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Copyright © 2015 A. Brett and M. R. S. Kulenović. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We consider the following system of difference equations: 𝑥
𝑛+1

= 𝑥
2

𝑛
/(𝐵
1
𝑥
2

𝑛
+ 𝐶
1
𝑦
2

𝑛
), 𝑦
𝑛+1

= 𝑦
2

𝑛
/(𝐴
2
+ 𝐵
2
𝑥
2

𝑛
+ 𝐶
2
𝑦
2

𝑛
), 𝑛 = 0, 1, . . . ,

where 𝐵
1
, 𝐶
1
,𝐴
2
, 𝐵
2
, 𝐶
2
are positive constants and 𝑥

0
, 𝑦
0
≥ 0 are initial conditions.This system has interesting dynamics and it can

have up to seven equilibrium points as well as a singular point at (0, 0), which always possesses a basin of attraction.We characterize
the basins of attractions of all equilibrium points as well as the singular point at (0, 0) and thus describe the global dynamics of this
system. Since the singular point at (0, 0) always possesses a basin of attraction this system exhibits Allee’s effect.

1. Introduction

The following difference equation is known as the Beverton-
Holt model:

𝑥
𝑛+1

=

𝑎𝑥
𝑛

1 + 𝑥
𝑛

, 𝑛 = 0, 1, . . . , (1)

where 𝑎 > 0 is the rate of change (growth or decay) and 𝑥
𝑛
is

the size of the population at the 𝑛th generation.
This model was introduced by Beverton and Holt in 1957.

It depicts density dependent recruitment of a populationwith
limited resources which are not shared equally. The model
assumes that the per capita number of offspring is inversely
proportional to a linearly increasing function of the number
of adults.

The Beverton-Holt model is well studied and understood
and exhibits the following properties.

(a) Equation (1) has two equilibrium points 0 and 𝑎 − 1

when 𝑎 > 1.
(b) All solutions of (1) are monotonic (increasing or

decreasing) sequences.
(c) If 𝑎 ≤ 1, then the zero equilibrium is a global attractor;

that is, lim
𝑛→∞

𝑥
𝑛
= 0, for all 𝑥

0
≥ 0.

(d) If 𝑎 > 1, then the equilibrium point 𝑎 − 1 is a global
attractor; that is, lim

𝑛→∞
𝑥
𝑛
= 𝑎 − 1, for all 𝑥

0
> 0.

(e) Both equilibrium points are globally asymptotically
stable in the corresponding regions of parameters 𝑎 ≤
1 and 𝑎 > 1; that is, they are global attractors with
the property that small changes of initial condition 𝑥

0

result in small changes of the corresponding solution
{𝑥
𝑛
}.

All these properties can be derived from the explicit form
of the solution of (1):

𝑥
𝑛
=

1

1/(𝑎 − 1) + (1/𝑥
0
− 1/(𝑎 − 1))1/𝑎

𝑛

if 𝑎 ̸= 1,

𝑥
𝑛
=

1

𝑛 + 1/𝑥
0

, if 𝑎 = 1.

(2)

See [1–3].
The following difference equation,

𝑥
𝑛+1

=

𝑎𝑥
2

𝑛

1 + 𝑥
2

𝑛

, 𝑛 = 0, 1, . . . , (3)

was introduced by Thomson [4] as a depensatory general-
ization of the Beverton-Holt stock-recruitment relationship
used to develop a set of constraints designed to safeguard
against overfishing; see [5] for further references. In view of
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2 Discrete Dynamics in Nature and Society

the sigmoid shape of the function 𝑓(𝑢) = 𝑎𝑢
2

/(1 + 𝑢
2

) (3) is
called the Sigmoid Beverton-Holt model. A very important
feature of the Sigmoid Beverton-Holt model is that it exhibits
the Allee effect; that is, zero equilibrium has a substantial
basin of attraction, as we can see from the following results.

(a) Equation (3) has a unique zero equilibrium when 𝑎 <
2.

(b) Equation (3) has a zero equilibrium and the positive
equilibrium 𝑥 = 1/2, when 𝑎 = 2.

(c) There exist a zero equilibrium and two positive equi-
libria, 𝑥

−
and 𝑥

+
, when 𝑎 > 2.

(d) All solutions of (3) are monotonic (increasing or
decreasing) sequences.

(e) If 𝑎 < 2, then the equilibrium point 0 is a global
attractor; that is, lim

𝑛→∞
𝑥
𝑛
= 0.

(f) If 𝑎 = 2, then the equilibrium point 0 is a global
attractor, with the basin of attraction𝐵(0) = (0, 𝑥) and
𝑥 = 1/2 is a nonhyperbolic equilibriumpoint with the
basin of attraction 𝐵(𝑥) = [𝑥,∞).

(g) If 𝑎 > 2, then zero equilibrium and 𝑥
+
are locally

asymptotically stable, while 𝑥
−
is repeller and the

basins of attraction of the equilibriumpoints are given
as

𝐵(0) = {𝑥
0
: 0 ≤ 𝑥

0
< 𝑥
−
},

𝐵(𝑥
+
) = {𝑥

0
: 𝑥
−
< 𝑥
0
< ∞}.

(4)

In other words, the smaller positive equilibrium
serves as the boundary between two basins of attrac-
tion. The zero equilibrium has the basin of attraction
𝐵(0) and the model exhibits the Allee effect.

(h) The equilibrium points 0 and 𝑥
+
are globally asymp-

totically stable in the corresponding basins of attrac-
tions 𝐵(0) and 𝐵(𝑥

+
).

The two dimensional analogue of (1) is the uncoupled
system

𝑥
𝑛+1

=

𝑎𝑥
𝑛

1 + 𝑥
𝑛

,

𝑦
𝑛+1

=

𝑏𝑦
𝑛

1 + 𝑦
𝑛

,

𝑛 = 0, 1, . . . ,

(5)

where 𝑎, 𝑏 are positive parameters. The dynamics of system
(5) can be derived fromdynamics of each equation.Therefore,
this system has an explicit solution given by (2).

Two species can interact in several different ways through
competition, cooperation, or host-parasitoid interactions.
For each of these interactions, we obtain variations of system
(5) all of which may require different mathematical analysis.

One such variation that exhibits competitive interaction
is the following model, known as the Leslie-Gower model,
which was considered in Cushing et al. [6]:

𝑥
𝑛+1

=

𝑎𝑥
𝑛

1 + 𝑥
𝑛
+ 𝑐
1
𝑦
𝑛

,

𝑦
𝑛+1

=

𝑏𝑦
𝑛

1 + 𝑐
2
𝑥
𝑛
+ 𝑦
𝑛

,

𝑛 = 0, 1, . . . ,

(6)

where all parameters are positive and the initial conditions
are nonnegative. The global dynamics of system (6) was
completed in [7]. Several variations of system (6) where the
competition of two species was modeled by linear fractional
difference equations were considered in [8–14]. An interest-
ing fact is that none of thesemodels exhibited the Allee effect.

The two dimensional analogue of system (3) is the follow-
ing uncoupled system:

𝑥
𝑛+1

=

𝑎𝑥
2

𝑛

1 + 𝑥
2

𝑛

,

𝑦
𝑛+1

=

𝑏𝑦
2

𝑛

1 + 𝑦
2

𝑛

,

𝑛 = 0, 1, . . . ,

(7)

where 𝑎, 𝑏 are positive parameters. The dynamics of system
(7) can be derived from the dynamics of each equation in the
system. Since each equation in system (7) has three possible
dynamic scenarios, then system (7) possesses nine dynamic
scenarios.

A variation of system (7) that exhibits competitive inter-
actions is the system

𝑥
𝑛+1

=

𝑥
2

𝑛

𝐵
1
𝑥
2

𝑛
+ 𝐶
1
𝑦
2

𝑛

,

𝑦
𝑛+1

=

𝑦
2

𝑛

𝐴
2
+ 𝐵
2
𝑥
2

𝑛
+ 𝐶
2
𝑦
2

𝑛

,

𝑛 = 0, 1, . . . ,

(8)

where 𝐵
1
, 𝐶
1
, 𝐴
2
, 𝐵
2
, 𝐶
2
> 0. This system will be considered

in the remainder of this paper. We will show that system
(8) has similar but more complex dynamics than system (7).
We will see that like system (7) the coupled system (8) may
possess 1, 3, 5, or 7 equilibrium points in the hyperbolic case
and 2, 4, or 6 equilibriumpoints in the nonhyperbolic case. In
each of these caseswewill show that theAllee effect is present,
although (0, 0) is outside of the domain of definition of system
(8). We will precisely describe the basins of attraction of
all equilibrium points and the singular point (0, 0). We will
show that the boundaries of the basins of attraction of the
equilibrium points are the global stable manifolds of the
saddle or the nonhyperbolic equilibrium points. See [10, 11,
13–18] for related results and [19] for dynamics of competitive
system with a singular point at the origin. The biological
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interpretation of a related system is given in [20, 21] and
similar system is treated in [22]. The specific feature of our
results is that no equilibrium point in the interior of the
first quadrant is computable and so our analysis is based on
geometric analysis of the equilibrium curves.

2. Preliminaries

Our proofs use some recent general results for competitive
systems of difference equations of the form:

𝑥
𝑛+1

= 𝑓(𝑥
𝑛
, 𝑦
𝑛
),

𝑦
𝑛+1

= 𝑔(𝑥
𝑛
, 𝑦
𝑛
),

(9)

where 𝑓 and 𝑔 are continuous functions and 𝑓(𝑥, 𝑦) is non-
decreasing in 𝑥 and nonincreasing in 𝑦 and 𝑔(𝑥, 𝑦) is non-
increasing in 𝑥 and nondecreasing in 𝑦 in some domain 𝐴.

Competitive systems of the form (9) were studied by
many authors in [6, 7, 9, 13, 14, 23–37] and others.

Here we give some basic notions about monotonic maps
in the plane.

We define a partial order ⪯se on R2 (so-called South-East
ordering) so that the positive cone is the fourth quadrant; that
is, this partial order is defined by

(

𝑥
1

𝑦
1
)⪯se (

𝑥
2

𝑦
2
) ⇐⇒ {

𝑥
1

⩽ 𝑥
2

𝑦
1

⩾ 𝑦
2

.

(10)

Similarly, we define North-East ordering as

(

𝑥
1

𝑦
1
)⪯ne (

𝑥
2

𝑦
2
) ⇐⇒ {

𝑥
1

⩽ 𝑥
2

𝑦
1

⩽ 𝑦
2

.

(11)

A map 𝐹 is called competitive if it is nondecreasing with
respect to ⪯se, that is, if the following holds:

(

𝑥
1

𝑦
1
) ⪯ (

𝑥
2

𝑦
2
) ⇒ 𝐹(

𝑥
1

𝑦
1
) ⪯ 𝐹(

𝑥
2

𝑦
2
) . (12)

For each k = (V1, V2) ∈ R2
+
, define Q

𝑖
(k) for 𝑖 = 1, . . . , 4

to be the usual four quadrants based on V and numbered in
a counterclockwise direction; for example, Q

1
(k) = {(𝑥, 𝑦) ∈

R2
+
: V1 ≤ 𝑥, V2 ≤ 𝑦}.
For 𝑆 ⊂ 𝑅

2

+
let 𝑆∘ denote the interior of 𝑆.

