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Renormalization group and other calculations for the one
dimensional spin-1/2 dimerized Heisenberg antiferromagnet(a) 

J. N. Fields(b) 

Brookhaven National Lab .• Upton. L.J.. New York 11973 

H. W. J. Slate and J. C. Sonner(c) 

Physics Department. University of Rhode Island. Kingston. Rhode Island 02881 

A zero-temperature renormalization group (RG) approach is applied to the one-dimensional, spin-112 
anti ferromagnetic Heisenberg dimerized (alternating) chain. Specifically, the ground state energy and 
lowest-lying spectral excitations are examined. The calculation indicates the existence of a gap in the 
spectrum of the dimerized chain which vanishes only in the limit of a uniform spin chain. in contrast to a 
recent Green's function approach. The RG results are in reasonable agreement with numerical 
extrapolations on the exact eigenvalue spectrum of finite chains of up to 12 spins. Both methods are 
compared with several other approximate treatments of the Heisenberg system. and tested by comparison 
with exact results for the spin-112 XY dimerized chain. 

PACS numbers: 7S.1O.Jm. 7S.40.Fa 

INTRODUCTION 

Recent experimental studies of linear chain spin
Peierls systems such as TTF CuS

4
(CF3)4 have been inter

preted [l,Z] in terms of a Hartree-Fock (HFA) treatment 
[3] of the dimerized spin-liZ anti-ferromagnetic Heisen
berg chain, whose Hamiltonian is 

(1) 

where we take J l ~ JZ > O. To the extent that this in
terpretation depends upon the existence of a gap in the 
dimerized Heisenberg system for all J 2 < J

l
, it has 

been called into question by a recent calculation [4] 
based on a Green's function decoupling scheme, which 
produces a gapless excitation band. 

In this paper we discuss and compare two very re
cent approximate calculations of the ground state energy 
and low-lying excitations of Hamiltonian (1). The first 
calculation, which we shall present in some detail, is a 
zero-temperature quantum renormalization group (RG) 
treatment based on a simple two-level truncation scheme 
[5]. However, since the dimer spectrum has a four-level 
(singlet-triplet) rather than a two-level character, a 
four-level quantum RG scheme which preserves the basic 
singlet-triplet character, has also been employed, to 
increase quantitative accuracy [7]. 

The second method consists of direct extrapolations 
on the exact eigenvalue ~pectrum of finite chains of up 
to lZ spins [6]. 

Finally the various results have been compared with 
several other approximate calculations. 

THE RENORMALIZATION GROUP METHOD 

In this section we describe calculations which are 
similar in approach to the lattice RG techniques fre
quently used to calculate critical behavior [8]. We 
shall establish recursion relations which define the 
Hamiltonian, and we shall find fixed-points of these re
cursion relations. 

In this approach, the lattice is sub-divided into 
coupled blocks of Ns sites such that the eigenvalues 
and eigenvectors of each b~ock may be calculated exactly. 
The basis of each block (Z s levels) is truncated to 
some number, NL, of levels, and the coupling between 
adjacent blocks is written within the truncated basis. 
The blocks have thus become equivalent to single sites 

on a new lattice. Choosing the two lowest states of an 
odd-Ns block, for example, maps the block onto a single 
spin liZ in the new lattice, and allows uS to write down 
explicitly a set of recursion relations which define an 
RG transformation for the ground state of the Hamiltonian, 
at least for small N . 

s 

In order to maintain the symmetries ot the system 
throughout the iterative process, we cast the Hamilton
ian into the form 

H (n) _ (n) { + - + - s + ) (n) Z 2 

-J I (SZiSZi+l SZi"Zi+l + 2u S2iS2i+l) 

(n) + - - + (n) z z 
+ a (S2i+152i+2+S2i+lS2i+2+ZV S2i+lS2i+2) 

( 2) 

where I represents the 2 x 2 identity matrix. The in
itial conditions are 

~ v 
(0) 1, a (0) a, C

(o) 
0, 

(3) 

Associating the lattice sites into blocks of Ns spins, 
the Hamiltonian can be written as a sum of intrablock 
and interblock terms: 

H(n) ~ EW(n) + /1(n) 
p 2p 2p+l + v(n) 

2p,2p+l + V(n) 
2p+l,2p+2 

+ 
Cn) Ns 

+ I.)} C i~l (I2p,i 2p+l,1 , (4) 

where i ~ 1, 2, Ns labels the position of the site 
within block Zp or Zp+l. 

