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Comparison of spin anisotropy and exchange alternation 
Jill C. BonnerB-' b, c and Hendrik W. J. BI6tea 

University of Rhode Island, Kingston, R.I. 02881 

J. D. Johnsond 

Los Alamos Scientific Laboratory, Los Alamos, N.M. 87544 

Quasi-I-D magnetic systems with on the one hand an Ising-Heisenberg type spin anisotropy and on the 
other hand an alternating (dimerized) character have many interesting features in common and a few 
interesting differences in their phase behavior and general magnetic properties. This report reviews results 
rather scattered in the literature in addition to presenting new results. These rather complex quantum 
models present a theoretical challenge. It is also hoped that this work will be helpful to magnetochemists 
interested in identifying the underlying magnetic character of their systems, and to experimentalists in 
general. 

PACS numbers: 75.1O.Jm, 75.40.Fa, 75.30.Kz, 75.30.Ds 

1. INTRODUCTION 

Quasi-one-dimensional systems have the virtue that 
various types of magnetic behavior can be investigated 
rather thoroughly, both theoretically and experimentally. 
From time to time it has been noted that one-dimensional 
spin models with anisotropy of the Ising-Heisenberg type 
have qualitative features in common with one-dimensional 
models which one isotropic in spin-space, i.e. Heisen­
berg, but with exchange constants J l and J alternating 
in magnitude. There seems at present no cfear theoreti­
cal arguments to explain this similarity: the two systems 
do not, for example, belong in the same universality 
class. In fact, as we shall see below, the resemblance 
is strong, but not quite complete. Certain aspects of 
the phase behavior of the weakly interacting spin systems 
do show some interesting differences. Homologous series 
of compounds with a uniform character are currently 
under scrutiny by coordination chemists, who study the 
variation of J with bond length, bond angle and, per­
haps, other factors. These empirical studies can then 
be used to check the reliability of current theories 
of superexchange. Very recently, families of alter­
nating (also called dimerized) spin systems have been 
discovered, which may also be used for this purpose. 
The problem for magneto-chemists is which model to 
use; spin anisotropic or alternating. These consider­
ations, and also current interest in the spin-Peierls 
phenomenon,lhave motivated this study. 

2. SPECTRAL EXCITATIONS 

The Hamiltonians for the two types of system may 
be written (all systems discussed have spin S=1/2): 

N Spin Anisotropy. 
(SA) . H=2Ji~1{SizSi+~ + y(SixSi+lx+SiYSi+lY)} 

where the anisotropy parameter, 
(Ising model) and 1 (Heisenberg 

Alternation 
(Alt. ) 

N/2 

H= 2Ji~1{S2i_l'S2i 

y, varies between 0 
model) . 

(1) 

where the alternation parameter, a, varies between 0 
(limit of isolated dimer spin pairs) and 1 (uniform 
model). We consider J>O, antiferromagnetic. Hamil­
tonian (2) may also be written in terms of exchange 
constants J l and J 2 , where J 1 = J and J = aJ (J

2
<J

1
). 

In connection with spin-Peierls theory !t is often con­
venient to define a dimerization parameter, 6=(1-a)/ 
(l+a) = (Jl -J2)/(J

1
+J

2
). 

An analytic solution is available for the lowest­
lying excitations of Hamiltonian (1)2, but at present 
no non-trivial exact analytic results are available 
for any property of Hamiltonian (2). It would there­
fore be valuable to begin by reviewing a related pair 
of Hamiltonians, for the Ising-XY linear chain and 
the alternating XY chain, both of which may be solved 
exactly via a standard transformation from spin to 
pseudo-fermion operators. The Hamiltonians are: 

SA: H (3) 

Alt: H 

(4) 
(

XX y y ) 
+ ct S2iS2i+l+52i52i+l) . 

Both models are variants on the l-D uniform XY model, 
first solved by Lieb et al. and Katsura 3 • 

A comparative discussion is facilitated by con­
sidering a more general Hamiltonian, containing (3) 
and (4) as particular cases, studied by Dubois and 
Carton and Perk and Capel. 4 The exact dispersion re-
lations are: 

2 (l+ya) 2 l-ya 2 . 2 " 
~ (1+y)(1+a)[cOS q+(1+ya) S1n q] (5) 

2(y+a) 2 y-a 2 . 2 " 
~ (l+y) (l+a) [cos q+(Y+a) S1n q] . (6) 