The following definition is from [35].

Definition 1. Let𝑅 be a nonempty subset ofR2. A competitive
map 𝑇 : 𝑅 → 𝑅 is said to satisfy condition (𝑂+) if for every
𝑥,𝑦 in𝑅,𝑇(𝑥) ⪯ne 𝑇(𝑦) implies 𝑥⪯ne 𝑦, and𝑇 is said to satisfy
condition (𝑂−) if for every 𝑥, 𝑦 in 𝑅, 𝑇(𝑥) ⪯ne 𝑇(𝑦) implies
𝑦⪯ne 𝑥.

The following theorem was proved by de Mottoni and
Schiaffino [38] for the Poincaré map of a periodic competitive
Lotka-Volterra system of differential equations. Smith gener-
alized the proof to competitive and cooperative maps [34].

Theorem 2. Let 𝑅 be a nonempty subset of R2. If 𝑇 is a
competitive map for which (𝑂+) holds, then for all 𝑥 ∈ 𝑅,

{𝑇
𝑛

(𝑥)} is eventually componentwise monotone. If the orbit of
𝑥 has compact closure, then it converges to a fixed point of 𝑇.
If instead (𝑂−) holds, then for all 𝑥 ∈ 𝑅, {𝑇2𝑛} is eventually
componentwise monotone. If the orbit of 𝑥 has compact closure
in 𝑅, then its omega limit set is either a period-two orbit or a
fixed point.

It is well known that a stable period-two orbit and a stable
fixed point may coexist; see Hess [39].

The following result is from [35], with the domain of the
map specialized to be the cartesian product of intervals of real
numbers. It gives a sufficient condition for conditions (𝑂+)
and (𝑂−).

Theorem 3. Let 𝑅 ⊂ R2 be the cartesian product of two
intervals in R. Let 𝑇 : 𝑅 → 𝑅 be a 𝐶

 competitive map. If
𝑇 is injective and det 𝐽

𝑇
(𝑥) > 0 for all 𝑥 ∈ 𝑅 then 𝑇 satisfies

(𝑂+). If 𝑇 is injective and det 𝐽
𝑇
(𝑥) < 0 for all 𝑥 ∈ 𝑅 then 𝑇

satisfies (𝑂−).

Theorems 2 and 3 are quite applicable as we have shown
in [40], in the case of competitive systems in the plane con-
sisting of rational equations.

The following result is from [18], which generalizes the
corresponding result for hyperbolic case from [7]. Related
results have been obtained by Smith in [34].

Theorem 4. LetR be a rectangular subset of R2 and let 𝑇 be
a competitive map onR. Let 𝑥 ∈ R be a fixed point of 𝑇 such
that (Q

1
(𝑥) ∪ Q

3
(𝑥)) ∩R has nonempty interior (i.e., 𝑥 is not

the NW or SE vertex ofR).
Suppose that the following statements are true.

(a) The map 𝑇 is strongly competitive on int((Q
1
(𝑥) ∪

Q
3
(𝑥)) ∩R).

(b) 𝑇 is 𝐶2 on a relative neighborhood of 𝑥.
(c) The Jacobian matrix of 𝑇 at 𝑥 has real eigenvalues 𝜆, 𝜇

such that |𝜆| < 𝜇, where 𝜆 is stable and the eigenspace
𝐸
𝜆 associated with 𝜆 is not a coordinate axis.

(d) Either 𝜆 ≥ 0 and

𝑇(𝑥) ̸= 𝑥, 𝑇(𝑥) ̸= 𝑥 ∀𝑥 ∈ int((Q
1
(𝑥) ∪ Q

3
(𝑥)) ∩R),

(13)

or 𝜆 < 0 and

𝑇
2

(𝑥) ̸= 𝑥 ∀𝑥 ∈ int((Q
1
(𝑥) ∪ Q

3
(𝑥)) ∩R). (14)

Then there exists a curveC inR such that

(i) C is invariant and a subset ofW𝑠(𝑥);
(ii) the endpoints ofC lie on 𝜕R;
(iii) 𝑥 ∈ C;
(iv) C is the graph of a strictly increasing continuous func-

tion of the first variable;
(v) C is differentiable at 𝑥 if 𝑥 ∈ int(R) or one sided

differentiable if 𝑥 ∈ 𝜕R, and in all casesC is tangential
to 𝐸𝜆 at 𝑥;
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(vi) C separatesR into two connected components, namely,

W
−
:= {𝑥 ∈ R : ∃𝑦 ∈ C with 𝑥 ⪯ 𝑦},

W
+
:= {𝑥 ∈ R : ∃𝑦 ∈ C with 𝑦 ⪯ 𝑥};

(15)

(vii) W
−
is invariant, and dist(𝑇𝑛(𝑥),Q

2
(𝑥)) → 0 as 𝑛 →

∞ for every 𝑥 ∈ W
−
;

(viii) W
+
is invariant, and dist(𝑇𝑛(𝑥),Q

4
(𝑥)) → 0 as 𝑛 →

∞ for every 𝑥 ∈ W
+
.

The following result is a direct consequence of the Tri-
chotomy Theorem of Dancer and Hess (see [7, 39]) and is
helpful for determining the basins of attraction of the equi-
librium points.

Corollary 5. If the nonnegative cone of ⪯ is a generalized
quadrant in R𝑛, and if 𝑇 has no fixed points in the ordered
interval 𝐼(𝑢

1
, 𝑢
2
) other than 𝑢

1
and 𝑢

2
, then the interior of

𝐼(𝑢
1
, 𝑢
2
) is either a subset of the basin of attraction of 𝑢

1
or

a subset of the basin of attraction of 𝑢
2
.

The next results give the existence and uniqueness of
invariant curves emanating from a nonhyperbolic point of
unstable type, that is, a nonhyperbolic point where second
eigenvalue is outside interval [−1, 1]. Similar result for a
nonhyperbolic point of stable type, that is, a nonhyperbolic
point where second eigenvalue is in the interval (−1, 1), fol-
lows from Theorem 4. See Kulenović and Merino, Invariant
Curves of Planar Competitive and Cooperative Maps.

Theorem 6. Let R = (𝑎
1
, 𝑎
2
) × (𝑏
1
, 𝑏
2
) and let 𝑇 : R → R

be a strongly competitive map with a unique fixed point x ∈ R,
such that 𝑇 is continuously differentiable in a neighborhood of
x. Assume further that at the point x the map 𝑇 has associated
characteristic values 𝜇 and ] satisfying 1 < 𝜇 and −𝜇 < ] < 𝜇.

Then there exist curvesC
1
,C
2
inR and there existp

1
, p
2
∈

𝜕R with p
1
≪se x≪se p2 such that

(i) for ℓ = 1, 2,C
ℓ
is invariant, north-east strongly linearly

ordered, such that x ∈ C
ℓ
and C

ℓ
⊂ Q
3
(x) ∪ Q

1
(x);

the endpoints q
ℓ
, r
ℓ
of C
ℓ
, where q

ℓ
⪯ne rℓ, belong to

the boundary ofR. For ℓ, 𝑗 ∈ {1, 2} with ℓ ̸= 𝑗,C
ℓ
is a

subset of the closure of one of the components ofR\C
𝑗
.

Both C
1
and C

2
are tangential at x to the eigenspace

associated with ];

(ii) for ℓ = 1, 2, let 𝐵
ℓ
be the component of R \ C

ℓ
whose

closure contains p
ℓ
. Then 𝐵

ℓ
is invariant. Also, for x ∈

𝐵
1
,𝑇𝑛(x) accumulates onQ

2
(p1) ∩ 𝜕R, and for𝑥 ∈ 𝐵

2
,

𝑇
𝑛

(x) accumulates on Q
4
(p2) ∩ 𝜕R.

(iii) LetD
1
:= Q
1
(x) ∩R \ (B

1
∪B
2
) andD

2
:= Q
3
(x) ∩

R \ (B
1
∪B
2
).

ThenD
1
∪D
2
is invariant.

Corollary 7. Let a map 𝑇 with fixed point x be as in
Theorem 6. LetD

1
,D
2
be the sets as inTheorem 6. If𝑇 satisfies

(𝑂
+
), then for ℓ = 1, 2, D

ℓ
is invariant, and for every x ∈

D
ℓ
, the iterates 𝑇𝑛(x) converge to x or to a point of 𝜕R. If 𝑇

satisfies (𝑂
−
), then 𝑇(D

1
) ⊂ D

2
and 𝑇(D

2
) ⊂ D

1
. For every

x ∈ D
1
∪D
2
, the iterates𝑇𝑛(x) either converge to x or converge

to a period-two point or to a point of 𝜕R.

3. Local Stability of Equilibrium Points

First we present the local stability analysis of the equilibrium
points. It is interesting that the local stability analysis is the
more difficult part of our analysis.

The equilibrium points of system (8) satisfy the following
system of equations:

𝑥 =

𝑥
2

𝐵
1
𝑥
2

+ 𝐶
1
𝑦
2
,

𝑦 =

𝑦
2

𝐴
2
+ 𝐵
2
𝑥
2

+ 𝐶
2
𝑦
2
, 𝑛 = 0, 1, . . . .

(16)

All solutions of system (16) with at least one zero compo-
nent are given as𝐸

𝑥
(𝑥, 0)where𝑥 = 1/𝐵

1
, 𝐸
𝑦
(0, 𝑦)where𝑦 =

1/2𝐶
2
, and 𝐸

𝑦
±

(0, 𝑦
±
) where 𝑦

±
= (1 ± √1 − 4𝐶

2
𝐴
2
)/2𝐶
2
.

The equilibrium point 𝐸
𝑦
(0, 𝑦) exists when 1 = 4𝐶

2
𝐴
2
, and

𝐸
𝑦
±

(0, 𝑦
±
) exists when 1 > 4𝐶

2
𝐴
2
.

The equilibrium points with strictly positive coordinates
satisfy the following system of equations:

𝐵
1
𝑥
2

+ 𝐶
1
𝑦
2

− 𝑥 = 0,

𝐴
2
+ 𝐵
2
𝑥
2

+ 𝐶
2
𝑦
2

− 𝑦 = 0.

(17)

From (17) we have that all real solutions of the system (17)
belong to the positive quadrant, since 𝐵

1
𝑥
2

+ 𝐶
1
𝑦
2

= 𝑥 > 0

and 𝐴
2
+ 𝐵
2
𝑥
2

+ 𝐶
2
𝑦
2

= 𝑦 > 0. By eliminating 𝑦 from (17)
we obtain

𝑥
4

(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)
2

+ 2𝐶
2
𝑥
3

(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)

+ 𝑥
2

(2𝐴
2
𝐵
2
𝐶
2

1
+ 𝐵
1
(𝐶
1
− 2𝐴
2
𝐶
1
𝐶
2
) + 𝐶
2

2
)

+ 𝐶
1
𝑥(2𝐴
2
𝐶
2
− 1) + 𝐴

2

2
𝐶
2

1
= 0.