The intrablock terms have the form (N odd) 
s 

-Z {'"* • -+ -+ -+ -+ -+ 
HZp- J 5Zp 1 5Z Z+ aS Z Z'SZ 3+"'+ a5 'S , p, p, p, Zp,Ns-l 2p,Ns 

H ~ZJ{aS 'S +S .S + ... +S 
Zp+l Zp+l,l Zp+l,Z Zp+l,2 Zp+l,3 Zp+l,Ns-l 
-+ • S 

Zp+l,Ns 
and the interblock couplings have the form 

VZp ,2p+l 2is .S 
2p,Ns 2p+l,l 

(5) 
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+ + 
Vz 1 Z ; Zed S Z 1 . S ( 6) p+ , p+Z p+ ,Ns Zp+Z,l 

In equations (5) and (6) the labels n are suppressed. 
The eigenstates of H~n), where q ; Zp or 2p+l, 

may be chosen to be simultaneous eigenstates of the 
total z-component spin operator of the block q: 

z Ns z 
Sq ; igl Sq,i (7) 

The new basis is chosen to contain the two states 
{I+> ,1-> }, where 1+> (I -> ) is the state of lowest 

q q q q z 
energy E (E ) in the subspace S ; +'"-2 (-"2). These + - q 
states are the lowest energy states of the old basis 
and may be expressed as 

I (n+l) Z ••• Z A ±(n) 
±>Zp 

EI ENs £0 1 ... £0 IEI···E > (n) 
Ns Ns (8) 

1+>(n+1) ; Z ... [ II± (n) lEI' •. EN > (n) , - Zp+1 £0
1 ENs £0 1 " . ENs s 

where ZE represents a summation over the two spin stateE 

I±>(n) a~ site ~ of the block. 
~ 

The next step is to 
terms. We calculate the 

sz(n) in the new basis: 
q,£ 

rewrite the interblo~k coupling 
matrix elements of S (n) and 

q,t 

and, similarly, 

where 

~(n) 
£ 

and 

() () S+(n+l) 
S+ n = ~Nn_~+l 2p+l ' 
2p+l,~ s 

Sz(n) 
Zp,£ 

Sz(n) 
2p+l,9, 

(n)Sz(n+l) 
n£ 2p 

(n) z(n+l) 
nN _£+lSZp+l 

s 

(9a) 

(9b) 

(9c) 

(9d) 

(n) _ +(n) 
n£ - [£0 .. '[£0 ., .L EN £0£ (A

El 
... E ... s )2. (10) 

1 £ s 9.}ls 

The coupling terms become 

V(n) +/n)Ut;(n)]2(S+ S- +h.c,)+ZIl(n)[n(n)]2S
z x 

Zp,Zp+l Ng 2p Zp+l Ns Zp 
z 

SZP+l} 

v(n) +a(n)J(n)Ut;(n)]2(S+ S- +h c )+Z)n)[ (n)]2 
Zp+l, Zp+Z 1 Zp+l Zp+Z •. nl 

and hence 

J (n+l) 

(n+l) 
11 

(11) 

[t;~n)]2J(n); a(n+l); [i;1n)/t;~n)]2a(n); 
s s 

[ (n)A;(n)]2 (n). (n+l);[ (n) 1t;(n)]2 (n). 
1)N

s 
Ns \l ,,, nIl'" 

c(n+l) = N c(n)+ E(n+l) . (lZ) 
s + 

These recursion relations define an RG transformation 
for the ground state of the Hamiltonian. The parameters 
J(n)and a(n) provide information on the splittings of 
the lowest states of the system,\l(n) and ,,(n) determine 
the symmetries of the fixed points, and C(n) may be used 
to find the ground state energy per site, Eo,through the 
relation 
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In general, the 
(nH) 

E± ,as well 
ation (lZ), are 

E ; £im(C(n) IN(n». 
a n~ s (13) 

. I (n+ll 
e~genvectors ±> and eigenvalues 
as the recursion coefficients of equ

determined by machine. 

RESULTS 

The RG calculation has been performed for N ;3, 
5, 7 and 9, for both the Heisenberg and the XY drmer 
systems. The uniform limit, a* = 1, is always found to 
be an unstable fixed point of the system. Initial 
values aCo) < 1 flow (with increasing n) into the 
stable fixed point a* = 0 (independent dimers). This 
result leads immediately to the conclusion that the 
alternating spectrum has a gap which vanishes only in 
the uniform limit a(o); 1. This conclusion is sup
ported by similar fixed point behavior in the case of 
the XY model, which is exactly solvable [9], and also 
shows a gap which vanishes only in the uniform limit. 
It is supported also by the direct finite chain extra
polations, which indicate a gap for both Heisenberg and 
XY dimerized systems [5, 6]. 

For both the ground state energy per spin (see 
Figs. 1 and 2) and the energy gap (see Fig. 3), the 
direct extrapolation method is believed to have the 
best quantitative accuracy for all degrees of dimeriz
ation. In Fig. 3, it is seen that the two-level RG 
method for Ns = 9 (the accuracy of this method improves 
as Ns increases) is qualitatively in agreement with ex
trapolation results near the uniform limit, but is 
rather seriously in error near the dimer limit. This 
is the result of preserving only two levels at each it
eration step. In order to improve the RG estimates for 
the gap (and also for the ground state energy per spin) 
another type of RG calculation, in which the truncated 
basis at each step is taken to be four levels, preserv
ing the singlet-triplet character, has been carried out, 
by way of a general matrix formulation of the problem 
which can be regarded as a variant on finite chain tech
niques [10, 11]. The result is a considerable quanti
tative improvement for both gap and ground state energy. 
However, this method yields an a* which is approximately 
rather than exactly unity. 

