 2.3. Median and 90% confidence levels for the ratio of the sample index to
the bootstrap sample median.

Index LCL Ratio UCL CI Range

�

2 0.44135 1.14503 2.48610 2.04475

SRMR 0.65666 1.09250 1.81646 1.15980

TLI 0.84365 1.00038 1.07877 0.23512

IFI 0.92192 1.00020 1.03461 0.11269

NFI 0.90623 0.99161 1.03836 0.13213

RMSEA 0.00000 1.49188 4.71028 4.71028

CFI 0.91740 1.00006 1.03954 0.12214

MCI 0.94834 1.00086 1.02622 0.07788

Note: LCL = Lower 90% Confidence Limit

UCL = Upper 90% Confidence Limit
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Figure 2.1. Density of the �

2 distribution with df = 8 as well as the standard
bootstrap and the Bollen-Stine bootstrap. The Bollen-Stine transformation is a
necessary step in �

2 resampling.
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Figure 2.2. Two factor model utilized for the presented simulation study. Fac-
tor loadings (�) are varied between 0.60, 0.75, and 0.90 where as the correlation
between the two factors (F1 and F2) is set to 0.50.
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Population Matrix Σ

Population Sample S "
(N = 400)

Sample drawn from S"
(n = 50, 100, or 200)

2,000 Bootstrap Replicates 
(n = 50, 100, or 200)

5% Lower Confidence 
Level based off Replicates

Median of Replicate 
Statistic Values

95% Upper Confidence 
Level based off Replicates

Figure 2.3. Flowchart of the simulation based design used.
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Figure 2.4. Box-plots of the fit indices with 0 to 1 boundaries based on there CI
ranges when bootstrapped back to the sample size of n (50, 100, 200). All three
simulated factor loadings (0.60, 0.75, 0.90) are accounted for.
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Figure 2.5. Scatterplots of several fit indices (SRMR, RMSEA, MCI) and the
dispersion of their CI ranges. Comparison is made between the distance from the
lower confidence level to the median for all 270 bootstrap results on the x-axis and
the di↵erence between median and upper confidence level on the y-axis.
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APPENDIX A

Basic Bootstrap Flowchart

Empirically Based !
Sample of Size n

Determine # of Bootstrap 
Replicates (B) Desired!

1,000 ≤ B ≤ 10,000

Draw Random Sample 
from n !

WITH Replacement

Assess and Record Desired 
Statistic of Interest for 

Random Sample Drawn

Compute Mean/Median 
from B Random Samples

Compute Desired Upper 
Confidence Level from B 

Random Samples

Compute Desired Lower 
Confidence Level from B 

Random Samples

Repeat B TimesRepeat B Times

Figure A.1. General flowchart of the basic bootstrapping process based on the
work of Efron (1979). This design can be used for parameter estimation, standard
error estimation, confidence limits, or any combination of these.
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APPENDIX B

Simulation Code for Use in R

overall <- NULL

library(lavaan)

library(tmvtnorm)

library(stringr)

latCor <- 0.50 # Fixed Correlation between Latent Variables

for(seed in 1001:1031)

{

n <- 50 # Varied Sample Size n (50,100,200)

lam <- 0.60 # Varied Lambda Loading (0.6,0.75,0.9)

# lavaan Model Syntax

Adv02Fact <- ’ A =~ 1*X1 + X2 + X3

B =~ 1*X4 + X5 + X6

A ~~ B ’

meanie <- c(3.5,3.9,3.7,4.5,4.1,3.7) # Selected Variable Means

# Create Population Matrix according to Parameters

a <- matrix(c(lam,lam,lam,0,0,0,0,0,0,lam,lam,lam),ncol=2)

b <- matrix(c(1,latCor,latCor,1),ncol=2)

pop <- a %*% b %*% t(a)

diag(pop) <- rep(1,6)

dimnames(pop) <- list(c("X1","X2","X3","X4","X5","X6"),

c("X1","X2","X3","X4","X5","X6"))

set.seed(seed)

f0@Fit@converged <- FALSE

while(f0@Fit@converged==FALSE)

{

# Initial Sample and Fit

s0 <- data.frame(trunc(rtmvnorm(400, mean=meanie, sigma=pop,

lower=rep(1,6),upper=rep(8,6))))

f0 <- cfa(Adv02Fact, data=s0)

}

f1@Fit@converged <- FALSE

while(f1@Fit@converged==FALSE)

77



{

# Sample and fit for size n

loc <- sample(1:400,n,replace=TRUE)

s1 <- s0[loc,]

f1 <- cfa(Adv02Fact, data=s1)

}

# Fits Model with Bollen-Stine Bootstraps

b1 <- bootstrapLavaan(f1, R=2000,type="bollen.stine",verbose=T,

FUN=fitMeasures,fit.measures=c("pvalue",

"chisq","srmr","aic","tli","ifi","nfi",

"rmsea","cfi"))

# Need to Calculate the MCI by hand

d <- ((b1[,"chisq"]/(n-1))-8/(n-1))

mci <- exp(-.5 * d)

b1 <- cbind(b1,mci)

# Adjust Indices to assure they are bounded by 0 and 1

b1[which(b1[,"tli"]> 1),"tli"] <- 1

b1[which(b1[,"ifi"]> 1),"ifi"] <- 1

b1[which(b1[,"mci"]> 1),"mci"] <- 1

b1[which(b1[,"tli"]< 0),"tli"] <- 0

b1[which(b1[,"ifi"]< 0),"tli"] <- 0

b1[which(b1[,"mci"]< 0),"mci"] <- 0

# Bootstrap n back to 400

s2 <- s1

for(i in 2:(400/n))

{

s2 <- rbind(s2,s1)

}

f2 <- cfa(Adv02Fact, data=s2)

# Fits Model with Bollen-Stine Bootstraps

b2 <- bootstrapLavaan(f2, R=2000, type="bollen.stine",verbose=T,

FUN=fitMeasures,fit.measures= c("pvalue",

"chisq","srmr","aic","tli","ifi","nfi",

"rmsea","cfi"))

# Need to Calculate the MCI by hand

d <- ((b2[,"chisq"]/(360-1))-8/(360-1))

mci <- exp(-.5 * d)

b2 <- cbind(b2,mci)
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# Adjust Indices to assure they are bounded by 0 and 1

b2[which(b2[,"tli"]> 1),"tli"] <- 1

b2[which(b2[,"ifi"]> 1),"ifi"] <- 1

b2[which(b2[,"mci"]> 1),"mci"] <- 1

b2[which(b2[,"tli"]< 0),"tli"] <- 0

b2[which(b2[,"ifi"]< 0),"tli"] <- 0

b2[which(b2[,"mci"]< 0),"mci"] <- 0

# BSBS Calculation

bs1 <- sum(b1[,"chisq"]>fitMeasures(f1,"chisq"))/length(b1[,1])

bs2 <- sum(b2[,"chisq"]>fitMeasures(f1,"chisq"))/length(b2[,1])

# Non-Convergent Models

nc1 <- 2000-length(b1[,1])

nc2 <- 2000-length(b2[,1])

# Create .csv Based on Parameters

data <- str_c(n,"to",dim(s1)[1],"L",lam*100,"raw",seed,".csv")

write.csv(b1, data)

data <- str_c(n,"to",dim(s2)[1],"L",lam*100,"raw",seed,".csv")

write.csv(b2, data)
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