(18)

The next result gives the necessary and sufficient condi-
tions for (18) and so system (16) to have between zero and
4 solutions. As we show in Section 4.2 the global dynamics
depends on the number of the equilibrium points with
positive coordinates.
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Lemma 8. Let

Δ
3

= 16𝐴
2

2
𝐵
4

1
𝐶
2

1
(1 − 4𝐴

2
𝐶
2
)
2

− 4𝐵
3

1
𝐶
1
(4𝐴
2
𝐶
2
− 1)

× (32𝐴
3

2
𝐵
2
𝐶
2

1
− 8𝐴
2

2
𝐶
2

2
+ 6𝐴
2
𝐶
2
− 1)

+ 𝐵
2

1
(256𝐴

4

2
𝐵
2

2
𝐶
4

1
+ 128𝐴

3

2
𝐵
2
𝐶
2

2
𝐶
2

1

− 8𝐴
2
(3𝐵
2
𝐶
2

1
+ 𝐶
3

2
)

+ 16𝐴
2

2
(4𝐵
2
𝐶
2

1
𝐶
2
+ 𝐶
4

2
) + 𝐶
2

2
)

+ 2𝐵
2
𝐵
1
𝐶
1
(4𝐴
2
(−64𝐴

2

2
𝐵
2
𝐶
2
𝐶
2

1

+ 4𝐴
2
(3𝐵
2
𝐶
2

1
+ 4𝐶
3

2
) − 13𝐶

2

2
) + 9𝐶

2
)

+ 𝐵
2
(256𝐴

3

2
𝐵
2

2
𝐶
4

1
+ 𝐵
2
𝐶
2

1
(16𝐴
2
𝐶
2
(9 − 8𝐴

2
𝐶
2
) − 27)

+ 4𝐶
3

2
(4𝐴
2
𝐶
2
− 1)),

Δ
2
= − 2𝐵

3

1
𝐶
1
(2𝐴
2
𝐶
2
− 1)(4𝐴

2
𝐶
2
− 1)

+ 𝐵
2

1
(32𝐴
2

2
𝐵
2
𝐶
2
𝐶
2

1
− 4𝐴
2
(3𝐵
2
𝐶
2

1
+ 𝐶
3

2
) + 𝐶
2

2
)

− 4𝐵
2
𝐵
1
𝐶
1
(𝐴
2
(4𝐴
2
𝐵
2
𝐶
2

1
+ 𝐶
2

2
) − 𝐶
2
)

− 𝐵
2
(𝐵
2
𝐶
2

1
(9 − 8𝐴

2
𝐶
2
) + 2𝐶

3

2
),

Δ
1
= 4𝐴
2
𝐵
1
𝐶
1
𝐶
2
− 2𝐶
1
(2𝐴
2
𝐵
2
𝐶
1
+ 𝐵
1
) + 𝐶
2

2
.

(19)

Assume that 𝐵
2
𝐶
1

̸= 𝐵
1
𝐶
2
. Then the following holds.

(a) If Δ
3
> 0, Δ

2
> 0, and Δ

1
> 0, then (18) has four sim-

ple real roots.

(b) If Δ
3
> 0 and Δ

2
≤ 0 ∨ (Δ

2
> 0 ∧ Δ

1
≤ 0), then (18)

has no real roots.

(c) If Δ
3
< 0, then (18) has two simple real roots.

(d) If Δ
3
= 0 and Δ

2
< 0, then (18) has one real double

root.

(e) If Δ
3
= 0 and Δ

2
> 0, then (18) has two real simple

roots and one real double root.

(f) If Δ
3
= 0, Δ

2
= 0, and Δ

1
> 0, then (18) has two real

double roots.

(g) If Δ
3
= 0, Δ

2
= 0, and Δ

1
< 0, then (18) has no real

roots.

(h) If Δ
3
= 0, Δ

2
= 0, and Δ

1
= 0, then (18) has one real

root of multiplicity four.

Proof. The discrimination matrix [41] of 𝑓(𝑥) = 𝐴𝑥
4

+𝐵𝑥
3

+

𝐶𝑥
2

+ 𝐷𝑥 + 𝐸 and 𝑓(𝑥) is given by

Discr(𝑓, 𝑓)

=

(

(

(

(

(

𝐴 𝐵 𝐶 𝐷 𝐸 0 0 0

0 4𝐴 3𝐵 2𝐶 𝐷 0 0 0

0 𝐴 𝐵 𝐶 𝐷 𝐸 0 0

0 0 4𝐴 3𝐵 2𝐶 𝐷 0 0

0 0 𝐴 𝐵 𝐶 𝐷 𝐸 0

0 0 0 4𝐴 3𝐵 2𝐶 𝐷 0

0 0 0 𝐴 𝐵 𝐶 𝐷 𝐸

0 0 0 0 4𝐴 3𝐵 2𝐶 𝐷

)

)

)

)

)

.

(20)

Let 𝐷
𝑘
denote the determinant of the submatrix of Discr( ̃𝑓,

̃
𝑓


), formed by the first 2𝑘 rows and the first 2𝑘 columns, for
𝑘 = 1, 2, 3, 4 where

̃
𝑓(𝑥) = 𝑥

4

(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)
2

+ 2𝐶
2
𝑥
3

(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)

+ 𝑥
2

(2𝐴
2
𝐵
2
𝐶
2

1
+ 𝐵
1
(𝐶
1
− 2𝐴
2
𝐶
1
𝐶
2
) + 𝐶
2

2
)

+ 𝐶
1
𝑥(2𝐴
2
𝐶
2
− 1) + 𝐴

2

2
𝐶
2

1
.

(21)

So, by straightforward calculation one can see that

𝐷
1
= 4(𝐵

2
𝐶
1
− 𝐵
1
𝐶
2
)
4

,

𝐷
2
= 4Δ
1
(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)
6

,

𝐷
3
= 4Δ
2
𝐶
2

1
(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)
6

,

𝐷
4
= Δ
3
𝐶
4

1
(𝐵
2
𝐶
1
− 𝐵
1
𝐶
2
)
6

.

(22)

The rest of the proof follows in view ofTheorem 1 in [41].

Geometrically solutions of system (17) are intersections of
two ellipses that satisfy the equations

(𝑥 − 1/2𝐵
1
)
2

1/4𝐵
2

1

+

𝑦
2

1/4𝐵
1
𝐶
1

= 1,

𝑥
2

1/4𝐵
2
𝐶
2
− 𝐴
2
/𝐵
2

+

(𝑦 − 1/2𝐶
2
)
2

1/4𝐶
2

2
− 𝐴
2
/𝐶
2

= 1,

(23)

with respective vertices (1/2𝐵
1
, 0) and (0, 1/2𝐶

2
). See

Figure 1.
Consequently when 1 > 4𝐶

2
𝐴
2
, in addition to the three

equilibrium points on the axes, system (8) may have 1, 2, 3, or
4 positive equilibrium points. We will refer to these equilib-
rium points as 𝐸SW(𝑥, 𝑦) (southwest), 𝐸SE(𝑥, 𝑦) (southeast),
𝐸NW(𝑥, 𝑦) (northwest), and 𝐸NE(𝑥, 𝑦) (northeast) where

𝐸NW ⪯se 𝐸NE ⪯se 𝐸SE, 𝐸SW ⪯ne 𝐸NW. (24)

When a positive equilibrium point is nonhyperbolic we
will refer to it as 𝐸

𝑁
(𝑥, 𝑦).
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Ellipse 1 Ellipse 2
y

x

y

x

(0, 0)
( 1
B1

, 0)

( 1

2B1

, −
1√4B1C1

)

(√ 1

4B2C2

−
A2

B2

,
1

2C2

) (√ 1

4B2C2

−
A2

B2

,
1

2C2

)

1

2B1

,
1√4B1C1

)(

1

2C2

− √ 1

4C2
2

−
A2

C2

)(0, 

1

2C2

+ √ 1

4C2
2

−
A2

C2

)(0, 

1

2C2

)(0, 
( 1

2B1

, 0)

Figure 1: The equilibrium curves of system (8).

The map associated with system (8) has the form:

𝑇(

𝑥

𝑦
) = (

𝑥
2

𝐵
1
𝑥
2
+ 𝐶
1
𝑦
2

𝑦
2

A
2
+ 𝐵
2
𝑥
2
+ 𝐶
2
𝑦
2

). (25)

The Jacobian matrix of 𝑇 is

𝐽
𝑇
(𝑥, 𝑦)

= (

2𝐶
1
𝑥𝑦
2

(𝐵
1
𝑥
2
+ 𝐶
1
𝑦
2
)
2

−

2𝐶
1
𝑥
2

𝑦

(𝐵
1
𝑥
2
+ 𝐶
1
𝑦
2
)
2

−

2𝐵
2
𝑥𝑦
2

(𝐴
2
+ 𝐵
2
𝑥
2
+ 𝐶
2
𝑦
2
)
2

2𝐴
2
𝑦 + 2𝐵

2
𝑥
2

𝑦

(𝐴
2
+ 𝐵
2
𝑥
2
+ 𝐶
2
𝑦
2
)
2

),

(26)

and the Jacobian matrix of 𝑇 evaluated at an equilibrium
𝐸(𝑥, 𝑦) with positive coordinates has the following form:

𝐽
𝑇
(𝑥, 𝑦) = (

2𝐶
1
𝑦
2

𝑥

−2𝐶
1
𝑦

−2𝐵
2
𝑥

2𝐴
2
+ 2𝐵
2

2
𝑥

𝑦

) . (27)

The determinant and trace of (27) are

det 𝐽
𝑇
(𝑥, 𝑦) =

4𝐴
2
𝐶
1
𝑦

𝑥

,

tr 𝐽
𝑇
(𝑥, 𝑦) =

2𝐶
1
𝑦
2

𝑥

+

2𝐴
2
+ 2𝐵
2
𝑥
2

𝑦

.

(28)

It is worth noting that det 𝐽
𝑇
(𝑥, 𝑦) and tr 𝐽

𝑇
(𝑥, 𝑦) of (27)

are both positive.
Using the equilibrium condition (17), we may rewrite the

determinant and trace in the more useful form:

det 𝐽
𝑇
(𝑥, 𝑦) = 4𝑥𝑦𝐵

1
𝐶
2
− 4𝑦𝐶

2
− 4𝑥𝐵

1
− 4𝑥𝑦𝐵

2
𝐶
1
+ 4,

tr 𝐽
𝑇
(𝑥, 𝑦) = 4 − 2𝑦𝐶

2
− 2𝑥𝐵

1
.