The "critical exponents" for the Heisenberg problem 
are Ca) the deviation of Eo/J [where J ; ~(J1+JZ)1 from 
the uniform limit as a function of 8[where 6 ; (l-a)/ 
(l+a)], and (b) the vanishing of the gap ~ near the uni
form limit, also as a function of 6. A very recent 
theory by Cross &nd Fisher based on the dimerized 
Luther-Peschel-Luttinger model [lZ] predicts that the de
viation (from Eo (6=0)/J) ~o/J ~ 64/ 3, whereas an Ns ; 3, 
two-level RG approach of de Braak et al [13] predicts 
C

o
/ J ~ 61.37744. 

-O.B 

EXACT 

-1,0 

& EXTRAP 

'" BROOKS HARRIS 
-1.2 & v KLEIN 

& BULAEVSKII 

o 2·LEVEL RG Ns =9 

-1.4 .4-LEVEL RG Ns =4 

a ---+ 
-1.6 

o 0,2 0.4 0,6 O.B 1,0 

Fig. i. Comparison of ground state energy per spin for 
various models 
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-0.8 

EXACT 

-1.0 

-1.2 

--- DIRECT EXTRAI' 

• RG EXTRAI'. 
-1.4 

0 2-LEVEL RG Ns=3 , 
, , I> CASPERS RG 

-1.6 Q ---+ 

0 0.2 0.4 0.6 OB 1.0 

Fig. 2 
Extrapolations of 2-level RG groups for N = 3, 5, 
7, and 9 in comparison with direct extrapglations. 

The finite chain extrapolations are consistentoyitn 
either prediction, yielding an exponent 1.36~:02· The 
N = 7 two-level RG approach, featured here gives a 

s ' h larger value of 1.5 (approx.). These four approac es 
are not consistent with the Bulaevskii HFA (3J which 
predicts E /J~o2~n20. 

For tge case of the excitation energy gap the Cross
Fisher theory [12] predicts 6/J~o2/3, whereas our Ns = 7 
RG approach gives 6/J~00.76 (approx). These two ap
proaches are in reasonable agreement. However, from 
Fig. 3, it appears that the finite chain extrapolations 
are predicting a somewhat larger exponent, but apparent
ly < 1. Extrapolation uncertainties do not permit a 
quantitative estimate, however. 

Finally, we discuss a variety of other approximate 
calculations, In Fig. I, the ground state energy per 
spin, Eo/J, is compared to the Bulaevskii HFA [3], and 
an appreciable quantitative discrepancy is observed for 
all a. (The exact result [14], for the uniform limit 
only, is indicated by the arrow.) Much better agree
'ment is achieved by a third-order perturbation calcu
lation of Brooks Harris [15] and a Kekule state calcu
lation of Garcia-Bach and Klein [16J. It is interest
ing that the Harris calculation is a perturbation about 
the dimer limit (01=0) and yet does quite well near 01=1. 
The 2-level RG result for Ns = 9 and the 4-level RG re
sults for Ns = 4 are intermediate in accuracy. However, 
in Fig. 2, the 2-level RG sequence for Ns = 3, 5, 7, and 
9 is extrapolated and the result gives much better a~ee
ment with the direct extrapolations. (The N = 3 RG cal
culation is equivalent to the RG calculatiog of ref. 13). 

In the case of the energy gap (Fig. 3), the 
Bulaevskii HFA [3J shows the best agreement with the 
direct extrapolations. The Cross-Fisher calculation 
[12] is inherently incapable of predicting amplitudes, 
and is therefore presented with arbitrary normalization. 
As mentioned above, the 2-level, Ns odd, RG calculations 
are poor near the dimer limit. The 4-level, Ns = 4, RG 
calculation with singlet-triplet symmetry is accurate {('l 

"'" ~ 0.4, but vanishes at 01* = 0.962 instead of 0I*=l. 
An older, quasi-boson calculation of ~ntgomery [17] 
gives a gap which vanishes as (1 - 01) 2 or equivalently, 
6 ~ 00• 5 , 
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2.0 

1.5 

1.0 

0.5 

o 

Fig. 3 

o 

- EXTRAI'. 

--- N =12 
I> BROOKS HARRIS 

v MONTGOMERY 
.. BULAEVSKII 

Q-

02 0.4 

··D·· CROSS- FISHER 
o 2-LEVEL RG Ns ·9 

_ .•. - 4- LEVEL RG Ns -4 

0.6 0.8 1.0 

Comparison of various approximate theories for the 
alternating antiferromagnetic excitation energy gap. 
The direct extrapolations are shown as a solid curve. 
As an aid to the eye, a dotted line has been drawn 
through the Cross-Fisher points and a dot-dashed line 
through the Ns = 4, NL = 4 RG points. 
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