Note first of all the complete equivalence of y and a in 
(5) and (6). If either y = 1 (isotropic case) or a = 1 
(uniform case), (5) and (6) become degenerate as, say 

2 l-y 2 2 k 
Sl,2(q) ~ [cos q + (l+y) sin q]2. (7) 

The excitations are gapless when a=y=l, otherwise the 
energy gap, 6E ~ (l-y) or (I-a). It is very interesting 
that there is another case when branch (6) of the ex­
citations is gapless, namely when y=a. In some sense 
the anisotropy and alternation compensate so as to give 
quasi-uniform-Heisenberg behavior. This implies that 
an anisotropic XY spin-Peierls system should show un­
usual behavior, and possibly an ISing-Heisenberg spin­
Peierls system also. 

Let us now compare the Heisenberg-like systems 
[(1),(2)] with the XY-like systems [(3),(4)]. There is a 
qualitative similarity in that models (1) and (2) show a 
spectral excitation gap vanishing only in the limits y=l 
or a=1,5,6 respectively. However, both gaps now have 
very ditterent tunctional forms. In Fig. 1 we show a 
sequence of exact finite chain anisotropy energy gaps 
for systems of up to 12 spins, together with an extrap­
olated, numerical, N + 00 estimate (indicated by crosses). 
An exact analytic result is available2 . The gap rises 
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Fig. 1 Ising-Heisenberg energy gaps as function of 
y, showing finite N results, the exact result, 
and extrapolations (crosses). 

exponentially slpwly away from the Heisenberg limit 
[as exp(-A[l-yl-~)l. 

The agreement with numerical extrapolations is 
really quite good7,8over the whole y range. This is im­
portant in connection with Fig. 2, where we show alter­
nation energy gaps. Since no analytic solution exists 
for this problem, we will rely on numerical extrapol­
ations. Again, a sequence of exact finite chain alter­
nation gaps for systems of up to 12 spins is shown, to­
gether with N ~ 00 extrapolations (dashed curve). The 
gap apparently vanishes only in the uniform (Heisenberg) 
limit, but the functional form is quite different from 
the spin anisotropy case. A theoretical approach by 
Cross and Fisher 9 based on the Luttinger-Luther-Peschel 
continuum lattice model predicts that /',E ~ 6 2 / 3 , con­
sistent with a zero temperature RG approach lO and al-
so (qualitatively) with the extrapolations. 

The specific heat and susceptibility of Ising­
Heisenberg chains has been investigated both numeric­
allyll and analytically7, and agreement is good. Both 
specific heat and parallel susceptibility have typical 
rounded maxima, and vanish exponentially as T ~ 0 on 
account of the energy gap. For the alternating model, 
numerical calculations of Duffy and Barr l2 have been 
extended by considering longer chains (up to 12 spins) 
so that reliable extrapolations may be made closer to 
the uniform limit. Detailed results for the suscepti­
bility for a wide range of a have been presented 13 and 
new results for the specific heat and zero-point mag­
netization in a field are available. Again, specific 
heat and susceptibility have rounded maxima, and vanish 
exponentially as T ~ 0 on account of the energy gap. 

/',E 

J 

Fig. 2 
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Alternating energy gaps as function of a, 
showing finite N results, extrapolations and 
error bars. 
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The important difference between the two types of sys­
tems lies in the susceptibility. Since the alternating 
chain remains isotropic in spin space, there is no dis­
tinction between parallel and perpendicular suscepti­
bility. The susceptibility for both powder and single 
crystals always goes to zero at T = O. For the Ising­
Heisenberg model, only the parallel susceptibility 
vanishes, the perpendicular susceptibility is finite and 
non-zero. Closely related is the low temperature magnet­
ization as a function of field. For powder ISing-Heisen­
berg samples, the magnetization is always non-zero for 
H > 0, whereas for powder samples of alternating chains, 
the magnetization remains zero until a threshold field 
is reached, when it rises rather rapidly. This feature 
has been used to identify copper bromide imidazole as an 
alternating system, whereas chemically related sister 
compounds apparently behave like uniform chains.ll; 

4. CRITICAL BEHAVIOR 

The simple anti ferromagnet (AFB) has a single crit­
ical field (at T = 0) above which ATI! ordering is des­
troyed by the field. For both the spin anisotropic and 
alternating l-D models there are two critical fields, 
lower and upper, Hcl and Hc2 ' respectively. For both 
models, Hc 2 is given exactly by simple spin-wave theory. 
Again, for both models, Hel is a direct measure of 6E, 
the energy gap, since Hel is the field at which a 
(magnetic) component of the excited states above the gap 
crosses the non-magnetic ground state(s) on account of 
the Zeeman term. For the XY-like models, of course, 
both Hcl and Hc 2 are known exactly. For Heisenberg­
like models we have:-

SA: Hc2 = 2J(1 + y). (8) 

Hcl can be found from the graph of Fig. I, where the 
expression plotted can be obtained from ref. 2, equations 
(161, 162), or Yang and Yang 15, equation (8). 