(29)

The characteristic equation of the matrix (27) is

𝜆
2

− tr 𝐽
𝑇
(𝑥, 𝑦)𝜆 + det 𝐽

𝑇
(𝑥, 𝑦) = 0, (30)

whose solutions are the eigenvalues

𝜆 =

tr 𝐽
𝑇
(𝑥, 𝑦) − √(tr 𝐽

𝑇
(𝑥, 𝑦))

2

− 4 det 𝐽
𝑇
(𝑥, 𝑦)

2

,

𝜇 =

tr 𝐽
𝑇
(𝑥, 𝑦) + √(tr 𝐽

𝑇
(𝑥, 𝑦))

2

− 4 det 𝐽
𝑇
(𝑥, 𝑦)

2

.

(31)

The corresponding eigenvectors of (31) are

𝐸
𝜆
= (

1

2𝑥𝐵
2

(𝑥𝐵
1
− 𝑦𝐶
2
+ √(𝑥𝐵

1
− 𝑦𝐶
2
)
2

+ 4𝐵
2
𝐶
1
𝑥𝑦), 1),

𝐸
𝜇

= (−

1

2𝑥𝐵
2

(𝑦𝐶
2
− 𝑥𝐵
1
+ √(𝑥𝐵

1
− 𝑦𝐶
2
)
2

+ 4𝐵
2
𝐶
1
𝑥𝑦), 1).

(32)

We will now consider two lemmas that will be used to
prove the local stability character of the positive equilibrium
points of system (8). The nonzero coordinates (𝑥, 𝑦) of all
equilibrium points will subsequently be designated with the
subscripts: 𝑟 (repeller), 𝑎 (attractor), 𝑠, 𝑠

1
, 𝑠
2
(saddlepoint), ns

(nonhyperbolic of the stable type), and nu (nonhyperbolic of
the unstable type).

Lemma 9. The following conditions hold for the coordinates of
the positive equilibrium points, 𝐸(𝑥, 𝑦), of system (8).

(i) For 𝐸SW(𝑥𝑟, 𝑦𝑟) and 𝐸𝑁(𝑥nu, 𝑦nu),

𝑥 <

1

2𝐵
1

, 𝑦 <

1

2𝐶
2

. (33)

(ii) For 𝐸NW(𝑥𝑠
1

, 𝑦
𝑠
1

),

𝑥 <

1

2𝐵
1

, 𝑦 >

1

2𝐶
2

. (34)
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(iii) For 𝐸NE(𝑥𝑎, 𝑦𝑎), 𝐸NE(𝑥𝑠, 𝑦𝑠), and 𝐸𝑁(𝑥ns, 𝑦ns),

𝑥 >

1

2𝐵
1

, 𝑦 >

1

2𝐶
2

. (35)

(iv) For 𝐸SE(𝑥𝑠
2

, 𝑦
𝑠
2

),

𝑥 >

1

2𝐵
1

, 𝑦 <

1

2𝐶
2

. (36)

Proof. This is clear from geometry. See Figure 2.

Lemma 10. The following conditions hold for the coordinates
of the positive equilibrium points, 𝐸(𝑥, 𝑦), of System (8).

(i) For 𝐸SW(𝑥𝑟, 𝑦𝑟) and 𝐸NW(𝑥𝑠
1

, 𝑦
𝑠
1

),

4𝑥𝑦𝐵
1
𝐶
2
− 4𝐵
2
𝐶
1
𝑥𝑦 + 1 > 2𝑦𝐶

2
+ 2𝑥𝐵

1
. (37)

(ii) For 𝐸NE(𝑥𝑎, 𝑦𝑎), 𝐸NE(𝑥𝑠, 𝑦𝑠), and 𝐸SE(𝑥𝑠
2

, 𝑦
𝑠
2

),

4𝑥𝑦𝐵
1
𝐶
2
− 4𝐵
2
𝐶
1
𝑥𝑦 + 1 < 2𝑦𝐶

2
+ 2𝑥𝐵

1
. (38)

(iii) For 𝐸
𝑁
(𝑥ns, 𝑦ns) and 𝐸𝑁(𝑥nu, 𝑦nu),

4𝑥𝑦𝐵
1
𝐶
2
− 4𝐵
2
𝐶
1
𝑥𝑦 + 1 = 2𝑦𝐶

2
+ 2𝑥𝐵

1
. (39)

Proof. (i) Let 𝑚
𝐸1

be the slope of the tangent line to ellipse
𝐸
1
at 𝐸(𝑥, 𝑦) = 𝐸SW(𝑥𝑟, 𝑦𝑟) and let 𝑚

𝐸2
be the slope of the

tangent line to ellipse 𝐸
2
at 𝐸(𝑥, 𝑦) = 𝐸SW(𝑥𝑟, 𝑦𝑟). It is clear

from geometry that

𝑚
𝐸1

> 𝑚
𝐸2

> 0. (40)

See Figure 2. It follows that

𝑑𝑦

𝑑𝑥








𝐸
1

(𝑥, 𝑦) >

𝑑𝑥

𝑑𝑦








𝐸
2

(𝑥, 𝑦) > 0, (41)

and in turn

1 − 2𝐵
1
𝑥

2𝐶
1
𝑦

>

2𝐵
2
𝑥

1 − 2𝐶
2
𝑦

> 0. (42)

Therefore

4𝑥𝑦𝐵
1
𝐶
2
− 4𝐵
2
𝐶
1
𝑥𝑦 + 1 > 2𝑦𝐶

2
+ 2𝑥𝐵

1
. (43)

The proofs for the remaining case in (i) and all cases in
(ii) and (iii) are similar and will be omitted.

Theorem 11. The following conditions hold for the equilibrium
points 𝐸(𝑥, 𝑦) of system (8):

(i) 𝐸
𝑥
(𝑥
𝑎
, 0) is a locally asymptotically stable;

(ii) 𝐸
𝑦
(0, 𝑦ns) is nonhyperbolic of the stable type;

(iii) 𝐸
𝑦
+

(0, 𝑦
+𝑎
) is locally asymptotically stable and 𝐸

𝑦
−

(0,
𝑦
−𝑠
) is a saddle point;

(iv) 𝐸SW(𝑥𝑟, 𝑦𝑟) is a repeller;

(v) 𝐸NW(𝑥𝑠
1

, 𝑦
𝑠
1

), 𝐸SE(𝑥𝑠
2

, 𝑦
𝑠
2

), and 𝐸NE(𝑥𝑠, 𝑦𝑠) are saddle
points;

(vi) 𝐸NE(𝑥𝑎, 𝑦𝑎) is locally asymptotically stable;
(vii) 𝐸

𝑁
(𝑥ns, 𝑦ns) is nonhyperbolic of the stable type;

(viii) 𝐸N(𝑥nu, 𝑦nu) is nonhyperbolic of the unstable type.

Proof. (i) The eigenvalues of (26), evaluated at 𝐸
𝑥
(𝑥
𝑎
, 0), are

𝜆 = 0 and 𝜇 = 0.
(ii) The eigenvalues of (26), evaluated at 𝐸

𝑦
(0, 𝑦ns), are

𝜆 = 0 and 𝜇 = 1 when 1 = 4𝐶
2
𝐴
2
.

(iii) The eigenvalues of (26), evaluated at 𝐸
𝑦
+

(0, 𝑦
+𝑎
) and

𝐸
𝑦
−

(0, 𝑦
−𝑠
), respectively, are 𝜆 = 0 and 𝜇

±
= 2𝐴

2
/𝑦
±
when

1 > 4𝐶
2
𝐴
2
.

(a) Note that when 1 > 4𝐶
2
𝐴
2
,

𝑦
+
=

1 + √1 − 4𝐶
2
𝐴
2

2𝐶
2

>

1

2𝐶
2

> 2𝐴
2
. (44)

Therefore 𝜇
+
= 2𝐴
2
/𝑦
+
< 1.

(b) Note that when 1 > 4𝐶
2
𝐴
2
,√1 − 4𝐴

2
𝐶
2
> 1−4𝐴

2
𝐶
2
.

Therefore

𝜇
−
=

2𝐴
2

𝑦
−

=

4𝐴
2
𝐶
2

1 − √1 − 4𝐴
2
𝐶
2

>

1 − √1 − 4𝐴
2
𝐶
2

1 − √1 − 4𝐴
2
𝐶
2

= 1.

(45)

In both cases, the conclusion follows.
(iv) We need to show that | tr 𝐽

𝑇
(𝑥, 𝑦)| < |1 + det 𝐽

𝑇
(𝑥, 𝑦)|

and | det 𝐽
𝑇
(𝑥, 𝑦)| > 1 when 𝐸(𝑥, 𝑦) = 𝐸SW(𝑥𝑟, 𝑦𝑟). Since

tr 𝐽
𝑇
(𝑥, 𝑦) and det 𝐽

𝑇
(𝑥, 𝑦) are both positive, our conditions

become tr 𝐽
𝑇
(𝑥, 𝑦) < 1+det 𝐽

𝑇
(𝑥, 𝑦) and det 𝐽

𝑇
(𝑥, 𝑦) > 1. We

will first show that det 𝐽
𝑇
(𝑥, 𝑦) > 1. By (37) we have

det 𝐽
𝑇
(𝑥𝑦) − 1

= 4𝑥𝑦𝐵
1
𝐶
2
− 4𝑥𝑦𝐵

2
𝐶
1
− 4𝑦𝐶

2
− 4𝑥𝐵

1
+ 4 − 1

> 2𝑦𝐶
2
+ 2𝑥𝐵

1
− 1 − 4𝑦𝐶

2
− 4𝑥𝐵

1
+ 4 − 1

= 1 − 2𝑦𝐶
2
+ 1 − 2𝑥𝐵

1
.

(46)

By (33) we have 1 − 2𝑦𝐶
2
+ 1 − 2𝑥𝐵

1
> 0.

Therefore det 𝐽
𝑇
(𝑥, 𝑦) > 1. We will next show that tr 𝐽

𝑇
(𝑥,

𝑦) < 1 + det 𝐽
𝑇
(𝑥, 𝑦).

By (37) we have

1 + det 𝐽
𝑇
(𝑥, 𝑦) − tr 𝐽

𝑇
(𝑥, 𝑦)

= 1 + (4𝑥𝑦𝐵
1
𝐶
2
− 4𝑦𝐶

2
− 4𝑥𝐵

1
− 4𝑥𝑦𝐵

2
𝐶
1
+ 4)

− (4 − 2𝑦𝐶
2
− 2𝑥𝐵

1
)

= 4𝑥𝑦𝐵
1
𝐶
2
− 4𝑥𝑦𝐵

2
𝐶
1
+ 1 − 2𝑦𝐶

2
− 2𝑥𝐵

1

> 2𝑦𝐶
2
+ 2𝑥𝐵

1
− 2𝑦𝐶

2
− 2𝑥𝐵

1
= 0.

(47)

Therefore tr 𝐽
𝑇
(𝑥, 𝑦) < 1 + det 𝐽

𝑇
(𝑥, 𝑦).
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Figure 2: Local stability.
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(v) We need to show that | tr 𝐽(𝑥, 𝑦)| > |1 + det 𝐽
𝑇
(𝑥, 𝑦)|

when 𝐸(𝑥, 𝑦) = 𝐸NW(𝑥𝑠
1

, 𝑦
𝑠
1

). Since tr 𝐽
𝑇
(𝑥, 𝑦) and det 𝐽

𝑇
(𝑥,

𝑦) are both positive, our condition becomes tr 𝐽
𝑇
(𝑥, 𝑦) > 1 +

det 𝐽
𝑇
(𝑥, 𝑦). By (37) we have

tr 𝐽
𝑇
(𝑥, 𝑦) − (1 + det 𝐽

𝑇
(𝑥, 𝑦))

= 4 − 2𝑦𝐶
2
− 2𝑥𝐵

1

− (1 + 4𝑥𝑦𝐵
1
𝐶
2
− 4𝑦𝐶

2
− 4𝑥𝐵

1
− 4𝑥𝑦𝐵

2
𝐶
1
+ 4)

= 2𝑥𝐵
1
+ 2𝑦𝐶

2
− 4𝑥𝑦𝐵

1
𝐶
2
+ 4𝑥𝑦𝐵

2
𝐶
1
− 1

> 4𝑥𝑦𝐵
1
𝐶
2
− 4𝐵
2
𝐶
1
𝑥𝑦 + 1 − 4𝑥𝑦𝐵

1
𝐶
2
+ 4𝑥𝑦𝐵

2
𝐶
1
− 1.

(48)

Therefore tr 𝐽
𝑇
(𝑥, 𝑦) > 1 + det 𝐽

𝑇
(𝑥, 𝑦). The proofs that

𝐸SE(𝑥𝑠
2

, 𝑦
𝑠
2

) and 𝐸NE(𝑥𝑠, 𝑦𝑠) are saddle points are similar and
will be omitted.

(vi) We need to show that | tr 𝐽
𝑇
(𝑥, 𝑦)| < 1 + det 𝐽

𝑇
(𝑥, 𝑦)

and det 𝐽
𝑇
(𝑥, 𝑦) < 1 when 𝐸(𝑥, 𝑦) = 𝐸NE(𝑥𝑎, 𝑦𝑎). Since

tr 𝐽
𝑇
(𝑥, 𝑦) and det 𝐽

𝑇
(𝑥, 𝑦) are both positive, our conditions

become tr 𝐽
𝑇
(𝑥, 𝑦) < 1+det 𝐽

𝑇
(𝑥, 𝑦) and det 𝐽

𝑇
(𝑥, 𝑦) < 1. We

will first show that det 𝐽
𝑇
(𝑥, 𝑦) < 1. By (38) we have

det 𝐽
𝑇
(𝑥, 𝑦) − 1

= (4𝑥𝑦𝐵
1
𝐶
2
− 4𝑦𝐶

2
− 4𝑥𝐵

1
− 4𝑥𝑦𝐵

2
𝐶
1
+ 4) − 1

= 4𝑥𝑦𝐵
1
𝐶
2
− 4𝑥𝑦𝐵

2
𝐶
1
− 4𝑦𝐶

2
− 4𝑥𝐵

1
+ 3

< 2𝑦𝐶
2
+ 2𝑥𝐵

1
− 1 − 4𝑦𝐶

2
− 4𝑥𝐵

1
+ 3

= 1 − 2𝑦𝐶
2
+ 1 − 2𝑥𝐵

1
.

(49)

By (35) we have 1 − 2𝑦𝐶
2
+ 1 − 2𝑥𝐵

1
< 0.

Therefore det 𝐽
𝑇
(𝑥, 𝑦) < 1. We will next show that

tr 𝐽
𝑇
(𝑥, 𝑦) < 1 + det 𝐽

𝑇
(𝑥, 𝑦). By (38) we have

1 + det 𝐽
𝑇
(𝑥, 𝑦) − tr 𝐽

𝑇
(𝑥, 𝑦)

= (1 + 4𝑥𝑦𝐵
1
𝐶
2
− 4𝑦𝐶

2
− 4𝑥𝐵

1
− 4𝑥𝑦𝐵

2
𝐶
1
+ 4)

− (4 − 2𝑦𝐶
2
− 2𝑥𝐵

1
)

= 4𝑥𝑦𝐵
1
𝐶
2
− 4𝑥𝑦𝐵

2
𝐶
1
+ 1 − 2𝑦𝐶

2
− 2𝑥𝐵

1

> 2𝑦𝐶
2
+ 2𝑥𝐵

1
− 2𝑦𝐶

2
− 2𝑥𝐵

1
.

(50)

Therefore tr 𝐽
𝑇
(𝑥, 𝑦) < 1 + det 𝐽

𝑇
(𝑥, 𝑦).

(vii) By (29) and (31) we have

𝜆 = ((4 − 2𝑦𝐶
2
− 2𝑥𝐵

1
)

− ((4 − 2𝑦𝐶
2
− 2𝑥𝐵

1
)
2

− 4(4𝑥𝑦𝐵
1
𝐶
2
− 4𝑦𝐶

2
− 4𝑥𝐵

1
− 4𝑥𝑦𝐵

2
𝐶
1
+ 4))

1/2

)

× (2)
−1

,

𝜇 = ((4 − 2𝑦𝐶
2
− 2𝑥𝐵

1
)

+ ((4 − 2𝑦𝐶
2
− 2𝑥𝐵

1
)
2

− 4(4𝑥𝑦𝐵
1
𝐶
2
− 4𝑦𝐶

2
− 4𝑥𝐵

1
− 4𝑥𝑦𝐵

2
𝐶
1
+ 4))

1/2

)

× (2)
−1

.

(51)

By (39), we have 𝜆 = 3 − 2𝑦𝐶
2
− 2𝑥𝐵

1
and 𝜇 = 1. By (35),

we have 𝜆 < 1. The conclusion follows.
(viii) The proof of (viii) is similar to the proof of (vii) and

will be omitted.

4. Global Results

In this section we combine the results from Sections 2 and 3
to prove the global results for system (8). First, we present the
behavior of the solutions of system (8) on coordinate axes and
then we prove that the map 𝑇 which corresponds to system
(8) is injective and that it satisfies (𝑂+).

4.1. Convergence of Solutions on the Coordinate Axes: Injectiv-
ity and (𝑂+). When 𝑦

𝑛
= 0, system (8) becomes

𝑥
𝑛+1

=

1

𝐵
1

, 𝑦
𝑛+1

= 0, 𝑛 = 0, 1, . . . . (52)

When 𝑥
𝑛
= 0, system (8) becomes

𝑥
𝑛+1

= 0, 𝑦
𝑛+1

=

𝑦
2

𝑛

𝐴
2
+ 𝐶
2
𝑦
2

𝑛

, 𝑛 = 0, 1, . . . . (53)

It follows from (52) and (53) that solutions of system (8)
with initial conditions on the 𝑥-axis remain on the 𝑥-axis and
solutions of system (8) with initial conditions on the 𝑦-axis
remain on the 𝑦-axis.

Theorem 12. The following conditions hold for solutions {(𝑥
𝑛
,

𝑦
𝑛
)} of system (8) with initial conditions on the 𝑥 or 𝑦-axis.

(i) 𝐸
𝑥
(𝑥
𝑎
, 0) is a superattractor of all solutions {(𝑥

𝑛
, 𝑦
𝑛
)}

of system (8) with initial conditions on the 𝑥-axis.
(ii) When no equilibrium points exist on the 𝑦 axis, if 𝑥

0
=

0, then lim
𝑛→∞

(𝑥
𝑛
, 𝑦
𝑛
) = (0, 0).

(iii) When 𝐸
𝑦
(0, 𝑦ns) exists,

(a) if 𝑥
0
= 0 and 𝑦

0
> 𝑦ns, then lim

𝑛→∞
(𝑥
𝑛
, 𝑦
𝑛
) =

(0, 𝑦ns);
(b) if 𝑥

0
= 0 and 0 < 𝑦

0
< 𝑦ns, then lim

𝑛→∞
(𝑥
𝑛
,

𝑦
𝑛
) = (0, 0).

(iv) When 𝐸
𝑦
+

(0, 𝑦
+𝑎
) and 𝐸

𝑦
−

(0, 𝑦
−𝑠
) exist,

(a) if 𝑥
0
= 0 and 𝑦

0
> 𝑦
+𝑎
, then lim

𝑛→∞
(𝑥
𝑛
, 𝑦
𝑛
) =

(0, 𝑦
+𝑎
);
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(b) if 𝑥
0
= 0 and 𝑦

−𝑠
< 𝑦
0
< 𝑦
+𝑎
, then lim

𝑛→∞
(𝑥
𝑛
,

𝑦
𝑛
) = (0, 𝑦

+𝑎
);

(c) if 𝑥
0
= 0 and 0 < 𝑦

0
< 𝑦
−𝑠
, then lim

𝑛→∞
(𝑥
𝑛
,

𝑦
𝑛
) = (0, 0).

Proof. (i) When 𝑦
0
= 0, it follows directly from (52) that

(𝑥
𝑛
, 𝑦
𝑛
) = (𝑥

𝑎
, 0) for 𝑛 > 1.

(ii) In this case 1 < 4𝐴
2
𝐶
2
. By (53) it can be shown that

𝑦
𝑛+1

− 𝑦
𝑛
=

−𝑦
𝑛
(𝐶
2
(𝑦
𝑛
− 1/2𝐶

2
)
2

+ 𝐴
2
− 1/4𝐶

2
)

𝐴
2
+ 𝐶
2
𝑦
2

𝑛

. (54)

By (54), when 1 < 4𝐴
2
𝐶
2
, it is clear that {𝑦

𝑛
} is a stricly

decreasing sequence, and so is convergent. It follows that {𝑦
𝑛
}

converges to 0.
(iii) In this case, 1 = 4𝐴

2
𝐶
2
, and we may rewrite (54) as

𝑦
𝑛+1

− 𝑦
𝑛
=

−𝑦
𝑛
(𝐶
2
(𝑦
𝑛
− 𝑦ns)

2

)

𝐴
2
+ 𝐶
2
𝑦
2

𝑛

. (55)

By (55) it is clear that {𝑦
𝑛
} is a stricly decreasing sequence,

and so is convergent. It follows that {𝑦
𝑛
} converges to 𝑦ns

when 𝑦
0
> 𝑦ns, and {𝑦𝑛} converges to 0 when 0 < 𝑦

0
< 𝑦ns.