Alt: (9) 

Hcl can be found approximately from the graph of Fig. 2. 
There is also a third-order perturbation calculation of 
Harris 16 which gives 

This expression converges well from the dimer limit 
out to a ~ 0.5 and agrees with the numerical extrap­
olations in this alternation range. Note the isom­
~rphism between y and a in (8) and (9). At T = 0, 
critical sin~ulari~ies occur in X(T=O)' but space 
prevents a d~scuss~on here. 

For both Ising-Heisenberg and alternating chains, 
the behavior of the thermodynamic properties, e.g. the 
specific heat, is very similar. For both models we 
have the same functional forms for T ~+ 0: 

o H < H: C ~ T-3/2c-6E/kT 
cJ H 

(10) 

II H 
c1 

and H C 'cA 1'1/2 
H 1,2 

( 11) 

H 
c1 

< H < Ii c2' CH ~ B(Il)T. (J 2) 

Exact resul ts [or the Ising-Heisenberg model expanded 
ln y are: A1 0.114 A2 ~ 0.229 (13) 

rs:y I'Fi 
For the alternating model, no such exact results are 
available but spin-wave theory and detailed experiment 17 

confirm the correctness of the functional forms (10,11, 
12). Note that for both models, the behavior resembles 
that expected for a uniform AFM at T = ° in the range 
Hcl ' H ~ H 2; whereas at H = HCI 2' the models resemble 
a zero-f~ela ferromagnet. In both models there is asym­
metry i.e. Al < A2 . 

A zero temperature quantum RG method has been form­
ulated where the quantum chain is divided into exactly 
solvable blocks of Ns spins, and the inter-block coup'in~ 
is written in terms of a truncated block vector 
basis 6 ,lO. For alternating chains with Ns = 3, the RG 
iteration process yields two fixed points, a* = I 
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Fig. 3 Quasi-l-D spin-flop Aft! phase diagram, showing 
AF ordered region, spin-flop region (SF) and 
bicritical point. 

Fig. 4 Quasi-l-D alternating AB! phase diagram, 
showing spin-flop (SF) ordered region. 

(unstable) and a* - 0 (00) (stable). This result 
has the important physical implication that the 
system with non-zero alternation, i.e. a < 1, will re­
normalize into a dimer system, characterized by a sing­
let-triplet energy gap. This implies that the excita­
tion gap vanishes only in the uniform limit, a ; 16. 
Repeating the calculations for a uniform Ising-Heisen­
berg system 19 strengthens this interpretation. Fixed 
points are found at y¥; 1 (unstable) and y* ; 0,00 
(stable). This agrees with exact results 2 . If the RG 
calculations are repeated for the corresponding XY-type 
models, similar fixed point behavior appears, again in 
agreement with the exact results. It is interesting 
that the RG method gives equivalent recursion relations 
for both cases (3) and (4), apparently reflecting the 
equivalence of the two exact solutions noted above. 

When the I-D systems weakly interact, cooperative 
ordering occurs for T > O. Since none of our systems 
is now exactly solvable, the following discussion relies 
on spin-wave theory, mean-field theory and experiment. 
The phase diagram for a quasi-l-D Ising-Heisenberg AFM, 
which is, of course, a spin-flop system is sketched in 
Fig. 3. The usual three phases appear, AFM, spin-flopped 
and paramagnetic. The corresponding phase-diagram for 
a quasi-I-D alternating AFM is sketched in Fig. 4. The 
surprising feature is the complete absence of the AFM 
phase. There is no phase transition of any type in zero 
field: cooperative ordering of a spin-flop type occurs 
only between Hand H 2. There is likewise no trace of 
a first order ~~ti/flo~ transition line: The phase 
boundary is second order. Such behavior typifies copper 
nitrate, Cu(N03) ·2.5 H20, which has been very exten­
sively studied, 50th experimentally and theoretical­
ly17,18. The presence of the AFM ordered phase in Fig. 
3 is related to the existence of long-range-order (LRO) 
at T = 0 of the Ising-Heisenberg chain. The alternating 
chain has a non-degenerate singlet ground state; hence 
no LRO at T = 0, and therefore no transition will appear 
for T > 0 when the chains interact. 