(iv) In this case, 1 > 4𝐴
2
𝐶
2
. By (53), it can be shown that

𝑦
𝑛+1

− 𝑦
𝑛
=

−𝐶
2
𝑦
𝑛
(𝑦
𝑛
− 𝑦
+𝑎
)(𝑦
𝑛
− 𝑦
−𝑠
)

𝐴
2
+ 𝐶
2
𝑦
2

𝑛

. (56)

By (56), it is clear that {𝑦
𝑛
} is a stricly decreasing sequence

(and so is convergent) when 𝑦
0
> 𝑦
+𝑎

and when 0 < 𝑦
0
<

𝑦
−𝑠
, and a strictly increasing sequence (and so is convergent)

when 𝑦
−𝑠

< 𝑦
0
< 𝑦
+𝑎
. It follows that {𝑦

𝑛
} converges to 𝑦

+𝑎

when 𝑦
0
> 𝑦
+𝑎

and when 𝑦
−𝑠
< 𝑦
0
< 𝑦
+𝑎

and converges to 0
when 0 < 𝑦

0
< 𝑦
−𝑠
.

Theorem 13. The map 𝑇 which corresponds to system (8) is
injective.

Proof. Indeed,

𝑇(

𝑥
1

𝑦
1

) = 𝑇(

𝑥
2

𝑦
2

) ⇐⇒ (

𝑥
2

1

𝐵
1
𝑥
2

1
+ 𝐶
1
𝑦
2

1

𝑦
2

1

𝐴
2
+ 𝐵
2
𝑥
2

1
+ 𝐶
2
𝑦
2

1

)

= (

𝑥
2

2

𝐵
1
𝑥
2

2
+ 𝐶
1
𝑦
2

2

𝑦
2

2

𝐴
2
+ 𝐵
2
𝑥
2

2
+ 𝐶
2
𝑦
2

2

)

(57)

which is equivalent to

𝑦
2

2
𝑥
2

1
= 𝑦
2

1
𝑥
2

2
, 𝑦
1
= 𝑦
2
. (58)

This immediatly implies 𝑥
1
= 𝑥
2
.

Theorem 14. The map 𝑇 which corresponds to system (8)
satisfies (𝑂+). All solutions of system (8) converge to either an
equilibrium point or to (0, 0).

Proof. Assume that

𝑇(

𝑥
1

𝑦
1

)≤ne 𝑇(

𝑥
2

𝑦
2

) ⇒ (

𝑥
2

1

𝐵
1
𝑥
2

1
+ 𝐶
1
𝑦
2

1

𝑦
2

1

𝐴
2
+ 𝐵
2
𝑥
2

1
+ 𝐶
2
𝑦
2

1

)

≤ne(

𝑥
2

2

𝐵
1
𝑥
2

2
+ 𝐶
1
𝑦
2

2

𝑦
2

2

𝐴
2
+ 𝐵
2
𝑥
2

2
+ 𝐶
2
𝑦
2

2

).

(59)

The last inequality is equivalent to

𝑦
2

2
𝑥
2

1
≤ 𝑦
2

1
𝑥
2

2
, 𝑦
1
≤ 𝑦
2
. (60)

Suppose 𝑥
2
< 𝑥
1
. Then 𝑦2

1
𝑥
2

2
< 𝑦
2

2
𝑥
2

1
, which contradicts (60).

Consequently 𝑥
1
≤ 𝑥
2
and so ( 𝑥1𝑦

1
) ≤ne (

𝑥
2

𝑦
2
).

Thuswe conclude that all solutions of system (8) are even-
tually monotonic for all values of parameters. Furthermore it
is clear that all solutions are bounded. Indeed every solution
of (8) satisfies

𝑥
𝑛
≤

1

𝐵
1

, 𝑦
𝑛
≤

1

𝐶
2

. (61)

Consequently, all solutions of system (8) converge to an
equilibrium point or to (0, 0).

4.2. Global Dynamics. In this section we show that there are
seven dynamic scenarios for global dynamics of system (8).
See Figures 3 and 4 for geometric interpretations of these
scenarios.

Theorem 15. Assume that 1 < 4𝐴
2
𝐶
2
. Then system (8) has

one equilibrium point 𝐸
𝑥
which is locally asymptotically stable.

The singular point 𝐸
0
(0, 0) is global attractor of all points on 𝑦-

axis and every point on 𝑥-axis is attracted to 𝐸
𝑥
. Furthermore,

every point in the interior of the first quadrant is attracted to
𝐸
0
or 𝐸
𝑥
.

Proof. Local stability of all equilibrium points follows from
Theorem 11. In view of Theorem 12, every solution that starts
on the 𝑦-axis converges to 0 in a decreasing manner and
every solution that starts on 𝑥-axis is equal to 𝐸

𝑥
in a single

step. Let (𝑥
0
, 𝑦
0
) be an arbitrary initial point in the inte-

rior of the first quadrant. Then (0, 𝑦
0
) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥0, 0)

and 𝑇(0, 𝑦
0
) ⪯se 𝑇(𝑥0, 𝑦0) ⪯se 𝑇(𝑥0, 0) = 𝐸

𝑥
and so 𝑇

𝑛

(0,
𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 0) = 𝐸

𝑥
. In view of Theorems

12 and 14 𝑇
𝑛

(𝑥
0
, 𝑦
0
) → 𝐸

𝑥
or 𝑇𝑛(𝑥

0
, 𝑦
0
) → 𝐸

0
as 𝑛 →

∞.

Theorem 16. Assume that 1 = 4𝐴
2
𝐶
2
. Then system (8)

has two equilibrium points, 𝐸
𝑥
which is locally asymptotically

stable and 𝐸
𝑦
which is nonhyperbolic of the stable type. The

singular point 𝐸
0
is global attractor of all points on the 𝑦-axis,

which start below 𝐸
𝑦
. Furthermore, every point in the interior

of the first quadrant belowW𝑠(𝐸
𝑦
) is attracted to𝐸

0
(0, 0) or𝐸

𝑥
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One equilibrium point
1 < 4A2C2

Ex(xa, 0)

8

6

4

2

0

8

6

4

2

0

8

6

4

2

0

10

8

12

6

4

2

0

10

8

12

6

4

2

0

8

6

4

2

0

86420 86420

86420 86420

8 106420 86420

Two equilibrium points
1 = 4A2C2

Ey(0, yns)

Ex(xa, 0)

Three equilibrium points
1 > 4A2C2

Ey+
(0, y+a)

Ey−
(0, y−s)

Ex(xa, 0)

Four equilibrium points
1 > 4A2C2

Ey+
(0, y+a)

Ey−
(0, y−s)

Ex(xa, 0)

Five equilibrium points—case 2
1 > 4A2C2

Five equilibrium points—case 1
1 > 4A2C2

Ey+
(0, y+a)

Ey−
(0, y−s)

Ex(xa, 0) Ex(xa, 0)

Ey+
(0, y+a)

Ey−
(0, y−s)

B1 = 0.18, C1 = 0.062, A2 = 3.25, B2 = 0.002, C2 = 0.08 B1 = 0.18, C1 = 0.062, A2 = 3.125, B2 = 0.002, C2 = 0.08

B1 = 0.18, C1 = 0.062, A2 = 2.98, B2 = 0.002, C2 = 0.08

B1 = 0.112, C1 = 0.04, A2 = 3.05, B2 = 0.002, C2 = 0.08 B1 = 0.17, C1 = 0.03, A2 = 3.02, B2 = 0.002, C2 = 0.08

B1 = 116/723, C1 = 15/241, A2 = 1491/500, B2 = 2/1000,

C2 = 8/100

ESW(xr, yr)

ESE(xs2 , ys2 )

ENW(xs1 , ys1
)

ESW(xr, yr)

EN(xnu , ynu)

Figure 3: Global stability.
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Six equilibrium points—case 1
1 > 4A2C2

Ey+
(0, y+a)

Ey−
(0, y−s)

Ex(xa, 0)

10

8

12

6

4
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2

0

15 201050
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4
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0

8

6

4

2

0

86420

8642086420

Six equilibrium points—case 2
1 > 4A2C2

Ey+
(0, y+a)

Ey−
(0, y−s)

Ex(xa, 0)

Six equilibrium points—case 3
1 > 4A2C2

Ey+
(0, y+a)

Ey−
(0, y−s)

Ex(xa, 0)

Seven equilibrium points
1 > 4A2C2

Ey+
(0, y+a)

Ey−
(0, y−s)

Ex(xa, 0)

B1 = 83/1416, C1 = 30/413, A2 = 349/125, B2 = 2/1000,

C2 = 8/100

B1 = 52165/455584, C1 = 575/14856, A2 = 36971/12500,

B2 = 2/1000, C2 = 8/100

B1 = 2045/17986, C1 = 1275/33856, A2 = 9471/3125,

B2 = 2/1000, C2 = 8/100

B1 = 0.15, C1 = 0.03, A2 = 3.02, B2 = 0.002,

C2 = 0.08

ESW(xr, yr)

ESE(xs2 , ys2 )

ESE(xs2 , ys2 )

ESW(xr, yr)

ESW(xr, yr)

EN(xns , yns)

EN(xns , yns)

ENW(xs1 , ys1
)

ENE(xs, ys)

ENE(xa, ya)

ESW(xr, yr)

ENW(xs1 , ys1
)

EN(xns , yns)

Figure 4: Global stability.

and every point in the first quadrantwhich starts aboveWs
(𝐸
𝑦
)

is attracted to 𝐸
𝑦
.

Proof. Local stability of all equilibrium points follows from
Theorem 11. In view of Theorem 12, every solution that starts
on the 𝑦-axis below𝐸

𝑦
converges to 0 in a decreasingmanner

and every solution that starts on the 𝑥-axis is equal to 𝐸
𝑥
in

a single step. In addition, every solution that starts on the
𝑦-axis above 𝐸

𝑦
converges to 𝐸

𝑦
in a decreasing way. Let

(𝑥
0
, 𝑦
0
) be an arbitrary initial point in the interior of the first

quadrant below W𝑠(𝐸
𝑦
). Then (0, 𝑦

0
) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥0, 0)

which implies 𝑇(0, 𝑦
0
) ⪯se 𝑇(𝑥0, 𝑦0) ⪯se 𝑇(𝑥0, 0) = 𝐸

𝑥
and

so 𝑇
𝑛

(0, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 0) = 𝐸

𝑥
. If 𝑦

0
> 𝑦

then 𝑇
𝑛

(𝑥
0
, 𝑦
0
) will eventually enter the ordered interval

𝐼(𝐸
𝑦
, 𝐸
𝑥
) = {(𝑥, 𝑦) : 0 < 𝑥 ≤ 𝑥, 0 < 𝑦 ≤ 𝑦}. In view of The-

orems 12 and 14, 𝑇𝑛(𝑥
0
, 𝑦
0
) → 𝐸

𝑥
or 𝑇𝑛(𝑥

0
, 𝑦
0
) → 𝐸

0
as

𝑛 → ∞.
Now, let (𝑥

0
, 𝑦
0
) be an arbitrary initial point in the inte-

rior of the first quadrant above W𝑠(𝐸
𝑦
). Then (0, 𝑦

0
) ⪯se

(𝑥
0
, 𝑦
0
) ⪯se (𝑥0, 𝑦𝑊), where (𝑥0, 𝑦𝑊) ∈ W𝑠(𝐸

𝑦
). This implies

𝑇(0, 𝑦
0
) ⪯se 𝑇(𝑥0, 𝑦0) ⪯se 𝑇(𝑥0, 𝑦𝑊) and so𝑇

𝑛

(0,𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
,

𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
). Since 𝑇𝑛(0, 𝑦

0
) → 𝐸

𝑦
, 𝑇(𝑥
0
, 𝑦
𝑊
) → 𝐸

𝑦

as 𝑛 → ∞, we conclude that 𝑇𝑛(𝑥
0
, 𝑦
0
) → 𝐸

𝑦
as 𝑛 →

∞.

Theorem 17. Assume that 1 > 4𝐴
2
𝐶
2
and system (8) has three

equilibriumpoints,𝐸
𝑥
and𝐸

𝑦
+

which are locally asymptotically
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stable and 𝐸
𝑦
−

which is a saddle point. The singular point
𝐸
0
(0, 0) is global attractor of all points on 𝑦-axis, which start

below 𝐸
𝑦
−

. The basins of attraction of two equilibrium points
are given as

𝐵(𝐸
𝑦
+

) = {(𝑥
0,
𝑦
0
) : points above W𝑠(𝐸

𝑦
−

)},

𝐵(𝐸
𝑦
−

) = W
𝑠

(𝐸
𝑦
−

),

(62)

whereW𝑠(𝐸
𝑦
−

) denotes the global stable manifold guaranteed
byTheorem 4. Furthermore, every initial point belowW𝑠(𝐸

𝑦
−

)

is attracted to 𝐸
0
(0, 0) or 𝐸

𝑥
.

Proof. Local stability of all equilibrium points follows from
Theorem 11. The existence of the global stable manifold is
guaranteed byTheorem 4 in view of Theorem 13.

By Theorem 12, every solution that starts on the 𝑦-axis
below 𝐸

𝑦
−

converges to 𝐸
0
in a decreasing manner and every

solution that starts on the 𝑥-axis is equal to𝐸
𝑥
in a single step.

In addition, every solution that starts on the 𝑦-axis above 𝐸
𝑦
−

converges to 𝐸
𝑦
+

in a monotonic way.
Let (𝑥

0
, 𝑦
0
) be an arbitrary initial point in the inte-

rior of the first quadrant below W𝑠(𝐸
𝑦
−

). Then (𝑥
0
,

𝑦
𝑊
) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥0, 0) which implies 𝑇(𝑥

0
, 𝑦
𝑊
) ⪯se 𝑇(𝑥0,

𝑦
0
) ⪯se 𝑇(𝑥0, 0) = 𝐸

𝑥
and so 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se

𝑇
𝑛

(𝑥
0
, 0) = 𝐸

𝑥
. Since 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
) → 𝐸

𝑦
−

as 𝑛 → ∞,
we conclude that 𝑇𝑛(𝑥

0
, 𝑦
0
) eventually enters the ordered

interval 𝐼(𝐸
𝑦
−

, 𝐸
𝑥
) = {(𝑥, 𝑦) : 0 < 𝑥 ≤ 𝑥, 0 < 𝑦 ≤ 𝑦

−
}, in

which case it converges to 𝐸
𝑥
or 𝐸
0
(0, 0).

Finally, let (𝑥
0
, 𝑦
0
) be an arbitrary initial point in the

interior of the first quadrant aboveW𝑠(𝐸
𝑦
−

). Then (0, 𝑦
0
) ⪯se

(𝑥
0
, 𝑦
0
) ⪯se (𝑥0, 𝑦𝑊), where (𝑥0, 𝑦𝑊) ∈ W𝑠(𝐸

𝑦
−

). Thus 𝑇𝑛(0,
𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
), which, by 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
) →

𝐸
𝑦
−

as 𝑛 → ∞, implies that 𝑇𝑛(𝑥
0
, 𝑦
0
) eventually lands on

the part of 𝑦-axis above 𝐸
𝑦
−

and so it converges to 𝐸
𝑦
+

.

Theorem 18. Assume that 1 > 4𝐴
2
𝐶
2
and system (8) has

four equilibrium points, 𝐸
𝑥
and 𝐸

𝑦
+

which are locally asymp-
totically stable, 𝐸

𝑦
−

which is a saddle point, and 𝐸
𝑁
which is

nonhyperbolic of the unstable type. The singular point 𝐸
0
(0, 0)

is global attractor of all points on the 𝑦-axis, which start below
𝐸
𝑦
−

. The basins of attraction of three of the equilibrium points
are given as

{(𝑥
0
, 𝑦
0
) : points below 𝐶

𝑙
such that 𝑥

0
≥ 𝑥
𝑁
} ⊂ 𝐵(𝐸

𝑥
),

𝐵(𝐸
𝑦
+

) = {(𝑥
0,
𝑦
0
) : points above W𝑠(𝐸

𝑦
−

) ∪ 𝐶
𝑢
},

𝐵(𝐸
𝑁
) = {(𝑥

0,
𝑦
0
) : points between 𝐶

𝑙
and 𝐶

𝑢
},

𝐵(𝐸
𝑦
−

) = W
𝑠

(𝐸
𝑦
−

),

(63)

whereW𝑠(𝐸
𝑦
−

) denotes the global stable manifold guaranteed
byTheorem 4 and 𝐶

𝑙
, 𝐶
𝑢
are continuous nondecreasing curves

emanating from 𝐸
𝑁
, whose existence and properties are guar-

anteed by Corollary 7. Furthermore, every initial point below
W𝑠(𝐸

𝑦
−

) is attracted to 𝐸
0
(0, 0) or 𝐸

𝑥
.

Proof. Local stability of all equilibrium points follows from
Theorem 11. The existence of the global stable manifold is
guaranteed byTheorems 4 and 13.

By Theorem 12, every solution that starts on the 𝑦-axis
below 𝐸

𝑦
−

converges to 𝐸
0
in a decreasing manner and every

solution that starts on the 𝑥-axis is equal to 𝐸
𝑥
in a single

step. In addition, every solution that starts on 𝑦-axis above
𝐸
𝑦
−

converges to 𝐸
𝑦
+

in a monotonic way.
Let (𝑥

0
, 𝑦
0
) be an arbitrary initial point in the inte-

rior of the first quadrant below W𝑠(𝐸
𝑦
−

) ∪ 𝐶
𝑙
. Assume

that 𝑥
0

≥ 𝑥
𝑁
. Then (𝑥

0
, 𝑦
𝑊
) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥0, 0) and so

𝑇(𝑥
0
, 𝑦
𝑊
) ⪯se 𝑇(𝑥0, 𝑦0) ⪯se 𝑇(𝑥0, 0) = 𝐸

𝑥
, where (𝑥

0
, 𝑦
𝑊
) ∈

𝐶
𝑙
and so 𝑇𝑛(𝑥

0
, 𝑦
𝑊
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 0) = 𝐸

𝑥
. Since

𝑇
𝑛

(𝑥
0
, 𝑦
𝑊
) → 𝐸

𝑁
and 𝑇

𝑛

(𝑥
0
, 0) → 𝐸

𝑥
as 𝑛 → ∞, we

conclude that 𝑇𝑛(𝑥
0
, 𝑦
0
) eventually enters the ordered inter-

val 𝐼(𝐸
𝑁
, 𝐸
𝑥
), in which case, in view of Corollary 5, it

converges to 𝐸
𝑥
.

Next, assume that 0 < 𝑥
0
< 𝑥
𝑁
. Then (𝑥

0
, 𝑦
𝑊
) ⪯se (𝑥0,

𝑦
0
) ⪯se (𝑥0, 0), where (𝑥

0
, 𝑦
𝑊
) ∈ W𝑠(𝐸

𝑦
−

) and so 𝑇(𝑥
0
,

𝑦
𝑊
) ⪯se𝑇(𝑥0, 𝑦0) ⪯se 𝑇(𝑥0, 0) = 𝐸

𝑥
and so 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
) ⪯se

𝑇
𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 0) = 𝐸

𝑥
. Since 𝑇𝑛(𝑥

0
, 𝑦
𝑊
) → 𝐸

𝑦
−

and
𝑇
𝑛

(𝑥
0
, 0) → 𝐸

𝑥
as 𝑛 → ∞, we conclude that 𝑇𝑛(𝑥

0
, 𝑦
0
)

eventually enters the ordered interval 𝐼(𝐸
𝑦
−

, 𝐸
𝑥
), in which

case, by Theorems 12 and 14, 𝑇𝑛(𝑥
0
, 𝑦
0
) → 𝐸

𝑥
or 𝑇𝑛(𝑥

0
,

𝑦
0
) → 𝐸

0
as 𝑛 → ∞.

Now, let (𝑥
0
, 𝑦
0
) be an arbitrary initial point in the interior

of the first quadrant above W𝑠(𝐸
𝑦
−

) ∪ 𝐶
𝑢
. Assume that

𝑥
0
> 𝑥
𝑁
. Then (0, 𝑦

0
) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥0, 𝑦𝑊). Assume that

(𝑥
0
, 𝑦
𝑊
) ∈ 𝐶

𝑢
. Thus 𝑇𝑛(0, 𝑦

0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
),

which by 𝑇
𝑛

(0, 𝑦
0
) → 𝐸

𝑦
+

and 𝑇
𝑛

(𝑥
0
, 𝑦
𝑊
) → 𝐸

𝑁
as

𝑛 → ∞ implies that 𝑇𝑛(𝑥
0
, 𝑦
0
) eventually enters the ordered

interval 𝐼(𝐸
𝑦
+

, 𝐸
𝑁
), in which case, in view of Corollary 5, it

converges to 𝐸
𝑦
+

.
Next, assume that 0 < 𝑥

0
≤ 𝑥
𝑁
. Then (0, 𝑦

0
) ⪯se (𝑥0,

𝑦
0
) ⪯se (𝑥0, 𝑦𝑊), where (𝑥

0
, 𝑦
𝑊
) ∈ W𝑠(𝐸

𝑦
−

) and so 𝑇
𝑛

(0,
𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
). Since 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
) → 𝐸

𝑦
−

and𝑇𝑛(0, 𝑦
0
) → 𝐸

𝑦
+

as 𝑛 → ∞, we conclude that𝑇𝑛(𝑥
0
, 𝑦
0
)

converges to 𝐸
𝑦
+

.
Finally, let (𝑥

0
, 𝑦
0
) be an arbitrary initial point between𝐶

𝑙

and𝐶
𝑢
. Then 𝑇𝑛(𝑥

0
, 𝑦
0
) stays between𝐶

𝑙
and𝐶

𝑢
for all 𝑛 and

in view of Corollary 7 it must converge to 𝐸
𝑁
.

Conjecture 19. Based on our numerical simulationswe believe
that 𝐶

𝑙
= 𝐶
𝑢
in Theorem 18.