5. MAGNETIC COOLING 

Quasi-l-D ISing-Heisenberg and alternating systems 
may show a striking difference in their phase behaVior, 
but they show strong similarities in their cooling be­
havior, i.e. isentropes as a function of field and tem­
perature. This is because magnetic cooling is intimate­
ly related to the entropy, on which the effects of a 
second order or continuous transition are rather minim­
al. Fig. 5 shows the results of an analytic calculation 
on an ideal ISing-Heisenberg chain with y = 0.2. 20 Note 
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0.4 

0.3 

kT 
J 

0.2 

0.1 

0 
0 3.6 4.0 4.4 4.8 

Fig. 5 Exact cooling isentropes for Ising-Heisenberg 
chain for y 0.2. 

that four different types of cooling behaVior, in-
cluding both adiabatic magnetiZation and adiabatiC de­
magnetization, are observed in this system. Entropy 
maxima and hence isentrope minima appear in the vicinity 
of Hand H 2. For the alternating chain system copper 
nitr~te, theCcooling curves (theoretical and experimental) 
are remarkably similar to the Ising-Heisenberg case~7 

REFERENCES 

(a) Supported by NSF Grant #DMR77-24136. 
(b) Supported by NATO. 
(c) Fellow of the Bunting Institute, Radcliffe College. 
(d) Supported by DOE. 

1. 1.5. Jacobs et al., Phys. Rev. B 14, 3036 (1976). 
2. J. des Cloizeaux and M. Gaudin, J~Math. Phys. 7, 

1384 (1966). For corrected excitations, see e.~ 
J.D. Johnson and B.M. McCoy, Phys. Rev. A £, 1613 
(1972) . 

3. E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 1£, 
407 (1961): S. Katsura, Phys. Rev. 127, 1508 (1962). 

4. J.Y. Dubois and J.P. Carton, J. Phy~(Paris) 35, 
371 (1974): J.B.B. Perk et al., Physica 81A, 319 
(1975) . 

5. J.C. Bonner, H.W.J. BIBte and J.D. Johnson, J. Phys. 
(Paris) 39, C6-710 (1978). 

6. J.N. Fields, Phys. Rev. B 19, 2637 (1979). 
7. See J.D. Johnson, Phys. Re~ A 9, 1743 (1974). 
8. J.C. Bonner and H.W.J. BIBte, ~published work. 
9. M.C. Cross and D.S. Fisher, Phys. Rev. B 19, 402 

(1979). -
10. J.N. Fields, J.C. Bonner and H.W.J. BIBte, J. Appl. 

Phys. 50, 1807 (1979): H.W.J. Bl&te, J.C. Bonner and 
J.N. Fields, paper to be presented at ICM '79 Munich. 

11. J.C. Bonner and M.E.Fisher, Phys. Rev. 135, A640 
(1964). -

12. W. Duffy, Jr. and K.P. Barr, Phys. Rev. 165, 647 
(1967). -

13. J.C. Bonner, H.W.J. Bl&te, J.W. Bray and I.S. Jacobs, 
J. Appl. Phys. 50, 1810 (1979). 

14. J.J. Smit, L.J.~e Jongh, J.A.C. van Ooijen, J. 
Reedijk and J.C. Bonner, Physica (in press). 

15. C.N. Yang and C.P. Yang, Phys. Rev. 151, 258 (1966). 
16. A.B. Harris, Phys. Rev. 122, 295 (1967). 

17, K.M. Diederix, H.W.J. BIBte, J.P. Groen, T.O.Klaasen, 
and N.J. Poulis, Phys. Rev. B 19, 420 (1979). 

18. J.C. Bonner et al., Proc. 12th-rnt. Conf. on Low 
Temp. Phys., Kyoto, Japan, p. 691 (1970). 

19. J.N. Fields, private communication. 
20. J.C. Bonner and J.D. Johnson, Physica 86-88B, 653 

(1977) . 

INTERMAG-MMM-1979 7381 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

131.128.120.39 On: Tue, 14 Jul 2015 13:36:17


	Comparison of spin anisotropy and exchange alternation
	Citation/Publisher Attribution

	Comparison of spin anisotropy and exchange alternation
	Publisher Statement
	Terms of Use


	tmp.1437412194.pdf.6cKgO