Theorem 20. Assume that 1 > 4𝐴
2
𝐶
2
and system (8) has five

equilibrium points, 𝐸
𝑥
, 𝐸
𝑦
+

which are locally asymptotically
stable, 𝐸

𝑦
−

and 𝐸NW (resp., 𝐸SE) which are saddle points, and
𝐸SW which is a repeller. The singular point 𝐸

0
(0, 0) is global

attractor of all points on the 𝑦-axis, which start below 𝐸
𝑦
−

. The
basins of attraction of four of the equilibrium points are given
as

{(𝑥
0
, 𝑦
0
) : points below W

𝑠

(𝐸
𝑁W)} ⊂ 𝐵(𝐸

𝑥
),

𝐵(𝐸
𝑦
+

)

= {(𝑥
0
, 𝑦
0
) : points above W𝑠(𝐸

𝑦
−

) ∪W
𝑠

(𝐸NW)},
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𝐵(𝐸NW) = W
𝑠

(𝐸NW),

𝐵(𝐸
𝑦
−

) = W
𝑠

(𝐸
𝑦
−

),

(64)

where W𝑠(𝐸
𝑦
−

) and W𝑠(𝐸NW) denote the global stable man-
ifolds whose existence is guaranteed by Theorem 4. Further-
more, every initial point below W𝑠(𝐸

𝑦
−

) is attracted to 𝐸
0
or

𝐸
𝑦
.

Proof. Local stability of all equilibrium points follows from
Theorem 11. We present the proof in the case of the equilib-
rium point 𝐸NW. The proof in the case of the equilibrium
point 𝐸SE is similar.

The existence of the global stable manifold is guaranteed
byTheorems 4 and 13.

By Theorem 12, every solution that starts on the 𝑦-axis
below 𝐸

𝑦
−

converges to 𝐸
0
in a decreasing manner and every

solution that starts on the 𝑥-axis is equal to𝐸
𝑥
in a single step.

In addition, every solution that starts on the 𝑦-axis above 𝐸
𝑦
−

converges to 𝐸
𝑦
+

in a monotonic way.
Let (𝑥

0
, 𝑦
0
) be an arbitrary initial point in the interior of

the first quadrant below W𝑠(𝐸
𝑦
−

) ∪ W𝑠(𝐸NW). Assume that
𝑥
0
> 𝑥SW. Then (𝑥

0
, 𝑦
𝑊
) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥0, 0) which implies

𝑇(𝑥
0
, 𝑦
𝑊
) ⪯se 𝑇(𝑥0, 𝑦0) ⪯se 𝑇(𝑥0, 0) = 𝐸

𝑥
, where (𝑥

0
, 𝑦
𝑊
) ∈

W𝑠(𝐸NW) and so 𝑇
𝑛

(𝑥
0
, 𝑦
𝑊
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 0) =

𝐸
𝑥
. Since 𝑇𝑛(𝑥

0
, 𝑦
𝑊
) → 𝐸NW and 𝑇

𝑛

(𝑥
0
, 0) → 𝐸

𝑥
as 𝑛 →

∞, we conclude that 𝑇𝑛(𝑥
0
, 𝑦
0
) eventually enters the ordered

interval 𝐼(𝐸NW, 𝐸𝑥), in which case, in view of Corollary 5, it
converges to 𝐸

𝑥
.

Next, assume that 0 < 𝑥
0
≤ 𝑥SW. Then (𝑥

0
, 𝑦
𝑊
) ⪯se (𝑥0,

𝑦
0
) ⪯se (𝑥0, 0), where (𝑥0, 𝑦𝑊) ∈ W𝑠(𝐸

𝑦
−

).Thus𝑇(𝑥
0
, 𝑦
𝑊
) ⪯se

𝑇(𝑥
0
, 𝑦
0
) ⪯se 𝑇(𝑥0, 0) = 𝐸

𝑥
and so 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
) ⪯se 𝑇

𝑛

(𝑥
0
,

𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 0) = 𝐸

𝑥
. Since 𝑇𝑛(𝑥

0
, 𝑦
𝑊
) → 𝐸

𝑦
−

and 𝑇
𝑛

(𝑥
0
,

0) → 𝐸
𝑥
as 𝑛 → ∞, we conclude that 𝑇𝑛(𝑥

0
, 𝑦
0
) eventually

enters the interior of the ordered interval 𝐼(𝐸
𝑦
−

, 𝐸
𝑥
), in which

case, it converges to 𝐸
0
or 𝐸
𝑥
.

Now, let (𝑥
0
, 𝑦
0
) be an arbitrary initial point in the interior

of the first quadrant aboveW𝑠(𝐸
𝑦
−

)∪W𝑠(𝐸NW). Assume𝑥
0
>

𝑥SW. Then (0, 𝑦
0
) ⪯se (𝑥0, 𝑦0) ⪯se (𝑥0, 𝑦𝑊), where (𝑥0, 𝑦𝑊) ∈

W𝑠(𝐸NW) and so 𝑇
𝑛

(0, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
).

Since 𝑇𝑛(0, 𝑦
0
) → 𝐸

𝑦
+

and 𝑇𝑛(𝑥
0
, 𝑦
𝑊
) → 𝐸NW as 𝑛 → ∞,

then 𝑇
𝑛

(𝑥
0
, 𝑦
0
) eventually enters the ordered interval 𝐼(𝐸

𝑦
+

,
𝐸NW), in which case, in view of Corollary 5, it converges to
𝐸
𝑦
+

.
Next, assume that 0 < 𝑥

0
≤ 𝑥SW. Then (0, 𝑦

0
) ⪯se (𝑥0,

𝑦
0
) ⪯se (𝑥0, 𝑦𝑊), where (𝑥

0
, 𝑦
𝑊
) ∈ W𝑠(𝐸

𝑦
−

) and so 𝑇
𝑛

(0,
𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
0
) ⪯se 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
). Since 𝑇

𝑛

(𝑥
0
, 𝑦
𝑊
) → 𝐸

𝑦
−

and𝑇𝑛(0, 𝑦
0
) → 𝐸

𝑦
+

as 𝑛 → ∞, we conclude that𝑇𝑛(𝑥
0
, 𝑦
0
)

converges to 𝐸
𝑦
+

.

Theorem 21. Assume that 1 > 4𝐴
2
𝐶
2
and system (8) has six

equilibrium points, 𝐸
𝑥
, 𝐸
𝑦
+

which are locally asymptotically
stable,𝐸

𝑦
−

and𝐸NE (resp.,𝐸SE or𝐸NW) which are saddle points,
𝐸SW which is a repeller, and 𝐸

𝑁
which is nonhyperbolic of the

stable type. The singular point 𝐸
0
(0, 0) is global attractor of

all points on the 𝑦-axis, which start below 𝐸
𝑦
−

. The basins of
attraction of five of the equilibrium points are given as

{(𝑥
0,
𝑦
0
) : points below W

𝑠

(𝐸
𝑁
)} ⊂ 𝐵(𝐸

𝑥
),

𝐵(𝐸
𝑦
+

)

= {(𝑥
0,
𝑦
0
) : points above W𝑠(𝐸

𝑦
−

) ∪W
𝑠

(𝐸NE)},

𝐵(𝐸
𝑁
)

= {(𝑥
0
, 𝑦
0
) : region bounded by W

𝑠

(𝐸
𝑁
) andW𝑠(𝐸NE)},

𝐵(𝐸
𝑦
−

) = W
𝑠

(𝐸
𝑦
−

),

𝐵(𝐸NE) = W
𝑠

(𝐸NE),

(65)

where W𝑠(𝐸
𝑦
−

), W𝑠(𝐸
𝑁
), and W𝑠(𝐸NE) denote the global

stable manifolds whose existence is guaranteed by Theorem 4.
Furthermore, every initial point belowW𝑠(𝐸

𝑦
−

) is attracted to
𝐸
0
or 𝐸
𝑥
.

Proof. Local stability of all equilibrium points follows from
Theorem 11. We present the proof in the case of the equi-
librium point 𝐸NE. The proof in the case of the equilibrium
points 𝐸SE and 𝐸NW is similar.

The existence of the global stable manifolds are guaran-
teed byTheorems 4 and 13.

The proofs of the basins of attractions 𝐵(𝐸
𝑥
), 𝐵(𝐸

𝑦
+

)

are the same as the proofs for the corresponding basins of
attraction in Theorem 20, so we will only give the proof for
𝐵(𝐸
𝑁
). Indeed, 𝐵(𝐸

𝑁
) is an invariant set and 𝑇

𝑛

(𝐵(𝐸
𝑁
)) is

a subset of the interior of the ordered interval 𝐼(𝐸NE, 𝐸𝑁)
for 𝑛 large. In view of Corollary 5 the interior of the ordered
interval 𝐼(𝐸NE, 𝐸𝑁) is attracted to 𝐸

𝑁
.

Theorem 22. Assume that 1 > 4𝐴
2
𝐶
2
and system (8)

has seven equilibrium points, 𝐸
𝑥
, 𝐸
𝑦
+

, 𝐸NE which are locally
asymptotically stable, 𝐸

𝑦
−

, 𝐸SE, 𝐸NW which are saddle points,
and𝐸SW which is a repeller.The singular point𝐸

0
(0, 0) is global

attractor of all points on 𝑦-axis, which start below 𝐸
𝑦
−

. The
basins of attraction of six of the equilibrium points are given
as

{(𝑥
0,
𝑦
0
) : points below W

𝑠

(𝐸SE)} ⊂ 𝐵(𝐸
𝑥
),

𝐵(𝐸
𝑦
+

)

= {(𝑥
0,
𝑦
0
) : points above W𝑠(𝐸

𝑦
−

) ∪W
𝑠

(𝐸NW)},

𝐵(𝐸NE)

= {(𝑥
0
, 𝑦
0
) : region bounded by W

𝑠

(𝐸SE) and W
𝑠

(𝐸NW)},

𝐵(𝐸
𝑦
−

) = W
𝑠

(𝐸
𝑦
−

),

𝐵(𝐸SE) = W
𝑠

(𝐸SE),

𝐵(𝐸NW) = W
𝑠

(𝐸NW),

(66)
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where W𝑠(𝐸
𝑦
−

),W𝑠(𝐸NW), and W𝑠(𝐸SE) denote the global
stable manifolds whose existence is guaranteed by Theorem 4.
Furthermore, every initial point belowW𝑠(𝐸

𝑦
−

) is attracted to
𝐸
0
or 𝐸
𝑥
.

Proof. Local stability of all equilibrium points follows from
Theorem 11. Proofs of the basins of attractions 𝐵(𝐸

𝑥
), 𝐵(𝐸

𝑦
+

)

are the same as the proofs for corresponding basins of
attraction in Theorem 20. So we only give the proof for
𝐵(𝐸NE). Indeed, 𝐵(𝐸NE) is an invariant set and 𝑇

𝑛

(𝐵(𝐸NE))
is a subset of the interior of the ordered interval 𝐼(𝐸NW, 𝐸SE)
for 𝑛 large. In view of Corollary 5 the interior of the ordered
interval (𝐸NW, 𝐸SE) is attracted to 𝐸NE.
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